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Abstract
We propose a method for learning Markov network structures for continuous data without assuming
any particular parametric distribution for the variables. The method makes use of previous work on
a non-parametric estimator for mutual information which is used to create a non-parametric test for
multivariate conditional independence. This independence test is then combined with an efficient
constraint-based algorithm for learning the graph structure. The performance of the method is
evaluated on several synthetic data sets and it is shown to learn more accurate structures than
competing methods when the dependencies between the variables involve non-linearities.
Keywords: Graphical Models; Markov Networks; Structure Learning; Mutual Information.

1. Introduction

This paper addresses the problem of learning a Markov network structure from continuous data
without assuming any particular parametric distribution. The large majority of the existing methods
approach this problem by assuming that variables follow a multivariate normal distribution. This
essentially reduces the problem of learning whether two variables are independent to deciding if
they have a non-zero partial correlation. However, as the correlation measures only the strength of a
linear dependence, the methods utilizing this might not be able to capture the dependence structure
correctly when the relationships are non-linear or the data deviates from the multivariate Gaussian.

To remedy this, we opt to use conditional mutual information to measure the strength of associ-
ation between the random variables. Like correlation, the mutual information equals zero for inde-
pendent random variables which makes it possible to use it with Markov network structure learning
algorithms based on independence testing, but unlike correlation, mutual information captures any
kind of dependence and equals zero only if the variables are independent. In order to compute
the mutual information without assumptions about the distributions of variables, we use the non-
parametric estimators from previous work (Kozachenko and Leonenko, 1987; Kraskov et al., 2004;
Vejmelka and Paluš, 2008) which are based on k-nearest neighbour statistics.

The literature on methods for non-parametric learning of Markov network structures in the
continuous setting is scarce. Kernel methods provide tools for performing non-parametric tests
of conditional independence, which makes these applicable to learning Markov networks through
constraint based algorithms. One of the most commonly used tests is called Kernel-based Condi-
tional Independence test (KCIT) (Zhang et al., 2011). However, this test becomes computation-
ally demanding with large sample sizes as it scales cubically in the number of samples. Recently,
Strobl et al. (2017) proposed two approximate versions of this test (randomized conditional inde-

213
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pendence test (RCIT) and other called randomized conditional correlation test) which both utilize
random Fourier features to achieve linear scaling with the sample size. Also, Lafferty et al. (2012)
proposed a method that does not make distributional assumptions but restricts the learned graph to
be a forest. This forest graph is learned using Chow-Liu algorithm with pairwise mutual informa-
tions obtained using kernel density estimation.

One popular semiparametric approach to learning Markov networks is to assume that there ex-
ists univariate transformations for each variable after which the joint distribution of the transformed
variables is multivariate normal. This then allows one to use all the machinery developed for Gaus-
sian data. The resulting model class and the methods are termed non-paranormal or Gaussian
copulas (Liu et al., 2009, 2012).

Our contribution is to provide a reliable way to learn Markov network structures based on a
particular estimator of conditional mutual information without an exponential number of indepen-
dence tests. Compared to the other approaches mentioned above, our method scales in the worst
case quadratically in the sample size making it faster than the kernel-method (KCIT). Furthermore,
its performance in our experiments is clearly superior compared to the approximate kernel-based
and non-paranormal methods when the relationships between the variables involve non-linearities.

In Section 2, we will review how mutual information is estimated from continuous data based
on k-nearest neighbour statistics, and how this estimator can be used for testing conditional inde-
pendence. Section 3 goes through the constraint-based algorithm which we will use to learn the
Markov network structures. In Section 4, we study the performance of our method with several
synthetic data sets to illustrate the distinct behaviour of the proposed method especially when the
data involves non-linearities.

2. Independence Testing Using Mutual Information

In this section we present the Kraskov estimator for mutual information and show how it can be
used for independence testing.

2.1 Preliminaries

Let X and Y denote two continuous random variables with density functions fX and fY . Mutual
information (Cover and Thomas, 2006) measures the information that one random variable carries
about the other and it can be expressed using entropies as

I(X;Y ) = H(X) +H(Y )−H(X,Y ), (1)

where H(·) denotes (differential) entropy. Let Z be a random vector. We assume that Z has a joint
density function denoted by fZ . The conditional mutual information between X and Y given Z can
be written as

I(X;Y | Z) = H(X,Z) +H(Y, Z)−H(X,Y, Z)−H(Z). (2)

The mutual information equals zero iff the variables X and Y are independent. The same holds for
the conditional mutual information:

I(X;Y | Z) = 0⇔ X ⊥⊥ Y | Z.
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2.2 Estimating Mutual Information

Here, we review how the quantities H(X), I(X,Y ) and I(X;Y | Z) can be estimated given the
observed samples xi, yi and zi, where i = 1, . . . , n. In this paper, xi and yi are scalars whereas zi
can be a vector.

The Kraskov estimator for mutual information builds on the previous entropy estimator by
Kozachenko and Leonenko (1987). The derivation of this entropy estimator is presented in (Kraskov
et al., 2004) and it starts from the definition of entropy of X , which can be interpreted as the ex-
pected value of the log-density, − log fX . This implies that if one has an unbiased estimator for
log fX , then the unbiased estimate for entropy can be obtained as a sample average over local log-
probability density estimates. Assuming that the probability density is constant in hyperspheres
containing (k − 1)-nearest neighbours of each data point, one arrives in the following formula:

Ĥ(X) = ψ(n)− ψ(k) + log cd +
d

n

n∑
i=1

ε(i), (3)

where ε(i) is twice the distance to the kth nearest neighbour of data point xi, ψ(·) is the digamma
function, d denotes the dimension of X and cd is the volume of the unit ball w.r.t. the used norm.
From now on, we assume that the maximum norm is used, implying log cd = 0.

Kraskov et al. expand this to mutual information estimation with help of the Eq. (1). Naively
applying the estimate (3) for each of the entropies in (1) would induce errors due to the different
length scales in spaces (X,Y ), X and Y . Instead, the length scale is fixed by searching the k-
nearest neighbours first in the joint space (X,Y ). We let ε(i)/2 to denote the distance to the kth
nearest neighbour of the point (xi, yi). When computing the entropy estimate in the marginal space
X , the following approximation is used:

ψ(k) =
1

n

n∑
i=1

ψ(nx(i) + 1),

where nx(i) is the number of points xj such that ||xi − xj || < ε(i)/2, j 6= i. The similar approx-
imation is used in the Y space by replacing the xi with yi. This is motivated by the fact that Eq.
(3) holds for any k, and ε(i)/2 is the distance either to the (nx(i) + 1)th neighbour of xi or to the
(ny(i) + 1)th neighbour of yi. Using equations (1) and (3) with the approximation in the marginal
spaces leads to the cancellation of the ε(i) terms and we obtain the following formula for the mutual
information:

Î(X;Y ) = ψ(k) + ψ(n)− 1

n

n∑
i=1

(
ψ(nx(i) + 1) + ψ(ny(i) + 1)

)
. (4)

Using similar reasoning, Vejmelka and Paluš (2008) present the following formula for the condi-
tional mutual information:

Î(X;Y | Z) = ψ(k)− 1

n

n∑
i=1

(
ψ(nxz(i) + 1) + ψ(nyz(i) + 1)− ψ(nz(i) + 1)

)
, (5)

where the counts nz(i), nyz(i) and nxz(i) in the marginal spaces are defined in a similar fashion as
in Eq. (4) using the k-nearest nearest neighbour distances found in the joint space.

The parameter k in these estimators controls the bias-variance trade-off: a small k means that
the assumption about the constant density holds only in small regions, thus implying smaller bias,
whereas large k decreases the variance as more data are used to obtain the local estimates.
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2.3 Non-parametric Test for Conditional Independence

Due to statistical variation, the empirical joint distribution is hardly ever exactly equivalent to the
product of the margins, just like an empirical correlation coefficient is hardly ever exactly zero.
Hence, we need to consider a test that takes into account the statistical uncertainty of the mutual
information estimator. To this end, we apply a permutation test to simulate the sampling distribution
of the mutual information statistic under the null hypothesis of conditional independence.

To test the conditional independence based on observed data x, y and z, we first set a signif-
icance level α, and compute the estimate Î(x;y | z). Conditional independence is simulated by
randomly permuting the samples y = (y1, . . . , yn) to create a vector yperm, and then computing
Î(x;yperm | z). This is repeated T times. After this, we count the number of permuted mutual
information values that are greater than or equal to the initial estimate Î(x;y | z). We let K to
denote this number. This gives us an estimate for the p-value, p̂ = (K + 1)/(T + 1), which is
then compared to the significance level α. To ease the computational burden we skip this test in
two cases: 1) when there are no conditioning variables and the correlation based test (we used the
Fisher-z test) rejects independence, the algorithm returns ’False’ implying dependence, and 2) if the
same (partial) correlation based test accepts independence and the estimated value for (conditional)
mutual information is below 0.001 nats, the algorithm returns ’True’.

Algorithm 1 shows the pseudocode for the permutation test based conditional independence test
discussed above.

Algorithm 1: Conditional Independence Test
Require:

Significance level α, number of iterations T
1: procedure CIT(x,y, z)
2: estCMI ← Î(x;y | z)
3: PermutedMI← ∅
4: for i← 1, . . . , T do
5: yperm(i) ← random permutation of y
6: mi← Î(x;yperm(i) | z)
7: PermutedMI← PermutedMI ∪ {mi}
8: K ← #{ i : Î(x;yperm(i) | z) ≥ estCMI}
9: if (K + 1)/(T + 1) < α then return False

10: return True

Recently, Runge (2018) independently proposed a similar non-parametric independence test
based on the Kraskov mutual information estimators. The test proposed by Runge differs from ours
in how the permutation of y is created. Runge notes that simply permuting y destroys dependence
between x and y, but in addition, the dependence between y and the conditioning z is also lost,
which is in principle wrong when we are testing for conditional independence. To remedy this,
Runge uses a local permutation scheme in which we first identify kperm-nearest neighbours of
each point zi. Then the ith component of the permuted vector, yperm, is randomly drawn from yj
corresponding to the neighbours of zi. In this scheme, some yj values might appear multiple times
in yperm. In our experiments, we found that this strategy lead in most cases to inferior accuracy
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when used with the structure learning algorithm described in Section 3.2 (comparison shown in
Appendix A). Therefore, we propose to use the simple permutation strategy which also avoids the
choice of another hyperparameter kperm.

3. Structure Learning of Markov Networks

In this section, we will go briefly through the basic concepts related to Markov networks and then
present the structure learning algorithm which is combined with the presented non-parametric con-
ditional independence test. For a more thorough treatment, we refer to Whittaker (1990); Lauritzen
(1996); Koller and Friedman (2009).

3.1 Representation

LetX = (X1, . . . Xp) be a random vector andG = (V,E) denote an undirected graph (UG), where
V = {1, . . . , p} is the set of nodes corresponding to elements ofX andE ⊂ V ×V the set of edges.
Given an UGG, we define the Markov blanket of the node i to be the set containing its neighbouring
nodes in the graph G, mb(i) = {j ∈ V |(i, j) ∈ E}, where (i, j) = (j, i) is an undirected edge
between nodes i and j. The graph G encodes a set of conditional independence assumptions that
can be characterized via Markov properties: 1) if (i, j) 6∈ E, the variable Xi is independent of Xj

given the remaining ones V \ {i, j}, 2) every variable i ∈ V is conditionally independent of all the
other variables given its Markov blanket, 3) for the disjoint subsets of variables, A,B,C ⊂ V , it
holds that XA is conditionally independent of XB given XC if C separates A and B in the graph.
The notation XA stands for the random vector containing the variables belonging to a set A ⊂ V .
These properties are termed the pairwise, the local and the global Markov properties, respectively.

3.2 Structure Learning

The main problem we are focusing on here is learning the graph structure G based on the observed
data X = (x1, . . . ,xn), where xi ∈ Rp is i.i.d sample from the distribution p(X). The meth-
ods addressing this problem are usually either score- or constraint-based ones. The first mentioned
approach is based on a data-dependent scoring function which evaluates the goodness of different
structures whereas the constraint-based methods make use of the Markov properties and perform
a series of conditional independence tests to infer the network structure. Here, we will adopt this
latter approach. More in detail, we will use the Incremental Association Markov Blanket (IAMB)
algorithm (Tsamardinos et al., 2003) to learn the Markov blanket for each of the nodes. The algo-
rithm uses some measure of (conditional) dependence which is used to determine the order in which
variables are considered to be entered in the blanket. The algorithm starts with an empty blanket,
and then adds variable (with the highest dependence) if it is found to be conditionally dependent
given the current variables in the blanket. This is repeated until no variables can be added. Addition
phase is then followed by a step where variables are removed if they are conditionally independent
of the target node given the remaining variables in blanket. The algorithm is guaranteed to return the
correct Markov blanket assuming faithfulness and correctness of the independence tests (Tsamardi-
nos et al., 2003; Peña et al., 2007). For any finite sample size n, the found Markov blankets are
not necessarily coherent in a sense that i ∈ mb(j) would imply that j was also found to belong to
Markov blanket of i. To overcome this, we define the estimated undirected graph using conservative
AND-rule, meaning that there is an undirected edge between i and j if i ∈ m̂b(j) and j ∈ m̂b(i).
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Implementing this algorithm with the conditional independence test described in Section 2 and
the measure of dependence given by the estimate of conditional mutual information yields our
proposed method, which will be henceforth referred to as knnMI.

3.3 On Computational Complexity

The computational cost of our proposed approach is dominated by the nearest neighbours searches
which become costly when the sample size and dimension of the data grow. In the concrete imple-
mentation of the algorithm we use kd-tree (Bentley, 1975) to perform these queries. Let us analyse
the steps needed to compute the estimate for conditional mutual information (Eq. (5) in Sec. 2.2).

Let n be the number of observations and d denote the dimension of the joint space (X,Y, Z).
The brute force approach of finding the k-nearest neighbour for each data point would scale as
O(n2kd). However, when the dimension of the data (the size of largest considered Markov blanket)
is fairly low, we can usually obtain significant saves by using the kd-tree:

1. Index construction of the tree for joint and marginal spaces takes O(dn log n) time.

2. For each data point (xi, yi, zi), we need to find the k-nearest neighbour in the joint space
and record the distance εi/2. For a fixed d, finding one neighbour has expected running time
of O(log n) (Friedman et al., 1977), which yields a total running time of O(kn log n). With
respect to dimension d the worst case complexity is exponential. However, assuming the sizes
of considered Markov blankets are fairly small, this does not cause difficulties in practice.

3. Using the found distances, we count for each data point the number of points whose distance is
less than εi/2. This is done in spaces (X,Z), (Y,Z) and Z. With fixed d this would naively
take O(n2) time. In practice, when the dimension is fixed, the expected running times for
single nearest-neighbour and radius queries in kd-trees could be significantly smaller, even a
constant time operations (Bentley, 1990).

The number of independence tests and measure of dependence computations (estimate of condi-
tional mutual information) performed by IAMB when searching for a single Markov blanket is in
the worst case of order O(p2) (Tsamardinos et al., 2003). However, the authors state they experi-
mentally observed an average case order of O(p|mb(i)|) tests, where |mb(i)| refers to the size of
the Markov blanket for variable i. This implies that in the worst case finding the graph takes O(p3)
tests but if the Markov blankets are relatively small, the complexity is considerably lower.

4. Experiments

In this section we evaluate the performance of the proposed approach and compare it to other meth-
ods by creating synthetic data from various Markov network structures where the dependencies
between the variables are not necessarily linear or the distribution close to multivariate normal1.

4.1 Considered Methods

We compare the performance of knnMI to a method that uses exactly the same structure learning
algorithm but with an independence test based on Fisher’s z-transformed sample partial correla-

1. The code to reproduce all the experiments is available at https://github.com/janlepppa/graph_
learn_mi
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tions, see, for instance, Kalisch and Bühlmann (2007). We will refer to this method as fisherZ.
In addition, we combine KCIT and RCIT kernel tests with this algorithm. The corresponding meth-
ods are referred as KCIT and RCIT. Aforementioned tests utilize the p-value of the respective test
as the measure of dependence which determines the order in which variables tested for entering
the Markov blanket. For the hyperparameters of the kernel methods, we used the default values in
R-package ’RCIT’ 2: The RBF kernel widths were chosen using the heuristic based on the median
distance of the first 500 data points. RCIT method requires choosing the numbers of used random
Fourier features for X , Y and Z. We chose the same values as used by Strobl et al. (2017): 5, 5
and 25, respectively. KCIT test uses bootstrapping to estimate null distribution of the test statis-
tic whereas RCIT approximates the null distribution by moment matching (Lindsay-Pilla-Basak
method). For more details on the hyperparameters, see Strobl et al. (2017).

Other methods we compare against include graphical lasso (glasso) (Friedman et al., 2008) and
neighbourhood-selection method (mb) (Meinshausen and Bühlmann, 2006). As we mainly study
non-Gaussian data, all the input data are put through a non-paranormal transformation based on a
shrunken empirical cumulative distribution function (ECDF) (Liu et al., 2009, 2012) before applying
glasso and mb.

The glasso method learns the graph by estimating the inverse of covariance which is done by
optimizing an objective function comprising of `1-penalized Gaussian log-likelihood. The mb es-
timates the graph by conducting `1-penalized linear regression independently for each variable to
find their Markov blankets. We will use the similar AND-rule as mentioned before to construct the
graph from the estimated Markov blankets. As the output of glasso and mb depends on the tuning
parameter λ > 0 which controls the amount of `1-regularization, we computed graphs for 20 tuning
parameter values, starting from the tuning parameter value λmax that resulted in an empty graph
and then decreased it to a value λmin = 0.01λmax. The densest model had always more edges
than the true generating network structure. The best model was chosen according to the StARS
criterion (Liu et al., 2010). We refer to these methods as NPN glasso and NPN mb to emphasize
that methods are non-paranormal. With mb, we tried also choosing the parameter automatically as
proposed by the authors to be λ = (n−1/2)Φ−1(1 − α/(2p2)), where α = 0.05 and Φ(·) denotes
the c.d.f. of a standard normal random variable. We will refer to this method as NPN mb auto. In
the experiments, we used the implementations of glasso and mb found in R-package ’huge’3.

In all the conditional independence tests, we set the significance level to be 0.05. With knnMI
we set k = 5 and do T = 200 permutations of data when testing for independence. The performance
of knnMI seemed quite robust when small values of k were used. Comparisons involving different
choices k are presented in Appendix A. To compare the methods, we measure the average Hamming
distance (the sum of false positive and false negative edges) between the estimated graph and the
ground truth graph. All the presented values are averages from 25 repetitions.

4.2 Small Network

First, we consider a small network consisting of seven nodes and eight edges. In this example,
the considered graph is decomposable, implying that we can represent it equally well as a directed
acyclic graph which simplifies the data generation. With the network structure fixed, we consid-
ered six different data generating schemes. The dependencies between the child variable and the

2. https://github.com/ericstrobl/RCIT
3. https://CRAN.R-project.org/package=huge
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Linear Non-linear
X1 ε1 ε1
X2 0.2X1 + ε2 2 cos(X1) + ε2
X3 0.5X2 + ε3 2 sin(πX2) + ε3
X4 0.25X3 + ε4 3 cos(X3) + ε4
X5 0.35X2 + 0.55X3 + ε5 0.75X2X3 + ε5
X6 0.65X5 + ε6 2.5X5 + ε6
X7 0.9X3 + 0.25X5 + ε7 3 cos(0.2X3) + log |X5|+ ε7

Table 1: Data generating model.

X1 X2

X3

X4

X6

X5

X7

Figure 1: Ground
truth
graph.

parents were either linear or non-linear with an additive noise term. We also include three dif-
ferent noise distributions: standard Gaussian, uniform [−1, 1], and standard t with two degrees of
freedom. The data generating mechanism and the ground truth graph are presented in Table 1 and
Figure 1, respectively. We use εi to denote the noise term which follows one of the aforementioned
distributions.

We created multiple data sets with sample sizes ranging from 125 to 2000. The average Ham-
ming distances to the true graph for each method are presented in Figure 2. In the Hamming distance
figures, errors bars show the standard error of the mean.

In the linear case, fisherZ and KCIT are the most accurate regardless the noise distribution.
It is also somewhat surprising how the performance of fisherZ did not seem to deteriorate at
all when the assumption about normally distributed noise was violated. As maybe expected, our
method can learn the structure the best in cases where the dependencies are non-linear. The only
method with comparable performance is KCIT. In these cases, knnMI and KCIT are the only
methods that steadily improve their performance as the sample size increases, recovering the true
generating structure almost correctly when sample size n = 2000.

4.3 Larger Networks

Next, we generated non-paranormal data from randomly generated graph structures. The graphs
were first created by randomly adding an edge between variables with a probability of 3/p, where
p is the number of variables. This implies that the expected number of edges is 3(p − 1)/2. The
multivariate normal data was sampled using the R-package ’huge’, and the non-paranormal data
was created from this by applying a power transformation Xi 7→ X3

i to each variable. The sample
sizes of created data sets ranged from 125 to 2000. The results are shown in Figure 3. We consider
dimension p = 10 (left in Figure 3) and p = 20 (center). Looking at the results, we can see that
NPN mb and NPN glasso perform the best when p = 20 but generally worse than others in the
lower-dimensional case. With the smallest sample sizes, KCIT and knnMI perform quite similarly.
Both methods are close to finding the true generating graph on the largest sample sizes. However,
KCIT seems to converge faster in the non-paranormal setting.

In the last setting, we consider a larger network with non-linear dependencies between the vari-
ables. The graph is created by combining three seven nodes graphs described in the previous sec-
tion as disconnected components to form a larger 21 node graph. In each of these independent
sub-graphs, data is generated according to non-linear mechanism, as explained in Section 4.2. The
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Figure 2: Hamming distances for the small network with different noise distributions. Consid-
ered methods: knnMI (proposed method); NPN mb, NPN glasso and NPN mb auto
(non-paranomal methods); KCIT and RCIT (kernel methods) and fisherZ (Gaussian
method).

results are shown right in Figure 3. We can see that here knnMI achieves the best performance with
KCIT obtaining similar results only at the largest sample sizes. Other methods do not seem to be
able to improve their performance as the sample size gets larger.

The performance of RCIT seems a bit unstable in the experiments. With the different choices of
the hyperparameters, the performance would likely be closer to KCIT. However, this demonstrates
that the computational efficiency of RCIT comes with a trade-off, requiring the user to pay a closer
attention to the choice of the hyperparameters.

5. Conclusions

We have presented an algorithm for distribution free learning of Markov network structures. The
algorithm combines previous work on non-parametric estimation of mutual information to an effi-
cient structure learning algorithm in a novel way. The knnMI algorithm consistently outperforms
other tested algorithms in structure learning in the case of strongly non-linear dependencies and its
performance is robust to non-Gaussian noise. In these settings, KCIT is the only method capable of
achieving nearly as good performance, which, however, comes with a higher computational cost.

Even though the Markov blanket searches and permutation tests can be computed in parallel,
the computational cost of knnMI algorithm is greater than that of other tested algorithms except
for KCIT. The nearest-neighbour search is a costly operation, which, especially in the high di-
mensional case, uses the largest proportion of computation time, even while using efficient metric
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LEPPÄ-AHO ET AL.

125 250 500 1000 2000
Sample Size

0
2
4
6
8

10
12
14

H
am

m
in

g 
di

st
an

ce

Non-paranormal, small

125 250 500 1000 2000
Sample Size

0
5

10
15
20
25
30Non-paranormal, large

125 250 500 1000 2000
Sample Size

0
5

10
15
20
25
30
35

H
am

m
in

g 
di

st
an

ce

Large network + t

knnMI
fisherZ

NPN_mb
NPN_glasso

NPN_mb_auto
RCIT

KCIT

Figure 3: Averaged Hamming distances for the larger networks.

tree structures. A clear direction for future research is to study if approximate nearest-neighbour
searches could by utilized to improve the efficiency while still maintaining the consistent estimation
of mutual information.
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Appendix A. Comparison with Local Permutation Approach

Figure 4 summarises results from experiments studying the effect of k and the impact of the local
permutation strategy (Runge, 2018). Data is generated from the small network as explained in
Section 4.2 of the main paper. The sample sizes in tests range from 125 to 1000. We consider the
following values k = 3, 5, 0.01n, 0.1n with local and simple permutation schemes. The values 0.1n
and 0.01n for k depend on the sample size (in case of the latter, k was always at least 3). For the
local permutation scheme, we set kperm = 5, as suggested by Runge (2018). In the Figure, different
choices of k correspond to different colors while solid lines correspond to local permutations and
broken lines the simple. The shown results are averages computed from 25 repetitions.

Looking at the results, we see that in most of the cases simple permutation results in better
Hamming distance than the local permutation strategy. Exception is the value k = 0.1n with non-
linear dependencies, where the opposite holds and the simple permutations scheme does not seem
to converge to the ground truth graph. This suggests that one should prefer smaller values of k with
the simple permutation scheme to obtain consistent results.

Runge (2018) argues that local permutation results in the better calibrated null-distribution for
the conditional mutual information. He shows experimentally how this can cause higher false posi-
tive detection rate for the simple permutation based test. We also checked the false positive (FP) and
the true positive (TP) edge rates in these experiments and found a similar pattern: local permutation
based tests had in most cases slightly lower FP rate but the TP rate was also a bit lower (results not
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Figure 4: Hamming distances for the small network with different noise distributions

shown). In terms of Hamming distance, the simple permutation scheme seemed still better. This
can be also explained by the used conservative AND-rule for combining the found Markov blankets
into an undirected graph which itself helps to lower the possibility of adding a false edge in the final
graph. To conclude, if false positive edges are highly unwanted, adopting the local permutation
strategy might be beneficial.
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