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Abstract
The time duration in continuous time Bayesian networks, i.e., the time that a variable stays in a state
until it transitions to another state, follows an exponential distribution. The exponential distribution
is widely applied to describe the waiting time between events in a Poisson process, which describes
the distribution of the number of events in one unit of time. This distribution is parameterized by
a single rate and has mode zero, implying that the highest probability mass for events to happen
is attributed to the earliest times. To describe biological processes, the exponential distribution is
not always natural. For example, if the immune system has not encountered a pathogen before, it
most likely responds to a viral infection after a few days, rather than immediately. In this paper, we
generalize our recently proposed hypoexponential continuous time Bayesian networks, by allowing
any number of hypoexponential variables, i.e., variables having a hypoexponential time duration
distribution. In addition, we propose and compare two learning methods to estimate parameters for
the generalized models. Finally, the practical value of the generalized models is demonstrated by
means of a realistic medical problem.
Keywords: Continuous time Bayesian networks, Hypoexponential distribution, Parameter esti-
mation.

1. Introduction

Describing waiting time, the time between events, is an important part of modeling real-world prob-
lems involving time. For example, a question of clinical interest concerning viral infections is how
much time it takes for an individual to become infected after contact with an infected other individ-
ual. Waiting time in continuous time Bayesian networks (CTBNs) is described by an exponential
distribution, a simple (with a single rate) but powerful distribution. However, to describe biolog-
ical processes, the exponential distribution is not always natural. Clearly, an individual can not
immediately get a viral infection or recover immediately from a viral disease.

A natural way to gain more flexibility is obtained by replacing the exponential distribution on
time by a phase-type distribution. The phase-type distribution is described by a Markov chain over
variables with exponential time distributions with the exponential distribution as a special case. In
CTBNs, such a distribution can be represented by: (1) adding additional hidden states to a random
variable, called the direct approach; (2) adding a hidden variable, called the hidden approach. The
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direct method can explicitly give us the transitions between exponentially distributed variables in the
Markov chain representing the phase-type distribution. A disadvantage of the direct approach is that
we can only observe the current state of a variable, but not its associated hidden states. This imposes
a challenge for using the direct approach to learn from data, as the hidden states are unknown in
the data even when the data are complete. A trajectory in the complete data, i.e., when and where
a transition occurs, can still be interpreted in a number of different ways using the hidden states.
This makes it impossible to make use of existing learning methods for CTBNs. From an inference
point of view, the query about whether a variable stays in a given state has to be represented by a
disjunction of the hidden states, which is not always appropriate, in particular for describing interval
evidence. This is because it requires more than one hidden state to represent phase-type distributions
in general, except for the common exponential distribution. Interval evidence takes the form of a
variable staying in a state during a given time interval. Although the state of the variable does not
change in the time interval, there are myriad combinations of hidden states associated to the state of
the variable to interpret the evidence. For example, we can choose an arbitrary hidden state or any
arbitrary combinations of hidden states for the given time interval.

Using the hidden approach, a variable with phase-type time distribution represents a problem
of interest in a given context, which is lacking in the direct approach. For example, in a medical
context, a variable can represent the underlying medical condition, such as whether a patient has
cancer or an infectious disease, which helps in interpreting the observed signs and symptoms. The
use of a hidden variable also gives the hidden approach the potential of computational advantages
in comparison to the direct approach.

In this paper, first our recently proposed hypoexponential continuous time Bayesian networks
(Liu et al. (2018)), where there is only a single variable with hypoexponential time distribution—an
example of a phase-type distribution—, is generalized by supporting any number of hypoexpo-
nential variables. Second, we propose and compare the direct and hidden approaches to estimate
parameters from complete data for the generalized models. The direct approach is expected to be
more computationally efficient than the hidden approach at the expense of the quality of the learned
models. Third, the usefulness of the generalized framework is illustrated by a realistic medical
problem where multiple hypoexponential variables are involved in the modeling.

2. Related Work

The suggestion to extend CTBNs by replacing the exponential distribution with particular phase-
type distributions, such as Erlang and Coxian distributions, was first made in Nodelman and Horvitz
(2003). It was followed by another suggestion of using two different approaches, the direct and
hidden, to model phase-type time distributions in CTBNs (Nodelman et al. (2005)). As a phase-
type distribution is a probability distribution constructed by an expression involving exponential
distributions, not necessarily a weighted sum, there is some similarity to the use of the mixture
of truncated exponentials (Moral et al. (2001)) that allows modeling any distribution, discrete or
continuous. In a similar way, a phase-type distribution can provide an accurate approximation of
any positive-valued distribution, and thus provides a greater variety of complex distributions, rather
than the simple exponential distribution.
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3. Motivating Example

To illustrate the usefulness of the proposed theory, we consider the medical problem of chronic
obstructive pulmonary disease (COPD), with its causal graph given in Fig. 1. Obtaining insight into
the evolution of a chronic disease is an important aspect of chronic disease management, as often
the disease will not disappear. In the context of COPD, it is of particular importance to study the
effect of a viral infection on lung function, as a viral infection is a major risk factor of a COPD
exacerbation, i.e., the disease gets worse. Having a better understanding of the incubation time,
i.e., the time for a COPD patient to get a viral infection, and the recovery time, i.e., the time that
a COPD patient will recover from a worsening in lung function, is important for standardizing
and optimizing the duration of medical treatment. As an example to illustrate the potential of the
developed methods, we consider the modeling of incubation and recovery time of a viral infection
of a COPD patient.

I LF

V C

W

D

Fig. 1: Expert opinion based Bayesian network for COPD problem; I: infection, V : sputum volume,
C: cough, LF : lung function,D: dyspnea,W : wheeze. Arcs stand for temporal dependences, same
for all the other arcs in the reminder of this paper.

There have been many previous efforts to model the incubation time of viral infections. For
example, according to Bailey (1954) and Gough (1977) the incubation time duration cannot be
approximated by an exponential distribution, as the mode (the maximum value of the associated
density) of the underlying distribution can be far away from zero, whereas the mode of the expo-
nential distribution is actually zero. One example of such non-zero mode distributions is illustrated
in Fig. 2, which is generated by simulating the incubation time distribution from empirical data
from Bailey (1954); Gough (1977). It is obvious that such a distribution cannot be well-captured
by the exponential distribution. Exponentially distributed events tend to occur close together, which
is not an accurate model for the incubation time of viral infectious diseases. Incubation may take
a certain amount of time, due to the fact that virus particles have to be replicated before they are
present in sufficient quantity to affect the body.

For COPD patients, the lung function can deteriorate over time, characterized by worsening
lung-related symptoms, such as dyspnea. In clinical practice, a peak flow meter is often used as a
tool to measure lung function. In the literature, Seemungal et al. (2000) have shown that it takes one
to two weeks for the majority of moderate to severe COPD patients to recover from their worsening
lung function in terms of peak flow. This implies that the mode of the underlying time distribution
for recovering from decreased lung function is non-zero.

The examples of incubation time and lung function recovery both indicate that the exponential
distribution cannot offer a satisfactory representation for many disease processes. As the exponential
distribution is a limitation of present CTBNs, we seek more versatile and flexible distributions to
handle more complicated real-world problems.
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Fig. 2: A time distribution generated according to the incubation time in the work by Bailey (1954)
and Gough (1977) based on non-zero mode.

4. Phase-type Distributions

A phase-type distribution is represented by a random variable describing the time that a finite-state
absorbing continuous time Markov chain reaches its only absorbing state, i.e., a state that once
entered cannot be left. Each state of the Markov chain represents a stochastic process with an
exponential time distribution. Before the chain reaches its absorbing state, it moves through its
transient states, i.e., a state that once it is reached, the probability of returning to the state is less
than one after visiting it (Verbelen (2013)).

A CTBN is described by a continuous time Markov chain {Xt | t ∈ R+
0 } (the chain may be

absorbing or non-absorbing) with n transient states and one absorbing state n+1, parameterized by
an intensity matrix Q specifying the intensities for a state transitioning to another. To form intensity
matrices for multiple processes, two intensity matrices are taken to perform an operation called
amalgamation (Nodelman et al. (2002)). A phase-type distribution is described by an absorbing
continuous time Markov chain with parameters fully specified by an initial distribution vector p =
[p1, . . . , pn]

T (pT is the transpose of p), pi = P (X0 = i), i ∈ {1, . . . , n} over n transient states
with

∑n
i=1 pi = 1 (the probability for the absorbing state is zero). The intensity matrix Q for a

phase-type distribution states that transitioning away from the absorbing state has zero intensity.
More specifically, the intensity matrix Q is defined as follows:

Q =

(
A v
0T 0

)
where A is an n × n dimensional (square) matrix, specifying the intensities for transitioning be-
tween transient states, v is a column vector where vi is the intensity leaving transient state i to the
absorbing state, and 0T is a zero row vector of dimension n. The matrix A is called the phase-type
generator, and n is called the order of the phase-type distribution. Every row in matrix Q sums to
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zero, from which it follows that v = −Ae, where e = [1, 1, . . . , 1]T is an n-dimensional column
vector of ones.

The density function for the phase-type distribution is defined as:

f(t) = pT exp(At) · −Ae = pT exp(At)v

The distribution function for the phase-type distribution is:

F (t) =

∫ t

0
f(s)d s = 1− pT exp(At)e

For an n-order phase-type distribution, its associated continuous time Markov chain can be graphi-
cally represented by a state transition diagram. The diagram is a convenient graphical representation
by specifying the initial probabilities p, i.e., the distribution over the all the transient states when
the chain starts, the rates between the transient states, and the exit rates, i.e., the rate for a transient
state entering the absorbing state. More details about phase-type distributions can be found in Bladt
(2005); Verbelen (2013).

In this paper, we mainly focus on the hypoexponential distribution, also known as generalized
Erlang distribution. It is a rich and flexible subset of phase-type distributions. For a hypoexpo-
nential distribution, a transient state is only allowed to enter its consecutive transient state or the
absorbing state in the corresponding Markov chain. In addition, it starts only in one of the transient
states and traverses all the other transient states until it reaches the absorbing state. The n-order
hypoexponential distribution is graphically represented by a Markov chain with its state diagram as
shown in Fig. 3. The diagram asserts that the chain enters transient state 1 with probability one and
enters the absorbing state with rate λn.

1 1
λ1 · · ·λ2

n
λn−1 λn

Fig. 3: A state transition diagram for an n-order hypoexponential distribution. A solid node in-
dicates a transient state and a dashed node indicates an absorbing state. The number ‘1’ at the
left-hand side denotes the initial probability of entering a state.

The specification of the hypoexponential distribution consists of the vector of initial probabili-
ties p = [1, 0, . . . , 0]T , v = [0, 0, . . . , λn]

T and the matrix A:

A =


−λ1 λ1 0 · · · 0 0
0 −λ2 λ2 0 · · · 0
...

...
...

...
...

...
0 0 0 0 0 −λn


5. Hidden Continuous Time Bayesian Networks

In this section, we generalize our recently proposed hidden continuous time Bayesian networks (Liu
et al. (2018)), abbreviated to HCTBNs, where the time duration follows a hypoexponential dis-
tribution. In HCTBNs, variables are categorized into three groups, hypoexponentially distributed
variables, auxiliary hidden variables, and exponentially distributed variables. The generalized mod-
els are defined in terms of the structure of a graph and parameters.
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5.1 Structure

The graphical structure associated with an HCTBN, with labeled nodes X for binary hypoexponen-
tial variables, labeled nodes H for auxiliary hidden variables, and labeled nodes Y for exponential
variables, is defined first. Values of a binary variable X come from {1, 2}; hidden and exponential
variable take values from {1, . . . , n}. The time duration of a hypoexponential variable follows a
hypoexponential distribution, while it can only take two possible values, indicated by 1 and 2. The
parents of a variable X in its corresponding graph are denoted by π(X).

Definition 1 (HCTBN Graph) An HCTBN graph is a node-labeled graph defined by a tuple G =
(V,E, b, l), where V = X∪H∪Y denotes a set of nodes where X, H and Y are mutually disjoint,
E ⊆ V ×V a set of arcs on V, b a bijective function b : X → H, and l a label function such that
l(X) = hypoexponential, l(H) = hidden, and l(Y) = exponential. Furthermore, the graph G has
the following properties:

1. For any X ∈ X, b(X)→ X ∈ E and X → b(X) ∈ E;

2. For any Z ∈ Y ∪X, Z → X ∈ E iff Z → b(X) ∈ E, X ∈ X;

3. For any H ∈ H, H → Y 6∈ E;

4. For any H,H ′ ∈ H, H → H ′ 6∈ E.

Property 1 states that for any X ∈ X, there is exactly one associated hidden variable H,H = b(X).
This also implies that in an HCTBN X and H have the same cardinality. In addition, there are three
main restrictions on the arcs in the HCTBN graph. First, Property 1 asserts that nodeX is connected
to its associated hidden node b(X) by a bidirected arc. Second, Property 2 asserts that the associated
hidden node b(X) has an exponential node Y, Y ∈ Y, as a parent if and only if Y is also a parent of
X . Of course, Y can be a parent of more than one hypoexponential nodes, and thus be a parent of
more than one hidden nodes. For example, we may have an exponential node Y be a parent of two
distinct hypoexponential nodes X , X ′, i.e., Y → X and Y → X ′. According to Definition 1, node
Y is also a parent of the associated hidden nodes b(X) and b(X ′), i.e., we also have Y → b(X)
and Y → b(X ′) in the graph. The graph properties imply that for each hypoexponential node X ,
the node has the same number of parents as its associated hidden node b(X). Thus, the number of
parameters for the hidden node b(X) grows exponentially with the number of parents of node X .
Third, Properties 3-4 state that a hypoexponential node X is the only child for its associated hidden
node b(X). This implies that there are no direct connections between any two distinct hidden nodes.

Now we can describe the time distribution for infection I and lung function LF in the COPD
network by modeling them as hypoexponential variables in an HCTBN.

Example 1 For the COPD problem, the eight variables are categorized into three groups: hypoex-
ponential variables X = {I, LF}, exponential variables Y = {V,C,D,W} and hidden variables
H = {H1, H2} with b(I) = H1 and b(LF ) = H2. The corresponding HCTBN graph is depicted in
Fig. 4. Hypoexponential nodes I and LF have hidden nodesH1 andH2 as parents, respectively. In
addition, hypoexponential node LF has the hypoexponential variable I as a parent, thus its corre-
sponding hidden node H2 also has an incoming arc from node I . Furthermore, all the exponential
nodes excluding node C are either a child of the hypoexponential node I or of LF . It is important
to mention that hidden nodes H1 and H2 are not directly connected with the exponential variables.
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I LF

V C

W

D

H2H1

Fig. 4: An HCTBN graph for the COPD problem; I: infection, V : sputum volume, C: cough,
LF : lung function, D: dyspnea, W : wheeze, and H1 and H2 are hidden nodes corresponding
to I and LF , respectively. Dashed nodes correspond to hidden variables H, solid blue nodes to
hypoexponential variables X, and solid nodes to the rest nodes Y.

5.2 Model Definition

First, we generalize the HCTBN as originally defined in Liu et al. (2018).

Definition 2 (Hidden Continuous Time Bayesian Networks (HCTBNs)) A hidden continuous
time Bayesian network (HCTBN) is a triple N = (G,Q, P0) with the HCTBN graph G as de-
fined in Definition 1. In addition, Q is a set of conditional intensity matrices and P0 is the ini-
tial distribution for the variables associated to the nodes in the graph G. For each X ∈ X
with nX -order hypoexponential distribution and H = b(X), nX ∈ N, nX ≥ 2, we have either
P0(X = 1, H = 1) = 1 or P0(X = 2, H = nX) = 1. The following intensity matrices for
variables X and H are defined: QH|X=1,U=u, QH|X=2,U=u, QX|H=1,U=u, QX|H=nX ,U=u, and
for nX ≥ 3, QX|H∈{2,...,nX−1},U=u = O (null matrix), where U = π(H) ∩ π(X) and u are the
assignments to the variables U. Details are given in Liu et al. (2018).

Note that the order for the hypoexponential distribution may differ from one hypoexponential
variable to another, hence the use of the subscript X in nX .

Example 2 Consider an HCTBN with its HCTBN graph given in Fig. 4. In the model, we consider
the intensity matrices for the hypoexponential variable LF and its corresponding hidden variable
H2. Suppose the hypoexponential variable LF has an nLF-order hypoexponential distribution,
where nLF = 4, and we have parameters λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4, γ1 = 5, γ2 = 6, γ3 =
7, γ4 = 8 when I = 1, and λ1 = 9, λ2 = 10, λ3 = 11, λ4 = 12, γ1 = 13, γ2 = 14, γ3 = 15, γ4 =
16 when I = 2, this gives the intensity matrices for variable LF and H2 shown in Fig. 5.

In addition, hypoexponential variable LF has a number of exponential variables as children
and we also consider the structure of the intensity matrix for one of its children D. There are no
restrictions on the intensity matrices for variable D:

QD|LF=1 =

(
−29 29
30 −30

)
QD|LF=2 =

(
−31 31
32 −32

)

6. Parameter Learning

An important task for any probabilistic graphical models is to estimate parameters from data. As
HCTBNs fit naturally into the CTBN framework, existing learning algorithms can be directly ap-

243



LIU ET AL.

QH2|LF=1,I=1 =


−1 1 0 0
0 −2 2 0
0 0 −3 3
0 0 0 0



QH2|LF=2,I=1 =


0 0 0 0
7 −7 0 0
0 6 −6 0
0 0 5 −5



QH2|LF=1,I=2 =


−9 9 0 0
0 −10 10 0
0 0 −11 11
0 0 0 0



QH2|LF=2,I=2 =


0 0 0 0
15 −15 0 0
0 14 −14 0
0 0 13 −13



QLF |H2=1,I=1 =

(
0 0
8 −8

)
QLF |H2∈{2,3},I=1 =

(
0 0
0 0

)
QLF |H2=4,I=1 =

(
−4 4
0 0

)
QLF |H2=1,I=2 =

(
0 0
16 −16

)
QLF |H2∈{2,3},I=2 =

(
0 0
0 0

)
QLF |H2=4,I=2 =

(
−12 12
0 0

)

Fig. 5: Parameters for hypoexponential variable LF and its associated hidden variable H2 in the
HCTBN with its structure given in Fig. 4.

plied to estimate parameters for HCTBNs. Alternatively, HCTBNs can be transformed into their
equivalent direct models having the same time distribution for hypoexponential variables. In this
section, we define such equivalent direct models from given HCTBNs. The introduction of these
models only serves as an alternative to estimate parameters for HCTBNs.

Definition 3 (Equivalent Direct Graph) LetG = (V,E) be an HCTBN graph with hypoexponen-
tial nodes X, hidden nodes H and exponential nodes Y and V = X∪H∪Y. An equivalent direct
graphG′ is defined as a graphG′ = (V′,E′), with nodes V′ = X∪Y and arcs E′ = E∩(V′×V′).

For an HCTBN graphG, an equivalent direct graphG′ excludes all the hidden nodes H from the
graphG, while it includes all the hypoexponential and exponential nodes. Any arcs linked to hidden
nodes are also omitted in graph G′. For example, the hidden nodes H1 and H2 in the HCTBN in
Fig. 4 are omitted in its equivalent direct graph as shown in Fig. 6.

I LF

V C

W

D

Fig. 6: An equivalent direct graph for the HCTBN of the COPD problem as given in Fig. 4; I:
infection, V : sputum volume, C: cough, LF : lung function, D: dyspnea, W : wheeze.

Definition 4 (Equivalent Direct Models) Let N be an HCTBN with intensity matrices Q and
graph G. An equivalent direct model M is defined as a triple M = (G′,Q′, P ′0) where graph
G′ = (X,Y,E′) is defined as in Definition 3 and Q′ is a set of intensity matrices over the nodes in
graph G′ and P ′0 is the initial distribution with P ′0(X = 1) = 1 or P ′0(X = nX + 1) = 1, for any
X ∈ X.

In addition, intensity matrices for any variable Y ∈ Y satisfy the following conditions:

• If for any X ∈ X, X 6∈ π(Y ), QMY |π(Y ) = QNY |π(Y ) where QMY |π(Y ) and QNY |π(Y ) are the
intensity matrices for variable Y inM and N respectively; otherwise, QM

Y |K=kM,K′=k′
=

QN
Y |K=kN ,K′=k′

, where K = π(Y ) ∩X and K′ = π(Y ) ∩Y, kM and kN are the values of
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variables K inM and N respectively, and for any K ∈ K, if kM ∈ {1, . . . nK}, where nK
is the number of possible values for variable K inM, then kN = 1; otherwise kN = 2.

Furthermore, for each variable X ∈ X, the intensity matrices QMX|π(X)=u are defined by
re-ordering the states of QNXH|π(X)\{H}=u from current indices 1, . . . , 2nX to 1, 3, . . . , 2nX −
1, 2nX , . . . , 4, 2, where H = b(X) in N .

Definition 4 gives a general procedure to transform the intensity matrices for variables Y and
X from an HCTBN N to its equivalent direct model M. The transformation involves two parts,
one part for exponential variables Y and one part for hypoexponential variables X. For variable
Y ∈ Y, its intensity matrices inM are simply a copy of those in N if its parents do not contain
any hypoexponential variables. Otherwise, we also need to transform the values of hypoexponential
variables fromM to N before copying intensity matrices from N . For example, variable X is an
nX -order hypoexponential variable and is a parent of exponential variable Y . Then the intensity
matrices QMY |X=1:nX

for variable Y in M corresponds to QNY |X=1 in N , and QMY |X=nX+1:2nX
to

QNY |X=2. For a hypoexponential variable X , its intensity matrices inM are transformed from N
by amalgamating the joint intensity matrix of variable X and its associated hidden variable H and
then reordering the resulting joint intensity matrix in a particular order.

For a binary variable X with nX -order hypoexponential distribution in an HCTBN, the hypoex-
ponential distribution is encoded in the associated nX -valued hidden variable H,H = b(X). In its
equivalent direct model, the hypoexponential distribution is represented by adding additional states
to its corresponding variable X ′. Thus, the size of the state-space of variable X ′ grows to 2 · nX in
the equivalent direct model from 2 states in the HCTBN.

Example 3 For the HCTBN N as parameterized in Example 2, the structure of its equivalent
Markov model M is given in Fig. 6 and we have an 8 × 8 intensity matrix for variable LF in
M as given in the following:

QMLF =

1 2 3 4 5 6 7 8


−1 1 0 0 0 0 0 0 1
0 −2 2 0 0 0 0 0 2
0 0 −3 3 0 0 0 0 3
0 0 0 −4 4 0 0 0 4
0 0 0 0 −5 5 0 0 5
0 0 0 0 0 −6 6 0 6
0 0 0 0 0 0 −7 7 7
8 0 0 0 0 0 0 −8 8

The size of the intensity matrix of variable LF expands from 2 in N to 8 in M . In model M,
variable LF has eight states and states 1 to 4 correspond to state 1 for its associated variable in
N , and the rest states, i.e., 5 to 8, correspond to state 2.

In addition, we also need to transform the intensity matrices for variable D. Since variable
D has the hypoexponential variable LF as a parent, we need to copy intensity matrices from N
corresponding to each state of LF inM, this gives:

QMD|LF∈{1,2,3,4} =

(
−29 29
30 −30

)
QMD|LF∈{5,6,7,8} =

(
−31 31
32 −32

)
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Fig. 7: Learning for COPD networks using the direct and hidden approaches with the number of
hidden states ranging from 2 to 10 in the learned models, while it is fixed to 4 in the underlying
model: the time until convergence in (a) and the number of iterations until convergence in (b).

7. Experiments

In the experiments, we studied parameter estimation in HCTBNs using the direct and hidden ap-
proaches. In both approaches, the EM algorithm is used to estimate parameters as either the hidden
variables in HCTBNs are unobserved or the hidden states are unknown in their corresponding di-
rect models. For the EM algorithm used in the methods, we compared the time and the number
of iterations until the EM algorithm converges, and the quality of learned models in terms of log-
likelihood. The model we used in the following experiments is given in Fig. 4, where we have two
hypoexponential variables. For the hidden variables H1 and H2, the number of hidden states in the
underlying model was both set to 4, and it varied from 2 to 10 in the learned models.

A number of software packages were used to learn parameters for HCTBNs. We used the
existing CTBNs learning algorithms in the package CTBN-RLE1 to estimate parameters in HCTBNs
directly. For the direct approach, the transformation between a given HCTBN and its equivalent
direct representation was implemented with R. We also employed EMpht2 to learn parameters for
this direct representation from right censored data, i.e., a variable staying in a state for at least a
given amount of time. A more detailed discussion about censored data can be found in Gopalratnam
et al. (2005). The synthetic training datasets for the COPD network consisted of approximately 6000
observations on average.

The time until the EM algorithm converges and the number of iterations are shown in Fig. 7a
and Fig. 7b, respectively. The results in Fig. 7a suggest that the time until the EM algorithm con-
verges grows exponentially with the number of states of the hidden variables using existing CTBNs
learning algorithms, whereas there is little impact of the choice of the hidden states on the equivalent
direct models (see the exponentially increasing time for HCTBNs when the number of hidden states
increases from 6). Similarly, the number of iterations until convergence grows faster using existing
CTBN learning algorithms than the equivalent direct models, whereas the difference is relatively

1. http://rlair.cs.ucr.edu/ctbnrle/
2. http://home.math.au.dk/asmus/pspapers.html
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Fig. 8: Test log-likelihood for learned models using the direct and hidden approaches from 30
different underlying models. For a given underlying model, models are learned using each approach
with 30 different starting parameters for the EM algorithms. The number of hidden states in both
learned models and underlying models is set to 4. The log-likelihood difference is computed by
subtracting the mean log-likelihood of learned models from those of the underlying models. Lower
values indicate a better parameter estimation. Whether the difference was significant was computed
by carrying out a paired t-test on the mean log-likelihood of the learned models using direct and
hidden approaches with p-value less then 0.05.

small. By combining the results in Fig. 7a and Fig. 7b together, we can conclude that the time
for each iteration in CTBNs grows exponentially with the number of hidden states. This is mainly
attributed to the relatively large number of variables in the models, leading to a significant increase
in the computation at each iteration.

We further evaluated the quality of the learned models in terms of log-likelihood. To rule out
the randomness of starting parameters in the EM algorithms, we learned models with 30 different
starting parameters for each approach. To test the performance for general models, these learning
methods were used to estimate parameters for 30 underlying models with the same structure but
different parameters. The test data were generated independently from learning training data and
the log-likelihood difference was subtracted the mean log-likelihood on the test data of learned
models from those of the underlying models, as shown in Fig. 8. A lower log-likelihood difference
indicates higher quality of the learned models. It is clear that the hidden approach has a better and
more stable estimation of parameters for the underlying models (p < 0.05 based on a paired t−test
for the mean log-likelihood for both methods), which supports the conclusion that the quality of
the learned models achieved by the hidden approach is significantly higher than that of the direct
approach.

8. Conclusions

In this paper, we generalize our recently proposed HCTBN where a hypoexponential time distribu-
tion is restricted to a single hypoexponential variable by allowing any number of hypoexponential
variables. In addition, we study the hidden and direct methods to estimate parameters from complete
data. The experimental results show that the hidden approach indeed can learn models with signifi-
cant higher quality. Transforming the learning task into equivalent direct models has the advantage
of lower computational cost at the expense of the quality of learned models. Nevertheless, such an
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approach will be infeasible when some non-hidden variables, i.e., exponential and hypoexponential
variables, are partially known.

A limitation of HCTBNs so far is that the hypoexponential variables are restricted to be binary
as the focus of this paper has been on introducing a richer time distribution. In future work, we aim
to support multinomial hypoexponential variables, for example by using some states of the hidden
variables for the state transitions of hypoexponential variables, and the rest for representing the
hypoexponential time distribution. Using existing learning algorithms in CTBNs has the advantage
of learning from partial trajectories, where observable variables are not fully known. However, these
algorithms so far suffer from costly computation time. One possible solution to solve this problem
is to decompose the EM algorithm into two parts, one part consisting of partially observed variables
another part consisting of fully observed variables. This decomposition will significantly reduce the
computation time, in particular when the exponential variables and their parents are fully observed.

References

N. T. J. Bailey. A statistical method of estimating the periods of incubation and infection of an
infectious disease. Nature, 174(4420):139, 1954.

M. Bladt. A review on phase-type distributions and their use in risk theory. ASTIN Bulletin, 35(1):
145–161, 2005.

K. Gopalratnam, H. Kautz, and D. S. Weld. Extending continuous time Bayesian networks. In
Proceedings of the 20th National Conference on Artificial Intelligence, volume 2, pages 981–
986, 2005.

K. J. Gough. The estimation of latent and infectious periods. Biometrika, 64(3):559–565, 1977.

M. Liu, F. Stella, A. Hommersom, and P. J. F. Lucas. Representing hypoexponential distributions in
continuous time Bayesian networks. In Information Processing and Management of Uncertainty
in Knowledge-Based Systems, 2018.

S. Moral, R. Rumı́, and A. Salmerón. Mixtures of truncated exponentials in hybrid Bayesian net-
works. In Proceedings of the 6th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, ECSQARU ’01, pages 156–167, 2001.

U. Nodelman and E. Horvitz. Continuous time Bayesian networks for inferring users’ presence and
activities with extensions for modeling and evaluation. Microsoft Research, July-August, 2003.

U. Nodelman, C. R. Shelton, and D. Koller. Continuous time Bayesian networks. In Proceedings
of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pages 378–387, 2002.

U. Nodelman, C. R. Shelton, and D. Kollerthu. Expectation maximization and complex duration
distributions for continuous time Bayesian networks. In Proceedings of the Twenty-First Confer-
ence on Uncertainty in Artificial Intelligence, pages 421–430, 2005.

T. A. Seemungal, G. C. Donaldson, A. Bhowmik, D. J. Jeffries, and J. A. Wedzicha. Time course
and recovery of exacerbations in patients with chronic obstructive pulmonary disease. American
Journal of Respiratory and Critical Care Medicine, 161(5):1608–1613, 2000.

R. Verbelen. Phase-type distributions & mixtures of Erlangs. Master’s thesis, 2013.

248


	Introduction
	Related Work
	Motivating Example
	Phase-type Distributions
	Hidden Continuous Time Bayesian Networks
	Structure
	Model Definition

	Parameter Learning
	Experiments
	Conclusions

