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Abstract

Knowledge compilation as part of the Weighted Model Counting approach has proven to be an
efficient tool for exact inference in probabilistic graphical models, by exploiting structures that more
traditional methods can not. The availability of affordable high performance commodity hardware
has been an inspiration for other inference approaches to exploit parallelism, to great success. In this
paper, we explore the possibilities for Weighted Model Counting. We have empirically confirmed that
exploited parallelism yields substantial speedups using a set of real-world Bayesian networks.

1. Introduction

Probabilistic inference is of central importance to Artificial Intelligence (Al) for reasoning under un-
certainty. It has applications in areas such as medical diagnosis, speech recognition, weather forecast-
ing, machine learning, and so on (Hommersom et al.,[2013; Russell and Norvig,|1995). Unfortunately,
probabilistic inference is NP-hard (Cooper, [1990). As a consequence, for more than three decades re-
searchers have investigated ways to exploit independence and structure in probability distributions
in attempts to make probabilistic methods tractable and practically more useful. Weighted Model
Counting (WMC) is considered a state-of-the-art approach to inference and exploits independence
and structure in an excellent way. It typically entails two phases: (1) The search for, and construction
of, a concise representation of a probability distribution, referred to as knowledge compilation, and
(2), the subsequent evaluation on that representation to perform inference (Chavira and Darwichel
2008). In this article, we explore the possibilities to parallelize both phases. At first sight, in particular
the parallel nature of the logic behind model counting creates the idea that parallelization may yield
significant performance gains.

Bayesian networks (BN) provide intuitive graph representations of problems dealing with joint
probability distributions. Shachter and D’ Ambrosio introduced a symbolic-algebraic approach to rep-
resent BNs in order to perform exact probabilistic inference more efficiently (Shachter et al., [1990).
Darwiche identified key properties of these symbolic representations that are essential to tractable in-
ference (Darwichel 2002), inspiring influential representations such as Deterministic Decomposable
Negation Normal Form (d-DNNF) and Sentential Decision Diagrams (SDD) (Choi et al.,2013)). These
advancements confirmed the viability of the field that is now better known as inference by Weighted
Model Counting (Chavira and Darwiche, [2008)).

The compilation step in WMC is computationally intensive, and thus, that is where one finds most
tractability issues. Inference is linear in the size of the compiled representation (Darwichel [2002)). In
practice this implies that if compilation succeeds given time and memory limitations, inference is not
only guaranteed to succeed, it is much faster than compilation. The exponential trend of growing pro-
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Figure 1 From partitioned knowledge compilation to inference.

cessor speeds, known as Moore’s Law, recently shifted towards exponential growth in parallelism. So,
to benefit from the next generation of processors, the WMC approach should exploit parallel hardware.
The challenge here is that this approach is applied to problems with an abundance of dependencies,
e.g. BNs, limiting the amount of independence that can be exploited through parallelism. In order to
increase the amount of independence, we also apply a partitioning technique as depicted in Figure
(see Section [ for a detailed explanation). Our contributions are the following:

e anovel parallel approach to compiling BN to different representations (Section [4.1));
e anovel parallel inference algorithm (Section [4.2));

e the implementation of compilation and inference algorithms is discussed and it is shown that
15-fold speedups are attainable (Section 4] and [5).

2. Related Work

Now a decade ago, inference by WMC was discovered as a new state-of-the-art method to perform
probabilistic inference (Chavira and Darwiche, 2008). At the core of WMC is a model-theoretic
analysis, model counting, of a representation that symbolically describes the probability distribution
of a BN. In the first step of this approach, the BN is compiled into a symbolic representation based on
a logical formalism. In the second step, inference is performed through model counting.

While the memory required to store all models increases exponentially (Darwiche, [2002), com-
piled representations typically behaves much better. Examples of used representations in this context
are (binary) decision diagrams (BDD) (Bryant, (1986)), d-DNNF, SDDs, OBDDs, and many more (Choi
et al.,|2013} |Dal and Lucas| 2017; Nielsen et al.,|2000). In essence, inference by WMC employs tech-
niques from reachability analysis that are used to find more concise representations of probability
distributions in order to perform inference more efficiently.

Parallelism has be used since the 1990s to improve inference algorithms, by Kozlov and D’ Ambro-
sio for instance (D’ Ambrosio et al., [1992; Kozlov and Singhl [1994). Several parallel implementations
have been presented since then. Some, specialized to particular models or settings like the works of
Funiak, Newman and Paskin et. al. (Funiak et al., [2007; [Newman et al., [2008])). Parallelism in approx-
imate inference was addressed by Gonzalez and Mendiburu (Gonzalez et al., 2009; [Mendiburu et al.,
2007), and exact inference by Prasanna et. al. (Namasivayam and Prasannal 2006). Parallel #SAT
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solving has been attempted before, but not for the weighted case, nor compiled representations. Max-
imum a posteriori (MAP) queries already are trivial to parallelize, due to the independence between
configurations one has to go through to answer such probabilistic queries. Further related work has
been done in the field of reachability analysis, where they focused on performing multiple indepen-
dent BDD operations in parallel, as well as parallelizing the BDD operations themselves (Dijk et al.,
2013). Performance gains where also achieved by using GPU to perform graph traversals, applicable
during the counting of models (Dal et al.} 2014).

Attempts to improve performance by exploiting parallelism have been limited to either particular
models or settings, or popular inference methods such as variational inference, belief propagation and
the junction tree algorithm, while inference by WMC has not been investigated.

3. Preliminaries

3.1 Bayesian Networks

Definition 1 A Bayesian network B = (G, P) is a Directed Acyclic Graph (DAG) G = (V, E), with
nodes V and (directed) edges E C V XV, that models a factorization of joint probability distribution
P(X) defined over variables X as:

P(X) = [] Pl | pac(x)), (1)

reX

such that node v € V is associated with a distinct x € X, and corresponds to probabilities P(x|pag(z))
depending on parents pag(x) = {z | (z,z) € E}, which make up node v’s Conditional Probability
Table (CPT). Furthermore, pag(U) = ey pag(u) \ U, withU C X.

Definition 2 Let X be a set of variables. We denote the dimension of v € X with Dx (z). Further-
more, Dx determines the domain size of U C X:

Dx(U) £ [] Px(@). )

zelU

3.2 Inference by Weighted Model Counting

A BN models a concise factorization of discrete probability distribution P(X), defined over X. The
WMC approach attempts to improve on the computational advantages of the factorization by em-
ploying additional algebraic properties. This process is typically done in a framework where a BN
B = (G, P) is encoded as a Boolean formula (Chavira and Darwiche, 2008). This formula is then
represented as, or compiled to, a symbolic representation that respects the factorization and allows for
more efficient inference. The computational complexity of inference is linear in the size of this com-
piled symbolic representation if it adheres to a set of key properties identified by Darwiche (Darwichel
2002). We now introduce the preliminaries required to employ this method and its 3 main steps.

3.2.1 REPRESENTATION: BOOLEAN LOGIC AND SETS

A literal | is a Boolean variable x, or its negation . A propositional formula (proposition for short)
1) is a literal, Boolean constant, or composite proposition with connectives such as negation @, con-
junction (p A ¢'), disjunction (¢ V ¢’), and implication (¢ = ¢’), where ¢ and ¢’ are proposi-
tions, with precedence of the connectives in that (descending) order. We use T to denote the always
true and 1 to denote the always false proposition. A proposition can be represented as a Boolean
function f : B — B defined over m Boolean variables. The conditioning of f on x; is defined
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as the projection fi,, 4(%1,...,¥m) = f(z1,. ., Ti1,b,%i41,. .., %), wWith b € {T,1}. We
use fz; and fz; to denote f,, .1 and f,, o, respectively. A Boolean function f depends on x; if
flxr, oo xim1,0, @41, ooy ) # f(21, .oy Tim1, L, Xig1, .. ., Ty ). A proposition ¢ is in conjunc-
tive normal form (CNF) if it is a conjunction of clauses, where a clause is a disjunction of literals
(I4 V-V 1,). In the following we will often not make a distinction between a proposition ¢ and its
associated Boolean function f.

A set is an unordered collection of unique objects, denoted using curly brackets, e.g., {1,2,3}.
Symbols used to operate on sets include N (intersection), U (union), \ (set difference) and x (cartesian
product). The symbol () denotes the empty set.

3.2.2 STEP 1: BAYESIAN NETWORK ENCODING

BNs are defined over multi-valued domains. An encoding is required to transition to the Boolean
domain. Multiple encodings have been proposed (Chavira and Darwichel [2008). We employ the so-
called direct encoding that introduces a Boolean variable x; for each unique variable-value pair (Dal
and Lucas| 2017), adding to z; the semantic that if x; = T then x is equal to its it" value.

Definition 3 Let BN B = (G, P) be defined over variables X. Variable x € X is encoded as Boolean
atoms Ax(z) = {x1,...,2,} withn = Dx(x). Variables U C X are encoded as Boolean atoms
Ax (U) such that Ax (y) N Ax(z) = 0 forally,z € X withy # 2:

Ax(U) = | Ax(w), 3)

zelU

Definition 4 A propositional probabilistic knowledge base (PPKB) is a set of weighted formulas
{{e1,w1), ..., (pn,wn)}, where each propositional formula p; is associated with weight w;, sym-
bolically representing probability PROB(w;) € [0, 1]. A PPKB is written as proposition by conjoining
each pair (p;,w;) that is syntactic sugar for (¢; — w;), or (¢; V w;) in CNF.

Example 1 Lert BN B = (G, P) be defined over variables X = {a,b,c} as shown in Figure 2,
with Ax(a) = {a1,a2,a3} and pag(a) = 0. We construct a PPKB KB by adding for every x €
X mutual exclusion constraints for the values of x based on Ax(x), and add a weighted formula
for every probability in x’s CPT (Dal and Lucas, 2017): {(a1 A a3 A a3,w1), (a1 A ag,ws), (a1 A
as,ws), (a1, wy), (az,ws), (as,ws), . ..}, where PROB(w;) € [0, 1]. Its CNF is (a1 V ag V az V wy) A
(@ VazVwa) A(arVazVws)A(arVwy) A(azVws)A(@sVwe)A. ... The clause (a1 VaaVasgVwi)
acts as one of the constraints to ensure that at least one of the values a1, as, and as is true and this is
ensured by taking w; = L. Note that (a1 V ag V a3V 1) = (a1 V ag V as), so we can also leave out
L here. Mutual exclusiveness is expressed by clauses such as (a1 V az V ws). For similar reasons we
have that wy = w3 = L

3.2.3 STEP 2: COMPILING TO SYMBOLIC REPRESENTATIONS

To refactor joint probability distribution P(X) we use a representation that symbolically represents
it, based on the encoding E (Definition [3] and ). Using representations such as Binary Decision
Diagrams (BDD) to represent the PPKB provides access to a rich set of tools specifically developed
for refactoring. A BDD is a rooted DAG, with two leaves labeled 1 (T) and 0 (1). Each node v is
labeled with a Boolean variable VAR (v) and has two outgoing edges to children HIGH(v) and LOW (v),

denoting respectively the positive cofactor fyag(v), and the negative cofactor fﬁ(v)' Here, edges to
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the HIGH and Low children of each node are depicted with solid and dashed lines, respectively. Node
v represents (a portion of) encoding £ as REP(v) = (VAR(v) A fyar(v)) V (VAR(v) /\fm)), where
REP(r) = E at root node r. A BDD is ordered if every variable is encountered at most once and
in the same order along each distinct path from the root to a leaf. A fotal ordering is imposed on
variables X by permutation o, such that x, ;) precedes z,;), denoted by z,(;) < Z,(;), iff ¢ < j with
To(i)s To(s) € X.

A Weighted Positive Binary Decision Diagram (WPBDD) (Dal and Lucas, 2017) is an ordered
BDD, with a set of weight variables WEIGHTS(v) at the high edge of each node v. Reduced WPB-
DDs are a concise and canonical representation for probability distributions. A WPBDD is reduced if
it does not contain isomorphic subgraphs nor redundant nodes. Child LOW(v) of node v is redundant
if HIGH(v) = HIGH(LOW(v)) and WEIGHTS(v) = WEIGHTS(LOW(v)). Redundant children of
node v can be reconstructed using the ordering o with REDUN(o, v) £ {7o@) € Ax(X) | VAR(v) <
Ty(i) < VAR(LOW(v))}. Node v represents REP(v) = (VAR(v)VV erepun(o,w) 2 MAwvewsignrsv) @A
fvar@) V fm, where REP(r) = E, i.e., any model of the symbolic representation of the WPBDD
at root node 7 is also a model of the encoding E.

3.2.4 STEP 3: INFERENCE

Using WPBDD:s to represent joint probability distribution P(X) defined over variables X, inference
is linear in the size of the representation, and is performed by traversing its nodes at most once while
evaluating the function that each node and its descendants represent. Node v represents:

fv) = (VAL(VAR(U)) DY VAL(@")) - (H PROBW) - F(HIGH()) + F(Low(v)),  (4)

x € REDUN(o,v) w € WEIGHTS (v)

where + and - denote algebraic addition and multiplication, respectively, and VAL(z;) returns 1 or 0
if z; is T or L, respectively. VAL(x;) returns 1 by default and 0 if inconsistent with given evidence. To
include “z is equal to its i*" value” (Subsection , VAL(xz;) will return 0 iff z; € Ax (z)\{z:},
withz € X and z; € Ax ().

4. Parallelism and Inference by WMC

Computational problems that contain a lot of independence are inherently easy to parallelize. The
WMC approach to inference does not contain obvious independencies due to the many relations
among variables in typical Bayesian networks. This makes it a challenging problem to parallelize.
However, several sources of independence in both the compilation and inference phases of WMC can
be identified. As WMC is typically applied using monolithic representations, there are bottlenecks
obscuring Independencies. We therefore introduce additional independence by employing a partition-
ing technique that is compatible with various different target representations (Dal et al., 2017). This
allows a BN to be compiled as a set of subproblems, where each subproblem is compiled in parallel,
reducing compilation time to that of the largest subproblem. Recent work has also shown that com-
pilation operations can be parallelized themselves as well (Dijk et al., [2013)). Finally, we capitalize
on the partitioning by traversing independent compiled subproblems in parallel during inference. The
following subsections describe the parallelization of the aforementioned high level Independencies
(depicted in Figure[I), and many additional ones.
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4.1 Parallel Compilation

Knowledge compilation of BNs entails its encoding and the creation of a symbolic target represen-
tation using this encoding. Example |3| shows how we can obtain a symbolic propositional formula
in CNF that encodes a BN, in which each clause is conjoined. Conjunction (A) is both commuta-
tive and associative, i.e., the order in the evaluation of a proposition with conjunctions is irrelevant.
These properties allow us to perform any conjoin operation with distinct operands in parallel. This
is a particularly useful when compiling CNF formulas, as this additionally allows us to create a tar-
get representation for each clause, also referred to as a cube, in parallel. Conjoining cubes and any
pair of distinct intermediate results is done in parallel until the final representation is reached. In the
following, parallel compilation is described in more detail.

4.1.1 PARTITIONING A BAYESIAN NETWORK

As we approach the final representation, fewer distinct operands become available, reducing opportu-
nities for parallelism. Partitioning a BN into subproblems significantly alleviates this bottleneck, as
all subproblems can be compiled in parallel.

Definition 5 A DAG G = (V, E) is a connected component if there is a path along the edges (ignoring
direction) from any node v € V to any other node u € V, v # u.

A DAG G = (V, E) can be decomposed into its connected components, such that for each connected
component C; = (V;, E;), there is no path to any of the other connected components C; = (V}, Ej),
i # j. The way connected components are defined creates an equivalence relationship on them and any
node in a component can act as class representative (Lauritzen, [1996)). If there is only one connected
component, then we can still decompose a graph into multiple components by means of a cutset, the
(arbitrary) set of edges that breaks up the graph into connected components when removed.

Definition 6 A cutset S of a DAG G = (V, E), with nodes V and edges E, S C FE, decomposes the
DAG into connected components by removing the edges in S from E.

Definition 7 A partitioning of a DAG G = (V, E), with nodes V and edges E, decomposes G into k
subgraphs C = {C,...,Cy}, where each subgraph C; = (V;, E;) is an induced subgraph with V;
nonempty and mutually disjoint, Uje{l,...,k} Vi=V,and E; = EN (V; x V).

Proposition 8 The partitioning of a DAG G = (V, E) into its induced subgraphs C = {C1,...,C},
Ci = (Vi, E;), corresponds to the connected components C' = {C1,...,C.} of the graph H =
(V,E\S), with S = {(u,v) € E|u € V;,v e Vj,i#j}

Proof Since the node sets of G and H are the same, it suffices to consider the edges of the graphs.
Let the cutset S be defined as in Definition 6| then we need to prove that S = E'\ U,cq1, iy Ei =
{(u,v) € E | v € Vi,v € V;,i # j}. Take any subgraph C; = (Vj, E;), which according to
Definition [7|is disjoint with any other subgraph C; = (V}, E;); together the subgraphs cover all the
nodes in G and hence also in H. As the subgraphs are induced, they also cover all edges with the
exception of those that connect the subgraphs, i.e., E\ U;cq1,. 4y Ei- As this corresponds to the
definition of a cutset, the subgraphs are the connected components of H. |

However, a BN B = (G, P) is not just a graph. A subproblem is therefore a component C;, as the
result of partitioning, in addition to probabilities P(z | pag(z)) for those variables x € X with the
corresponding nodes included in V.
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Figure 2 Example Bayesian Network.

Definition 9 Let BN B = (G, P) be defined over variables X. A function that represents the CPTs
associated with variables U C X depends on variables:

Ra(U) = |J {z} Upag(a). )

zxeU
Example 2 Let BN B = (G, P) be defined over variables X = {a,b, c} as illustrated in Figure 2.
The corresponding CPTs are provided in Figure 2. Figure 2p shows a partitioning, yielding two
subproblems given components Cy and Co, where Vi = {a, b} and Vo = {c}. Probabilities P(a) and
P(bla) for all values of a,b € X are associated with C, and probabilities P(c|a) for all values of

a,c € X are associated with Cy. Component Cy thus depends on Rg(Vi) = {a, b} and component
Cyon Ra(Va) = {a,c}.

4.1.2 ENCODING

Each individual probability of x’s CPT is captured as a weighted formula (p,w), where ¢ would
depend on a subset of Ax(Ra({z})). A more detailed description of the encoding can be found in
(Chavira and Darwiche, |2008; |Dal and Lucas}, |2017). Here, we illustrate it by an example.

Example 3 Consider BN B = (G, P) and its partitioning from Example Boolean formula f and g
are the propositional (CNF) forms of the PPKBs that encode components C1 and C, respectively:

f=(a1VazVas) A (a1 Vaz) A (a1 Vaz) A g=(a1VazVaz) A (@Vaz) A (a1 Vaz) A
(ag Vaz) A(byVby) A (b Vby) A (@zVaz) A (c1Vex) A (erVez) A
(@ Vw) A (@Vw) A (@ Vws) Aar V) A (@ ver) A (@ VerVws) A
(az Vb1 Vws) A (az Vby Vws) A(az V by Vws) A (@ VezVws) A (azVer)

(az V by V ws)

Formula f A g thus represents B and depends on Aq(X) = {a1, az, as, b1, ba, c1, ca} and weights
{w1,..., ws}, where PROB(w1) = P(a=1), PROB(w2) = P(a=2)=P(a=3), PROB(w3) = P(b=
l,a=2)=P(b=2,a=2)=P(b=1,a=3)=P(b=2,a=3) and PROB(wy) = P(c=1,a =
2) = P(c=2,a = 2). Using the same w; for identical probabilities per CPT allows us to exploit
local structure during compilation and thus find a better factorization. Note that the mutual exclusion
constraints (as mentioned in Example [I)) of BN variable a must be included in both formulas as a
result of partitioning.

4.1.3 COMPILATION

Using the encoding, we can compile each subproblem to a target representation of choice. Without
loss of generality, we will use WPBDDs as target representation for demonstration purposes (Dal and
Lucas, [2017)).
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Example 4 Consider the BN, its partitioning and encoding from Example [2| and 5| The compiled
representation each subproblem is illustrated in Figure[3u and[3p. The function they represent at their
root is recursively defined by Equation

To summarize, during the compilation process (1)
each cube can be created in parallel, (2) the conjoin oper-
ations can be performed on each pair of distinct operands
(cubes, intermediate results, compiled CPTs) in parallel,
and (3) each subproblem can be compiled in parallel.

4.2 Parallel Inference
(a) WPBDD of C1, (b) WPBDD of Cs,

In order to perform inference, we employ a composi- given ordering given ordering
tional approach that connects the compiled representa- a1 <az<az<b1<by a1 <az3<az<c1<cy
tion of each subproblem. Independencies arise based on

. . . Figure 3 C iled WPBDDs of a partitioned
how they are connected and what evidence is provided. & ompre > 01 @ partitione

BN (Example ).
4.2.1 COMPOSITION

Definition 10 Assume components C1, . .., C}, and component ordering T. The context of component
C~(s) is determined by:

i—1 k
Z:(i) = (U RG(VT(h))> n | U Re(Vr) |- (6)
h=1 Jj=t

Compiled subproblems are connected as a tiered architecture (Dal et al., 2017): a graph with |Dx (Z,(7))|
nodes on Tier ¢, where a node represents a distinct traversal of the compiled subproblem associated
with component C(; based on the valuation of context variables Z:(i). By employing dynamic
programming, C_; is thus traversed at most |Dx (Z(4))| times depending on given evidence.

Example 5 Consider the compiled subproblems in Example |4} the BN B = (G, P) it represents and
component ordering T. The context of Tier 2 is determined by variable Z.(2) = V1 NV, = {a}.
Therefore, we (partially) traverse Cy at most |Dx (Z2(2))| = 3 times. We can perform traversals of a
particular component given different context valuations in parallel.

4.2.2 INFERENCE

Probabilistic inference can be performed by evaluating the function represented at the root of the
compiled representation, which is defined by Equation 4] for WPBDDs. Using the compositional
approach, we perform this evaluation by doing a depth-first traversal starting at the WPBDD root in
Tier 1, continuing at the root of the next tier each time the 1 terminal is encountered.

Example 6 Consider the tiered architecture from Example 5} Figure [ shows how the 1 terminal
in tier 1 is connected to the root node in tier 2, with component ordering C; < Co. Assume we
want to compute a joint probability where variable a is part of the evidence, e.g., P(a = 1). We
do this by traversing the tiered architecture as described whilst computing the function it represents.
We only traverse the HIGH edge of nodes v if VAR(v) = a1, and only traverse the LOW edge if
VAR(v) € U\ {a1}, where U = Ax(Z) = {a1,a2,a3} with Z = Z.(2) = {a}. This reduces the
traversal of Ca to |Dx(Z \ {a})| = 1 time. Note that this could actually be reduced to zero times,
because the subproblems are conditionally independent given the evidence.
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AN NN

S
o - Independencies

Figure 4 Tiered architecture for the example in ~ Figure S Connected representation of the architecture
Figure[2] in Figure 4]

When disregarding conditional independence, observe that parallel traversals of compiled repre-
sentations under different valuations has a practical limitation, as independence is reduced the more
evidence we introduce. This does not lead to concern in practice however, because although perfor-
mance gains through parallelism are reduced, inference itself becomes easier as there are literally less
paths and nodes we require to traverse in order to perform inference. The intention the behind pro-
posed parallelization methods is still achieved by reducing inference cost in more complex scenarios.

To introduce more parallelism, we relax the total ordering 7 to a partial order by taking its tran-
sitive closure. The resulting architecture resembles a DAG, much like a decision diagram. This
weakened architecture allows a parent tier node to be immediately traversed when its children have
been traversed. We exploit the additional independence for more parallelism. We spawn a task for
each traversal of a compiled subproblem representation. A computed table keeps track of the different
traversals by mapping a subproblem and a possible valuation for its context to either a task or a result.
Before creating a task for traversing a component, the computed table is queried. If it does not contain
an entry, the traversal task is created and the new task is immediately stored in the computed table to
be later overwritten with its result. If the entry is already mapped to a task, then we yield and wait for
its result. Otherwise the result in the computed table is used immediately.

To summarize, (1) compiled subproblems under different valuations of its context can be traversed
in parallel, (2) independent subgraphs of the tiered architecture can be traversed in parallel, and (3)
posteriors with distinct evidence can be computed in parallel.

5. Empirical Evaluation and Discussion

We have implemented a parallel WMC framewor we refer to as PAR and TDPAR, exploiting oppor-
tunities for parallelism outlined in Sectiond] The general setup for both compilation and inference is
the same in that we use a task scheduler and a thread pool (using pthreads), where each thread has its
own task queue, to which the scheduler adds work. The scheduler is responsible for resolving depen-
dencies. Performance was measured using several publicly available Bayesian networks on a system
with 64 AMD Opteron 6376 processors and 500+ Gb of RAM.

1. Available athttps://github.com/gisodal/wmc
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DAL

Bayesian Compilation time (ms) Inference time (ms)

network |Al |P|| TDPAR PAR BNC CUDD SDD ACE| PAR  PAR; ACE DLIB
asia 16 36 0.07 0.09 0.53 0.83 1.94 85.90| 0.006 0.004 2.340 0.570
sachs 24 228 0.11 0.13 1.85 1.60 31.08 100.49| 0.009 0.009 3.149 4.555
std. farm 25 70 0.13 0.14 1.03 1.12 4.94 97.05| 0.012 0.008 3.075 2.129
year2000 26 255 0.19 0.17 2.717 1.95 19.57 101.73| 0.020 0.015 4.193 18.569
golf 37 388 0.15 0.15 1.55 2.20 16.43 104.45| 0.015 0.011  3.065 22.659
poker 43 748 0.17 0.15 2.74 4.29 44.41 105.73| 0.014  0.008  2.992 20.029
printer ts 58 272 0.24 0.29 1.80 1.64 747 109.26| 0.006  0.004  3.067 8.565
boblo 60 316 0.22 0.28 3.73 3.37 39.12 101.29| 0.018 0.030 3912 28.056
child 60 344 0.27 0.32 4.96 4.72 117.16 119.26| 0.032 0.035 5.564 27.697
insurance 89 1419 10.10 34.43 107.14  359.29 37149.08 618.06| 1.055 2.580 35.325 11685.817
weeduk 90 22611 3.34 2.62  1159.82 42545 - 3489.63| 0.217 0.336 31.141 3155.015
alarm 105 752 0.50 1.32 14.11 19.48 199.85 149.84| 0.062 0211  6.419 35.125
water 116 13484 | 1485.11 1742.27 766.39 65668.09 - 968.77 - - - -
powerpl 120 432 0.31 0.58 7.73 7.50 159.65 130.35| 0.027 0.088  6.740 7.623
carpo 122 554 0.38 0.65 8.04 8.50 63.36 112.27| 0.032 0.076  5.959 16.968
win95pts 152 1148 1.33 6.37 3143 176.65 653.93 154.06| 0.160 0.624  9.677  220.080
hepar2 162 2139 1.20 4.66 88.24  449.76  9990.12 281.36| 0.165 0919 18.084 118.217
fungiuk 165 43007 9.83 12.13  3286.51 2010.44 - 12064.18| 1.033  1.580 42.140 4681.968
hailfinder || 223 3741 2.45 44.46 313.61 3725.44 142839.43 297.19| 1.384 6.780 19.801 2751.509
3nt 228 4546 11.99 8.76 4690 47241  4288.17 384.06| 0.736  1.052 20.618 4817.178
4sp 246 6496 10.62 26.42 119.29 1460.97 60921.00 531.35| 1.502  3.236 29.129 -
barley 421 130180(10933.66 19640.55 367274.15 - - - - - * -
andes 440 2308| 283.24 1138.58 - - - 0918.69(42.195 80.331 132.801 -
pathfinder || 520 106432 12.36 62.14  1391.82 1947549 19739.38  2748.09| 0.630  5.729 31.767 4359.722
mildew 616 547158 | 70720 661.41 229981.46 - - 857534.35(72.121 256.653 196.992 -
muninl 992 19226|40180.25 - - - - - * * * -
pigs 1323 8427| 526.99 - - - - 20019.39 * * 169.610 -
link 1793 20462 |60263.09 - - - - - * * * -
diabetes ||4682 461069 | 36120.00 - - - - 941554.61 * * 1104.04 -

Table 1 All times are in milliseconds. Compilation times are limited to 20 minutes
and inference times to 15 seconds (- denotes timeout, * denotes unavailable compiled representation).
|A| is the number of encoding variables and | P| the number of probabilities per BN

Table [T| compares state-of-the-art compilers to two parallel implementations, TDPAR and PAR,
producing WPBDDs that are driven by tree and chain (or total) orderings, respectively. They were
faster in nearly all cases. Comparisons are made with state-of-the-art compilers SD CUD BNCE
and ACEﬂ producing SDDs, OBDDs, WPBDDs and d-DNNFs, respectively. The compilation step
crucially depends on the ordering used. To ensure fair comparison, a single ordering was created for
each BN with min-hill climbing (Chavira and Darwiche, [2008]), and used by all compilers. SDDs were
compiled using a balanced vtree induced by this ordering. Only ACE produced its own orderings.

The compiler underwent several trial and improve cycles. Most notably, we have found that while
distributing conjoin operations across available threads in the thread pool, grouping cubes that col-
lectively describe a CPT reduces intermediate representation size. This places a partial order on the
conjoin operations, which improved compilation time despite the added dependencies. Secondly, a
sizable thread pool suffers from great overhead with such fine grained task scheduling when using
a synchronized computed table (Nielsen et al., 2000). Each thread thus has its own computed table.
This requires more memory, but we did not encounter memory limitations potentially caused by this
during experimentation.

2. Available at http://reasoning.cs.ucla.edu/sdd
3. Available at http://vlsi.colorado.edu/~fabio
4. Available at http://reasoning.cs.ucla.edu/ace
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PARALLEL PROBABILISTIC INFERENCE BY WEIGHTED MODEL COUNTING

Compared to single core executions we have /‘-é’\ 200000 |-
achieved 15-fold speedups in compilation, where o
. . . g 100000 |-
greater speedups are achieved with mid- to large = >,
sized networks. Figure [6] provides a closer exami- 0 I
nation that shows scaling efficiency is bounded to a 2 4 6 8 10 12 14
certain number of cores, which is to be expected for Number of Threads

parallel computations that need to deal with interfer-
ing dependencies. Scaling efficiency thus depends
on the network, more specifically its size, the depen-
dencies it models and the ordering in which conjoin operations are performed. We hypothesize that
a particularly bad order of these operations was chosen for network water resulting in increased
parallel compilation times. Parallelizing individual conjoin operations in future work might alleviate
or remove aforementioned restricting factors to scaling efficiency (Dijk et al.| 2013)).

Figure 6 Compilation results for Barley

To evaluate inference performance, we have implemented a parallel model counter for compiled
representations produced by PAR. We compare runtimes to model counter ACE and junction tree
implementation DLIBE} Comparisons to parallel inference methods could unfortunately not be made,
as they were not available to us at the time of experimentation. We chose DLIB from among the freely
available junction tree implementations for being one of the few written in c++, and additionally
having extensive documentation. The use of conditional independence to speedup inference, e.g.,
through lazy propagation used by the junction tree algorithm or conditioning used during the WMC
approach to inference, is not employed by any of the inference methods to facilitate fair comparison.

To compare runtimes, each inference method processed an identical set of probabilistic queries,
of which the average runtime is reported in Table|l} where PAR; is a single core execution. Partitions
are found by recursively decomposing the BN whilst minimizing cutset size and balancing partition
size, using simulated annealing and a scoring function. A suited number of partitions thus depends on
the network, but is always no less than 2. We observe that small networks have a difficult time dealing
with threading overhead, but as networks increase in size, we obtain up to 9-fold speedups.

Tree driven representations as produced by TDPAR and ACE enjoy tighter size upper bounds
based on treewidth, compared to pathwidth upper bounds for BDDs (Choi et al., [2013), likely re-
sulting in smaller representations and compilation/inference times. It has shown to be difficult to
find good total orderings for large networks, but competitive orderings are found for the remaining
networks. Single core runtimes for pigs and diabetes for TDPAR are 91.74ms and 542.29ms
compared ACE’s 169.61ms and 1104.04ms, respectively. Future work on a parallel model counter for
TDPAR’s output will certainly provide even greater gains. Overall, for both compilation and inference,
significant speedups were attainable through parallelism.

6. Conclusion

Several parallelization opportunities are explored in order to decrease the cost of knowledge compi-
lation and inference. Additional exploitable independencies are introduced by partitioning BNs and
using a compositional approach during inference. The benefit of exploited parallelism has been empir-
ically verified. Proposed methods have all been implemented and show 15-fold speedups are possible
for compilation. Speedups were achieved with the most efficient implementation compared to SDD,
OBDD, WPBDD and d-DNNF compilers. For inference, speedups are less pronounced, still achiev-

5. available at http://dlib.net/
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ing up to 9-fold speedups. Combined, parallel compilation and inference have shown to provide great
improvement among current state-of-the-art methods.
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