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Abstract
Structure learning methods for covariance and concentration graphs are often validated on synthetic
models, usually obtained by randomly generating: (i) an undirected graph, and (ii) a compatible
symmetric positive definite (SPD) matrix. In order to ensure positive definiteness in (ii), a dom-
inant diagonal is usually imposed. However, the link strengths in the resulting graphical model,
determined by off-diagonal entries in the SPD matrix, are in many scenarios extremely weak. Re-
covering the structure of the undirected graph thus becomes a challenge, and algorithm validation
is notably affected. In this paper, we propose an alternative method which overcomes such problem
yet yields a compatible SPD matrix. We generate a partially row-wise-orthogonal matrix factor,
where pairwise orthogonal rows correspond to missing edges in the undirected graph. In numerical
experiments ranging from moderately dense to sparse scenarios, we obtain that, as the dimension
increases, the link strength we simulate is stable with respect to the structure sparsity. Importantly,
we show in a real validation setting how structure recovery is greatly improved for all learning al-
gorithms when using our proposed method, thereby producing a more realistic comparison frame-
work.
Keywords: Concentration graph; covariance graph; positive definite matrix simulation; undirected
graphical model; algorithm validation.

1. Introduction

Structure learning algorithms in graphical models are validated using either benchmark or randomly
generated synthetic models from which data is sampled. This allows to evaluate their performance
by comparing the recovered graph, obtained by running the algorithm over the generated data, with
the known true structure. The synthetic graphical models are typically constructed in a two-step
manner: a graph structure is selected at random or chosen so that it is representative of the problem
at hand; and, similarly, its parameters are fixed or randomly sampled.

Covariance (Cox and Wermuth, 1993; Kauermann, 1996) and concentration graphs (Dempster,
1972; Lauritzen, 1996) are graphical models where the variables are assumed to follow a multivari-
ate Gaussian distribution, and the structure is directly read off in the covariance or concentration
matrix, respectively. Looking at the literature on these models, one finds that typical benchmark
structures are Toeplitz, banded, diagonally spiked and block diagonal covariance or concentration
matrices (Yuan and Lin, 2007; Xue and Zou, 2012; Ledoit and Wolf, 2012), with parameters fixed
to ensure positive definiteness.
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CÓRDOBA ET AL.

The issue of positive definiteness is especially relevant when the structure is randomly gener-
ated. One approach to overcome this could be to sample from a matrix distribution with support
over the symmetric positive definite matrices compatible with the undirected graph structure. The
hyper Wishart distributions (Dawid and Lauritzen, 1993; Letac and Massam, 2007) are the most
well-developed in this sense, since they form a conjugate family for Bayesian analysis. However,
while sampling algorithms are available for general concentration graphs (Carvalho et al., 2007;
Lenkoski, 2013), in covariance graphs they have been developed only in the decomposable case
(Khare and Rajaratnam, 2011).

In general, hyper Wishart distributions are rarely used in validation scenarios (Williams et al.,
2018), and instead in the literature the most common approach to ensure positive definiteness is to
enforce diagonal dominance in the covariance or concentration matrix (Lin et al., 2009; Arvaniti
and Claassen, 2914; Stojkovic et al., 2017). However, when the undirected graph is moderately
dense, the off-diagonal elements in the generated matrices, often interpreted as link strengths, are
extremely small with respect to the diagonal entries and structure recovery becomes a challenge,
thereby compromising the structure learning algorithm validation (Schäfer and Strimmer, 2005a,b;
Krämer et al., 2009; Cai et al., 2011). In this paper, we propose an alternative method to overcome
this problem based on partial orthogonalizations. In particular, we build a matrix factor where
pairwise orthogonal rows correspond to missing edges in the undirected graph. Our method does
not suffer from the problem of weak link strengths, as we numerically check in a wide range of
sparsity scenarios. We also use our simulation method in a real validation setting and show how
the performance is greatly improved for every learning algorithm, thereby potentially changing the
conclusions drawn if only using diagonally dominant matrices for comparison.

The rest of the paper is organized as follows. Preliminaries are introduced in Section 2, where
we briefly overview concentration and covariance graphs, and the main characteristics of diagonally
controlled matrices. Next, in Section 3, we present our partial orthogonalization method, analyzing
its main properties and our particular implementation. Section 4 contains a description of the exper-
iment set-up we have considered, and the interpretation of the results obtained. Finally, in Section
5 we conclude the paper and outline our plans for future research.

2. Preliminaries

In the remainder of the paper, we will use the following notation. We let X1, . . . , Xp denote p
random variables and X the random vector they form. For each subset I ⊆ {1, . . . , p}, XI will
be the subvector of X indexed by I , that is, (Xi)i∈I . We follow Dawid (1980) and abbreviate
conditional independence in the joint distribution of X as XI ⊥⊥ XJ | XK , meaning that XI

is conditionally independent of XJ given XK , with I, J,K pairwise disjoint subsets of indices.
Entries in a matrix are denoted with the respective lower case letter, for example, mij denotes the
(i, j) entry in matrix M.

2.1 Gaussian graphical models

Covariance and concentration graphs are graphical models where it is assumed that the statistical
independences in the distribution of a multivariate Gaussian random vector X = (X1, . . . , Xp) can
be represented by an undirected graph G = (V,E). Typically, X is assumed to have zero mean for
lighter notation, and V = {1, . . . , p} so that it indexes the random vector, that is, XV = X . We
will represent the edge set E as a subset of V × V , therefore (i, j) ∈ E if and only if (j, i) ∈ E.
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In covariance graphs, the independences represented are marginal, meaning that whenever there
is a missing edge (i, j) in G, the random variables Xi and Xj are marginally independent. More
formally, this is called the pairwise Markov property of covariance graphs (Cox and Wermuth, 1993;
Kauermann, 1996),

Xi ⊥⊥ Xj for i, j ∈ V s.t. i 6∼G j,

where i ∼G j is the adjacency relationship on the graph G, that is, i ∼G j if and only if (i, j) ∈ E.
Note further that Xi ⊥⊥ Xj if and only if σij = 0.

By contrast, in concentration graphs, a missing edge implies a conditional independence; specif-
ically, in this case the pairwise Markov property (Lauritzen, 1996) becomes

Xi ⊥⊥ Xj |XV \{i,j} for i, j ∈ V s.t. i 6∼G j.

In turn, this can be read off in the concentration matrix Ω = Σ−1, that is,Xi ⊥⊥ Xj |XV \{i,j} ⇐⇒
ωij = 0.

One can always construct multivariate Gaussian distributions belonging to a covariance or con-
centration graph, for an arbitrary structure G. Furthermore, these models are Markov equivalent, in
the sense that they represent the same set of distributions, whenever the respective structures share
the same disconnected complete subgraphs (Jensen, 1988; Drton and Richardson, 2008).

2.2 Symmetric positive definite matrices and undirected graphs

The statistical independences implied by both covariance and concentration graph models are ex-
plicitly represented in a symmetric positive definite matrix. It is of our interest the problem on how
to simulate such kind of matrices, subject to the constraint of being compatible with a given undi-
rected graph. We will abstract ourselves from whether such graph has been randomly generated or
pre-specified.

Denote as S the space of symmetric p×pmatrices and as S>0 its subspace of symmetric positive
definite matrices. For a fixed undirected graph G letMG be the set of matrices M with zeros in the
entries represented by the missing edges in G, that is,

MG = {M ∈ Rp×p s.t. mij = mji = 0 if i 6∼G j}.

Let S(G) = S ∩MG and S>0(G) = S>0 ∩MG be the sets of symmetric and symmetric positive
definite matrices with undirected graphical constraints.

Note that the covariance matrix Σ of a Gaussian random vector X whose distribution belongs
to a covariance graph with structure G satisfies that Σ ∈ S>0(G). Analogously, if the distribution
belongs to a concentration graph with structure G, then Ω = Σ−1 ∈ S>0(G). In either case it is
clear that the goal is to simulate elements belonging to S>0.

2.3 Diagonally Controlled Matrices

When a matrix M ∈ S satisfies that mii >
∑

j 6=i |mij | for each i ∈ {1, . . . , p}, then M belongs
to S>0. Thus a simple method to generate a matrix in S>0(G) consists in generating a random
matrix in S(G) and then choosing diagonal elements so the final matrix is diagonally dominant, as
in Algorithm 1. The usual approach for generating the initial matrix in line 1 is to use independent
and identically distributed (i.i.d.) nonzero entries. The diagonal dominance method has been exten-
sively used in the literature mainly for its simplicity and the ability to control the singularity of the
generated matrices, as we will now explain.
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Algorithm 1 Simulation of a matrix in S>0(G) using diagonal dominance
Input: Undirected graph G
Output: Matrix belonging to S>0(G)

1: M← random p× p matrix in S(G)
2: for i = 1, . . . , p do
3: mii ←

∑
i 6=j |mij |+ random positive perturbation

4: end for
5: return M

It is possible to control the minimum eigenvalue of a matrix by varying its diagonal elements
(Honorio et al., 2012). In particular, let G be an undirected graph, M a matrix in S(G), and ε >
0 the desired lower-bound on the eigenvalues. If λmin is the minimum eigenvalue of M, then
M+(λ−min+ε)Ip belongs to S>0(G) and has eigenvalues greater or equal to ε, where λ−min denotes
the negative part of λmin.

Similarly, one can control the condition number, that is, the ratio of the largest to smallest
eigenvalue, of the generated matrix as follows (Cai et al., 2011). If κ0 > 1 is the desired condition
number and we already have a matrix M ∈ S(G) with maximum eigenvalue λmax > 0, then

M +
λmax − κ0λmin

κ0 − 1
Ip

belongs to S>0(G) and has condition number equal to κ0. Covariance and concentration matrices
with an upper bound on the condition number are attractive in certain estimation scenarios (Joong-
Ho et al., 2013).

3. Simulating matrices in S>0(G) by partial orthogonalization

LetGp be an Erdös-Rényi (Erdös and Rényi, 1959) random graph over p nodes with edge probability
d ∈ (0, 1) and given Gp let M ∈ S(Gp) be a symmetric random matrix with i.i.d. non-zero off-
diagonal entries mij following a distribution with 0 < µ < +∞ the expected absolute value. If we
denote with M′ ∈ S>0(Gp) the output of the diagonal dominance method (Section 2.3), we have
that for all 1 ≤ i ≤ p and j 6= i:

rij =
|m′ij |
m′ii

<
|mij |∑
t6=i |mit|

<
|mij |∑

t6=i,j |mit|
=

|mij |
(p− 2)

∑
t6=i,j |mit|/(p− 2)

. (1)

By the strong law of large number and since |mij | and
∑

t6=i,j |mit| are independent, we have that
rij → 0 almost surely.

In order to overcome such issue, we propose an alternative method which does not rely on
diagonal dominance, which we will now describe. If we consider an arbitrary p× p full rank matrix
Q, the product QQt is positive definite and symmetric, and therefore lies in S>0. Moreover, QQt

belongs to S>0(G) if and only if
qi⊥qj for i 6∼G j,

where ⊥ denotes orthogonality with respect to the standard scalar product on Rp, and qi is the i-th
row of Q.
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Thus, given an undirected graph G, we can impose Markov properties for the matrix QQt

simply by orthogonalizing the respective rows of Q. The pseudocode for the described procedure
can be found in Algorithm 2.

Algorithm 2 Simulation of a matrix in S>0(G) using partial orthogonalization
Input: Undirected graph G
Output: Matrix belonging to S>0(G)

1: Q← random p× p matrix
2: for i = 1, . . . , p do
3: orthogonalize qi with respect to the span of {qj s.t. i 6∼G j and j < i}
4: end for
5: return QQt

After Algorithm 2 has finished, it outputs a matrix that correctly reflects the graphical structure
given by the input graph G. If the entries in matrix Q are initially simulated as i.i.d. centered
subgaussian, then its condition number κ(Q) ≥ p with high probability (Rudelson and Vershynin,
2009). Therefore, in such case the condition number of the matrices QQt returned by Algorithm 2
will satisfy κ(QQt) ≥ p2 as the graph structure becomes denser, as shown in Figure 1. Although
the magnitude of the condition numbers shown are relatively high, this has not been an issue in our
numerical experiments (see Section 4).
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Figure 1: The median of the condition number as a function of the number of variables p for dif-
ferent structure densities d. We can see that the lower bound of p2 is valid for dense
structures (d = 0.5 and d = 0.25 in the left), whereas sparse graphs yield lower condition
numbers (right figure). K: condition number of the matrix.

In particular we can use a modified Gram-Schmidt orthogonalization procedure that iteratively
orthogonalizes every row qi with respect to the set of rows i⊥ = {qj s.t. i 6∼G j and j < i}.
This particularization of the proposed method is reflected in Algorithm 3, where projv(u) denotes
the orthogonal projection of a vector u on another vector v. The loop in line 3 constructs a set of
orthogonal vectors q̃j which span the same subspace than the original rows qj belonging to i⊥. This
orthogonal base is later used in the loop at line 9 for ensuring that qi is jointly orthogonal to all the
vectors in i⊥. Note however that these auxiliary orthogonal set of vectors is discarded in the next
iteration, and the original qj are kept in the factor matrix Q that will be used in the last computation
of line 13.
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Algorithm 3 Simulation of a matrix in S>0(G) by modified Gram-Schmidt orthogonalization
Input: Undirected graph G
Output: Matrix belonging to S>0(G)

1: Q← random p× p matrix
2: for i = 1, . . . , p do
3: for j = 1, . . . , i− 1 and j 6∼G i do
4: q̃j ← qj
5: for k = 1, . . . , j − 1 and k 6∼G i do
6: q̃j ← q̃j − projq̃k

(q̃j)
7: end for
8: end for
9: for j = 1, . . . , i− 1 and j 6∼G i do

10: qi ← qi − projq̃j (qi)
11: end for
12: end for
13: return QQt

The computational complexity of Algorithm 3 is mainly given by the loop in line 3, where an
orthogonal base is found for the subspace spanned by nonadjacent rows to i. In the worst case
scenario, such row set i⊥ has cardinality i− 1, making the worst-case complexity of the inner loop
O(i2p), and that of the overall algorithm O(p4).

4. Numerical experiments

In this section we perform a simulation study to compare our proposed method to generate matrices
in S>0(G) against the diagonal dominance one. We have used random Erdös-Rényi (Erdös and
Rényi, 1959) undirected graphs G = (V,E). The size of the vertex set V , p, will take each of the
values in the first row of Table 1. The probability of the inclusion of an edge in E, d, will take the
values displayed in the second row of Table 1. This probability can be thought of as an indicator
of the graph’s density, ranging from sparse structures (d = 0.0025) to dense ones (d = 0.5). In
particular, for every (p, d) ∈ P ×D (Table 1) we generate 10 Erdös-Rényi graphs, Gp,d

1 , . . . , Gp,d
10 ,

and we sample 10 matrices in S>0(Gp,d
n ) (n ∈ {1, . . . , 10}) using our proposed method (Algorithm

2) and diagonal dominance (Algorithm 1). In total we thus sample 100 matrices for every pair of
parameters (p, d) ∈ P ×D. Both methods need to generate a matrix with random entries as a first
step. In order to generate the initial matrices in both methods, we sample i.i.d. entries following a
uniform distribution U[0, 1].

We compute for every (p, d) in Table 1 the average R of the maximum ratio R = maxj 6=i rij ,
where rij are defined as in Equation (1) and the dependence on the matrix under consideration has
been omitted for notational simplicity. A plot of the behaviour of R as a function of the number of
variables in the model, for different density values of the graphical structure, is shown in Figure 2.
We can observe that our proposed method generates matrices with an asymptotically (in the number
of variables p) constant value of R. On the contrary for undirected graphs whose density is higher
than 0.025, which are usually found in applications (Krämer et al., 2009), R goes to zero as p
increases for matrices simulated using the diagonal dominance method. Only for arguably very
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Parameter Value set

p P = {10, 20, . . . , 100, 125, 150, 200, 250, 300, 400, 500, 750, 1000}
d D = {0.0025, 0.005, 0.025, 0.05, 0.25, 0.5}

Table 1: Setting of the numerical experiments for simulating from S>0(G), with G an undirected
graph. Values for the size of the vertex set (p) and the density of the structure (d).

sparse matrices (d ≤ 0.005), this method is able to avoid such asymptotic behaviour with respect
to p, but as we have shown in Section 3 for sufficiently high values of p the same behaviour is to
be expected. In particular, since the U[0, 1] distribution is bounded, we can obtain from Equation 1
that almost surely rij ≤ 2(p− 1)−1d−1 asymptotically and thus R = O(p−1), thereby allowing for
an approximate computation of the number of variables p0 from where, for a given structure density
d0, R is arbitrarily close to zero.
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Figure 2: The average of R as a function of the number of variables p for different structure densi-
ties d.

The above mentioned conclusions are complementarily drawn from Figure 3, where we have
jointly plotted the performance of both methods for the two extreme values we have considered for
the structure density: 0.0025 (very sparse) and 0.5 (very dense). We also show as a shade one stan-
dard deviation on either side of the mean. We can observe that in the sparse scenario both methods
perform reasonably well, with the diagonal dominance method being more stable in terms of the
standard deviation; however, we must also point out that as p increases, our method becomes more
robust, being equally stable for structures of a thousand vertices. By contrast, in the dense case the
diagonal dominance method performance is terribly affected early, being almost zero for p > 125,
approximately. Our proposed method, however, manages to achieve a reasonable value for the aver-
age ratio, and the constant behaviour in p can be clearly observed. We also obtain that our method
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is more stable for dense structures than in the sparse case. In some sense, this is not surprising,
because the more missing edges in the undirected graph of the model, the more orthogonalizations
in Algorithm 2, therefore the numerical stability is reduced, even though competitive results are
equally obtained.
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Figure 3: The average of R as a function of number of variables p, for the two extreme values
of d: very sparse matrices (left) and very dense matrices (right). Standard deviation of
the average is shown. DD: Diagonal dominance method; PO: Partial orthogonalization
method.

We have also measured the execution time of the two approaches. For this, we have sampled
5000 matrices for the different density values in Table 1, and for a number of variables ranging from
10 to 200, in different step sizes. This experiment has been executed on a machine equipped with
Intel Core i7-5820k, 3.30 GHz×12 and 64 GB of RAM. The results are shown in Figure 4. The
diagonal dominance method is few orders of magnitude faster than our proposed method, which is
somewhat expected given its relative simplicity. We observe how the computational cost of the par-
tial orthogonalization method depends on the structure density. For small values of d the undirected
graph contains a lot of disconnected vertices and thus we repeat the loop in line 3 of Algorithm 3 for
many matrix rows, being closer to the worst case scenario ofO(p4). In practice, however, when val-
idating structure learning algorithms only few matrices need to be generated, which is completely
affordable in all scenarios of Figure 4. For example, the time needed to generate 10 matrices with
200 nodes in the worst case is approximately five seconds.

The main motivation for the proposed method are the observations that can be found in the
literature on covariance and concentration graphs regarding the difficulties of validating the per-
formance of structure learning algorithms (Schäfer and Strimmer, 2005a; Krämer et al., 2009; Cai
et al., 2011). In particular, Krämer et al. (2009) obtain significantly poorer graph recovery results as
the density of the graphs grow. They simulate the corresponding concentration graph models using
the diagonal dominance method, so we have replicated their experiments but instead using as true
models those generated with our proposed method. The results can be seen in Figure 5, where we
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Figure 4: Execution time to simulate 5000 matrices.

have plotted the true positive rate (also called power by Krämer et al. (2009)) and discovery rates for
p = 100 and their most dense scenario, d = 0.25, when using matrices simulated with the diagonal
dominance method and our proposal. The different structure learning methods appearing are the
same under validation by Krämer et al. (2009). As can be observed, there is significant improve-
ment when using our method: all of the learning algorithms are close to zero true positive rate for
every sample size when validating on diagonally dominant matrices, whereas when using matrices
obtained via partial orthogonalization, some methods are able to achieve a true positive rate of 0.45
approximately. Furthermore, all true discovery rates are also higher when using matrices simulated
by partial orthogonalization. Importantly, partial least squares regression performs reasonably good,
whereas when only using diagonal dominance one could erroneously conclude that the method is
not well fitted for dense structure scenarios. This small real example already serves to highlight the
practical application and usefulness of our proposed method.

All the code has been implemented in R (R Core Team, 2018). Algorithm 3 has been imple-
mented directly in C for improved efficiency. We provide an R package, gmat, with such imple-
mentation, which contains both our method and the dominant diagonal one, available on CRAN1.
We have also published2 the R scripts used for generating the data and figures described throughout
this section. Thus, all the above described experiments can be replicated.

5. Conclusions and future research

We have proposed a method for generating covariance and concentration matrices subject to the
graphical constraints imposed by an undirected graph. The method is an alternative to the most com-
monly employed approach of imposing a dominant diagonal. As we have shown, the off-diagonal
entries in diagonally dominant matrices suffer from a penalization effect that is worsened as the di-
mension increases. We have empirically shown how our method overcomes the structure recovery
difficulties found when validating learning algorithms with the diagonal dominance method.

We have planned several lines of future research. Since we have obtained very promising results
when using our method in a real validation scenario, it would be very interesting to explore how
other performance measures, and other structure learning algorithms, are also affected. From the

1. https://CRAN.R-project.org/package=gmat
2. https://github.com/irenecrsn/spdug
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Figure 5: True positive rate and true discovery rate of the structure learning algorithms for concen-
tration graphs validated in (Krämer et al., 2009). The number of variables (vertices in the
undirected graph and dimension of the generated matrices) is fixed at 100. adalasso:
Adaptive l1 regularization; lasso: l1 regularization; pls: partial least squares regres-
sion; shrink: shrinkage estimator of Schäfer and Strimmer (2005b); ridge: l2 regu-
larization.

computational point of view, exploring alternatives to the modified Gram-Schmidt orthogonalization
or taking into account special structures in the graph topology could reduce the complexity of our
approach. Further theoretical results on the distribution over S>0(G), for a graph structure G,
induced by our method would help to gain insight in properties we have empirically observed,
such as the asymptotic stability in the problem dimension or the relationship with other matrix
distributions such as the hyper Wishart family.
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