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Abstract
We address the problem of finding a minimal separator in a LWF chain graph, namely, finding
a set Z of nodes that separates a given non-adjacent pair of nodes such that no proper subset of
Z separates that pair. We analyze several versions of this problem and offer polynomial time
algorithms for each. These include finding a minimal separator from a restricted set of nodes,
finding a minimal separator for two given disjoint sets, and testing whether a given separator is
minimal.
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1. Introduction

Probabilistic graphical Models (PGM) use graphs, either undirected, directed, or mixed, to represent
possible dependences among the variables of a multivariate probability distribution. Two types
of graphical representations of distributions are commonly used, namely, Bayesian networks and
Markov random fields (Markov networks). Both families encompass the properties of factorization
and independences, but they differ in the set of independences they can encode and the factorization
of the distribution that they induce.

Chain graphs, which admit both directed and undirected edges, are a type of graphical model
in which there are no partially directed cycles. LWF Chain graphs were introduced by Lauritzen,
Wermuth and Frydenberg (Frydenberg, 1990; Lauritzen and Wermuth, 1989) as a generalization
of graphical models based on undirected graphs and directed acyclic graphs (DAGs) and widely
studied e.g. in (Lauritzen, 1996; Lauritzen and Richardson, 2002; Cowell et al., 1999; Drton, 2009;
Ma et al., 2008; Peña, 2015; Peña et al., 2014; Richardson, 1998; Sonntag, 2014; Studený, 1997).

In this paper we propose and solve an optimization problem related to separation in LWF chain
graphs. The basic problem may be formulated as follows: given a pair of non-adjacent nodes, x
and y, in a LWF chain graph, G, find a minimal set of nodes that separates x and y. We analyze
several versions of this problem and offer polynomial time algorithms for each. These include the
following problems:

Problem 1 (test for minimal separation) Given two non-adjacent nodes X and Y in a LWF chain
graph G and a set Z that separates X from Y , test if Z is minimal i.e., no proper subset of Z
separates X from Y .

Problem 2 (minimal separation) Given two non-adjacent nodes X and Y in a LWF chain graph G,
find a minimal separating set between X and Y , namely, find a set Z such that Z, and no proper
subset of Z, separates X from Y .

Problem 3 (restricted separation) Given two non-adjacent nodes X and Y in a LWF chain graph G
and a set S of nodes not containing X and Y , find a subset Z of S that separates X from Y .
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Problem 4 (restricted minimal separation) Given two non-adjacent nodes X and Y in a LWF chain
graph G and a set S of nodes not containing X and Y , find a subset Z of S which is minimal and
separates X from Y .
Problem 5 (minimal separation of two disjoint non-adjacent sets) Given two disjoint non-adjacent
sets X and Y in a LWF chain graph G, find a minimal separating set between X and Y , namely,
find a set Z such that Z, and no proper subset of Z, separates X from Y .
Problem 6 (enumeration of all minimal separators) Given two non-adjacent nodes (or disjoint sub-
sets) X and Y in a LWF chain graph G, enumerate all minimal separating sets between X and
Y .

The rest of the paper is organized as follows: in section 2, we briefly describe several concepts
which are basic for subsequent development, such as the separation criterion. In section 3, we prove
that it is possible to transform our problem into a separation problem, where the undirected graph
in which we have to look for the minimal set separating X from Y depends only on X and Y . In
Section 4, we propose and analyze an algorithm for each above mentioned problem that, taking into
account the previous results, solves it.

2. Definitions and Concepts

In this Section, we describe the notation and some basic concepts used throughout the paper.

Definition 1 If A ⊆ V is a subset of the vertex set in a graph G = (V,E), it induces a subgraph
GA = (A,EA), where the edge set EA = E ∩ (A × A) is obtained from G by keeping edges with
both endpoints in A.

Definition 2 If there is an arrow from a pointing towards b, a is said to be a parent of b. The set
of parents of b is denoted as pa(b). If there is an undirected edge between a and b, a and b are
said to be adjacent or neighbors. The set of neighbors of a vertex a is denoted as ne(a). The
expressions pa(A) and ne(A) denote the collection of parents and neighbors of vertices in A that
are not themselves elements ofA. The boundary bd(A) of a subsetA of vertices is the set of vertices
in V \A that are parents or neighbors to vertices in A. The closure of A is cl(A) = bd(A) ∪A.

Definition 3 A path of length n from a to b is a sequence a = a0, . . . , an = b of distinct vertices
such that (ai, ai+1) ∈ E, for all i = 1, . . . , n. If there is a path from a to b we say that a leads
to b and write a 7→ b. The vertices a such that a 7→ b and b 67→ a are the ancestors an(b) of b. If
bd(a) ⊆ A, for all a ∈ A we say that A is an ancestral set. The smallest ancestral set containing A
is denoted by An(A). A chain of length n from a to b is a sequence a = a0, . . . , an = b of distinct
vertices such that (ai, ai+1) ∈ E, or (ai+1, ai) ∈ E, or {ai, ai+1} ∈ E, for all i = 1, . . . , n.

Definition 4 Given an undirected graph G. Two vertices are said to be adjacent if they are con-
nected by an edge. A subset S ⊆ V that does not contain a or b is said to be an (a, b)-separator if
all paths from a to b intersect S. A set S of nodes that separates a given pair of nodes such that no
proper subset of S separates that pair is called a minimal separator.

Note that removing an (a, b)-separator disconnects a graph into two connected components, one
containing a, and another containing b. Conversely, if a set S disconnects a graph into a connected
component including a and another connected component including b, then S is an (a, b)-separator.
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Definition 5 Two disjoint vertex subsets A and B of V are adjacent if there is at least one pair
of adjacent vertices u ∈ A and v ∈ B. Let A and B be two disjoint non-adjacent subsets of V .
Similarly, we define an (A,B)-separator to be any subset of V \ (A∪B) whose removal separates
A andB in distinct connected components. A minimal (A,B)-separator does not contain any other
(A,B)-separator.

Definition 6 (Global Markov property for LWF chain graphs) For any triple (A,B, S) of disjoint
subsets of V such that S separates A from B in (GAn(A∪B∪S))

m, in the moral graph (Lauritzen,
1996, page 7) of the smallest ancestral set containing A∪B ∪ S, we have A⊥⊥ B|S (or 〈A,B|S〉)
i.e., A is independent of B given S.

3. Main Theorem

In this section we prove that it is possible to transform our problem into a separation problem, where
the undirected graph in which we have to look for the minimal set separating X from Y depends
only on X and Y . Later, in the next sections, we shall apply this result to developing an efficient
algorithm that solves our problems.

The next proposition shows that if we want to test a separation relationship between two disjoint
sets of nodes X and Y in a LWF chain graph, where the separating set is included in the smallest
ancestral set of X ∪ Y , then we can test this relationship in a smaller chain graph, whose set of
nodes is formed only by the ancestors of X and Y .

Proposition 7 Given a LWF chain graphG = (V,E). Consider thatX,Y, and Z are three disjoint
subsets of V, and Z ⊆ An(X ∪ Y ). Let H = GAn(X∪Y ) be the subgraph of G induced by An(X ∪
Y ). Then 〈X,Y |Z〉G ⇔ 〈X,Y |Z〉H .

Proof (⇒) The necessary condition is obvious, because a separator in a graph is also a separator in
all of its subgraphs.

(⇐) Let 〈X,Y |Z〉H and Z ⊆ An(X ∪ Y ), then An(X ∪ Y ∪ Z) = An(X ∪ Y ). Consider
that 〈X,Y 6 |Z〉G. This means that X is not separated from Y given Z in (GAn(X∪Y ∪Z))

m ≡
(GAn(X∪Y ))

m. In other words, there is a chain C between X and Y in Hm = (GAn(X∪Y ))
m that

bypasses Z. Once again using Z ⊆ An(X ∪ Y ), we obtain that X and Y are not separated by Z in
H , in contradiction to the assumption 〈X,Y |Z〉H . Therefore, it has to be 〈X,Y |Z〉G.

The following proposition establishes the basic result necessary to solve our optimization problems.

Proposition 8 Given a LWF chain graphG = (V,E). Consider thatX,Y, and Z are three disjoint
subsets of V such that 〈X,Y |Z〉 and 〈X,Y 6 |Z ′〉, ∀Z ′ ( Z. Then Z ⊆ An(X ∪ Y ).

Proof Suppose that Z 6⊆ An(X ∪ Y ). Define Z ′ = Z ∩ An(X ∪ Y ). Then, by assumption we
have 〈X,Y 6 |Z ′〉. Since Z ′ ⊆ An(X ∪ Y ), it is obvious that An(X ∪ Y ∪ Z ′) = An(X ∪ Y ). So,
X and Y are not separated by Z ′ in (GAn(X∪Y ))

m, hence there is a chain C between X and Y in
(GAn(X∪Y ))

m that bypassesZ ′ i.e., the chainC is formed from nodes inAn(X∪Y ) that are outside
of Z. Since An(X ∪Y ) ⊆ An(X ∪Y ∪Z), then (GAn(X∪Y ))

m is a subgraph of (GAn(X∪Y ∪Z))
m.

Then, the previously found chain C is also a chain in (GAn(X∪Y ∪Z))
m that bypasses Z, which

means that X and Y are not separated by Z in (GAn(X∪Y ∪Z))
m, in contradiction to the assumption

〈X,Y |Z〉. Therefore, it has to be Z ⊆ An(X ∪ Y ).
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The next proposition shows that, by combining the results in propositions 7 and 8, we can reduce
our problems to a simpler one, which involves a smaller graph.

Proposition 9 Let G = (V,E) be a LWF chain graph, and X,Y ⊆ V are two disjoint subsets.
Then the problem of finding a minimal separating set for X and Y in G is equivalent to the problem
of finding a minimal separating set forX and Y in the induced subgraph GAn(X∪Y ).

Proof The proof is very similar to the proof of Proposition 3 in (Acid and Campos, 1996). Let
H = GAn(X∪Y ), and let us to define sets SG = {Z ⊆ V |〈X,Y |Z〉G} and SH = {Z ⊆ An(X ∪
Y )|〈X,Y |Z〉H}. Then we have to prove that minZ∈SG

|Z| = minZ∈SH
|Z|, and therefore, by

proposition 8, the sets of minimal separators are the same. From proposition 7, we deduce that
SH ⊆ SG, and therefore minZ∈SH

|Z| ≥ minZ∈SG
|Z|.

(⇒) Let T = min(Z ∈ SG). Then ∀T ′ ( T we have T ′ 6∈ SG, and from proposition 8 we obtain
T ⊆ An(X ∪Y ), and now using proposition 7 we get T ∈ SH . So, we have |T | = minZ∈SH

|Z| ≥
minZ∈SG

|Z| = |T |, hence |T | = minZ∈SH
|Z|.

(⇐) Let T = min(Z ∈ SH). If, |T | = minZ∈SH
|Z| > minZ∈SG

|Z| = |Z0|, we have ∀Z ′ (
Z0, Z

′ /∈ SG, and therefore, once again using proposition 8 and 7, we get Z0 ∈ SH , so that
|Z0| ≥ minZ∈SH

|Z| = |T |, which is a contradiction. Thus, |T | = minZ∈SG
|Z|.

Theorem 10 The problem of finding a minimal separating set for X and Y in a LWF chain graph
G is equivalent to the problem of finding a minimal separating set forX and Y in the undirected
graph (GAn(X∪Y ))

m.

Proof The proof is very similar to the proof of Theorem 1 in (Acid and Campos, 1996). Using
the same notation from proposition 9, let Hm be the moral graph of H = GAn(X∪Y ), and Sm

H =
{Z ⊆ An(X ∪ Y )|〈X,Y |Z〉Hm}. Let Z be any subset of An(X ∪ Y ). Then taking into account
the characteristics of ancestral sets, it is clear that HAn(X∪Y ∪Z) = H . Then, we have

Z ∈ SH ⇔ 〈X,Y |Z〉H ⇔ 〈X,Y |Z〉(HAn(X∪Y ∪Z))
m ⇔ 〈X,Y |Z〉Hm ⇔ Z ∈ Sm

H .

Hence, SH = Sm
H . Now, using proposition 9, we obtain |T | = minZ∈SG

|Z| ⇔ |T | = minZ∈Sm
H
|Z|.

4. Algorithms for Finding Minimal Separators

In undirected graphs we have efficient methods of testing whether a separation set is minimal, which
are based on the following criterion.

Theorem 11 Given two nodes X and Y in an undirected graph, a separating set Z between X and
Y is minimal if and only if for each node u in Z, there is a path from X to Y which passes through
u and does not pass through any other nodes in Z.

Proof See the proof of Theorem 5 in (Tian et al., 1998).

This theorem leads to the following algorithm for Problem 1. The idea is that if Z is minimal then
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all nodes in Z can be reached using Breadth First Search (BFS) that starts from both X and Y
without passing any other nodes in Z.

Algorithm 1 (test for minimal separation) (Tian et al., 1998, Algorithm 2)

1. If Z contains any node which is not in An(X ∪ Y ), then Z is not minimal, stop.

2. Construct GAn(X∪Y ).

3. Construct (GAn(X∪Y ))
m.

4. Starting from X , run BFS. Whenever a node in Z is met, mark it if it is not already marked,
and do not continue along that path. When BFS stops, if not all nodes in Z are marked, Z is
not minimal, stop. Remove all markings.

5. Starting from Y , run BFS. Whenever a node in Z is met, mark it if it is not already marked,
and do not continue along that path. When BFS stops, if not all nodes in Z are marked, Z is
not minimal. If all nodes in Z are marked, Z is minimal.

Analysis (Tian et al., 1998): Let |Em
An| stands for the number of edges in (GAn(X∪Y ))

m. Step 3-5
each requires O(|Em

An|) time. Thus, the complexity of Algorithm 1 is O(|Em
An|).

A variant of Algorithm 1 solves the Problem 2.

Algorithm 2 (minimal separation)

1. Construct GAn(X∪Y ).

2. Construct (GAn(X∪Y ))
m.

3. Set Z ′ to be ne(X) (or ne(Y )) in (GAn(X∪Y ))
m. (Z ′ is a separator because, according to

the local Markov property of an undirected graph, a vertex is conditionally independent of all
other vertices in the graph, given its neighbors (Lauritzen, 1996)).

4. Starting from X , run BFS. Whenever a node in Z ′ is met, mark it if it is not already marked,
and do not continue along that path. When BFS stops, let Z ′′ be the set of nodes which are
marked. Remove all markings.

5. Starting from Y , run BFS. Whenever a node in Z ′′ is met, mark it if it is not already marked,
and do not continue along that path. When BFS stops, let Z be the set of nodes which are
marked.

6. Return (Z).

Analysis: Step 2-5 each requires O(|Em
An|) time. Thus, the overall complexity of Algorithm 2 is

O(|Em
An|).

Theorem 12 Given two nodes X and Y in a LWF chain graph G and a set S of nodes not
containing X and Y, there exists some subset of S which separates X and Y if only if the set
S′ = S ∩An(X ∪ Y ) separates X and Y .
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Proof (⇒) Proof by contradiction. Let S′ = S ∩ An(X ∪ Y ) and 〈X,Y 6 |S′〉. Since S′ ⊆
An(X ∪ Y ), it is obvious that An(X ∪ Y ∪ S′) = An(X ∪ Y ). So, X and Y are not separated by
S′ in (GAn(X∪Y ))

m, hence there is a chain C between X and Y in (GAn(X∪Y ))
m that bypasses S′

i.e., the chain C is formed from nodes in An(X ∪ Y ) that are outside of S. Since An(X ∪ Y ) ⊆
An(X ∪ Y ∪ S′′), ∀S′′ ⊆ S , then (GAn(X∪Y ))

m is a subgraph of (GAn(X∪Y ∪S))
m. Then, the

previously found chain C is also a chain in (GAn(X∪Y ∪S′′))
m that bypasses S′′, which means that

X and Y are not separated by any S′′ ⊆ S in (GAn(X∪Y ∪S′′))
m, which is a contradiction.

(⇐) It is obvious.

Therefore, Problem 3 is solved by testing if S′ = S ∩An(X ∪ Y ) separates X and Y .

Algorithm 3 (restricted separation)

1. Construct GAn(X∪Y ).

2. Construct (GAn(X∪Y ))
m.

3. Set S′ = S ∩An(X ∪ Y ).

4. Remove S′ from (GAn(X∪Y ))
m.

5. Starting from X , run BFS. When Y is met, do not continue and Return False. Otherwise,
when BFS stops, Return S′.

Analysis: This requires O(|Em
An|) time.

According to theorem 12, Problem 4 is solved using Algorithm 3 and then, if False not returned,
Algorithm 2 with Z ′ = S ∩An(X ∪ Y ). The time complexity of this algorithm is also O(|Em

An|).
In order to solve Problem 5, i.e., to find the minimal set separating two disjoint non-adjacent

subsets of nodes X and Y (instead of two single nodes) in a LWF chain graph G, first we build the
undirected graph (GAn(X∪Y ))

m. Next, starting out from this graph, we construct a new undirected
graphAug[G : αX , αY ] by adding two artificial (dummy) nodes αX , αY , and connect them to those
nodes that are adjacent to some node in X and Y , respectively. So, the separation of X and Y in
(GAn(X∪Y ))

m is equivalent to the separation of αX and αY in Aug[G : αX , αY ]. Moreover, the
minimal separating set for αX and αY in Aug[G : αX , αY ] cannot contain nodes from (X ∪ Y ).
Therefore, in order to find the minimal separating set for X and Y in G, it is suffice to find the
minimal separating set for αX and αY in Aug[G : αX , αY ]. So, we have reduced this problem to
one of separation for single nodes, which can be solved using the Algorithm 2.

Shen and Liang in (Shen and Liang, 1997) presents an efficient algorithm for enumerating all
minimal (X,Y )-separators, separating given non-adjacent vertices X and Y in an undirected con-
nected simple graph G = (V,E). This algorithm requires O(n3RXY ) time, where |V | = n and
RXY is the number of minimal (X,Y )-separators. The algorithm can be generalized for enumerat-
ing all minimal (X,Y )-separators that separate non-adjacent vertex sets X,Y ⊆ V , and it requires
O(n2(n − nX − nY )RXY ) time. In this case, |X| = nX , |Y | = nY , and RXY is the number of
all minimal (X,Y )-separators. According to theorem 10, using this algorithm for (GAn(X∪Y ))

m

solves Problem 6.

Remark 13 Since DAGs (directed acyclic graphs) are subclass of chain graphs, one can use the
same technique to enumerate all minimal separators in DAGs.
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Conclusion and Summary

We have studied and solved the problem of finding minimal separating sets for pairs of variables in
LWF chain graphs. We have also studied some extensions of the basic problem include finding a
minimal separator from a restricted set of nodes, finding a minimal separator for two given disjoint
sets, testing whether a given separator is minimal, and listing all minimal separators, given two
non-adjacent nodes (or disjoint subsets) X and Y in a LWF chain graph G. Potential applications
of this research include learning chain graphs from data and problems related to the selection of the
variables to be instantiated when using chain graphs for inference tasks.
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