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Abstract
Within the field of cognitive neuroscience, predictive processing is an increasingly popular unify-
ing account of cognitive capacities including action and perception which posits that these rely on
probabilistic generative models to predict sensory input or the consequences of one’s behaviour.
In the corresponding literature one frequently encounters naive claims about the computational re-
sources required to successfully employ such models, while actual complexity analyses are often
lacking. In this paper we study the problem of selecting a course of action which yields the greatest
reduction in prediction error between the intended outcome and the current state, known in this area
as active inference. Modelling the problem in terms of Bayesian networks and the relative entropy
(Kullback-Leibler divergence) between a target and an induced distribution, we derive parameter-
ized (in)tractability results extending the NPPP-hardness classification found in Kwisthout (2014).
These show that contrary to common belief, the size of the prediction error does not determine
whether active inference is tractable, not even when the number of actions and outcomes to be con-
sidered is restricted. Moreover, this conclusion appears to extend even to an approximate version
of the problem. We believe these results can be of interest to both cognitive scientists seeking to
evaluate the plausibility of their explanatory theories, and to researchers working on probabilistic
models, as they relate to existing work on the hardness of observation selection in decision making.
Keywords: predictive processing; active inference; prediction error; relative entropy; Bayesian
networks; parameterized complexity theory.

1. Preliminaries

Motivated in part by empirical findings and in part by the increasing number of successful imple-
mentations based on similar principles, the theory of predictive processing has in the course of
the last decade received increasing attention both in the fields of cognitive psychology and neuro-
science as well as in philosophy of cognitive science. At its core, predictive processing postulates
that the cognitive systems governing action, perception and even higher-order beliefs are character-
ized by four shared traits: they operate on probabilistic information such as likelihood estimations
in a mathematically valid way; this information is used to maintain a generative model which is
employed to continuously predict sensory input in the immediate future; these models work to min-
imize the discrepancy between observation and prediction which is called prediction error; finally,
these models are stratified into multiple hierarchies, possibly instantiated in different cortical areas.1

One problem which has been of specific interest in the context of predictive processing, particularly
in the field of cognitive neuroscience, is that of active inference. This term refers to the problem
of selecting a course of action which yields the greatest reduction in prediction error between some

1. An illustration of this principle would be the visual information processing system in the brain, in which one distin-
guishes between several visual areas, believed to correspond to increasing levels of abstraction.
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distribution representing a desirable outcome and the predicted distribution over those same events.
As in Friston et al. (2015), this prediction error is typically construed in terms of the relative entropy
between the two distributions, i.e. as the Kullback-Leibler divergence of the preferred distribution
with respect to the posterior distribution associated with the selected course of action.

While one may suspect that active inference is a computationally demanding task, proving such a
statement requires a formalization of the framework of predictive processing in which the problem
is cast. One such formalization which is becoming more widely endorsed is in terms of Bayesian
networks, for which Kwisthout (2014) demonstrates that the problem of active inference is NPPP-
hard. Incidentally, this is also the hardness of a closely related problem which has been the object of
research on probabilistic models, namely that of observation selection or evidence gathering. Here
one asks for which nodes of the network one can best perform a test to determine their current state,
based on their expected value in terms of a score function which measures how informative it is to
learn that a node is in a particular state. In Krause and Guestrin (2009) it is shown that in general
this problem is NPPP-hard as well, further highlighting the similarity between the two problems.2

Nevertheless, it has been suggested in the literature (see e.g. Clark (2013), pp. 25 and 31 in particu-
lar) that the problem of active inference (or more likely an approximate version thereof) is tractable
when the size of the prediction error is suitably restricted. In order to assess this claim, we extend
the existing analysis into the domain of parameterized complexity theory, which provides us a for-
mal means of determining how specific aspects of the problem contribute to its overall hardness. In
particular we consider multiple ways of incorporating the prediction error as a parameter, besides
other parameters known or expected to be relevant in this context, such as the number of actions to
choose from or even the error bound on an approximate answer.

In the next section we introduce the relevant parts of probabilistic and parameterized complexity
theory with which the reader may be unfamiliar. In Section 3 we fix notational conventions and
explain the reduction strategy which drives all of the hardness results in Sections 4 and 5, which
cover exact and approximate versions of active inference respectively. We then discuss in the final
section how these results are relevant to the discussion surrounding active inference, as well as their
place in the theoretical research on Bayesian networks and other probabilistic models.

2. Computational Complexity

While we assume the reader to be familiar with the basics of classical complexity theory, we shall
briefly cover the probabilistic complexity classes BPP and PP, along with the central notions from
parameterized complexity theory insofar they are required to state our results.

In what follows, by a probabilistic algorithm we mean an algorithm which has access to random bits,
i.e. bits whose values are determined according to independent uniform probability distributions.
The intended technical formalization is in terms of Turing machines whose transition functions are
stochastic with these same properties.

2. However, note that the two problems are different in that for active inference the outcome of the “observation” being
made is guaranteed to be the selected action, hence it does not consider expectations over nodes but rather the value
of particular outcomes (though technically KL divergence is itself an expectation of relative informational content).
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Definition 1 BPP is the class of decision problems solvable in time polynomial in the size of the
input by a probabilistic algorithm which gives the correct answer with probability more than 2

3 .

The class BPP is commonly thought of as the class of problems efficiently solvable by a prob-
abilistic algorithm. While its relation to NP is not known (i.e. if BPP is included in NP or vice
versa), there are grounds for believing that in fact P = BPP such as presented in Impagliazzo and
Wigderson (1997), further supporting the view that membership of BPP indicates (randomized)
tractability. Another important probabilistic complexity class is defined as follows:

Definition 2 PP is the class of decision problems solvable in time polynomial in the size of the
input by a probabilistic algorithm which gives the correct answer with probability more than 1

2 .

Although the two classes may seem similar, not only does PP contain NP, the class PPP more-
over contains the entire polynomial hierarchy, as shown in Toda (1991).3 This informs us that the
PP-hardness or even NPPP-hardness of a problem is as strong of an indication (and likely stronger)
as to the intractability of a problem as is the notion of NP-hardness. We typically establish hardness
of one of the former two kinds by giving reductions from the following problems.

MAJORITY SATISFIABILITY (MAJSAT)
Input: A propositional formula ϕ(x1, . . . , xn) in CNF, consisting of clauses {c1, . . . , cm}.
Question: Isϕ satisfied by more than half of the possible truth assignments to its variables (x1, . . . , xn)?

EXISTENTIAL MAJORITY SATISFIABILITY (E-MAJSAT)
Input: A propositional formula ϕ(x1, . . . , xn) in CNF, consisting of clauses {c1, . . . , cm}, along
with an integer 1 ≤ k ≤ n. (The value k = 0 would yield a degenerate case equivalent to MAJSAT.)
Question: Is there a truth assignment (a1, . . . , ak) such that the formulaϕ(a1, . . . , ak, xk+1, . . . , xn)
is satisfied by more than half of the possible truth assignments to its variables (xk+1, . . . , xn)?

Proposition 3 MAJSAT is PP-complete, and E-MAJSAT is NPPP-complete.4

In the next section we shall discuss how we can construct reductions from these problems to the
ones which we will be considering, namely by drawing on methods previously used to obtain hard-
ness results for other problems related to Bayesian networks. First, we provide a short introduction
to parameterized complexity theory, a field extending classical complexity theory which includes
Downey and Fellows (1999) amongst its foundational works.

Though largely similar in approach, we now deal with parameterized decision problems, which
consist of pairs (x, k) where x is the input as usual and k is some parameter. While parameters are
typicially natural numbers, these can encode other countable sets such as the rationals, hence those
are also permissable. The counterpart to P is now the class FPT (for “fixed-parameter tractable”).

Definition 4 FPT is the class of parameterized decision problems for which there exists an algo-
rithm that runs in time at most f(k)xc, where f is a computable function in k and c is a constant.

3. The superscript class is an oracle, e.g. PPP is the class of problems solvable by a deterministic Turing machine in
polynomial time where moreover the machine can decide in a single step whether some input belongs to a given
problem in PP. In turn, the polynomial hierarchy can be thought of as the limit of successively larger towers of NP.

4. Proofs for these two results can be found in Gill (1977) and Wagner (1986) respectively.
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As one can tell from the definition above, parameterized complexity is based on trying to iden-
tify which factors contribute to the superpolynomial time a problem is believed to require in order
to solve it. One example is the NP-complete problem VERTEX COVER: when parameterizing with
k the maximum size of the vertex cover, we find that k-VERTEX COVER is in FPT. We can extend
this approach to other complexity classes as well, in a way explored in Flum and Grohe (2003).

Definition 5 Let C be a complexity class and D be any decision problem. Then k-D is in paraC
for some parameter k on the same conditions of D being in C, except the upper bound on the time
or space used (whichever measure is used to characterize D) may now include a factor f(k).

For example, the classes paraBPP and paraPP require the existence of a probabilistic algo-
rithm deciding the problem with probability more than 2

3 and 1
2 respectively, except the time taken

may be of the form f(k)xc as for the class FPT. Observe that paraC = paraC′ precisely when
C = C′, hence it makes sense to consider the hardness of parameterized decision problems as we do
in the classical case. This brings us to the final notion to discuss: that of a parameterized reduction.

Definition 6 An fpt-reduction from a problem k-D to a problem k′-D′ is a function which maps
(x, k) to (x′, k′) in time f(k)|x|c such that (x, k) ∈ k-D if and only if (x′, k′) ∈ k′-D′, with there
being a computable function g(k) such that k′ ≤ g(k).

We conclude by noting that such fpt-reductions behave like polynomial time (Karp) reductions
in all important respects, such as closure under composition. This ensures that the definition of a
parameterized problem being hard for a parameterized complexity class whenever all problems in
this class fpt-reduce to the problem carries the same meaning as before.

3. Constructing the Hardness Proofs

All of the hardness results in this paper are established using the same underlying construction,
which extends the usual way of encoding a propositional formula into a (discrete) Bayesian net-
work in polynomial time. To streamline the presentation of the proofs, we therefore discuss this
construction separately, allowing us to cover the notational conventions employed at the same time.

By a Bayesian network B we mean a connected DAG G = (V,A) along with a collection of
probability distributions Pr(X | π) for every X ∈ V and every configuration π ∈ Ω(ρ(X)) of the
parents ρ(X) of X . With any proposition formula ϕ we can associate a Bayesian network Bϕ in
the way introduced in Cooper (1990) and expanded on in Park and Darwiche (2004) and Kwisthout
(2009). The network Bϕ has three essential kinds of binary nodes: uniformly distributed nodes
X1, . . . , Xn representing the variables x1, . . . , xn, followed by nodes C1, . . . , Cm for the clauses
c1, . . . , cm (with Xi leading to Cj precisely when xi or ¬xi occurs in cj) which are True precisely
when they would be satisfied by the assignment to the variables, and a terminal node Vϕ represent-
ing their conjunction in a similar fashion. This construction ensures that Pr(>) = #ϕ

2n where Pr(>)
is short for Pr(Vϕ = True) and #ϕ is the number of satisfying assignments to the variables of ϕ.

We extend this network Bϕ to B∗ϕ by including a binary node Y with possible values y and ¬y,
and another binary node Z with parents Vϕ and Y which takes values z and ¬z (see Figure 1). The
probability distributions we associate to Y and Z vary across the different reductions, hence these
details will be separately provided in each of the individual proofs.
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Figure 1: The network B∗ϕ corresponding to a propositional formula ϕ.

4. Exact Active Inference

As remarked during the introduction, we follow Kwisthout (2014) in modelling the problem of ac-
tive inference in terms of Bayesian networks. Apart from a particular network B, assume we are
also given two particular subsets A,P ⊆ V which make up the actions and predictions respectively,
along with a target distribution PrT (P) over these predictions. The problem of active inference is
then to select an element a ∈ A, representing a compound action consisting of particular possibili-
ties a for all A ∈ A, which yields the greatest reduction in relative entropy of the target distribution
with respect to the posterior likelihood of our predictions given a. Here by the relative entropy of P
with respect to Q, both distributions over some discrete variable X , we mean the Kullback-Leibler
divergence given by DKL(P (X) ‖ Q(X)) =

∑
x∈X P (x) log P (x)

Q(x) . We remark that this value is
non-negative, though possibly infinite or even undefined, and moreover asymmetric in general.

In order to formulate the corresponding decision problem, we introduce some notation for three
important quantities involving relative entropy. First, we will use κI to denote the initial relative
entropy DKL(PrT (P) ‖ Pr(P)). In turn, min{DKL(PrT (P) ‖ Pr(P | a)) : a ∈ Ω(A),Pr(a) > 0}
will be referred to as the optimal relative entropy κO. Lastly, the decrease in relative entropy ∆κ is
simply κI − κO.5 There are now two possible formalizations of active inference:

ACTIVE INFERENCE (THRESHOLD VERSION)
Input: A Bayesian network B = (G,Pr), A,P ⊆ V, a probability distribution PrT (P), q ∈ Q.
Question: Is κO < q?

ACTIVE INFERENCE (ABSOLUTE VERSION)
Input: A Bayesian network B = (G,Pr), A,P ⊆ V, a probability distribution PrT (P), q ∈ Q.
Question: Is ∆κ > q?

Note that whenever κI is known, for instance when given as a parameter, the two variants of active
inference become interchangeable. This is because going from κI to below a threshold q is the

5. If either κI , κO or both are infinite, we take ∆κ to be∞,−∞ or 0 respectively, with −∞ < q <∞ for all q.

113



DONSELAAR

same as reducing κI by at least κI − q, and vice versa reducing κI by at least q is the same as going
below the threshold κI − q. However, before we present our first hardness result showing that κI
nevertheless has little effect as a parameter, we must touch on what it means to parameterize by the
typically irrational values κI , κO or ∆κ (from here on called “relative entropy parameters”).

To this end, note that there are only finitely many possible values of DKL(PrT (P) ‖ Pr(P | a))
for a ∈ A. It is therefore possible and sufficient to give a rational approximation κ̃I of κI such
that κ̃I − DKL(PrT (P) ‖ Pr(P | a)) > q precisely when κI − DKL(PrT (P) ‖ Pr(P | a)) > q.
Similarly, when parameterizing with κO or ∆κ, we must provide rational approximations κ̃O and
∆̃κ such that respectively κI − κ̃O > q precisely when ∆κ > q and κI − ∆̃κ < q precisely when
κO < q. A relative entropy parameter is therefore such a rational approximation with the promise
that it is accurate enough to carry the relevant information pertaining to the problem.

Proposition 7 The problem κI -ACTIVE INFERENCE is paraNPPP-hard. Furthermore, we find that
the problem {|Ω(A)|, |Ω(P)|, κI}-ACTIVE INFERENCE is still paraPP-hard.

Proof We reduce from E-MAJSAT. Given the formula ϕ and κI > 0, construct the network B∗ϕ by
taking Y to be uniformly distributed and6

Pr(z | Vϕ, Y ) =


1

2
+ 2−κI−1 and 3 · 2−κI−1 for Vϕ = >, Y = y and κI ≤ 1 resp. κI > 1

3 · 2−κI−1 − 1

2
and 2−κI−1 for Vϕ = >, Y = ¬y and κI ≤ 1 resp. κI > 1

2−κI for Vϕ = ⊥

For κI ≤ 1 we find Pr(z) = 2−κI (1−Pr(>)) + 1
2Pr(>)(1

2 + 2−κI−1 + 3 ·2−κI−1− 1
2) = 2−κI ,

and for κI > 1 we find Pr(z) = 2−κI (1−Pr(>))+ 1
2Pr(>)(3 ·2−κI−1 +2−κI−1) = 2−κI . Thus by

letting PrT (z) = 1, we have DKL(PrT (Z) ‖ Pr(Z)) = − log Pr(z) = κI as desired. Furthermore,
note that Pr(z | y) ≥ Pr(z | ¬y), and Pr(z | y) is 2−κI +(1

2−2−κI−1)Pr(>) and 2−κI (1+ 1
2Pr(>))

for κI ≤ 1 and κI > 1 respectively. Hence there is now an assignment a1, . . . , ak such that
Pr(Vϕ = > | a1, . . . , ak) >

1
2 precisely when Pr(z | a1, . . . , ak, y) > 3 · 2−κI−2 + 1

4 for κI ≤ 1
and Pr(z | a1, . . . , ak, y) > 5 · 2−κI−2 for κI > 1. For the threshold version, this corresponds to
q = κI + 2− log(2κI + 3) and q = κI + 2− log 5 for κI ≤ 1 and κI > 1; for the absolute version,
this corresponds to q = log(2κI + 3) − 2 and q = log 5 − 2 for κI ≤ 1 and κI > 1. The second
statement follows by considering k = 0, effectively making this a reduction from MAJSAT.

As the initial relative entropy does not fully constrain the optimal relative entropy, one could
have expected that as a parameter κI does not affect the hardness of ACTIVE INFERENCE. Indeed,
most of the hardness of the problem is due to having to determine the value of κO, which is more
difficult than for κI . Yet when given κO as a parameter in its place, the same hardness result for
ACTIVE INFERENCE obtains, though observe that now only the absolute version is meaningful.

Proposition 8 The problem {|Ω(A)|, |Ω(P)|, κO}-ACTIVE INFERENCE is paraPP-hard.

6. Here we face the same issue as when parameterizing by κI that 2−κI is generally not a rational value: as before, this
is resolved by taking a rational approximation instead such that the important properties are retained.
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Proof We reduce from MAJSAT. Given the formula ϕ and κO ≥ 0, construct the network B∗ϕ by
taking Y to be uniformly distributed and

Pr(z | Vϕ, Y ) =

{
2−κO−1 for Vϕ = > and Y = ¬y
2−κO otherwise

Now Pr(z) = 1
22−κO + 1

2Pr(>)2−κO−1 + 1
2(1− Pr(>))2−κO = 2−κO(1− 1

4Pr(>)), as well as
Pr(z | y) = 2−κO with Pr(z | y) ≥ Pr(z | ¬y). Thus by letting PrT (z) = 1 we find that y is the best
choice with DKL(PrT (Z) ‖ Pr(Z | y)) = κO as required, and ∆κ = κO − log(1− 1

4Pr(>))− κO,
which is greater than q = 3− log 7 if and only if Pr(>) > 1

2 .

This time, the hardness of the problem lies in having to compute the value of κI . The same
reasoning and subsequent hardness applies when we parameterize with ∆κ instead, although this
time it is only meaningful to consider the threshold version of ACTIVE INFERENCE.

Proposition 9 The problem {|Ω(A)|, |Ω(P)|,∆κ}-ACTIVE INFERENCE is paraPP-hard.

Proof We reduce from MAJSAT. Given the formula ϕ and ∆κ ≥ 0, construct the network B∗ϕ by
taking Pr(y) = 2

32−∆κ and

Pr(z | Vϕ, Y ) =



1− 1

3
2−∆κ for Vϕ = > and Y = y

1

3
2−∆κ(1 + (3 · 2∆κ − 2)−1) for Vϕ = > and Y = ¬y

1− 2

3
2−∆κ for Vϕ = ⊥ and Y = y

1

3
2−∆κ for Vϕ = ⊥ and Y = ¬y

We find that Pr(z | y) = Pr(>)(1− 1
32−∆κ)+(1−Pr(>))(1− 2

32−∆κ) = 1− 1
32−∆κ(2−Pr(>)),

and that Pr(z | y) ≥ Pr(z | ¬y). On the other hand, it is the case that

Pr(z) = Pr(>)
2

3
2−∆κ(1− 1

3
2−∆κ) + Pr(>)(1− 2

3
2−∆κ)

1

3
2−∆κ(1 + (3 · 2∆κ − 2)−1)

+ (1− Pr(>))
2

3
2∆κ(1− 2

3
2∆κ) + (1− Pr(>))(1− 2

3
2−∆κ)

1

3
2−∆κ

= 2−∆κ

[
Pr(>)(

2

3
+

1

3
− 1

3
2−∆κ(

2

3
+

2

3
− 1

3
)) + (

2

3
+

1

3
)(1− Pr(>))(1− 2

3
2−∆κ)

]
= 2−∆κ · Pr(z | y)

By letting PrT (z) = 1, we have DKL(PrT (Z) ‖ Pr(Z)) − DKL(PrT (Z) ‖ Pr(Z | y)) = ∆κ,
and moreover DKL(PrT (Z) ‖ Pr(Z | y)) < − log(1− 2−∆κ−1) if and only if Pr(>) > 1

2 .

We can push these results even further if we also consider the restricted local variance bound
B =

∑
X∈A∪P

uX
`X

where uX = max{Pr(X = x | ρ(X) = π) : x ∈ Ω(X), π ∈ Ω(ρ(X))} and
`X = min{Pr(X = x | ρ(X) = π) : x ∈ Ω(X), π ∈ Ω(ρ(X))}. In all of the previous three cases,
adding B as a parameter is still insufficient to guarantee tractability.
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Proposition 10 PP ⊆ C holds for a class C whenever there is any K ∈ {κI , κO,∆κ} for which it
is the case that the problem {|Ω(A)|, |Ω(P)|,K,B}-ACTIVE INFERENCE is in paraC.

Proof In the reductions given in the proofs of Propositions 7, 8 and 9, taking κI = 1, κO = 1 and
∆κ = 2−log 3 respectively leads toB = 3. Hence we can reduce MAJSAT to ACTIVE INFERENCE

in a way which sets all of {|Ω(A)|, |Ω(P)|,K,B} to constant, so that any algorithm to solve the
parameterized problem induces a classical algorithm for MAJSAT.

These results hint at the necessity of either considering a stronger set of parameters, or settling
for an approximate solution to the problem. In the next section we will show that the latter approach
also does not trivially lead to parameterized tractability, but not before we provide a positive result
along the former lines (though note the absence of a relative entropy parameter). Here we define
Ω(P)+ = {p ∈ Ω(P) : PrT (p) > 0}, and use tw to denote the treewidth of the moralised graph.

Proposition 11 The problem {maxX∈V|Ω(X)|, |A|, |Ω(P)+|, tw}-ACTIVE INFERENCE is in FPT.

Proof We know that CONDITIONAL INFERENCE is FPT for the parameters maxX∈V|Ω(X)| and
tw, using the junction tree algorithm (Lauritzen and Spiegelhalter (1988)). This transforms the
network into a cluster graph where each cluster contains at most tw + 1 nodes, so that marginal-
ization (which can be computed separately within each separate cluster) takes into account at most
(maxX∈V|Ω(X)|)tw+1 possible instantiations at once. Thus we can compute Pr(p) and Pr(p | a)
for all p ∈ Ω(P)+ and a ∈ Ω(A) by doing inference for a maximum of |Ω(P)+|(|Ω(A)|+1) times,
which is therefore FPT in {maxX∈V|Ω(X)|, |A|, |Ω(P)+|, tw} as |Ω(A)| ≤ (maxX∈V|Ω(X)|)|A|.
Finally, using all these probabilities, we can approximate κI and κO to within the required precision
for a comparison against the threshold value q, which is in FPT for |Ω(P)+| and |Ω(A)|. This
shows that (either version of) ACTIVE INFERENCE is in FPT for the given parameters.

5. Approximate Active Inference

Given the hardness results of the previous section, we now turn to a parameterized analysis of an
approximate version of ACTIVE INFERENCE instead, with our approach following that of Marx
(2008). That is, in order to capture the notion of approximation, the approximate problem also
specifies an error bound ε as part of its input, and subsequently asks not whether κO < q or ∆κ > q,
but instead whether κO ≤ q ± ε or ∆κ ≥ q ± ε respectively. Here, κO ≤ q ± ε is shorthand for the
question whether κO ≤ q− ε, given the promise that κO 6∈ (q− ε, q+ ε); the case of ∆κ ≥ q± ε is
defined analogously. This enables us to explicitly parameterize by ε−1: yet taking ε−1 in place of a
relative entropy parameter is still not enough to yield tractability, as evidenced by the result below.

Proposition 12 The problem {|Ω(A)|, |Ω(P )|, ε−1}-ACTIVE INFERENCE is paraNP-hard.

Proof We reduce from SATISFIABILITY. Given the formula ϕ and ε > 0, we again construct the
network B∗ϕ, here by taking Pr(y) = (2n(22ε − 1) + 1)−1 and

Pr(z | Vϕ, Y ) =


1− (1− 2−n)2−2ε for Vϕ = > and Y = y

0 for Vϕ = > and Y = ¬y
2−n−2ε for Vϕ = ⊥
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Then Pr(z) = Pr(>)(2n(22ε − 1) + 1)−1(1 − (1 − 2−n)2−2ε) + (1 − Pr(>))2−n−2ε =
Pr(>)2−n−2ε+(1−Pr(>))2−n−2ε = 2−n−2ε, hence letting PrT (z) = 1 leads to κI = n+2ε. Now
Pr(z | y) ≥ Pr(z | ¬y), with Pr(z | y) = Pr(>)−(Pr(>)−2−n)2−2ε = 2−n(#ϕ−(#ϕ−1)2−2ε),
hence DKL(PrT (Z) ‖ Pr(Z | y)) = n − log(#ϕ − (#ϕ − 1)2−2ε). If ϕ is not satisfiable, this is
n+ 2ε again, whereas if ϕ is satisfiable, this value is at most n. This gives us that κO ≤ n+ ε± ε,
or alternatively ∆κ ≥ ε± ε, if and only if ϕ is satisfiable.

However, when we take both ε−1 and one of the stronger relative entropy parameters κO or ∆κ,
we can in fact derive a tractability result for the approximate version of ACTIVE INFERENCE.

Proposition 13 Both {|Ω(P)+|, κO, ε−1}-ACTIVE INFERENCE and {|Ω(P)+|,∆κ, ε
−1}-ACTIVE

INFERENCE are in paraBPP, i.e. they are randomized fixed-parameter tractable.

Proof The main insight is that we only need to compute κI to sufficient precision (determined by
the threshold q and the error bound ε) in order to correctly answer the question whether ∆κ > q
respectively κO < q. This can be done by approximating Pr(p) for all p ∈ Ω(P)+ with sufficient
accuracy using forward sampling (Henrion (1988)), which is in paraBPP for ε−1 and |Ω(P)+|, and
in turn computing κI from these values is in FPT for |Ω(P)+|. This shows that the approximate
version of ACTIVE INFERENCE is randomized fixed-parameter tractable for the given parameters.

The result above is of a slightly unusual nature in that the parameter κO or ∆κ is not used to
suitably bound the time taken by an algorithm capable of solving ACTIVE INFERENCE, but instead
we take its explicit value in order to avoid having to compute it separately. This suggests that there
is no analogue of Proposition 13 for κI , and that there should in fact be a corresponding hardness
result. We did not succeed in showing this: observe that one cannot extend the approach used in
the proof of Proposition 12 to include κI , as necessarily κI ≥ n for this strategy to work, but the
SATISFIABILITY problem is trivially in FPT for the parameter n.

However, we have been able to extend the classic result by Dagum and Luby (1993) by showing that
approximate conditional inference is NP-hard under randomized reduction, even when it is param-
eterized by ε−1, κI and |Ω(P)+|, under a certain interpretation of the latter two. Specifically, we
consider DKL(Pr(H | e) ‖ Pr(H)) for κI and {h ∈ Ω(H) : Pr(h | e) > 0} for Ω(P)+. The prob-
lem from which we present a reduction is SATISFIABILITY WITH UNIQUENESS PROMISE, which
was shown to be NP-hard under randomized reduction by Valiant and Vazirani (1986). We provide
its description below, along with that of CONDITIONAL INFERENCE for completeness’ sake.

SATISFIABILITY WITH UNIQUENESS PROMISE

Input: A propositional formula ϕ.
Promise: The formula ϕ has at most one satisfying truth assignment.
Question: Is ϕ satisfiable?

CONDITIONAL INFERENCE (APPROXIMATE VERSION)
Input: A Bayesian network B = (G,Pr), two sets of variables H,E ⊆ V, joint value assignments
h ∈ Ω(H), e ∈ Ω(E), and rational values 0 ≤ q ≤ 1, 0 < ε ≤ 1

2 .
Question: Is Pr(h | e) ≥ q ± ε?
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Proposition 14 The problem {ε−1, κI , |Ω(H)+|}-CONDITIONAL INFERENCE is paraNP-hard un-
der randomized reduction, i.e. under polynomial time reduction with one-sided polynomial error.

Proof We reduce from SATISFIABILITY WITH UNIQUENESS PROMISE. Given the formula ϕ and
0 < ε ≤ 1

2 , once more we construct the network B∗ϕ by taking Y to be uniformly distributed and

Pr(z | Vϕ, Y ) =



2ε(1− 2−n) for Vϕ = > and Y = y

0 for Vϕ = > and Y = ¬y

2−n(
1

2
− ε)2 for Vϕ = ⊥ and Y = y

2−n(
1

2
− ε)(1

2
+ ε) for Vϕ = ⊥ and Y = ¬y

Let h = y and e = z. We now find that

Pr(y | z) =
Pr(>)2ε(1− 2−n) + (1− Pr(>))2−n(1

2 − ε)
2

Pr(>)2ε(1− 2−n) + (1− Pr(>))2−n(1
2 − ε)

.

This means that Pr(y | z) = 1
2 − ε whenever #ϕ = 0, whereas Pr(y | z) = 1

2 + ε whenever
#ϕ = 1, hence Pr(y | z) ≥ 1

2 ± ε if and only if ϕ is satisfiable. Moreover, we find in general that
DKL(Pr(Y | z) ‖ Pr(Y )) = 1+Pr(y | z) log Pr(y | z)+Pr(¬y | z) log Pr(¬y | z), which evaluates
to 1 + (1

2 + ε) log(1
2 + ε) + (1

2 − ε) log(1
2 − ε) both when #ϕ = 0 and #ϕ = 1. Thus if the formula

ϕ satisfies the uniqueness promise, the approximation of 1 + (1
2 + ε) log(1

2 + ε) + (1
2 − ε) log(1

2 − ε)
will satisfy the promise that it corresponds to κI = DKL(Pr(Y | z) ‖ Pr(Y )).7

While falling short of the hardness result we were ultimately interested in, Proposition 14
strongly suggests that ACTIVE INFERENCE is hard for these parameters, in particular ε−1 and κI .8

If this is indeed true, this would provide a serious challenge to the view common in cognitive neuro-
science that an approximate version of active inference is feasible when the prediction error is low.
Before we return to this discussion in our conclusion, we finish this section as we did the previous
one by demonstrating how a known algorithm for inference can be used to obtain a parameterized
tractability result for ACTIVE INFERENCE, though again one without a relative entropy parameter.

Proposition 15 The problem {|Ω(A)|, |Ω(P)|, B, ε−1}-ACTIVE INFERENCE is in paraBPP, i.e. it
is randomized fixed-parameter tractable.

Proof By Dagum and Luby (1997), {|H|, |E|, B, ε−1}-CONDITIONAL INFERENCE is randomized
fixed-parameter tractable, as one needs to do likelihood weighting at most O(B|H|+|E|ε−2) passes
to obtain an accurate approximation of Pr(h | e). Thus we can approximate Pr(p) and Pr(p | a) for
all p ∈ Ω(P)+ and a ∈ Ω(A) in a number of passes parameterized by {|Ω(A)|, |Ω(P)|, B, ε−1},
allowing us to probabilistically solve ACTIVE INFERENCE for this parameter set.

7. Note that we can in fact force any value κI ≥ 1 to obtain by including a third possible value ỹ to Ω(Y ) and taking
Pr(y) = Pr(y′) = 2−κI ( 1

2
+ε)(

1
2
+ε)( 1

2
−ε)(

1
2
−ε), with Pr(z | ỹ) = 0 independent of Vϕ. Evaluating the expression

DKL(Pr(H | e) ‖ Pr(H)) will then return the chosen value κI as desired.
8. Although there is a straightforward reduction from CONDITIONAL INFERENCE to ACTIVE INFERENCE, because the

definition of κI is incompatible between the two problems, this reduction does not work with κI as a parameter.
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6. Concluding Remarks

In this paper we set out to investigate the computational hardness of the problem of active inference,
based on a formalization in terms of Bayesian networks which is deemed to adequately capture the
way active inference is thought of in its original setting, namely in cognitive neuroscience informed
by the ideas underlying the theory of predictive processing. In the literature concerning active infer-
ence, whenever considerations of computational complexity are explicitly addressed, the common
suggestion is that approximation and small prediction errors are what enables the efficient operation
of cognitive systems involved with carrying out this task. To this end, we engaged in a parameter-
ized complexity analysis of the formal problem centered around precisely these two features, along
with a number of relevant additional parameters. What can we say about this view based on the
hardness and tractability results which we obtained in the previous two sections?

While Proposition 11 serves as a reminder that approximation is not necessary for tractability, it
is unclear whether the treewidth would be small in relevant instances. Moreover, Proposition 12
illustrates that even in contexts with a small scope, approximation alone is insufficient to guarantee
tractability. Thus there is a need for additional factors to explain why active inference could be fea-
sibly performed on the small time scales required to function in the real world, and so the question
which plays a central role is whether the size of the prediction error can indeed serve this purpose.

Although it does not provide a decisive answer, we believe that Proposition 14 makes it sufficiently
plausible that it is not the case that a small prediction error makes an approximate version of active
inference tractable. Proposition 13 may suggest otherwise, but we claim that only the initial rela-
tive entropy κI truly captures the role of the prediction error in predictive processing accounts, and
that the part played by κO and ∆κ in the proof of this result is sufficiently far removed from this
interpretation as to make the result unsuitable for this context. Accepting this assessment entails the
need for a more refined explanation of how cognitive agents can routinely engage in active inference.

Furthermore, we expect most of the results and insights obtained in this paper to carry over to
related problems such as observation selection, which we already touched on in the introduction.
While the problem of active inference itself might not be native to the field of probabilistic models,
in this way our findings may still contribute to the broader research within this area. In particular
we conjecture that the KL divergence does not play an essential role in these results, so that other
measures may be accommodated for as well, which would bestow further generality on these results.
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