
Proceedings of Machine Learning Research vol 72, 73-84, 2018 PGM 2018

Cascading Sum-Product Networks using Robustness

Diarmaid Conaty DCONATY01@QUB.AC.UK
Jesús Martı́nez del Rincon J.MARTINEZ-DEL-RINCON@QUB.AC.UK
Queen’s University Belfast, Northern Ireland, UK

Cassio P. de Campos C.DECAMPOS@UU.NL

Utrecht University, The Netherlands

Abstract
Sum-product networks are an increasingly popular family of probabilistic graphical models for

which marginal inference can be performed in polynomial time. They have been shown to achieve
state-of-the-art performance in several tasks. When learning sum-product networks from scarce
data, the obtained model may be prone to robustness issues. In particular, small variations of
parameters could lead to different conclusions. We discuss the characteristics of sum-product net-
works as classifiers and study the robustness of them with respect to their parameters. Using a
robustness measure to identify (possibly) unreliable decisions, we build a hierarchical approach
where the classification task is deferred to another model if the outcome is deemed unreliable. We
apply this approach on benchmark classification tasks and experiments show that the robustness
measure can be a meaningful manner to improve classification accuracy.
Keywords: Sum-product networks; sensitivity analysis; robustness; classification.

1. Introduction

Probabilistic graphical models allow for the compact specification of uncertain knowledge through
a graphical language which facilitates elicitation, improves interpretability, and achieves good in-
ferential performance (Koller and Friedman, 2009; Darwiche, 2009). In spite of that, many inde-
pendences are not captured (Chavira and Darwiche, 2005; Zhang and Poole, 1996). Sum-Product
Networks (SPNs) are a class of probabilistic graphical models that allow for the explicit represen-
tation of context-specific independence (Poon and Domingos, 2011). They are popular due to their
ability to represent complex distributions while retaining efficient marginal inference (Nath and
Domingos, 2016; Rathke et al., 2017). The internal nodes of an SPN perform (weighted) sums and
multiplications, while leaves represent variable assignments. The sum nodes can be interpreted as
latent variables inducing mixtures of distributions, while the product nodes can be interpreted as
encoding probabilistic independences (Gens and Domingos, 2013; Peharz et al., 2016). We dis-
cuss how SPNs naturally generalise the Naive Bayes classifier, which somehow justifies their good
performance in classification tasks (given that Naive Bayes, albeit quite simplistic, is one of the
top performing classifiers in the literature for a wide range of problems). We also discuss on other
relations of SPNs and Bayesian network classifiers.

On par with other probabilistic graphical models, SPNs learned from data may generalise poorly
for configurations of the variables that do not appear often, and produce unreliable and overcon-
fident conclusions. The main contribution of this paper is to introduce an approach to overcome
such drawback based on cascading multiple classifiers and deferring the decision when the current
prediction is not reliable. In order to measure such reliability, we make use of recent algorithms

73

CONATY ET AL.

proposed for credal SPNs (Mauá et al., 2017). Such robustness measure can be computed both at
training and testing time and is capable of discriminating reliable versus unreliable predictions, but
it requires the tuning of its threshold parameter. For that, we propose to learn the threshold from
data, and we empirically show that this framework increases classification accuracy with small ex-
tra effort. We study how different SPNs perform under certain network learning constraints, and
how they improve when combined using a hierarchy of SPNs that decide, based on their robustness
measure, whether to defer the responsibility of prediction to another SPN.

The paper is divided as follows. Section 2 describes the notation and defines the SPNs that are
used in this work. It also discusses on a learning approach and how it relates to some Bayesian
network classifiers. Section 3 describes our approach to defer the decision to another SPN when
the prediction is not reliable enough. Section 4 presents our experimental setup and the obtained
results, and finally Section 5 concludes the paper.

2. Sum-product networks

Random variables are denoted by X with a subscript (e.g., X1, Xi). A collection of random vari-
ables indexed by a set V is denoted by XV = {Xi : i ∈ V}. A configuration of a collection of
random variables is denoted as XV = xV or XV = z. We assume every random variable Xi is
categorical and take values in {0, . . . , |Xi| − 1}. Indicator variables {λi,j : j = 0, . . . , |Xi| − 1}
are used to indicate an outcome of the variable Xi. For any configuration XV = xV we write λxv

to denote the configuration of indicator variables such that λi,xi = 1 and λi,j = 0 for all j 6= xi.
When the configuration mentions only a subset of all the variables, say XE = e for E ⊂ V , we write
λe to denote the configuration of indicator variables that assigns λi,j = 0 if i ∈ E and ei 6= j and
λi,j = 1 otherwise. That is, λe is the configuration of indicator variables that is consistent with the
configuration and assigns 1 to indicator variables associated to unrealised random variables.

An SPN is a concise graphical representation of the multilinear polynomial specifying a (dis-
crete) probability measure (Darwiche, 2003). In more detail, an SPN is a weighted, rooted and
acyclic directed graph where internal nodes are labelled as either sum or product operations and
leaves are associated with indicator variables (this is not a restriction for discrete domains). We
assume that every indicator variable appears in at most one leaf node. Every arc from a sum node i
to a child j is associated with a non-negative weight wij . Given an SPN S and a node i, we denote
Si the SPN obtained by rooting the network at i, that is, by discarding any non-descendant of i
(other than i itself). We call Si the sub-network rooted at i. If w are the weights of an SPN S and
i is a node, we denote by wi the weights in the sub-network Si rooted at i, and by wi the vector of
weights wij associated with arcs from i to children j. The height of a (sub)network S equals the
longest path (in number of arcs) from the root to the deepest internal node.

The value of an SPN S at a given configuration λ of its indicator variables, written S(λ), is
defined recursively in terms of its root node i. If i is a leaf node associated with indicator variable
λi,xi then S(λ) = λi,xi . Else, if i is a product node, then S(λ) =

∏
j S

j(λ), where j ranges over
the children of i. Finally, if i is a sum node then S(λ) =

∑
j wijS

j(λ), where again j ranges over
the children of i. The scope of an SPN with a single node is the respective random variable. The
scope of an SPN with a root node which is not a leaf is the union of the scopes of the sub-networks
rooted at every child of such root node. Every joint distribution over categorical random variables
can be represented by an SPN. In order to ensure that any SPN computes a valid distribution and its
marginals, we impose the following properties (Peharz et al., 2015):

74

CASCADING SUM-PRODUCT NETWORKS USING ROBUSTNESS

Completeness: The scopes of children of a sum node are identical;

Decomposition: The scopes of children of a product node are pairwise disjoint;

Normalisation: The sum of the weights of arcs leaving a sum node is one.

Every SPN specifies a probability measure P such that P(X = x) = S(λx) under such condi-
tions, and a marginal probability can be computed by setting all indicator variables of the summed
out variables to one. Let E ⊆ V and consider some evidenceXE = e. Then P(XE = e) can be com-
puted as S(λe) (Poon and Domingos, 2011). Hence, it follows that S(λe) =

∑
x∼e S(λ

x), where
x ∼ e represents all configurations of X = x that agree with evidence XE = e. The evaluation
of an SPN for a given configuration λ of the indicator variables can be performed by a bottom-up
message propagation scheme where each node sends to its parent its value. The whole procedure
takes linear time and space (in the SPN size). Conditional probabilities can also be obtained in linear
time either by evaluating the network at query and evidence (then dividing the result) or by applying
Darwiche’s differential approach, that propagates messages up and down the network (Darwiche,
2003; Peharz et al., 2016). Other inferences such as maximum-a-posteriori inference are however
NP-hard to compute or even to approximate (Conaty et al., 2017).

2.1 Learning from data

Many algorithms have been devised to “learn” SPNs from data (Gens and Domingos, 2013; Peharz
et al., 2013, 2014; Lee et al., 2014; Rooshenas and Lowd, 2014; Dennis and Ventura, 2015; Adel
et al., 2015; Rahman and Gogate, 2016; Zhao et al., 2016). Most learning algorithms employ a
greedy search on the space of SPNs augmenting the network in either a top-down or bottom-up
fashion. The sum nodes in an SPN can be interpreted as hidden (latent) variables in a mixture
model, and the product nodes can be seen as defining context-specific independences (Poon and
Domingos, 2011; Peharz et al., 2016). The number of values of the hidden variable (and hence the
number of mixtures) corresponding with a sum node is the number of outgoing arcs. For instance,
Gens and Domingos (2013)’s algorithm starts with a single node representing the entire dataset,
and recursively adds product and sum nodes that divide the dataset into smaller datasets (if columns
are variables and rows are samples, then sum nodes can be seen as horizontal partitions, while
product nodes are vertical partitions) until a stopping criterion is met. Product nodes are created
by using independence tests (pairwise tests will form a dependency graph, and variables in distinct
components of the graph become the scope of the children of the product node), while sum nodes
are created by performing clustering on the row instances. The weights associated with sum nodes
are learned as the proportion of instances assigned to a cluster. In principle any independence test
and clustering method can be used. Since we are mainly interested in studying the possibility of
cascading models and how that can improve accuracy, we decided to employ efficient and well-
known approaches for those tasks. During clustering, we run a partition around medoids (PAM)
method (Kaufman and Rousseeuw, 1987), and as independence test we employ the G-test (Sokal
and Rohlf, 1981) (we leave the exploration of other methods for future work).

One of the possible uses of SPNs is in building probabilistic classifiers, that is, in estimating a
probability distribution over class and attribute values, which can then be used to classify objects
into classes by maximising the class conditional probability. For instance, Poon and Domingos
(2011) learned SPNs to predict the missing pixels of an image. We employ two variations that can
be valuable for classification: (1) we allow the SPN learning to start with either a product or a sum

75

CONATY ET AL.

node (a parameter controls that; we call it a sum-rooted SPN if the root is a sum node, and product-
rooted SPN otherwise); (2) we may force the first sum node containing a target variable (the class
variable in classification problems) to be partitioned based on the values of that variable (we call
this as class-discriminative SPN, since the data is partitioned by the class values). Finally, we also
control the maximum height of the learned SPN. If we define an upper bound height h, then when
a node reaches depth h− 1, it is forced to become a product node with all variables independent of
each other, where each child will be a single sum node (at height h) with univariate scope defining an
univariate probability distribution for that variable (and will have as children the indicator functions
for it). The height control is intended to analyse if the learned SPNs are prone to overfitting related
to their depth, but it also allows us to create a clear relationship between SPNs and other classifiers.
The learning algorithm is displayed below.

LEARN(D, PRODUCT-FIRST, CLASS-DISCRIMINATIVE, MAX-HEIGHT, HEIGHT): returns an SPN

Inputs: D: dataset; PRODUCT-FIRST and CLASS-DISCRIMINATIVE: Booleans, MAX-HEIGHT: controls the height;
HEIGHT: starts at 0 for the main root node

1. If D contains a single variable, then

(a) Create a sum node S with children as the leaf nodes corresponding to the values of that variable, and
weights according to their frequencies in the data.

(b) Return S.

2. If HEIGHT equals MAX-HEIGHT−1, then

(a) Create a product node S and partition the dataset into D1, . . . , Dt (where t is the number of variables in
D), with one single variable per Di.

(b) For i = 1, . . . , t, call LEARN(Di, FALSE, FALSE, MAX-HEIGHT, HEIGHT+1) and these SPNs as a children
of S.

(c) Return S.

3. If PRODUCT-FIRST, then

(a) Create an empty product node S. Create an empty (undirected) graph.

(b) For every i, j, compute G-TEST(D,Xi, Xi) and if the p-value is below PVAL-THRESHOLD, include an
edge (i, j) in the graph.

(c) Compute the connected components C1, . . . , Ct of the graph, and partition the dataset D into D1, . . . , Dt

based on the variables that appear in each component (Di shall contain all data related to variables in Ci).

(d) For i = 1, . . . , t, call LEARN(Di, FALSE, CLASS-DISCRIMINATIVE, MAX-HEIGHT, HEIGHT+1) and add
each returned SPN as a child of S.

(e) Return S.

4. Create an empty sum node S.

5. If CLASS-DISCRIMINATIVE (and the class variable is part of D), then

(a) Partition the dataset D into D1, . . . , Dt, with t the number of classes, based on the values of the class
variable in D.

(b) For i = 1, . . . , t, call LEARN(Di, FALSE, FALSE, MAX-HEIGHT, HEIGHT+1) and add each returned SPN

as a child of S with associated weight proportional to the number of occurrences of i in the class variable.

(c) Return S.

6. Partition the dataset D into D1, . . . , Dt, using a call to the PARTITION-AROUND-MEDOIDS clustering algorithm,
where samples are seen as multi-dimensional vectors.

7. For i = 1, . . . , t, call LEARN(Di, FALSE, FALSE, MAX-HEIGHT, HEIGHT+1) and add each returned SPN as a
child of S with associated weight proportional to number of samples in cluster i.

76

CASCADING SUM-PRODUCT NETWORKS USING ROBUSTNESS

8. Return S.

By using some particular settings when calling the learning algorithm, we obtain variations/generalisations
of some Bayesian network classifiers.

Lemma 1 Let a Bayesian network classifier be defined as a model where the class variable is the
only root node and has all features (that is, non-class variables) as children. A class-discriminative
sum-rooted SPN generalises a Bayesian network classifier, that is, it contains a Bayesian network
classifier as a subcase.

Proof Because the class variable of the Bayesian network classifier is a parent of every single vari-
able, their conditional probability tables will be indexed by the values of the class variable, and
hence will be learned using the data related to that class. One can see each child of the root node of
the class-discriminative sum-rooted SPN as representing the conditional probability of the features
given that particular value of the class, so it can represent the same distribution as the Bayesian
network classifier (since an SPN can represent any distribution, even if that may be resource de-
manding). Finally, the marginal probability of the class, which is encoded in the root node of the
Bayesian network classifier, can be encoded in the weights of the sum node which is the root of the
SPN.

Lemma 2 A class-discriminative sum-rooted SPN of height 2 is equivalent to a Naive Bayes model.

Proof The result follows from Lemma 1 and the height restriction, since every node which is a
child of the root node will reach the limit of the height and will become a product node that makes
all variables independent. Therefore, the sum nodes of the next layer represent the conditional prob-
ability of each feature given the class (for the appropriate value of the class according to the path
from the root of the SPN).

Lemma 3 A class-discriminative product-rooted SPN of height 3 is equivalent to a Naive Bayes
model over variables that were not discarded by a feature selection procedure (based on components
of the independence graph constructed by pairwise tests).

Proof There are two points to realise here:

1. The product root node will act as a feature selection procedure, since the scopes of the children
are disjoint, only one of them will have the class variable; during testing, the messages coming
from all other children will be irrelevant, since they will be the same whichever is the class
value, and thus they could be safely ignored (computing them does not cost much in SPNs,
but crucially they do not interfere in the class prediction).

2. The only child of the product root node containing the class will be a class-discriminative
sum-rooted SPN of height 2, because the child of a product node cannot be another product
node (it is redundant to have a product node as child of a product node). Finally, by Lemma 2
this sub-network is equivalent to a Naive Bayes model.

77

CONATY ET AL.

3. Deferring predictions

In order to obtain a measure of robustness for issued predictions, we can allow parameters of the
model to vary within a certain set and verify whether the outcome (predicted class) remains the same
whichever choice of parameters we make. Let Sw denote a SPN whose weights are w. Following
the work of Mauá et al. (2017), we can investigate the robustness of a model by varying the weights
w inside some fixed space, subject to the constraint that they still define a (normalised) SPN. A
Credal Sum-Product Network (CSPN) is a set {Sw : w ∈ C}, where C is the Cartesian product of
probability simplexes, and each probability simplex constrains only the weights associated with a
single sum node. In this way, an SPN is a CSPN where weights take values in a singleton C, and
every choice of weights w inside C specifies an SPN. Thus, the CSPN induces a credal set, that is, a
(not necessarily convex) set of probability measures (Levi, 1980). We are particularly interested in
CSPNs formed as follows: for each sum node with local weights w, we use an ε-contamination of w
(with 0 ≤ ε ≤ 1)

Cw,ε =

(1− ε)w + εv : vj ≥ 0,
∑
j

vj = 1

 . (1)

Now, given a class variables Xc, evidence XE = e, and an CSPN, we say that an assignment c1
for Xc credally dominates another assignment c2 if

min
w

[
Sw(λ

c1,e)− Sw(λc2,e)
]
> 0 . (2)

This task can be performed efficiently in polynomial time (Mauá et al., 2017) when the number of
classes is bounded and the internal graph of the SPN is a tree. Following the proposals of de Bock
et al. (2014), assume an SPN has been learned from data, and used to issue a classification based on
the maximum probability class label. Given a value ε > 0, we say that a classification is ε-robust
if the respective class label is not credally dominated by any other class label in the CSPN obtained
by ε-contamination of the SPN. The robustness of a prediction is the largest value of ε for which
the maximum probability class is robust. In this work, we employ the robustness of a prediction to
decide whether to defer the decision to another model.

Our approach is based on cascading two or more CSPNs until one of them is confident in pro-
viding a decision. In other words, a list of SPNs S1, . . . , St (with t ≥ 2) is learned from data and
a list of robustness thresholds τ1, . . . , τt−1 is constructed. These SPNs are then used in order to
predict the class variable, in sequence. When Si is employed, we compute the robustness value ε
of the issued prediction, and if ε < τi, then we ignore the prediction and increment i, moving to
the next SPN (if i = t, we issue a prediction no matter the robustness measure). The robustness
thresholds can be manually fixed (since the contamination has a clear meaning, an expert could for
instance choose 0.01 to lean towards accepting predictions, or for instance 0.5 to only issue very
certain predictions).

We have also implemented an approach of learning the threshold from data: we apply the cas-
cading model of SPNs to the training data using different threshold and we fixed them based on
the maximum accuracy (over the training samples). We argue that this does not overfit, because
we are only learning when to defer decisions (we will show in the sequel that indeed there is good
improvement in overall accuracy by such approach). There are obviously multiple ideas that are
reasonable to choose the thresholds, since there is a clear trade-off about their choices and which
SPN will end up making the decision. As for the choices of SPNs to include in the list, Section 2

78

CASCADING SUM-PRODUCT NETWORKS USING ROBUSTNESS

discussed some insights about the relation of SPNs with other classification approaches. With that
in mind, a possible strategy is to select SPNs that relate to different models, or to select SPNs with
different amount of fitness (and hence a diverse balance between under- and overfitting) to include
in the list. We experiment with multiple options in the next section.

4. Experiments

We start the experiments by creating a collection of SPNs based on different learning constraints.
Table 4 describes the datasets of UCI (http://archive.ics.uci.edu/ml/) that we use
and the accuracy results of multiple SPNs using a 10-fold cross-validation (each run 6 times). All
datasets were curated and contain only categorical variables. Our goal is to show different accuracies
that might be obtained depending on the constraints, and not to select a best SPN against others. In
spite of that, the class-discriminative/general SPNs seem to perform better than the Naive Bayes-like
SPNs, and the stronger constraints on the height seem to produce poorer classifiers.

Figure 1: Boxplots of cascading two SPNs which differ by their structural constraints. From left to
right, we have a product-rooted SPN without learning constraints, a discriminative SPN,
the Naive Bayes-equivalent SPN, and the feature-selection plus Naive Bayes equivalent
SPN. The second model of the cascading is always the product-rooted SPN (except for
itself, which has the discriminative as second model). In each graph, we show results
based on a fixed robustness threshold and based on learning the threshold from data.

Our main goal is to examine the effects of cascading layers of networks. We performed ex-
periments with a variation of constraints. In each cascading experiment, we train the SPNs using
all the data, and then we apply the cascading idea through a chosen robustness threshold to de-
fer the decision. The SPNs are evaluated in sequence until one issues a reliable prediction (or the
list is exhausted). Figure 1 has four distinct SPNs as first model in the cascading, from left to
right: (i) product-rooted SPN without learning constraints, (ii) class-discriminative sum-rooted SPN,
(iii) class-discriminative sum-rooted SPN (equivalent to a Naive Bayes classifier), and (iv) product-
rooted class-discriminative SPN of height 3 (similar to feature-selection based on independence
tests followed by a Naive Bayes classification approach). As deferring model, we employed the
product-rooted SPN without learning constraints, so each box plot shows the percentage gain (that

79

http://archive.ics.uci.edu/ml/

CONATY ET AL.

Model NB FS+NB SPN Dis.SPN Height3 Height5 Height9
audiology 30.09 29.79 54.13 57.52 29.72 39.16 50.52
autos 88.94 87.89 88.37 87.97 88.62 87.24 88.21
balance scale 67.57 72.11 72.45 71.65 73.60 73.87 72.48
breast cancer 69.81 71.16 72.09 73.08 70.69 73.08 73.02
bridges 56.85 57.17 56.85 57.63 56.70 55.92 56.85
cars 70.15 70.79 87.87 83.54 70.35 74.58 82.86
cmc 42.24 43.47 50.07 49.40 43.09 45.89 48.80
colic 69.43 71.38 81.34 80.84 72.69 78.17 80.21
cylinder bands 56.42 56.51 66.08 68.55 56.73 59.69 65.65
dermatology 48.18 48.64 94.08 94.35 49.87 65.03 85.43
diabetes 67.06 68.34 70.14 70.09 67.90 68.60 70.42
ecoli 60.17 62.35 72.17 71.68 62.15 66.97 71.13
flags 37.80 38.57 40.72 42.70 38.32 39.95 40.38
flare 40.02 51.43 72.06 72.26 51.23 65.16 71.48
glass 38.08 39.88 57.87 55.38 40.34 49.92 56.70
haberman 73.80 73.53 73.53 73.10 73.53 73.53 73.53
hayes roth 42.30 35.10 35.36 51.90 34.98 34.60 35.10
heart h 74.77 74.60 79.59 79.87 73.81 79.14 78.46
heart statlog 73.33 73.39 71.85 72.78 72.22 72.47 72.04
hepatitis 79.35 79.35 81.18 80.11 79.46 81.08 80.76
hypothyroid 92.29 92.29 92.12 92.02 92.29 92.29 92.29
ionosphere 64.15 72.79 80.30 79.25 75.07 81.86 81.06
iris 66.34 67.11 80.56 80.56 65.67 78.56 79.56
kr vs kp 54.12 53.48 92.48 92.97 54.50 60.75 72.74
labor 80.70 76.61 88.31 88.89 73.39 80.12 91.81
liver disorders 54.06 54.01 62.42 63.72 54.49 62.08 62.22
lung cancer 35.94 44.27 42.19 44.79 40.11 42.71 33.85
lymph 69.03 71.06 76.01 75.00 71.85 74.78 76.24
molecular biology 48.74 52.20 71.54 72.8 51.73 67.92 72.49
mushroom 71.90 87.64 99.99 99.99 86.17 92.49 98.15
page blocks 89.77 89.97 93.75 93.72 89.85 91.81 93.48
postoperative 70.74 71.11 71.11 70.37 71.11 71.11 71.11
primary tumor 26.45 26.79 35.60 34.51 26.79 30.63 33.68
segment 26.36 46.00 81.31 81.14 46.85 63.53 76.16
shuttle landing 55.56 60.00 60.00 52.22 60.00 60.00 60.00
sick 93.88 93.88 93.73 93.71 93.88 93.88 93.81
solar flare 45.53 47.81 73.11 73.86 50.99 64.46 73.08
sonar 60.02 62.18 68.19 67.47 60.90 63.94 65.31
soybean 20.21 20.13 75.67 75.21 20.11 33.87 57.76
spambase 73.48 76.02 79.66 79.68 75.48 77.31 78.78
tae 33.11 32.78 41.61 42.39 35.43 41.50 43.60
tic tac toe 65.32 65.78 80.48 81.12 65.29 66.89 77.40
vehicle 35.76 38.50 62.37 62.55 39.08 44.78 57.80
vote 87.90 87.74 95.09 94.94 87.86 91.99 94.56
waveform 5000 61.81 61.76 78.37 77.44 61.80 70.49 78.21
zoo 59.74 60.24 85.98 86.14 60.24 74.59 85.15

Table 1: UCI datasets and classification accuracy (%) for different learned SPNs based on con-
straints during the training are presented. NB is the Naive Bayes-like SPN, FS+NB is the
Naive Bayes-like SPN preceded by feature selection, SPN is the product-rooted network
with no constraints on learning, Dis.SPN is the sum-rooted class-discriminative SPN, and
those labelled Height are general SPNs restricted by maximum height of 3, 5 and 9 (height
7 is omitted for the sake of space).

80

CASCADING SUM-PRODUCT NETWORKS USING ROBUSTNESS

is, cascaded accuracy divided by single SPN accuracy over each dataset). In the left-most graph
using model (i), we use the class-discriminative sum-rooted SPN as deferring model (otherwise re-
sults would always be equal to 1). For each graph, we show both the gain with a fixed threshold
at 0.01, and with a learned threshold from training data (as discussed in the previous section). All
results show a significant gain by the use of cascading, with more prominent results when the thresh-
old is learned. This suggests that cascading by this robustness measure approach can improve the
classification accuracy regardless of the learning constraints that employed in the models.

Figure 2: Boxplots of cascading two SPNs which differ by their height upper bound. From left to
right, they show the improve in accuracy (cascaded divided by single SPN) of SPNs with
height limit at 3, 5, 7 and 9, followed by the SPN of height limit 7 (the one of height 7
is followed by the height 9). We show results based on a fixed robustness threshold and
based on learning the threshold from data.

We have further investigated the cascading approach by combining two SPNs of different maxi-
mum heights. Clearly the maximum height relates to the amount of fitness of the model, and might
related to the trade-off between underfit and overfit in classification. We have chosen to run experi-
ments with four different maximum heights and product-rooted SPNs without further constraints at
learning. Figure 2 shows the results of cascading in two layers, starting with maximum height 3,
5, 7, and 9 (from left to right) as the first SPN in the cascading, followed by the SPN of maximum
height equal to 7 (except for itself, which is followed by the SPN of maximum height of 9). Again,
we show results with robustness threshold to defer decisions of 0.01, and also with a learned thresh-
old using the training data. All results show superior performance of cascading with respect to the
single SPN classification (that is, the boxplots are all above the ratio of 1).

Finally, we empirically investigate whether cascading is useful if we do multiple layers instead
of only two. We have used a new set of four SPNs with learned threshold and forced it to stop both
at layer two or at layer four. The results are shown in Figure 3. We decided to use a combination of
different SPNs for the sequences (using product-rooted, sum-rooted, class-discriminative, and differ-
ent p-values for the G-test of independence). For the sake of space, in the plots we show only some
results: from left to right, the cascading sequences are (a),(d),(c),(b); (b),(a),(d),(c); (c),(b),(d),(a);
(d),(b),(a),(c), where: (a) product-rooted SPN with p-value 0.05, (b) product-rooted SPN with p-
value 0.01, (c) product-rooted class-discriminative SPN with p-value 0.05, (d) class-discriminative

81

CONATY ET AL.

sum-rooted SPN with p-value 0.05. Results are always superior to the single SPN classifier, and
never decrease significantly by the four layers (and actually increase in most combinations; in the
four displayed cases, it has increases in the two on the left but not in the two in the right). Overall,
cascading (with two or four layers) has significantly increased the classification accuracy.

Figure 3: Boxplots of cascading two/four SPNs which differ by their structural constraints. Each
graph represents a different order for deferring the classification (chosen arbitrarily to
demonstrate that the gains are not highly dependent on the chosen models). We show
results based on on learning the threshold from data.

5. Conclusions

In this work we discussed the use of sum-product networks for classification and their relation with
some well-known classifiers, notably the Naive Bayes classifier. We created a procedure to cascade
multiple sum-product networks in order to build a classifier that predicts in a more robust manner,
and thus may achieve higher accuracy than any single sum-product network alone. The choice of
which sum-product network should be employed for each instance to be classified depends on the
robustness of the prediction as computed by a credal sum-product network, obtained by perturbing
parameters of the original sum-product network. Multiple experiments using UCI datasets suggest
that the use of a model’s own robustness to decide whether to defer issuing predictions to other
models has positive implications in the overall accuracy of the classifier, and we argue that such
approach through the analysis of robustness may bring benefits also for other classifiers and/or
combinations of classifiers. We leave for future work the study of robustness based on variations
of the data and/or prior distributions, instead of direct perturbation of the model. We have already
started to investigate such avenue, and results look promising.

Acknowledgments

We thank Renato Geh for making his source code publicly available (at https://github.com/
RenatoGeh/gospn), and Denis Mauá for numerous chats about robustness and SPNs.

82

https://github.com/RenatoGeh/gospn
https://github.com/RenatoGeh/gospn

CASCADING SUM-PRODUCT NETWORKS USING ROBUSTNESS

References
T. Adel, D. Balduzzi, and A. Ghodsi. Learning the structure of sum-product networks via an SVD-based

algorithm. In Proc. of the 31st Conf. on Uncertainty in Artificial Intell., pages 32–41, 2015.

M. Chavira and A. Darwiche. Compiling Bayesian networks with local structure. In Proc. of the 19th Int.
Joint Conf. on Artificial Intell., pages 1306–1312, 2005.

D. Conaty, D. D. Mauá, and C. P. de Campos. Approximation complexity of maximum a posteriori inference
in sum-product networks. In Proc. of the 33rd Conf. on Uncertainty in Artificial Intell., pages 322–331,
2017.

A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.

A. Darwiche. A differential approach to inference in Bayesian networks. Journal of the ACM, 50(3):280–305,
2003.

J. de Bock, A. Antonucci, and C. P. de Campos. Global sensitivity analysis for MAP inference in graphical
models. In Neural Information Processing Systems, pages 2690–2698, 2014.

A. Dennis and D. Ventura. Greedy structure search for sum-product networks. In Proc. of the 24th Int. Joint
Conf. on Artificial Intell., pages 932–938, 2015.

R. Gens and P. Domingos. Learning the structure of sum-product networks. In Proc. of the 30th Int. Conf. on
Machine Learning, pages 873–880, 2013.

L. Kaufman and P.J. Rousseeuw. Clustering by means of Medoids. In Statistical Data Analysis Based on the
L1–Norm and Related Methods, pages 405–416, 1987.

D. Koller and N. Friedman. Probabilistic Graphical Models. The MIT press, 2009.

Sang-Woo Lee, C. Watkins, and Byoung-Tak Zhang. Non-parametric Bayesian sum-product networks. In
ICML Workshop on Learning Tractable Probabilistic Models, volume 32, 2014.

I Levi. The Enterprise of Knowledge. MIT Press, London, 1980.

D. D. Mauá, F. G. Cozman, D. Conaty, and C. P. de Campos. Credal sum-product networks. In Proc. of the
10th ISIPTA: Int. Symp. on Imprecise Probability, pages 205–216, 2017.

A. Nath and P. Domingos. Learning tractable probabilistic models for fault localization. In Proc. of the 30th
AAAI Conf. on Artificial Intell., pages 1294–1301, 2016.

R. Peharz, S. Tschiatschek, F. Pernkopf, and P. Domingos. On theoretical properties of sum-product networks.
In Proc. of the 18th Int. Conf. on Artificial Intell. and Statistics, pages 744–752, 2015.

R. Peharz, R. Gens, F. Pernkopf, and P. Domingos. On the latent variable interpretation in sum-product
networks. IEEE Trans. on Pattern Analysis and Machine Intell., pages 1–14, 2016.

R. Peharz, B. C. Geiger, and F. Pernkopf. Greedy part-wise learning of sum-product networks. In Machine
Learining and Knowledge Discovery in Databases, LNAI 8189, pages 612–627, 2013.

R. Peharz, R. Gens, and P. Domingos. Learning selective sum-product networks. In ICML Workshop on
Learning Tractable Probabilistic Models, volume 32, 2014.

H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In Proc. of 27th Conf. on
Uncertainty in Artificial Intell., pages 337–346, 2011.

83

CONATY ET AL.

T. Rahman and V. Gogate. Merging strategies for sum-product networks: From trees to graphs. In Proc. of
the 32nd Conf. on Uncertainty in Artificial Intell., pages 617–626, 2016.

F. Rathke, M. Desana, and C. Schnörr. Locally adaptive probabilistic models for global segmentation of
pathological oct scans. In Proc. of the Int. Conf. on Medical Image Computing and Computer Assisted
Intervention, pages 177–184, 2017.

A. Rooshenas and D. Lowd. Learning sum-product networks with direct and indirect variable interactions.
In Proc. of the 31th Int. Conf. on Machine Learning, pages 710–718, 2014.

R.R. Sokal and F.J. Rohlf. Biometry: The Principles and Practice of Statistics in Biological Research. Free-
man, 1981.

N. L. Zhang and D. Poole. Exploiting causal independence in Bayesian network inference. Journal of
Artificial Intell. Research, 5:301–328, 1996.

H. Zhao, P. Poupart, and G. Gordon. A Unified Approach for Learning the Parameters of Sum-Product
Networks. In Neural Information Processing Systems (NIPS), Barcelona, Spain, 2016.

84

	Introduction
	Sum-product networks
	Learning from data

	Deferring predictions
	Experiments
	Conclusions

