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Abstract

The Markov Random Field (MRF) MAP inference problem is considered from the viewpoint of

integer programming (IP). The problem is shown to be a (pure) set partitioning problem (SPP). This
allows us to bring existing work on SPP to bear on the MAP problem. Facets (maximally strong
linear inequalities) of the closely related set packing (SP) problem are shown to be useful for MRF
MAP. These facets include odd hole and odd anti-hole inequalities which are shown to be find-
able using a zero-half cut generator. Experimental results using CPLEX show that for MRF MAP
problems, generating more zero-half cuts than normal typically brings performance improvements.
Pre-processing methods to reduce the size of MRF MAP problems are also considered, and some
preliminary results on their usefulness presented.

Keywords: maximum a posteriori (MAP); integer programming; Markov random fields; set par-
titioning; zero-half cuts

1. The MRF MAP problem

A Markov random field (MRF) has a structure defined by a hypergraph H = (X, E) where X is a
set of random variables X = {X,..., X} and E is a set of subsets (i.e. hyperedges) of X. The
hyperedges of an MRF are often called ‘cliques’, but here we do not make the assumption that there
is some graph for which the hyperedges are (maximal) cliques, that is, there is no assumption that
the hypergraph is conformal (Duchet, [1995). An MRF defines a joint probability distribution for X
as a normalised product of potential functions. Each potential function has an associated hyperedge
and maps each instantiation of the variables in that hyperedge to some non-negative real number. We
will work with log potential functions ¥ = {1); : F; € E'}. Let ; denote some joint instantiation
of the variables in the hyperedge E; € E, then ¢; maps each instantiation x| ; to some value in
R U {—o0}. For any full joint instantiation =, we have log p(z) = logp(X; = z1,..., X, =
zp) = —10gZ + 3 g cpj(xy;), where zy; is the projection of x to hyperedge Ej; and Z is a
normalising constant. We will assume throughout that there is at least one = with p(x) > 0, and
thus logp(x) # —oo. The MAP problem for an MREF is to find a full joint instantiation x* of
maximal (log) probability: z* = argmax, » B,cE pj(xy;)

If there is evidence, i.e. some variables are fixed to particular values, then this can be incorpo-
rated by setting (x| ;) = —oo whenever x; is inconsistent with the evidence. More generally, if
we somehow know that x| ; cannot be part of some optimal full joint instantiation then this can be
indicated by setting v;(z};) = —o0.

2. MRF MAP Integer Programming Encoding

We can encode an MRF MAP problem instance into an integer program (IP) using a variant of what
Hurley et al.|(2016) call the tuple encoding, which as they note “is the only O1LP encoding usually
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considered in MRFs.” For each variable X; and each value z; of X; a binary IP variable I(X; = z;),
with zero objective coefficient, is created. For each X; a constraint is added stating that X; takes
exactly one of its values:

Z I(X;=xz;)=1 (where X; is the set of possible values of X;) (1)
r; €X;

For each hyperedge E; and each feasible joint instantiation x; (i.e. 1j(x ;) # —oo) of the
variables in F;, a binary variable I(x;)is created, with objective value 1;(x ;). For each value
x; of each variable X; in each hyperedge E; a constraint is then added to ensure the values of the
I(X; = x;) and I(x;) IP variables are consistent:

I(X;=z)= Y I(zy) )

x);(i)=z;

where x| ;(i) denotes the component of x| ; that is the value of variable X;. Note that it is possible
to eliminate all I (X; = x;) variables using (2)) resulting in an IP with only /(x ;) variables.

Constraints (1) and (2) suffice to create an IP for solving the corresponding MRF MAP problem,
but it is typically advantageous to add additional equations so that the resulting IP has a tighter
linear relaxation. For each pair of hyperedges F;, E/;; whose intersection contains at least 2 random
variables and for each instantiation xj~;s of the random variables in E; N E; we add a constraint
that £/; and E;; must be consistent for x;q;r:

S Iy = Y Iy 3)
wu(jﬁj’)::vjmj/ !L'ijl(jlﬁlj/):fﬂjmj/

Constraints of this sort are given, for example, by |[Koller and Friedman| (2009, §13.5.1) in their
presentation, but were not used by Hurley et al.| (2016).

3. MRF MAP as set partitioning

Using () it is easy to see that each instance of (2) can be replaced with:

S IXi=m)+ Y Iy =1 @)

T EXG,xiF Xy z);(1)=x;

So an MRF MAP problem can be formulated as an IP where (1) each variable is binary and (2)
each constraint states that a sum of variables equals 1. It is not difficult to see that eliminating
I(X; = x;) variables and/or adding constraints such as still allows the problem to meet these
2 requirements. Any problem meeting these 2 requirements is called a set partitioning problem.
Formally, a set partitioning (SPP) problem is of the following form:

(SPP) min {dz : Az =e, zj =0orl, Vj € N}

where A is an m X n zero-one matrix, d € R" is an arbitrary objective, e = (1,...,1) is an m-
vector, and N = {1,...,n}. The advantage of viewing MRF MAP as set partitioning (SPP) is that
it allows us to exploit the considerable amount of research done on SPP.
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3.1 Facets of the set packing polytope
The set partitioning problem is closely related to both the set packing problem:
(SP) max {d'z: Az <e, z;=0o0r1, Vj € N}
and the set covering problem:
(SO) min {d"z: Az >e, zj =0orl, Vj € N}

As|Balas and Padberg| (1976)) show, it is possible, by altering the objective vector, to reformulate any
set partitioning problem (SPP) into either as a set packing problem (SP) or a set covering problem
(SC). From this it follows that any SP or SC algorithm can be applied to MRF MAP.

Connecting SPP to SP is useful when searching for cutting planes for an MRF MAP IP. IP
solvers begin by solving the linear relaxation of the IP instance, a problem that is polynomially
solvable. In the linear relaxation variables are permitted to take any real value between their lower
and upper bounds and so the solution xrp is typically fractional and thus not a solution to the
original problem. The objective value for x1p does however provide a useful upper bound on an
optimal solution. IP solvers will then typically look for cutting planes: inequalities which are valid
for the IP but which are violated by xrp. Adding such inequalities and solving the new linear
relaxation produces a tighter upper bound and may even result in an integer solution. Generally,
the best cutting planes to add are facets, the inequalities which jointly define the convex hull of all
(integer) feasible solutions. The convex hull of integer feasible solutions for set partitioning, set
packing and set covering problems are called the set partitioning polytope, set packing polytope and
set covering polytope, respectively.

In this section we will consider facets of the set packing (not set partitioning) polytope. Rather
than reformulate an SPP as an equivalent SP problem, we relax a SPP instance into a non-equivalent
SP instance by replacing = with < in the problem formulation. Note that the SP relaxation has
exactly the same variables and constraint matrix A as the SPP instance. Due to the close connection
between SPP and SP, facets of this set packing relaxation often provide good cutting planes for the
original SPP instance (Balas and Padberg, |1976). In this section we examine these facets.

To find such facets the intersection graph G 4 for an SP problem with matrix A is crucial. The
vertices of G4 are the SP variables. There is an edge between x; and x; iff both occur together
in some set packing constraint, which means that at most one can have value 1 in any feasible
solution. Call a set of vertices in a graph complete if each pair of vertices are adjacent. A clique is
a maximally complete set. Odd holes and odd anti-holes in G 4 define SP inequalities which can be
used as cutting planes for SPP. A hole is a chordless cycle of length greater than three, an anti-hole
is the complement of a hole. An odd hole/anti-hole is just one with odd length. If G 4 contains no
odd holes and no odd anti-holes it is perfect in which case the SP polytope is integral, and so SP
can be solved in polynomial time by solving its linear relaxation.

To see how odd holes define inequalities, consider the SPP formulation of MRF MAP for the
hypergraph with hyperedges {{A, B},{B,C},{C,D},{A, D}} and suppose all variables are bi-
nary with values 0 and 1. Abbreviate, for example, /(A = 0,B = 1) to apb; and all other IP
variables for joint instantiations similarly. The intersection graph for the SP relaxation and an odd
hole subgraph are shown in Fig[I|i) and Fig [Iii), respectively.

It is not difficult to see that at most 2 IP variables in the odd hole can have value 1, leading to
the valid inequality:

aogbo + bico + c1dp + apdy + ardy < 2 )
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Figure 1: (i): Intersection graph for {{A, B}, {B,C},{C,D},{A, D}}. (ii): An odd hole in the
intersection graph. (iii): The odd hole ‘with lifting’ in the intersection graph.
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Figure 2: An odd anti-hole in the intersection graph for:
{{4,B,C},{A,B,D},{A,C,D},{B,C,D},{C,D,E}}.

In general, in an odd hole of length n the variables sum to at most (n — 1)/2. In an odd anti-
hole of any length the variables sum to at most 2. If the intersection graph is exactly equal to
an odd hole or odd anti-hole then the relevant inequality is a facet for the SP problem (Balas and
Padberg, |1976). Fig [2|shows an anti-hole of length 7 for the hypergraph {{4, B,C},{A, B, D},
{A,C,D},{B,C,D},{C, D, E}} with binary variables, from which we get the valid inequality:

arbic1 + eidieg + agbodr + apgboco + bocody + a1cody + a1brdy < 2 (6)
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As just mentioned, if the 5 variables in the odd hole shown in Fig [I[ii) were the only variables
then the given odd hole inequality would be a facet—a maximally strong inequality. However, since
there are other variables it can be strengthened by ‘lifting’: adding in extra variables. There is a
large literature on (the various) lifting procedures, see |Balas and Padberg| (1976) and references
therein. Here we settle for an example. The subgraph shown in Fig[I[(iii) illustrates how (5) can be
lifted to:

apbo + bico + c1do + apdy + ardo + ardy < 2 (N

The non-cycle variable a;d; can be lifted into the inequality since it is adjacent to a 3-chain in
the cycle. It is, in fact, adjacent to a 4-chain, but a 3-chain is sufficient. This observation concerning
3-chains was made by |Alvarez-Valdes et al.| (2005)) as part of a heuristic approach to lifting odd-
cycle inequalities.

In MRF MAP it is often possible to do a lot of lifting using graph substitution. Consider the
hypergraph {{4, B, E, F},{B,C},{C,D},{A, D}} and the lifted odd-cycle shown in Fig [I]iii).
If apby in Fig [I[iii) is replaced with, say, apboeo fo then we have a lifted odd cycle with its asso-
ciated inequality. However, a much better inequality is possible by removing the vertex agbgeg fo
and substituting for it the graph which is the clique with nodes agbopeg fo, agboeo f1, aoboer fo and
aoboer f1. The graph substitution construction is due to |(Chvatal (1975) and is discussed by [Balas
and Padberg (1976).

To examine whether facets of the SP relaxation of an MRF MAP SPP are also facets of the SPP
instance, the convex hull for the MAP problem for the hypergraph {{A, B}, {B,C},{C,D},{A, D}}
assuming binary variables, was computed using the Irs algorithm (Avis, [2000) ( http://cgm.
cs.mcgill.ca/~avis/C/lrs.html). Although this problem, as originally stated, has 16
variables the convex hull has only 8 dimensions due to the presence of 8 linearly independent equa-
tions in the problem which can be used to reduce the number of variables to 8. Irs found that there
are 24 facets for this convex hull in R®. These are the 8 lower bounds on the 8 variables, 8 inequali-
ties which follow immediately from marginal consistency and then a further 8 inequalities. This last
set of 8 inequalities consists of 7 inequalities which are odd hole inequalities for 5 vertices lifted
with one additional vertex (like in Fig ii)) and only one inequality cody < a1b1 + bocg + apdy
which is not an odd-hole (or odd anti-hole) inequality. So on this small instance at least, all but one
of the ‘interesting’ facets of the SPP convex hull are lifted odd hole inequalities.

4. Zero-half cuts

Inequalities corresponding to odd holes and odd anti-holes provide inequalities which can be used
as cuts to strengthen the linear relaxation of an MRF MAP problem. But how do we find them
(quickly)? In this section we show that zero-half cutting plane algorithms can be used.

Given inequalities representing the constraints in the odd hole shown in Fig[I[(ii): agbo+ bico <
1,b1co+cido < 1, apd1+c1dy < 1, apd1+a1dy < 1, a1dg+agby < 1, we can derive the following
inequality by multiplying each of the above by 1/2 and adding them: aoby + bico + c1dp + apd; +
ardp < 5/2. Since each variable is an integer this inequality can be strengthened by rounding down
the RHS to |5/2] = 2 thus producing the odd hole inequality (5).

The odd hole inequality (5) is thus a zero-half cut (short for zero-half Chvdtal-Gomory cut)
since it can be derived from other inequalities by multiplying by 1/2, summing and then rounding
down the RHS. It is not difficult to see that any odd hole cut is a zero-half cut constructed using the
constraints coming from the edges of the cycle.
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The anti-hole cut (6) is a zero-half cut using the following set packing inequalities derived
from 5 of the 7 cliques in Fig[2} agboco + aicody + a1bicr < 1,apboco + a1cody + crdieg <
1, bocody + a1bidg + crdieg < 1, bgcodp + a1bido + agbody < 1,bocody + ar1bicr + agbodi < 1.
In fact, we can always find 5 cliques in an odd anti-hole which produce a zero-half cut. If an
odd anti-hole has 5 vertices 1,2, 3,4, 5 then it has exactly 5 cliques. If the corresponding hole is
1—-2—3—4—5—1 then these cliques are 1 —3,2—4, 3—5,4—1 and 5—2. Itis easy to see that the the
odd anti-hole inequality can be generated as a zero-half cut from the 5 associated clique inequalities.
Consider now an anti-hole with 7 vertices with corresponding hole 1 =2 -3 —-4—-5—-6 -7 — 1.
We can take each of the cliques =,z + 2( mod 5) from the 5 vertices case and extend to x, z + 2(
mod 7),z + 4(mod 7) to get the cliques 1 —3—-5,2—4—-6,3—-5—-7,4—6—1land5—7—2.
Since each vertex appears at least twice the clique inequalities can be used to generate the odd anti-
hole inequality as a zero-half cut. This manner of generating the needed 5 clique inequalities for
an anti-hole of size 2(k 4+ 1) + 1 from those for an anti-hole of size 2k + 1 is always possible. It
follows, by induction, that all odd anti-hole inequalities are zero-half cuts.

The connection between odd-hole and odd anti-hole cuts and zero-half cuts suggests an obvious
cutting plane approach for MRF MAP: aggressively use a zero-half cut generating algorithm. We
do exactly this in the next section.

4.1 Do zero-half cuts help?

This section contains an evaluation of how useful zero-half cuts are. These experiments were per-
formed using CPLEX 12.6 on a desktop PC running Ubuntu Linux with four 3.2GHz CPUs and
7.8 Gb of RAM. All 458 MRF MAP instances from the PIC 2011 Challenge website http:
//www.cs.huji.ac.il/project/PASCAL/ were used. A Python script was used which
took MRF MAP instances in PIC format and created an IP instance using CPLEX’s Python API.

Experiments were conducted with CPLEX parameters set at their default values except that
CPLEX was asked to work hard at producing provably optimal solutions (at the possible expense of
failing to do so and missing good sub-optimal solutions). Denote this setting as DEF. CPLEX was
then run again with the same settings as DEF except for the following 3 non-default parameter set-
tings: mip.cuts.zerohalfcut.set (2) mip.limits.cutpasses.set (9999999)
mip.limits.cutsfactor.set (90). The last two settings effectively remove limits on cut
generation, the first demands that CPLEX uses its zero-half cut generator very aggressively. Denote
this setting as ALT.

Fig[3|plots the CPLEX solving times (in seconds) for the two different parameter settings on the
320 MRF MAP instances where at least one setting did not time out, i.e. found an optimal solution
within 2000 seconds. Many problems are solved quickly for both parameter settings. However these
results suggest that generating zero-half cuts aggressively typically provides improved performance
on harder instances—in accordance with the theoretical analysis given above. Note that ALT solves
7 instances which timed out with DEF, whereas DEF only solved 2 instances which timed out with
ALT.

5. Reducing the size of MRF MAP problems

One problem with encoding MRF MAP as an IP is that in some cases the resulting IP can have very
many variables and constraints leading, typically, to slow solving. In this section, we consider some
methods for reformulating MRF MAP problems which lead to smaller IP instances. The goal is to
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Figure 3: CPLEX solving times (ALT parameters vs DEF parameters) on 320 MRF MAP instances.

reduce the number of /(x ;) IP variables that are needed. We use the number of (x| ;) variables as
a measure of the size of the problem. We then report on some preliminary experiments examining
how helpful such size reduction is.

The simplest, but surprisingly effective, size-reducing measure is to ensure the hypergraph is
reduced by removing hyperedges contained in other hyperedges: if £; C Ej; then E; is redundant
and removed from . Its log potential function is added to that of F;:

Y < i +1; ®)

Another simple size-reducing procedure is to remove any variable X; that occurs in only one
hyperedge E;. In this case the Markov blanket of X; is £/;\{X;}. For each instantiation of E;\ {X;}
we can choose a maximal value of X;, record this choice, and remove all other values. X; can then
be removed from F; and H. Once an optimal solution is available for the MAP problem for the
MRF with X; removed, an optimal solution to the original MRF MAP problem can be recovered
using the recorded choices for X;.

Removing a variable in this way can create a redundant hyperedge which can be removed using
(8). Continually reducing the hypergraph and removing variables occurring in a single hyperedge is
known as Graham’s algorithm. If (and only if) the hypergraph is decomposable (the non-redundant
hyperedges are (maximal) cliques of a chordal graph) then Graham’s algorithm will eventually
remove all variables and hyperedges (Grahaml [1979). So, as is well known, MRF MAP is easy for
decomposable hypergraphs.

Our third size-reducing method stems from the fact that any two hyperedges F; and E: can be
removed from the MRF and replaced by their union E;» = E; U Ej where ¢jn < 1 + . It
follows that any variable X; can be removed from the MRF by (1) replacing the hyperedges which
contain it with the single hyperedge F;(;), which is their union, (2) eliminating X; (now contained
only in E;;)) using the procedure given above and (3) removing any newly redundant hyperedges
using (8). This variable elimination procedure (Larrosa, 2000) will only reduce the size of the MRF
MAP IP in some cases. Here is an example where it does effect a size-reduction. Suppose variables
X1, X2 and X3 have the following arities: 71 = 10,79 = 2,73 = 2. Suppose F; = {X;, X2} and
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Ey = {X;, X3} are the only hyperedges containing X; and that all joint instantiations associated
with E; and Ey are feasible, then removing X changes the size of the problem by 4 — 20 — 20 =
—36. Suppose further that the hypergraph contained the edge F3 = { X2, X2}. E3 will be removed
due to redundancy, so in this case the change in size is —36 — 4 = —40. If the removal of a variable
X; by this procedure does not increase the size of the MRF, we will say that X; has a small Markov
blanket. Note that Graham’s algorithm can be adapted so that not only variables contained in a
single hyperedge are removed, but also those with small Markov blankets.

In the example just given the reduction in size was due to the removal of a high arity variable.
In our fourth size-reducing method, size is reduced by replacing a set of hyperedges by their union
even when no variable can be removed. For example, suppose a hypergraph contained the following
hyperedges; {Xl, XQ}, {Xl, Xg}, {Xl, X4}, {XQ, Xg}, {XQ, X4}, {Xg, X4}, where each Xz is
binary. Replacing these 6 hyperedges by their union changes the size of the MRF by 1 X 16 —6 x4 =
—8. If replacing a set of hyperedges by their union does not increase the size of the MRF we say
that the hyperedges have a small union.

Our fifth and last size-reducing method applies when a variable’s Markov blanket is too big to
allow its removal (without an increase in size), but where we can still rule out particular joint instan-
tiations x| ;. Suppose variable A is contained only in hyperedges £y = {A, B,C}, E» = {A, B, D}
and F3 = {A, E'}, and all 5 variables are binary. Suppose that A = 1 is the only optimal choice
for variable A when B = C' = D = F = 0. Note that it only because B, C, D, F is the Markov
blanket for A that it is possible to determine an optimal choice for A without reference to any other
variables. Abbreviate A = 1, B = 0,C = 0 to a1byco and all other joint instantiations similarly.
Let I(ajbpcy) = 1 indicate that A = 1, B = 0,C = 0 is part of an optimal full joint instanti-
ation, and similarly for all other joint instantiations. It follows thatif B = C = D = E = 0,
then I(a1boco)I(a1bodo)I(areg) = 1. Now in any full joint instantiation exactly one of the 16
possible instantiations of B, C, D, ¥ must hold, and for each of those 16 instantiations an opti-
mal choice for A can be determined. Suppose, for simplicity, that the only optimal choice for
A is 0 when either B = 0,C = 1,D = 1,F =0or B = 0,C = 0,D = 1,F =1
and A = 1 is the only optimal choice for all of the other 14 joint instantiations of B, C, D, E.
It follows that exactly one of the following 16 terms will equal 1 in any optimal full joint in-
stantiation: I(alboc()) (Cnbodo) (aleo) (alboc()) (albodo) (CL161) (a1b060) (albodl)I(aleg),
I(agboco) (aobodl) (aoel) (albgcl) (albodo) (aleo) (albocl) (albgdo) (alel),
I(agbocl)f(a()bodl) ( 060) (albgcl) (albodl) (alel) (alblco) (albldo) (aleg),
I(alblco) (albldo) (alel) (alblco) (albldl) (aleo) (alblco) (albldl) (alel),
I(alblcl)I(albldo)l(aleo), I(alblcl)I(albldo)l(alel), [(alblcl)I(albldl)I(aleg)
and I(a1bic1)I(a1bidy)I(aier). For each hyperedge F1, Fy and 3, one of the joint instantiations
appearing in these 16 terms must hold in any optimal full joint instantiation (since otherwise the 16
terms would sum to 0). It follows that agb;cg and agbic; for hyperedge £ and agbidy and apbidy
for E5 can never hold in any optimal full joint instantiation. This knowledge can be represented by

setting 11 (apb1co) = Y1 (agbici) = Ya(apbido) = 2(apbidy) = —oo.

This method for removing sub-optimal joint instantiations can be profitably applied over sev-
eral rounds. Continuing our example, suppose that, by applying this method to the Markov blan-
ket of B we deduced that 1(apboc1) could be set to —oo, i.e. I(apbgc1) = 0. It follows that
I(apboct)I(apbody)I(apeg) = 0 which in turn implies that I(ageg) = 0 since this is the only term
in in which I (ageg) occurs. So, by exploiting the Markov structure of the MRF we can perform mul-
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tiple rounds of fixing some of the /(x| ;) variables to 0. In the language of constraint programming
this is domain reduction propagation.

5.1 Does size reduction help?

In preliminary experimental work we have found that size-reduction can sometimes lead to far
quicker solving but in other cases can slow down solving. We have focused on the 21 ‘Grids’ MRF
MAP instances from the PIC 2011 challenge. In all 21 cases it was possible to reduce the size of the
original MRF MAP instance considerably, even though, for speed, not all possible size reductions
were applied. For example, the original grid80x80.f15.wrap instance had 19,200 hyperedges, 6,400
random variables and 64,000 feasible instantiations. After CPLEX’s pre-processing this led to an
IP with 38,394 constraints and 57,592 IP variables. After applying size-reduction this instance
ended up with 3,105 hyperedges, 3,200 random variables and 39,682 feasible instantiations. The
resulting IP (after pre-processing by CPLEX) had 40,171 constraints and 42,602 variables. Note
that the number of constraints has increased despite the reduction in IP variables. This is because
the creation of fewer but bigger hyperedges leads to more ‘intersection’ constraints of type (3).

We then attempted to solve each of the 21 Grids instances using the original and size-reduced
MRF MAP instances, in both cases using the ALT CPLEX parameter settings. We used the WCSP-
encoded versions of each instance created by Hurley et al.| (2016), where the problem becomes
one of minimisation. We denote our approach as CPLEX(ZRI) for ‘CPLEX with many Zero-half
cuts, Reduction and Intersection constraints’. Using CPLEX 12.8.0 and a single core of a 3.60GHz
machine with 16 GB of RAM each instance bar two was solved to optimality within 3600 seconds,
with optimal objective value given in the OPT column. Solving times are shown in Table[I]} For the
RED=YES column (where size-reduction was applied) we give the total time taken including the
Python implemented, non-optimised size-reduction procedures. CPLEX solving time alone is given
in parentheses.

A very clear pattern emerges: size-reduction is beneficial on ‘wrap’ instances and deleterious
on non-wrap instances. ‘wrap’ indicates that the original grid has been wrapped around to create a
torus. It is not clear why size-reduction was more useful for the wrapped instances.

Table [T also contains results (under HURLEY-BEST) from [Hurley et al| (2016) on these in-
stances. Hurley et al.| compared 6 solvers on a wide range of MRF MAP instances, including daopt
(Otten et al., [2012)) a version of which won the PIC 2011 MAP challenge. Using a 3600 seconds
timeout, they found that toulbar2 (Favier et al.,[2011)) performed best on the grid80x80.f15 instance
and CPLEX, using ‘direct’ encoding, did best on the other 20 Grids instances. The objective value
achieved by the best solver is given (OBJ) as well as solving time (t). Some care is required when
comparing the CPLEX(ZRI) and HURLEY-BEST results since Hurley et al.| were using CPLEX
12.6.0.0 and (a single core of) a 2.3GHz machine with 8GB of RAM. Nonetheless, these results
provide some evidence that on these 21 instances CPLEX(ZRI) compares well to existing state-of-
the-art methods.

Hurley et al.| (2016) state that “Surprisingly, cplex with the direct encoding was the best on
the Grid category (n = 6400, d = 2), benefiting from a large number of zero-half cuts.” which
supports our finding that this category is particularly suitable for a zero-half cutting plane strategy.
However, on other MRF MAP instances so far examined, CPLEX(ZRI) is beaten by the best solver
(often toulbar2) from [Hurley et al.| (2016). (Go to https://www.cs.york.ac.uk/aig/
sw/cplex_zri/| to see the full results.) Leaving aside easy instances (quickly solved by all
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CPLEX(ZRI) HURLEY-BEST
Instance OPT || RED=NO ‘ RED=YES OBJ t
grid20x20.f10 91581 2 7(2) 91581 9
grid20x20.f10.wrap 96412 3 3(0) 96412 10
grid20x20.f15 128075 2 5(0) 128075 10
grid20x20.f15.wrap | 136511 2 3(0) 136511 10
grid20x20.f5.wrap 55939 1 3(0) 55939 6
grid40x40.f10 370567 16 39(24) || 370567 101
grid40x40.f10.wrap | 398635 20 16(1) 398635 | 457
grid40x40.f15 521289 19 47(27) || 521289 | 149
grid40x40.f15.wrap | 562547 27 20(1) || 562547 | 546
grid40x40.2 122308 3 22(1) 122308 12
2rid40x40.£2.wrap 128534 3 14(0) 128534 25
grid40x40.15 218240 6 19(4) | 218240 39
2rid40x40.f5.wrap 233621 11 14(0) | 233621 | 200
grid80x80.f10 1555353 1121 | 1643(1556) || 1558819 | 3600
grid80x80.f10.wrap | 1632909 3071 87(12) || 1646415 | 3600
grid80x80.f15 2190818 2150 | *3678(3600) || 2239504 | 3600
grid80x80.f15.wrap | 2272095 *%3600 79(13) || 2293410 | 3600
grid80x80.2 511424 18 117(13) || 511424 | 121
grid80x80.f2.wrap 514152 20 77(2) || 514152 | 110
2rid80x80.15 917776 71 151(67) || 917946 | 3600
2rid80x80.f5.wrap 950425 152 68(4) || 951943 | 3600

Table 1: Comparative results on PIC ‘Grids’ examples. Times in seconds rounded down. *Objec-
tive value = 2232119 at timeout. **Objective value = 2275766 at timeout

solvers) the CPLEX(ZRI) strategy of adding very many zero-half cuts and focusing on optimality
does lead to reasonable progress on improving the bound on optimal solutions, but on many hard
problems an optimal solution will not have been found within 3600 seconds and the incumbent will
typically be far from optimal.

6. Related work

The MRF MAP problem is sufficiently important to have generated a large literature, much of it us-
ing IP and/or LP relaxations (Wainwright and Jordan|, 2003};|Sontag and Jaakkola, [2008; Batra et al.}
2011; [Sontag et al., [2012; Mezuman et al., 2013} |[Hurley et al., [2016; |Rowland et al.,|2017). |Weller
and Jebara| (2013) derive a nand Markov random field (NMRF) from a given MRF. The NMRF is the
same as the intersection graph used in this paper and elsewhere (Balas and Padberg, |1976)). After
reparameterising appropriately (and perhaps reducing the problem) the goal is then to find a maxi-
mum weight stable set (MWSS) on the NMRF/intersection graph. MWSS is just an alternative name
for node packing (NP) and as Balas and Padberg note “one way of solving set packing (and set par-
titioning) problems, is to solve the associated node packing problem” (Balas and Padberg, [1976).
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However, Weller and Jebara go much further than just translating the problem: providing useful
decomposition theorems and analysing ‘frustrated’ cycles in the NMRF.

Sontag et al.|(2012)) focus on efficiently finding cycle inequalities which can be added as cuts to
tighten the LP relaxation. In contrast to earlier work (Sontag and Jaakkola, 2008), these inequalities
are applied in the dual problem, giving rise to a column generation approach. These cycle inequali-
ties are closely related to the odd hole inequalities discussed in this paper. It would be interesting to
compare their algorithm to the Groétschel-Lovasz-Schrijver and Hoffman-Padberg algorithms, and
also to look into lifting their inequalities.

Merging several hyperedges, as described in Section[5] creates new IP variables which are prod-
ucts of the original ones. [Sherali and Lee| (1996) show that doing this creates tighter linear relax-
ations for set partitioning, providing an motivation additional to size reduction. |[Favier et al.| (2011),
in contrast, have a solving approach where splitting hyperedges apart provides considerable benefits.

7. Future work

The current paper is an initial exploration of the value of viewing MRF MAP as set partitioning.
Further work is required to better understand when generating many zero-half cuts and/or reduc-
ing the problem is beneficial. Also, the 5 reduction procedures given in Section [5] are here only
applied during pre-processing. But there is no reason why they should not be applied during the
search. |Larrosal (2000), for example, has shown how doing variable elimination during search can
be beneficial.

A more radical option is to exploit the quasi-integrality of the polytope defined by the linear
relaxation of set partitioning. Call this polytope LSPP. The quasi-integrality of LSPP means that
any edge joining two vertices of the set partitioning polytope is also an edge of LSPP. This means
that “the set partitioning problem can in principle be solved by a modified version of the simplex
method, generating only integer solutions” (Balas and Padberg, [1976). Some impressive results
have been obtained by applying this integral simplex algorithm to SPP (Zaghrouti et al., |2014). It
would be interesting to try for MRF MAP, perhaps exploiting some of the special structure of MRF
MAP SPP problems.
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