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Abstract

We consider a Bayesian network with a parameter 6. It is well known that the probability
of an evidence conditional on 6 (the likelihood) can be computed through a sum-product
of potentials. In this work we propose a polynomial version of the sum-product algorithm
based on generating functions for computing both the likelihood function and all its exact
derivatives. For a unidimensional parameter we obtain the derivatives up to order d with
a complexity O(C x d?) where C is the complexity for computing the likelihood alone. For
a parameter of p dimensions we obtain the likelihood, the gradient and the Hessian with a
complexity O(C x p?). These complexities are similar to the numerical method with the
main advantage that it computes exact derivatives instead of approximations.

Keywords: Bayesian network; sum-product algorithm; generating functions; derivatives
of the likelihood.

1. Introduction

We consider a finite set of random variables Xy = { X1, ..., X,,} over a parametric Bayesian
network (BN) with parameter § € RP (See Koller and Friedman (2009) or Nielsen and Jensen
(2009) for a detailed introduction to Bayesian networks). Let pa, be the subset (possibly
empty) of U associated with the parents of X,,, and for all u € U, let X, be the discrete or
continuous set of values taken by X,. It is well known that the probability of an evidence
ev=nr_{X, € X} C X,} can be computed through the following sum-product expression:

Plev]f) = ... ) ] ¢u (Xu, Xpa, |6) (1)

X1 X, u=1

where ¢, (Xu, Xpau\e) = 1x,cx;P (Xu]Xpau; 9) are the potentials of each variable. From
a statistical point of view, L, () = P(ev|d) is the likelihood of # given the evidence. In
statistics, computing the derivatives of the likelihood function is of great interest, especially
the first and second order derivatives, from which one can derive the score and the observed
Fisher information matrix. These quantities can not only help maximizing the likelihood
function (e.g. through Newton-based algorithms) but also allow one to obtain confidence
intervals on parameters as well as performing hypothesis testing (Prum, 2010).
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In probabilistic graphical models such as Bayesian networks, the sensitivity analysis
allows one to express L(f) as a polynomial function of # under the hypothesis that all
potentials can be expressed as polynomials in 6 (see Nielsen and Jensen, 2009, pp 184—
185). But when the same parameter appears in many potentials, the resulting polynomial
is usually of high order, and its computational cost prohibitive. As an extension to the
sensitivity analysis Darwiche (2003) proposed a method based on network polynomial with
network parameters being the potentials. He uses a multilinear function containing two
types of variables (evidence indicators and network parameters) and arithmetic circuits for
an efficient computation. This interesting method has however the same limitation than the
classical sensitivity analysis: it can only deal with simple parametrization (e.g. one param-
eter for each probability table entry). Alternatively, in the particular context of the hidden
Markov models (HMMs), Cappé and Moulines (2005) suggest to compute the expectation
of any additive functional through smoothing recursions. Taking advantage of the Fisher
and Louis identities, they derive the first and second derivatives of the log-likelihood using
these smoothing recursions. This approach is computationally effective, but its extension
to higher order derivatives is not trivial. On the other hand, several authors suggested to
introduce polynomial computations directly in the classical sum-product algorithms in or-
der to compute various quantities of interest: order k¥ moment of any additive functional in
a Bayesian network (Cowel, 1992; Nilsson, 2001), moment /probability generating functions
of the count of a regular expression in a Markov sequence (Nuel, 2008, 2010).

In the present work, we want to follow the same idea by introducing a sum-product
algorithm over polynomials for computing the derivatives of the likelihood of any BN. This
new method is both an extension of the work of Cappé and Moulines (2005) from HMMs
to BNs, and an extension of the work of Cowel (1992); Nilsson (2001); Nuel (2008, 2010) to
the computation of derivatives.

This paper is organized as follows: in Section 2, we will first introduce the definitions,
notations and necessary tools to implement our method before explaining in detail its com-
putation. In Section 3, we illustrate our method with two practical examples. The first one
is a toy example with a simple binary BN. The second example is taken from the two-point
linkage analysis model used in genetics for locating a targeted gene on the genome. Finally,
in Section 4, we propose a discussion to expose further perspectives.

2. Method

2.1. Definitions and notations

Definition 1 (derivative generating function) Let f be a function of class C* (d € N)
of 0 € R, we define the derivative generating function of f the generating function associated
with the sequence of its derivatives:

d
Df) = fP(9)
k=0

where z is a dummy variable.
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Remark: We generalize the derivative generating function to a multidimensional pa-
rameter with the sequence of partial derivatives. Let f be a function of class C¢ of
9:{91,...,9p}€Rp,

a(k1+...+kp) 0
e = Y Gt
kit +kp<d VL OVp

where 21, ..., 2, are p dummy variables.

Our aim: We propose in this work a sum-product algorithm based on polynomials to
compute D?L(6) = Zgzo L*)(6)2* up to an arbitrary order d.

For the sake of simplicity, we will focus on the unidimensional case and briefly extend
the notions to the multidimensional case at the end of the section.

Definition 2 (Leibniz’s product) Let P = Zz:o apz® and Q = Zi:o bi2" be two poly-
nomials in z, we define the Leibniz product of P and @) as

d k k
P*Q = Z Z <i)ak—ibizk

k=0 1=0

where (l:) s the binomial coefficient. Note that we deliberately drop all coefficients of degree
greater than d.

2.2. Computation

In this section we detail the tools of the computation.
Proposition 3 Let f and g be two functions of class C* of 6 € R,
Df(9) = Dg(8) = D*(fg)(8).
Proof Let f and g be two functions of class C* of § € R. Let P = D f(f) = ZZ:O ) (9)2F
and Q = D%(0) = Zi:o g (0)2F, then

d k

PxQ= Z Z <]:> FE=D(0)gD (0) 25

k=0 =0

We recognize the Leibniz’s rule for computing the derivatives of the product of two functions
which concludes the proof. |

It is well known that a BN is decomposable into a factorized graphical structure called
a Junction tree (JT) composed of a set of cliques and a set of edges and following the
Junction tree properties (see Chapter 4 in Cowell et al. (1999) or Koller and Friedman
(2009) for details). Let I be the number of cliques and edges of the JT. Fori e 1,...1, we
denote by C; C U (resp. S; C U) the set of labels of the variables in the i-th clique (resp.
i-th separator) of the JT. Let C; = {X,,u € C;} and S; = {X,,u € S;}. We denote by
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of, the choice of a unique i € {1,...,I} such that {X,, Xpa, } C C;. Then the polynomial
potentials of the cliques for an arbitrary order d are defined as:

®{(Cil0) = HKuec, D*6u(Xul Xpa,: 0) (2)

with C;* = {u € U,of, = i}. For all i € {1,...,I}, let to; € {i+1,...,I} be the label of
the subsequent clique of C;. We also define from; = {j,to; = ¢}. For all i € {1,...,I},
we recursively define V; = {i} Ujcfrom, Vj and V; = {C}}jey,. Then the polynomial forward

messages for all ¢ € {1,..., I} are the quantities recursively defined as follows:
FUSi10) =" *k D%u(Xyu|Xpa,;0)
V,\S; ueV;*

where V;* = {u € U,3j € V;,of, = j}. Note that V; = Xy,,» = Xy and St = () and we get
in particular:

F4(0)0) = Z*quﬁu (Xu|Xpa,;0) = D [ D[] ¢u(XulXpa,:6) | = DL(O).
u

Applying the message passing algorithm with our polynomial potentials results in the
following proposition for computing recursively the forward messages:

Proposition 4 Vi e {1,...1},
F{(Si00) =Y | % Fi(S;0) | »®{(Cilo).
Ci\S j€Efrom;

Proof The proof is straightforward with the belief propagation in JT over which potentials
loaded are polynomial potentials, the additive law is the conventional additive law (+) and
the multiplicative law is the Leibniz’s product (% ). Some details of the proof are given below:
For allie {1,...1},

FUSi0) =D Kk Dipu(XulXpa:0) = > > dk D u(Xy|Xpa,:0).
Vi\S; ueV;* Vi\S; Ci\S; ueV;®
j€Efrom;

Recalling the JT properties we have, for all i € {1,...,1},Vi\ S; = Ujetrom; V; \ S5 L C5 \ S;
and Vi* = Ujetrom,; V;* U Ci™ where L is the disjoint union, and therefore

Fisilo =Y | * Y ( g;*D%u(XuXpau;e)) *_D6u(Xul Xpa,30)

Ci\S; j€from; V\S;

-~

F{(S;10)

which concludes the proof by induction.
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Remark: We make the choice here to focus on forward messages as we are only interested
in the likelihood and its derivatives but the extension to backward messages to compute joint
probabilities and their derivatives is straightforward.

The extension of our method to a BN with a multidimensional parameter § € RP, § =
01,...,0,, implies mutlivariate polynomials with as many dummy variables as dimensions
of the parameter. The “Leibniz’s product” of two multivariate polynomials is defined as:

k1 kp
k1 k
p k k
PxQ = g E - E < . R akl_il7-~-7kn_inbi17~-~ainzl Loz,
21 Zp

k1+...+kp§di1=0 ip=0

where f is a function of class C? of # € RP and P and @ are two polynomials of degree at
most d in p dummy variables. The generalization of Proposition 4 to a multidimensional
parameter gives:

glk-+) ()
FlOo) = : )b 2k = DIL(B).
ki+..4kp<d 00,™ .. .aﬁp P

3. Results

In this section we illustrate the implementation and results with our method with two
examples. We first present an illustrative toy-example with a BN over binary variables and
in the second part we will illustrate our method with the two-point linkage analysis which
aims to locate a targeted gene on the genome.

For the sake of simplicity, we will only consider here a degree d = 2 and unidimen-
sional parameters but our method is valid for any arbitrary degree and multidimensional
parameters.

3.1. Toy-example: A binary BN

Let us consider the BN over n variables Xy = {X,}y=1,.n represented in the Directed
Acyclic Graph (DAG) Figure 1 where n = 7 and Xy € {0,1}". For all uw € {1,...,n} we
assume that

exp (u +60 Zvepau XU>

1+ exp (,u + 6> vepa, XU>

P(Xy = 1| Xpa,:0) =

where p = —0.5 is assumed to be known.
The junction tree JT1 of Figure 1 has been obtained from this DAG. For all i €
{1,...,1 =4}, C;* is the set of labels of the stared variables in C;.

Let
e,u—l—ké)

Py = fi(0) + f1(0)z + f{(0)2*  with  f.(0) = T ontho”
Note that the properties of the derivatives give 1— fi.(6)+(1—f)"(0)z+(1—fx)"(0)2? = 1Py
and, for all uw € {1,...n}, the polynomial potential of X, is given by the expression:

) oS X, =1
Dy | Xu| 3 Xo= kst _{1—Pk if X, =0

vEpPa,
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X )—(x0)

L]

Fa(X5/0 D¢ (0
3(X510) . Ca = {Xs5, X2\ X2} 7.(0)

i )—

C3 = {X2, X35, X5}

F2(X3]0)

Figure 1: DAG of the toy-example and a corresponding JT containing four cliques. For all
i€ {l,...,I1 =4}, C;* is the set of labels of the stared variables in C;.

We now consider the evidence ev = {X; = 0, X7 = 1} which leads to D?¢1(X; = 1) =
D?¢7(X7 = 0| X5 + Xg;6) = 0, the null polynomial. For all i € {1,...,4}, the polynomial
potentials ®2(C;|0) are computed with Equation (2) and the polynomial forward messages
F?(S;]0) recursively with Proposition 4. For example, if we drop # in the notations and we
assume that ®%(X1, Xy), ®3(X3, X4), F?(X5) and F3(X3) are computed, the quantities
®3(Xy, X3, X5) and F3(X5) are given by the equations:

®3(X2, X3, X5) = D?p3(X3|X2) x D?*¢5(X5| X2, X3)

and
F3(Xs5) = Y Fi(X2)» F5(X3) » ®3(Xa, X3, X5).
X2,X3

Note that building JT; and computing all polynomial clique potentials and forward
messages is strictly equivalent to performing a wariable eliminiation with the following
elimination order: X7, Xy, { X3, Xo}, { X5, X6, X7} (see Koller and Friedman, 2009).

Table 1 gives the expression of a few chosen polynomial clique potentials and polynomial
forward messages for 6 =1 and ev = {X; =0, X7 = 1}.
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Table 1: A sample of chosen clique potentials and forward messages in JT}.

®3(X3=0,X, =0) | 0.622459331201855

®3(X3=0,X, =1) | 0.377540668798145

®2(X3=1,X, =0) | 0.3775407 — 0.23500372 + 0.057556792>
®3(X3=1,X,=1) | 0.6224593 + 0.2350037z — 0.057556792>
F2(X3=0) 1

F3(X3=1) 1

F2(X5=0) 0.2655306 — 0.1096367z + 0.0646033322
F3(X5=1) 0.3569288 + 0.1096367z — 0.0646033322
F3(0) = D>L(9) 0.3903244 + 0.16789562 — 0.05803046 2>

Note that, X3 having no parents and X4 having only X3 as a parent, the potentials
®3(X3 = 0,X4) for X4 € {0,1} are of degree 0. We also can notice that F3(X3 = 0) =
F3(X3=1)=1. Indeed F3(X3 =0) = (1— Py)) + Py and F3(X3=1)= (1 - P,) + P.
All other potentials in this table are of degree greater than 0. In particular F3(§)) which
has been verified numerically (data not shown) is a polynomial in z containing L(6) and its
derivatives up to order 2 in its coefficients.

Table 2 gives the values obtained for the log-likelihood of # = 1 and its derivatives up to
order 2 for different simulations of N values for {Xy,..., X7} with § = 1. Let ev,, denote
the observation {X; = a, X7 = b} and N the number of observations of the evidence evg,
among N. Let us recall that the true 6 under simulation is * = 1. We can see as expected
that ¢/(1)/4(1) tends towards 0 with an increasing N as L'(6* = 1) tends toward 0. We can
also see that —¢”(1) is small for N=1 leading to a large variance which was expected in the
case of the observation of a unique couple {X1, X7}. On the other hand, —¢”(1) increases
linearly with an increasing N as expected as 1/(—¢"(0)) (the Cramer-Rao bound for the
variance of ) decreases linearly with N.

Table 2: Log-likelihood and its derivatives up to order 2 computed with our algorithm for
different simulations of N values for {X1,..., X7} leading to N, observed couples
{Xl = a,X7 = b}

N  |Ngo No1 Nio N1 |€(1) (1) (1)/e(1)  |e’(1)

1 1 0 0 0 —1.460 —7.233x 1071 4.952 x 1071[—2.731 x 10!
1 0 1 0 0 —9.408 x 1071 4.301 x 107! —4.572 x 1071 |—3.337 x 107!
1 0 0 1 0 —2.012 —8.981 x 107! 4.466 x 1071 |—6.914 x 107!
1 0 0 0 1 —1.412 4.933 x 1071 —3.494 x 1071 |—3.067 x 10!
50 4 20 8 18 [—6.616 x 101 7.405 —1.119 x 1071 [—1.882 x 10*
500 [136 187 71 106 |[—6.670 x 10> —2.940 x 10!  4.408 x 1072|—1.811 x 102
5000 [1198 1868 753 1181 [—6.689 x 10° —1.566 x 10>  2.341 x 1072|—1.833 x 103
50,000(11592 19470 6681 12257|—6.599 x 10*  3.754 x 100 —5.690 x 10~*|—1.804 x 10*

207



SUM-PRODUCT ALGORITHM FOR DERIVATIVES OF THE LIKELIHOOD IN BN

3.2. Two-point linkage in genetics
3.2.1. INTRODUCTION TO THE TWO-POINT LINKAGE IN GENETICS

The two-point linkage analysis is a statistical analysis in genetic epidemiology aiming at
locating a targeted gene on the genome. A detailed explanation of basics in genetics and
genetic linkage is given in Lauritzen and Sheehan (2003) Section 2.2 and we recommend
those not familiar with genetic data to read this reference. We give below some brief recalls:
Most of the human cells are diploid (containing pairs of chromosomes) with one paternal
chromosome and one maternal chromosome. In the gonads, a diploid cell with double-
stranded chromosomes split into four haploid cells with single-stranded chromosomes called
gametes, dedicated to be transmitted to the offspring. During meiosis, two chromosomes
of the same pair can exchange genetic material and produce recombinant gametes. This
phenomenon is called a crossover. Figure 2 represents a simplified meiosis with only one pair
of chromosomes. The closest two genes are on the chromosome the less chances their alleles
to be separated during meiosis. The two-point linkage analysis uses this phenomenon, the
results of genetic tests for a marker whose location on the genome is known, the penetrance
of the targeted gene (probability of the trait (or phenotype) conditional on the genotype) and
the allele frequencies previously estimated with segregation analysis, in order to estimate
the distance between the targeted gene (whose alleles are here denoted X) and the marker
(whose alleles are here denoted M) as a function of the fraction of recombinant gametes
0 = #R/(#R+#NR). Figure 3 is a DAG of the variables commonly used in genetic linkage
where the names of the variables are the same as in Figure 2 with the addition of the traits
Y coded by the targeted gene and the genetic tests for the marker G. Each allele M and X
are labeled pat or mat according to their origin. SM € {pat, mat} (resp. SX € {pat, mat})
denotes the selector (the origin) of the marker (resp. the targeted gene) for the offspring.

Xpat Mpat

Paternal
Chromosome

Maternal
Chromosome

Figure 2: Simplified meiosis with only one pair of chromosomes between which a crossover
happens. Mpa¢ (resp. Mmat) stands for the paternal (resp. maternal) allele of
the marker, Xpa¢ (resp. Xmat) stands for the paternal (resp. maternal) allele
of the targeted gene and SX € {pat,mat} (resp. SM € {pat,mat}) stands
for the selector for X (resp. M). R (resp. NR) denotes a recombinant (resp.
non-recombinant) gamete.
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Figure 3: DAG of the variables commonly used in genetic linkage analysis in a simple trio

with one father labeled 1, one mother labeled 2 and one child labeled 3. Y stands
for the trait and G for the genetic test for the marker.

3.2.2. POLYNOMIALS ASSOCIATED WITH THE VARIABLES

In this section and for the sake of simplicity we will expose our method with a very simple
trio composed of one father, one mother and one child and we will again be interested in
computing derivatives up the degree d = 2. Figure 3 represents a DAG of the variables
involved where the labels pat and mat for the selectors denote the origin (paternal or
maternal) of the transmitted allele M and X.

Let Wiy = {Wy}u=1,.n the set of variables in Figure 3. We are now interested in
the implementation of the functions DQIP’(WU\Wpau;Q). Note that, for all W, € Wy \
{SMpaty, S Mmats } we have DQP(Wu|Wpau; ) = P(W,|Wpa, ) are all 0 degree polynomials.

As an example we will consider the contraol2a example given in Mendel package Lange
et al. (2013) using PGM1 as the marker and RADIN as the targeted gene. PGM1 has 4
alleles ({1+,1-,2+ 2-}) with given allele frequencies and given conditional probabilities of
the results of the genetic test conditional on the genotype. RADIN is biallelic ({+,-}) with
given allele frequencies and given penetrance.

Constant polynomials. We assume a Mendelian transmission of the alleles such that
DIP(SXpat, = 8) = DP(SXmat, = s) = 0.5 with s € {pat,mat}. For all W, €
W \ {SMpat,» SMmats, SXpaty» S Xmats }» DIP(Wu|Wpa, ;0) = P(W,,|Wpa, ) are straightfor-
ward assuming Hardy-Weinberg equilibrium for the founders (constant allele and genotype
frequencies from generation to generation) and using allele frequencies, conditional proba-
bilities of the genetic tests and penetrance of the targeted gene.

Polynomials of strictly positive degree. AsP(SMpat,|SXpat,; 0) and P(SMuats |S Xmats; 0)
depend on 6, their polynomials are of degree strictly positive and we have

D?P(SMpat, = SXpat,|SXpaty; 0) = D*P(SMmat, = SXmats| S Xmaty; 0) = (1 —60) — 2
and
DQIP’(SMPM3 # S Xpaty| S Xpaty; 0) = DQP(SMmatg # S Xmats| S Xmats; 0) = 0 + =
In practice, as 6 is constrained, we use the logit transformation 6 = ¢ /(14-¢”) and therefore:

1 ef A1 —ef)
- Z — z
1+ef  (1+4€8)2 (1+€8)3

D?P(SMpat, = SXpat,|S Xpaty; B) =
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and
e? e? ef (1 — eﬁ) 9

T A ) R G )
and respectively for the maternal selector SMy,at,. Note that preprocessing first the poly-
nomials related to the marker and the polynomials related to the targeted gene before
moralizing the graph is crucial in the context of genetic analysis as explained in Lauritzen
and Sheehan (2003) Section 3.3 in order to remove unnecessary links. The following results
have been obtained after preprocessing potentials.

3.2.3. RESULTS

In this section we give some results of the implementation of our method over the two-
point linkage analysis for the KUS family (22 individuals) and the whole controle2a (93
individuals) set of pedigrees in Mendel package (Lange et al., 2013). We suggest the readers
not familiar with genetic linkage notions the following reference for the basics in quantities
used such as the LOD score: section 4.1 Lauritzen and Sheehan (2003).

In genetic linkage analysis, the null hypothesis 6 =0y = 0.5 is tested against 6 <05
with the estimation of a quantity named the LOD score, LOD(0) = log,q (L(6)/L(0.5)).
Defining Z(8) = logyo (L (€?/(1 + €7)) /L(0.5)), we computed values of Z(f) for various /3
and obtained the same values as computed with the Mendel package for the corresponding
LOD(#). The computed derivatives of L(8) = L (e?/(1 + ¢”)) allow to calculate confidence
intervals on 6 and to perform likelihood ratio test, Wald test and score test whose results are
compared in Table 3 for both the KUS family and the whole set of families in control2a. As
expected, the confidence intervals are shrinking with an increasing number of individuals.
The likelihood ratio test is the one commonly done in genetic linkage through the LOD
score. We can see Table 3 that the three tests are not equivalent though all p-values are
significant. One further extension of this work could be a comparison of the power of these
tests in genetic linkage in different pedigrees.

Table 3: Confidence intervals on 6 and statistics of the likelihood ration test (LR), Wald
test (W) and Score test (S) along with the p-values.

‘ 6 1C 95% LR (p-value) W (p-value) S (p-value)

KUS(n=22) [0.059[0.008,0.320] 14.574 (1.3 x 10~%) 7.264 (7.0 x 10~3) 32.010 (1.5 x 10~%)
ALL (n=93)]0.193[0.106,0.326] 17.010 (3.7 x 107°) 15.821 (7 x 107°) 12.900 (3.3 x 10~%)

4. Discussion

We proposed in this work an algorithm on polynomials to compute L(f) and its exact
derivatives in a single belief propagation up to an arbitrary order d with a complexity
of O(C x d?) for a unidimensional parameter and O(C x p?) if d = 2 for a parameter
of dimension p where C' is the complexity to compute L(#) alone with a classical belief
propagation algorithm. These complexities are similar to the one needed in the classical
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empirical method (numerical derivation) and to the approach of Cappé and Moulines (2005)
with some advantages. Its main advantage over the empirical method is that it provides
exact value in a single computation with no need to iteratively converge to the solution. Its
main advantage over Cappé and Moulines (2005) is its ability to deal with any BN rather
than only HMMs as well as its straightforward formulation and implementation for any
degree.

We have considered an application in the two-point linkage analysis and we obtained
confidence intervals on the parameter. The derivatives of the likelihood also allowed us
to perform other tests than the LR test commonly used in linkage analysis to compare
their performances. Our method is extendable to any parametric BN and more generally
in sum-product computations in probabilistic graphical models.

As we focused in this work on the likelihood and its derivatives only, we restricted our
explanation to the forward quantities but of course backward quantities can be computed
if needed. It could be interesting to study the quantities DIP(X,, ev|Xpa,;0) with v C U.
These quantities could be used to obtain DP(X,|ev;0) for an arbitrary d and therefore
help studies about variations of the derivatives of marginal probabilities.
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