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Abstract

Simple Propagation is a recently introduced algorithm for inference in discrete Bayesian
networks using message passing in a junction tree. Simple Propagation is similar to Lazy
Propagation, but uses the simple one in, one out-principle when computing messages be-
tween cliques of the junction tree instead of using a more in-depth graphical analysis of
the set of potentials. In this paper, we describe how to apply Arc-Reversal (AR) as the
marginalization algorithm during message passing in Simple Propagation. We consider
both discrete and hybrid Bayesian networks, where the continuous variables are assumed
to be Conditional Linear Gaussian (CLG). The use of AR eliminates the need for complex
matrix operations in case of CLG networks, while offering opportunities to exploit addi-
tional independence and irrelevance properties in both cases when compared to Variable
Elimination (VE). The performance of Simple Propagation with AR has been evaluated on
a set of real-world Bayesian networks with discrete variables and hybrid Bayesian networks
constructed by randomly replacing discrete variables with continuous variables under the
CLG constraints. The performance of Simple Propagation with AR is compared with the
performance of Lazy Propagation with AR. The results of the experimental performance
analysis of Simple Propagation with AR are encouraring.

Keywords: CLG Bayesian network; Exact inference; Simple Propagation.

1. Introduction

A Bayesian network over discrete variables is a factorized representation of a joint prob-
ability distribution, e.g., Pearl (1988); Cowell et al. (1999); Koller and Friedman (2009);
Kjeerulff and Madsen (2013). It can be used as an efficient knowledge representation for
managing uncertainty in a problem domain. Unfortunately, both exact and approximate in-
ference in Bayesian networks are NP-hard Cooper (1990) and Dagum and Luby (1993). This
means that exponential complexity algorithms are justified (unless P=NP). Even though
inference, in general, is NP-hard, the process is efficient for a large set of real-world Bayesian
networks using exponential complexity algorithms such as, for instance, join tree or junction
tree based algorithms Jensen et al. (1990); Shenoy and Shafer (1990); Madsen and Jensen
(1999).
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SIMPLE PROPAGATION WITH ARC-REVERSAL IN BAYESIAN NETWORKS

The Conditional-Linear Gaussian (CLG) Bayesian network is a hybrid Bayesian network
over both continuous and discrete variables, where the continuous variables are assumed
to follow a CLG distribution and discrete variables can only have discrete parents. Some
of the earliest work on belief update in CLG network was performed by Lauritzen (1992)
and Lauritzen and Jensen (2001) who presented two different methods for belief update
using message passing in a strong junction tree, while Cowell (2005) and Madsen (2008)
presented alternative methods that eliminate the need for complex matrix operations. A
more recent work is Mu et al. (2010). Shenoy (2006) described how to perform inference in
hybrid Bayesian networks using mixtures of Gaussian, while Cinicioglu and Shenoy (2009)
describe a framework for arc-reversal in hybrid Bayesian networks with deterministic vari-
ables. We refer the reader to Salmeron et al. (2018) for a thorough overview of both exact
and approximate methods for belief update in CLG networks.

Simple Propagation (Butz et al., 2016a,b; Madsen et al., 2016) is a recently introduced
algorithm for belief update in discrete Bayesian networks. It is an algorithm based on
message passing in a junction tree designed to take advantage of a decomposition of the
clique and separator potentials and evidence to improve efficiency of inference. In this way
it is similar to Lazy Propagation (Madsen and Jensen, 1999). A main difference between
Simple Propagation and Lazy Propagation is that the former utilizes the one in, one out-
principle, which states that a potential relevant for a message has at least one non-evidence
variable in the separator and at least one non-evidence variable not in the separator.

In the original work, Simple Propagation would use VE (Zhang and Poole, 1994) as
the marginalization method during message passing. In this paper, we introduce Simple
Propagation with Arc-Reversal (Olmsted, 1983; Shachter, 1986, 1990) (AR) for belief update
in both discrete and CLG Bayesian networks. By using AR as the elimination operation in
CLG Bayesian networks, complex matrix inversion operations are avoided and opportunities
for exploiting additional independence and irrelevance properties are achieved. Applying AR
as the marginalization algorithm used during message passing of Simple Propagation means
more information on the structure of the potentials created during inference is maintained.
As a consequence additional barren variables may be identified reducing the cost of inference.
The paper includes the results of an empirical evaluation comparing the performance of
Simple Propagation with AR with the performance of Lazy Propagation using AR on a
number of real-world Bayesian networks. The results are encouraging.

The remainder of this paper is organized as follows. Section 2 contains background
information and Simple Propagation with AR is introduced in Section 3. Section 4 contains
experimental results including a discussion. Conclusions are drawn in Section 5.

2. Preliminaries and Notation

Since Simple Propagation is similar to Lazy Propagation in terms of message passing in a
junction tree exploiting a decomposition of clique and separator potentials, the presentation
of the algorithm is partly based on (Madsen, 2008). The main difference is in the computa-
tion of messages, which is the focus of the paper. The reader is referred to (Madsen, 2008)
for additional details.

A CLG network is a hybrid Bayesian network, where the joint probability distribution
is a CLG. Let A and I'" be the set of discrete and continuous variables, respectively. We
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assume pa(X) C A, for each X € A, and Y € I" has a CLG density of the form:

flI=i,7Z=z2)= —I—ZBJ i)zj,0%(1)),

where Z C T' are the continuous parents with value z = (z1,...,2)z) and I C A are the
discrete parents of Y in configuration i, respectively, and «(7), ﬁj( ) € R are coefficients of
a linear regression model of y given its continuous parents, indexed by i and j, and o2(i) is
the variance. A CLG Bayesian network N' = (AUT, G, P, F) induces a multivariate normal
mixture density over A UT of the form:

P(A)- f(T[A) = ] P(X[pa(X))- [ f(VIpa(y)
XeA Yell

where P are probability distributions and F are density functions for A and I', respectively.
A discrete Bayesian network can be considered as a special case of a CLG Bayesian network,
where I' = () and F = ().

Belief update is defined as the process of computing all single posterior marginals given
a set of evidence, i.e., computing P(X |¢) for X € A and f(y|e) for Y € I', where € is a
set of variable instantiations. That is, evidence is assumed to be of the form X; = x;, for
Xie A and Y; =y, for Y € I'. We let ea denote the evidence on discrete variables A(e)
and er denote the evidence on continuous variables T'(e).

AR is the process of reversing the direction of an edge in the graph while maintaining
the same underlying joint probability distribution. Let (A, B) be a directed edge (such that
there is no directed path from B to A in G). Then reversing the edge (A, B) amounts to
computing (assuming discrete variables)

P(Blpa(A) Upa(B)\{A}) = ) P(B|pa(B))P(A|pa(4)),
A

P(B|pa(B))P(A|pa(4))
P(B|pa(A) Upa(B) \ {4})

Reversing the edge (A, B) produces two new conditional probability distributions for A
and B, but leaves the remaining distributions unchanged. Notice that AR is not a local
operation. We need to ensure that no cycle is introduced by an AR operation. Figure 1
taken from Madsen (2008) shows a motivating example for the use of AR. The original graph
is at the center while the graphs on the left and right sides show the results of reversing
arcs and eliminating A. The arc-reversal order is shown below each graph.

P(Alpa(A) Upa(B)\ {A}U{B}) =

Figure 1: Two different sequences of ARs produce two different DAG structures.
The EXCHANGE operation is used as part of continuous variables elimination. Let Y € T’

with parent set pa(Y) = {Z,Z1,...,Z,} C I' and let Z € I'" with parent set pa(Z) =
{Z1,...,Z,} C T such that Y | Z,72y,...,Z, ~ N(ay + BzZ + Z;-l:lﬁij,o}%) and
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Z 1 Zv,..sZn ~ N(az + 377, §;Zj,0%). The EXCHANGE operation is basically arc-
reversal (Cowell, 2005; Shachter, 1986; Shachter and Kenley, 1989). The distribution of YV
after EXCHANGE is (we have ignored a potential conditioning on discrete variables):

n
Y‘Zl, ey n NN(O[Y + Bzaz + Z(ﬂ] —f-ﬁz(Sj)Zj,U% —I—,B%U2),
j=1

while the distribution of Z is:

n
aZU%, - ayﬁza% + Bzo'%y + Z((SJU%/ - Bjﬁza%)zj‘ 5 o
Z|Y,Zl,...,Zn~N< /=1 A% )

2 ) » 9 2 2
oy + Bz07 oy + B0y

Let N be a CLG Bayesian network over variables AUT and let T = (C,S) be a
strong junction tree of N with root R. The 7 = (C,S) is constructed by moralization
and triangulation of G such that I' is eliminated before A, i.e., o(I') < o(A), where o =
(v1,...,vy,) is an elimination order. Each distribution P(X |pa(X)) (density f(y|pa(Y))) is
associated with a clique C € C such that X Upa(X) C C (YUpa(Y) C C). A clique C € C
is referred to as a boundary clique, if C NT # () and either B C A or BNT C I'(e), i.e.,
B NT is instantiated by evidence er, where B = pa,(C) is the parent clique of C'in 7.

3. Simple Propagation with Arc-Reversal

Associated with each clique C of T is a clique potential 7 = (P¢, F¢) of probability po-
tentials Po and density functions F¢ assigned to C' during the initialization process. Like
Lazy Propagation in (Madsen, 2008), Simple Propagation pass messages according the
Shenoy-Shafer scheme with one message passed in each direction over the separators of T,
where messages are computed as presented below. The message from clique A to clique
B is denoted w4, p and consists of a set of probability potentials P4_,p and a set of den-
sity functions F4_,p computed from the potentials of A and its neighbors (except B) by
marginalization of all variables not in B, i.e., ma,p = (T('A ® (®C€adj(A)\{B}7rcﬁA))¢B,
where ® is the clique potential combination operator (set union in Simple Propagation)
and adj(A) are the cliques adjacent to A. Evidence € is inserted during initialization of T
by instantiating all probability distributions to reflect the evidence, while evidence er is
inserted using the PUSH operation presented below (Lauritzen and Jensen, 2001; Madsen,
2008).

Simple Propagation applies the one in, one out-principle when a clique C; sends a
message to a neighboring clique C;; over a separator S = C; N C;. This principle states that
a potential ¢ has at least one non-evidence variable in S and another non-evidence variable
Z not in S. Simple Propagation then eliminates Z when computing the message from C;
to C}, where in the case of CLG networks Z can be either discrete of continuous and ¢ can
be either a probability potential or a density function.

The computation of messages in Simple Propagation is performed using the Simple
Message Computation (SMC) algorithm shown as Algorithm 1. The SMC algorithm takes
five arguments: a set potentials P, a set of densities F, a separator S, a set of discrete
evidence variables A(e), and a set of continuous evidence variables I'(e).
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Procedure SMC(P,F,S,A(e),I'(¢))
P UF = REMOVEBARREN(P U F, S)
while 3f € F with Y ¢ (S\T'(¢)) and Z € (S\T'(¢)) do
| F = ELIMINATE(Y, F)
end
while 3p € P with X & (S\ A(e)) and Z € (S\ A(e)) do
| P = ELIMINATE(X, P)
end
return {p € P | dom(p) C S} and {f € F | dom(f) C S}
Algorithm 1: Simple Message Computation.

The ELIMINATE operation uses AR on discrete variables and the EXCHANGE (essentially
AR) and PUSH operations on continuous variables. The variable to be marginalized using the
ELIMINATE operation is made barren by a sequence of AR / EXCHANGE, PUSH operations.
Afterwards, the variable and its single potential or density are simply removed.

In addition to passing the potentials created by Algorithm 1, SP also passes any potential
p or density f for which dom(p),dom(f) C S, i.e., the potentials, where the domain is a
subset of the separator.

The principle idea of message passing in the strong junction tree is to pass messages
from the leaf cliques to the boundary clique. This involves only continuous variables. At
this point, continuous evidence can be inserted using the PUSH operation. This is followed
by message passing from the boundary cliques to the root and back to the boundary cliques
only involving discrete variables. After this round of message passing, the posterior marginal
P(X |€) can be computed from any clique or separator containing X. The posterior marginal
for Y € I' is computed using the PUSH operation.

The propagation of er and the computation of marginal distributions for I" variables
proceed as separate steps using the PUSH operation. The evidence er is inserted one finding
at a time and the posterior distributions for I' are computed one at a time.

In the experimental analysis, we consider both AR and VE as the variable marginaliza-
tion operation when computing marginals for discrete variables. When computing marginals
there is no point in maintaining additional semantic information for later computations.

The following subsection on the PUSH operation and the operation for inserting contin-
uous evidence are based on (Madsen, 2008).

3.1. PUSH Operation

The posterior marginal distribution of a variable Y € T' is a mixture of Gaussian distribu-
tions of the form . P(j) - N(a(j), 02(j)), i.e., a weighted sum of Gaussian distributions
indexed by a finite set of discrete variables J. This means that in order to compute the
marginal we need to (recursively) eliminate all continuous variables from the CLG distri-
bution f(y|I = i,Z = z) of Y. This process may add additional variables to the tail of
the distribution and may involve variables not in the domain of the clique to which Y was
assigned during the initialization process.

In the discrete case, a junction representation 7 of a Bayesian network A is always
wide enough to support the calculation of any posterior distribution. This is not the case
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in hybrid Bayesian networks as it is not possible to perform a distribute operation from the
boundary cliques to the leaves of the strong junction tree and ensure that the distributions
remain in the CLG distribution family. Thus, it may be necessary to push a variable Y € T’
up the tree temporarily extending the parent separator and clique with Y (Lauritzen and
Jensen, 2001). The PUSH operation may be applied until Y becomes part of a boundary
clique.

Let A be the clique closest to R such that Y € A, A ¢ bd(C), B is the parent clique of
A, and S = AN B. The PUSH operation extends S and B to include Y. In the process, any
continuous conditioning variable Z € S of Y is eliminated. The process of eliminating tail
variables not in S is repeated recursively until tail(f) C S.

3.2. Continuous Evidence

The process of inserting evidence y on a continuous variable Y € T', i.e., inserting ey =
{Y = y}, considers two cases. First, assume Y has only discrete parents, if any, i.e., [ =
pa(Y) C A. Inserting ey creates a likelihood potential p(y|I) over I such that:

exp (—(y — ay (i))*/(20%.(i)))

plyll =1i) = ,
2mo2 (i)

where we assume o2 (i) > 0 for all i (Lauritzen and Jensen, 2001; Cowell, 2005) (if 02(i) = 0,
insertion of evidence may be undefined, see (Cowell, 2005) who cites (Lauritzen and Jensen,
2001)).

The likelihood potential p(y| ) replaces the density of Y in the clique potential 7o =
(P,C) of the clique C to which Y is assigned, i.e., 75 = (P U {p}, F\ {f}).

Second, assume pa(Y) € A. In this case, insertion of evidence ey requires a sequence
of PUSH operations in order to compute the marginal mixture density function for Y. The
density f of Y is pushed to the boundary clique and evidence €y is inserted as described
above. As the final step in inserting the evidence ey, Y is instantiated in all density
functions, where Y is a tail variable.

3.3. Example

Consider the CLG network A shown in Figure 2 over seven variables with A = {X3} and
I' = {Yy,Y1,Y2, Yy, Y5, Ys}. An initialized (sub-optimal) strong junction tree 7 of N is
shown in Figure 3. Let the strong root R be clique R = X3Y,Y5Ys and let A = X3Y,Y5Y5
such that the first message to be passed is m4_, g and let € = (.

Figure 2: A Bayesian network with one discrete (X3) and six continuous variables.

Figure 3: A junction tree with distributions and densities assigned to cliques.

When considering the message m4_,r there are two densities that satisfy the one in,
one out-principle: f(Yy|Y1,Y2) and f(Y5|Ya, X3). Assume that f(Yy|Y7,Y2) is selected
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and that Y5 is selected as the variable to eliminate. This means that a sequence of AR-
operations must be performed to make Y5 barren. The two arcs to consider for reversal are
(Ya,Ys) and (Ya2,Ys5). Assume (Y2,Y)) is selected as the first arc to reverse. This produces
the following result {f(Yy), f(Y1|Y0), f(Ya| Y1), f(Y5]| X3,Ya)}. Now only f(Yy]|Y7) satisfies
the principle and Y7 is eliminated using AR, and subsequently Yj is eliminated by AR. This
means that the message sent to Ris mar = ({P(X3)}, {f(Ya), f(Y5]| X3,Ys)}). Notice that
the structure of the potentials depends on the AR order applied, e.g., an alternative message
produced by first reversing (Y2, Ys) is masr = ({P(X3)}, {f(Ya]| X3, Y5), f(Y5] X3)}).

4. Experiments

In this section, we report on the results of a preliminary experimental analysis of Simple
Propagation using AR as the marginalization algorithm.

4.1. Setup

The analysis is based upon the 25 (real-world) Bayesian networks of different complexity
shown in Table 1. These networks all have discrete variables only. Column |X'| of the table
specifies the number of variables in the Bayesian network, while s(A) specifies the total size
of the cliques of the junction tree used (in log-scale) computed as the sum of the discrete
part and the continuous part. To evaluate the performance of Simple Propagation on CLG
Bayesian networks, we randomly changed 10% and 90% of the variables into continuous
variables under the constraints of CLG networks. Column |)),| specifies the number of
continuous variables in the CLG Bayesian network, while s(I',) specifies the total size of
the cliques of the junction tree for the CLG network with p = |T'|/(|T| + |A]).

Table 1: Descriptions of the networks used in the experiments.

Id  Network X s(A) Vionl  s(Tio%)  [Yoowl s(leo%)
1 3nt 58 4.1 6 4.2 53 2.7
2 Adapt.dx09_t1 133 3.3 14 3.4 120 6.1
3 Amirali 681 7.3 69 8.6 613 7.7
4 Barley 48 7.2 5 7.3 44 3.3
5 Diabetes 413 7.0 42 7.1 372 5.8
6 HKV 44 8.0 5 8.3 40 3.2
7  Hepar.II 70 3.4 7 3.4 64 3.2
8 KK 50 7.1 5 8.2 46 3.7
9  Mildew 35 6.5 4 7.3 32 3.3

10 Muninl 189 7.9 19 8.3 171 9.3

11  Water 32 6.5 4 6.6 29 3.3

12 andes 223 5.3 23 6.1 201 5.8

13 ccldb 145 3.6 15 3.5 131 3.3

14 cc245 245 5.8 25 5.8 221 4.1

15 FWE 109 7.3 11 7.9 99 8.8

16  hailfinder 56 4.0 6 4.0 51 2.9

17  medianus 56 6.1 6 6.2 51 3.0

18 oow 33 6.8 4 7.3 30 2.8

19  oow_bas 27 6.3 3 6.5 25 2.5

20  oow_solo 40 6.7 4 7.6 37 2.9

21  pathfinder 109 5.3 11 5.3 99 4.6

22 powerplant 46 2.7 5 2.7 42 2.5

23  ship 50 7.4 5 8.1 46 3.2

24 system_vbH7 85 6.1 9 6.8 7 7.6

25  win95pts 76 3.4 8 3.4 69 3.2
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We investigate the behavior of Simple Propagation with AR on both pure discrete
Bayesian networks and CLG Bayesian networks. We consider the average run-time on
random sets of evidence by measuring the time used to compute all marginals given a set
of evidence. Both the number of variables and the variables instantiated by evidence are
selected at random. The number of instantiated variables ranges from zero to m, where
n is the number of variables in the network. For each size s of the evidence set €, we
randomly select s variables to instantiate. The same sets of evidence are used for each
network considering different algorithms.

The belief update process, i.e., message passing and the computation of marginals (for
discrete nodes), in Lazy Propagation with AR is driven by finding a variable elimination
order online under the constraints of the structure of the junction tree. In the experiments,
we use the fill-in-size heuristic, e.g., (Kjeerulff, 1993) to select the next variable to eliminate
using AR. We use the similar Inc X heuristic (Butz et al., 2016b) to drive the selection
of the next potential satisfying the one-in,one-out-principle to consider. Once a potential
is selected the out-variable to eliminate by AR is selected randomly. The Inc X heuristic
selects potentials in order of increasing domain size (i.e., selecting arg ming |[dom(¢)| as the
next potential to consider).

The empirical evaluation is performed on a desktop computer running Ubuntu Linux
11.04 with a four-core Intel (TM) Xeon E31270 3.4GHz processor and 32 GB RAM. The
computer has four physical cores and eight logical cores. Computation time is measured as
the elapsed (wall-clock) time in seconds.

4.2. Results

The experimental analysis was performed on three sets of Bayesian networks: (1) pure
discrete real-world Bayesian networks, (2) Bayesian networks with 10% continuous vari-
ables, and (3) Bayesian networks with 90% continuous variables, producing three sets of
results. For each network, 100 sets of randomly generated evidence were propagated and
all marginals given evidence computed. The analysis considers the mean and variance of
belief update time costs. Table 2 shows the mean and variance of time cost of belief update
for the discrete Bayesian networks. LPAR is Lazy Propagation with AR, while SPARI1
is Simple Propagation with AR, and SPAR2 is Simple Propagation with AR as the mes-
sage computation algorithm and VE as the marginal computation algorithm for discrete
variables.

From Table 2, it is evident that on a majority of the networks (15), LPAR and SPAR1
have similar performance in terms of both mean and variance time costs. In five cases,
SPARI1 has lower mean and variance than LPAR, and in five cases LPAR has lower mean
(and variance) than SPAR1. Using VE as the posterior marginal computation algorithm
clearly improves performance as SPAR2 has lower mean and variance than SPARI for all
cases, except one where performance is the same.

Table 3 shows the mean and variance of time cost of belief update for the hybrid Bayesian
networks. From the table, it is evident that on a majority of the networks time cost of belief
update is higher in the hybrid network than in the purely discrete network. For the case
of CLG networks with 10% continuous variables, the time costs of the three algorithms
considered are similar with SPAR2 having lower costs than LPAR on 11 networks, SPAR1

267



SIMPLE PROPAGATION WITH ARC-REVERSAL IN BAYESIAN NETWORKS

Table 2: Mean and variance of time cost of belief update in seconds.

LPAR

2

2

SPAR2

Id o SPAR1 o o
1 0.02 0 0.02 0 0.02 0
2 0.06 0.001 0.05 0.001 0.05 0.001
3 0.6 0.197 0.62 0.23 0.48 0.113
4 0.11 0.026 0.14 0.051 0.13 0.05
5 1.23 3.222 1.2 3.188 0.97 2.163
6 0.27 0.372 0.29 0.448 0.29 0.444
7 0.06 0.001 0.05 0.001 0.04 0.001
8 0.1 0.01 0.1 0.012 0.09 0.011
9 0.05 0.003 0.05 0.003 0.05 0.003
10 1.12 11.761 1.54  21.795 1.53 21.789
11 0.07 0.003 0.07 0.005 0.07 0.005
12 0.24 0.026 0.23 0.025 0.19 0.014
13 0.13 0.007 0.13 0.007 0.09 0.003
14 0.3 0.026 0.3 0.03 0.23 0.017
15 0.15 0.027 0.15 0.031 0.15 0.031
16 0.03 0.001 0.03 0.001 0.03 0
17 0.05 0.002 0.05 0.002 0.04 0.002
18 0.08 0.009 0.08 0.008 0.07 0.008
19 0.04 0.001 0.04 0.001 0.03 0.001
20 0.08 0.011 0.08 0.011 0.08 0.011
21 0.16 0.021 0.16 0.019 0.11 0.007
22 0.02 0 0.02 0 0.01 0
23 0.16 0.063 0.17 0.064 0.16 0.064
24 0.08 0.003 0.08 0.003 0.07 0.002
25 0.06 0.001 0.05 0.001 0.04 0.001

Table 3: Mean and variance of time cost of belief update in seconds.

10% CLG nodes

90% CLG Nodes

Id LPAR o2 SPARI1 o2 SPAR2 o? LPAR 02 SPAR1 o¢2 SPAR2 o2
1 0.03 0 0.02 0 0.02 0 0.08 0 0.08 0 0.08 0
2 0.06  0.001 0.05  0.001 0.05  0.001 0.28 0.013 0.27 0.015 0.27 0.015
3 2.04 34.924 2.49 42.016 2.15 39.387 0.12  0.001 0.12  0.001 0.12 0.001
4 0.1 0.012 0.11  0.016 0.1 0.015
5 2.14  9.517 2.1 9.244 1.82  7.764 1.87 2.223 1.87 2.265 1.82 2.176
6 0.51  1.519 0.56 1.76 0.55 1.753 0.07 0 0.07 0 0.07 0
7 0.07  0.002 0.06  0.001 0.05  0.001 0.11  0.004 0.11  0.005 0.1 0.004
8 0.38 1.214 0.4  1.596 0.4  1.687 0.14 0.004 0.14 0.004 0.14 0.003
9 0.17  0.065 0.18 0.071 0.17  0.071 0.08 0.001 0.07 0.001 0.06 0.001

10 1.09 8.071 1.57 32.901 1.55 32.705

11 0.07  0.004 0.07  0.006 0.07  0.005 0.06 0.001 0.06 0.001 0.06 0.001

12 0.35  0.063 0.34  0.066 0.3  0.055 1.6 2.729 1.57 2.614 1.59  2.608

13 0.13 0.01 0.12  0.011 0.08  0.002 0.16 0.006 0.16  0.006 0.16  0.006

14 0.33  0.041 0.33  0.045 0.25  0.027 0.35 0.028 0.36  0.036 0.35 0.035

15 0.47  0.996 0.48  0.981 0.48 1.013

16 0.03 0 0.03 0 0.02 0 0.08 0.001 0.08 0.001 0.08 0.001

17 0.06  0.002 0.05  0.002 0.05  0.002 0.1 0.001 0.1 0.001 0.1 0.001

18 0.19  0.092 0.2  0.096 0.19  0.092 0.07 0 0.06 0 0.06 0

19 0.06  0.004 0.06  0.005 0.06  0.004 0.06 0 0.05 0 0.05 0

20 0.32  0.802 0.35  0.891 0.34  0.898 0.08 0 0.08 0 0.08 0

21 0.17 0.02 0.16  0.019 0.11  0.007 0.16 0.015 0.18 0.018 0.17 0.014

22 0.02 0 0.02 0 0.02 0 0.03 0 0.03 0 0.03 0

23 0.8  3.807 0.9 4.053 0.89  4.032 0.14 0.002 0.12  0.001 0.12  0.002

24 0.15  0.037 0.16 0.05 0.15  0.046

25 0.05  0.001 0.05  0.001 0.04 0 0.14 0.003 0.14 0.003 0.14 0.003
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having lower costs than LPAR on 8 networks and LPAR having lowest cost on 7 networks.
For the case of CLG networks with 90% continuous variables, SPAR2 has lower costs than
LPAR on 8 networks, SPAR1 has lower costs than LPAR on 6 networks, and LPAR has
lowest cost on 1 network. As in the discrete case, SPAR2 outperforms SPARI being as
fast or faster than SPAR1 on all examples except one (andes 90% where there is a minor
difference). For four cases, all algorithms were not able to perform belief update for all sets
of evidence. In a few cases, the algorithms ran out of memory.

4.3. Discussion

The experimental analysis has considered the mean and variance time cost of belief update
using Simple Propagation with AR. Simple propagation proceeds like Lazy Propagation
by message passing in a junction tree. In general, the total size of the junction tree is as
expected largest in the group of CLG networks with 10% continuous variables. This is also
reflected in the mean time cost of belief update, where the numbers with few exceptions are
largest for this group of networks. Exceptions include the four cases for the group of CLG
networks with 90% continuous variables, where the algorithm on a few sets of evidence ran
out of memory. The CLG network constraints require that I' must be eliminated before
A during inference. This is enforced by the strong junction tree structure and it has an
impact on performance, including Simple Propagation, as expected.

From the experiments, it is clear that Simple Propagation with AR in many cases
offers an improvement in time cost of belief update compared to Lazy Propagation with
AR. Simple Propagation with AR for message passing combined with VE for computation
of marginals clearly outperforms both Simple Propagation with AR and Lazy Propagation
with AR. The reason for this is that AR performs division operations in order to maintain as
much knowledge on dependence and independence relations as possible in order to support
later variable marginalizations. However, this is unnecessary in the case of computing
marginals as all relevant potentials have been identified.

On a few evidence sets, Simple Propagation with AR has significantly worse performance
than Lazy Propagation with AR. Simple Propagation has the advantage that it does not
need to perform a graph theoretic analysis to find relevant potentials and determining an
online elimination order. Instead Simple Propagation uses the simple one in, one out
principle taking advantage of good partial elimination order induced by the junction tree.
The worse performance on a few cases suggests that in some situations the additional time
invested in finding an efficient online elimination order pays off.

We considered CLG networks with 10% and 90% continuous variables to reflect that
according to our experience hybrid network most often have either a high or a low ratio of
continuous variables (Lauritzen and Jensen, 2001; Madsen, 2008).

5. Conclusion

This paper has introduced AR as the variable marginalization algorithm in Simple Propaga-
tion and evaluated its impact on time performance. The results of the preliminary empirical
performance evaluation on a set of real-world Bayesian networks with discrete variables and
hybrid Bayesian networks constructed by randomly replacing discrete variables with con-
tinuous variables under the CLG constraints indicate significant promise of the approach.
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Simple Propagation with AR is often, but not always, faster than Lazy Propagation with
AR as the variable marginalization algorithm on both the discrete and hybrid models.

Future work includes using Simple Propagation with other marginalization algorithms
and extending Simple Propagation with AR to other models such as, for instance, hybrid
influence diagrams with mixed discrete and continuous variables and considering the impact
of using different evaluation structures on time performance.
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