
Proceedings of Machine Learning Research vol 72, 272-283, 2018 PGM 2018

Learning Bayesian network classifiers with completed partially
directed acyclic graphs

Bojan Mihaljević BMIHALJEVIC@FI.UPM.ES

Concha Bielza MCBIELZA@FI.UPM.ES

Pedro Larranaga PEDRO.LARRANAGA@FI.UPM.ES

Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid

Abstract
Most search and score algorithms for learning Bayesian network classifiers from data traverse

the space of directed acyclic graphs (DAGs), making arbitrary yet possibly suboptimal arc direc-
tionality decisions. This can be remedied by learning in the space of DAG equivalence classes. We
provide a number of contributions to existing work along this line. First, we identify the smallest
subspace of DAGs that covers all possible class-posterior distributions when data is complete. All
the DAGs in this space, which we call minimal class-focused DAGs (MC-DAGs), are such that
their every arc is directed towards a child of the class variable. Second, in order to traverse the
equivalence classes of MC-DAGs, we adapt the greedy equivalence search (GES) by adding opera-
tor validity criteria which ensure GES only visits states within our space. Third, we specify how to
efficiently evaluate the discriminative score of a GES operator for MC-DAG in time independent
of the number of variables and without converting the completed partially DAG, which represents
an equivalence class, into a DAG. The adapted GES perfomed well on real-world data sets.
Keywords: equivalence class; greedy equivalence search; augmented naive Bayes.

1. Introduction

Bayesian network classifiers (Bielza and Larrañaga, 2014; Friedman et al., 1997) are interpretable
models that offer competitive predictive performance (e.g., Zaidi et al., 2013). They include the
popular naive Bayes (Minsky, 1961) and its augmented naive Bayes (Friedman et al., 1997) vari-
ants with arcs among the features. A common way to learn them (e.g., Keogh and Pazzani, 2002;
Pazzani, 1996) is by optimizing a score in the space of directed acyclic graphs (DAGs). This may
needlessly prune the search space by arbitrarily directing an arc when its reversal would yield an
equivalent model. Two DAGs are equivalent if they impose identical independence constraints on
the joint probability distribution P (C,X), with C being the class and X the predictor variables.
The equivalence relation partitions the set of DAGs into equivalence classes, and by searching in
this space we only set arc direction when a reversal produces a non-equivalent model. The greedy
equivalence search (GES) (Chickering, 2002a) is one algorithm that operates in this space. It repre-
sents an equivalence class with a completed partially DAG (CPDAG), which has both directed and
undirected edges.

Acid et al. (2005) learned Bayesian network classifiers by traversing the space of equivalence
classes. They pruned the space of DAGs to be considered by noticing that non-equivalent DAGs
could, nonetheless, be classification equivalent, that is, encode an identical class-posterior distri-
bution, P (C | x), for every instance x. They showed that, with complete training data (i.e., with-
out missing values), a minimal classification-equivalent subgraph of any DAG, which they call a
C-DAG, is such that each arc is either directed towards the class variable or a child of the class

272

BAYESIAN NETWORK CLASSIFIERS WITH EQUIVALENCE CLASSES

variable. They traversed the equivalence classes of C-DAGs with a heuristic greedy search and
a representation based on their previous work (Acid and de Campos, 2003), rather than the more
standard CPDAG representation and its corresponding operators (Chickering, 2002a,b). Unlike the
CPDAG, their representation is not a canonical representative of an equivalence class.

In this paper, we extend the work by Acid et al. (2005) in a number of ways. First, we show that
the search can be reduced, without loss of generality, to a subset of the space of C-DAGs. Namely,
we need not consider C-DAGs with parents for the class variable, Pa(C), because P (C | x) is
unaffected by marginal independences among Pa(C) while we can model the full dependencies
among them conditional to C with them being children of C. Besides being smaller, we argue that
this space of minimal class-focused DAGs, or MC-DAGs, is also more adequate for greedy forward
learning of dependencies among Pa(C).

Second, we adapt the GES algorithm to traverse the space of MC-DAGs. We do this by pro-
viding GES operator validity conditions, that can be checked efficiently on a CPDAGs, that discard
CPDAGs corresponding to equivalence classes that do not have an MC-DAG as a member.

Third, we specify how to, for complete data, efficiently evaluate the discriminative score of an
operator locally, time independent of the number of variables, and on a CPDAG. This is based on a
technique, described by Keogh and Pazzani (2002), for updating P (C,x), for all x in our data set,
for an arc addition. We adapt the technique for the GES operators over CPDAGs in the MC-DAG
space.

We applied our method on thirteen real-world data sets using cross-validated accuracy as the
learning score, and compared it to other greedy and non-greedy augmented naive Bayes classifiers.
Our method outperformed them on three data sets while it was outperformed on one.

The rest of this paper is organized as follows. Section 2 introduces notation and terminology.
Section 3 describes the MC-DAG space and discusses its advantages over the C-DAG space. Sec-
tion 4 describes our adaptation of GES for learning MC-DAGs from data. Section 5 presents the
local updating of P (C,X), used to compute discriminative scores. Section 6 shows the evaluation
of our algorithm on real-world data sets. We conclude in Section 7.

2. Preliminaries

We are interested in modelling a distribution over a set of variables {C,X}, with C being a discrete
variable representing the class, and X = (X1, . . . , Xn) being n discrete or real-valued predictor
variables. We also use X,Y, Z and Q to refer to variables in {C,X}. A Bayesian network B =
(G,θ) models a probability distribution PG(x, c) (lowercase x denotes an assignment to X). G =
(V,EG) is a directed acyclic graph (DAG) with vertices (i.e., nodes) V corresponding to variables
in {C,X}, and directed edges (i.e., arcs) EG among the vertices. PG(x, c) factorizes according to
G,

PG(x, c) = PG(c | paG(c))
n∏

i=1

PG(xi | paG(xi)),

where paG(x) are the values of parents of X in G. G imposes independence constaints on PG(·), and
they can all be derived from the constraint that each variable is independent of its non-descendents
in G given its parents. X1 ⊥⊥G X2 | C denotes that X1 is conditionally independent of X2 given
C in PG(·). The parameters θ specify the local conditional distributions of each variable given its
parents’ values.

273

MIHALJEVIĆ ET AL.

We learn B from a data set D = {(x(1), c(1)), . . . , (x(N), c(N))} of N observations of X and
C. One approach is to search a space of possible structures in order to optimize a network quality
score. Learning the optimal structure with at most two parents per variable is NP-hard (Chicker-
ing et al., 2004). Thus, heuristic search algorithms, such as greedy hill-climbing, are commonly
used (see e.g., Koller and Friedman, 2009). The scores are divided into generative ones, based on
P (c,x), and discriminative ones based on P (c | x), such as classification accuracy. The former are
decomposable with respect to G and thus allow for efficient local updates during the search. The
latter, although not decomposable, are more suitable to learning classifiers when N is small and n
large (Friedman et al., 1997). All discriminative and many generative scores are score-equivalent,
that is, they score all equivalent DAGs equally.

Two DAGs G andH are equivalent if the independence constraints that they impose on PG(·) and
PH(·), respectively, are identical. Searching in this space requires a score-equivalent function and
a way to represent an equivalence class of DAGs. An acyclic partially DAG (PDAG) P , containing
both directed and undirected edges, represents the class of DAGs equivalent to a DAG G obtained by
orienting undirected edges in P . We say that such a G is a consistent extension of P , G ∈ cext(P),
while any DAG H equivalent to G is a member of the equivalence class of DAGs corresponding to
P , H ∈ E(P). A completed PDAG (CPDAG) P for en equivalence class E(P) is the PDAG with
an oriented edge for every edge that is identically oriented in every G ∈ E(P), and an undirected
edge for all other edges in E(P). We refer to the directed arcs in a CPDAG as compelled for the
equivalence class, and to the undirected ones as reversible. A CPDAGP is unique for an equivalence
class and has every G ∈ E(P) as a consistent extension, cext(P) = E(P).

For a PDAG P , ChP(X) denotes the children of X in P , NbrP(X) the neighbour nodes
connected to X in P by an undirected edge, and AdjP(X) = ChP(X) ∪ PaP(X) ∪NbrP(X)
the nodes adjacent to X in P . A v-structure is an ordered triple of nodes (X,Y, Z) such that P
contains the edges X → Y and Z → Y , and X and Z are not adjacent in P .1

The GES algorithm starts from a CPDAGP = (V,EP = ∅) and proceeds with the Insert(X,Y,T)
operator (to be defined below) considering all arc additions to every DAG in the current equivalence
class E(P). It adds the best among the considered arcs and sets the equivalence class of the ob-
tained DAG as the new state P ′, and applies the Insert(X,Y,T) operator to P ′. Once it reaches a
local optimum, it starts its backward phase, with the Delete(X,Y,H) operator (to be defined below)
considering the removal of every arc in every DAG in the current equivalence class. The operators
are scored locally on the CPDAG P , without generating the DAGs to which the visited states cor-
respond. A set of conditions verifiable on P ensure that the operators correspond to valid DAGs in
the desired neighbourhood of P .

3. Minimal C-DAGs

We begin with the definitions of classification equivalence and class-focused DAGs, or C-DAGs.

Definition 1 (Acid et al. (2005)) Let G = (V,EG) and G′ = (V,EG′) be two DAGs. Let P be any
joint probability distribution on V, and PG and PG′ be the probability distributions that factorize
according to G and G′, respectively, defined as PG(V | paG(V)) = P (V | paG(V)) and PG′(V |
paG′(V)) = P (V | paG′(V)), ∀V ∈ V. If PG(C | x) = PG′(C | x) ∀x, we say that G and G′ are
classification-equivalent.

1. These definition are easily specialized for DAGs.

274

BAYESIAN NETWORK CLASSIFIERS WITH EQUIVALENCE CLASSES

That is, G and G′ are classification-equivalent if their class-posterior distributions are identical for
any value of x.

Definition 2 (Acid et al. (2005)) A DAG G = (V,EG) is a class-focused DAG (C-DAG) with re-
spect to the variable C if and only if it satisfies the following condition: ∀X,Y ∈ V, if X → Y ∈
EG then either Y = C or X = C or C → Y ∈ EG .

In words, in a C-DAG only C and children of C can have parents (see Figure 1). Acid et al.
(2005) showed that, for any DAG H, its C-DAG subgraph HC , induced by including only arcs that
match Definition 2, is its minimal classification-equivalent subgraph. Acid et al. (2005) searched the
space of C-DAGs to learn Bayesian network classifiers because it covers all possible class-posterior
distributions.

We now show that a smaller space is sufficient. Namely, we need not consider parents for the
class variable C. That is, for each DAG H and its C-DAG subgraph HC , there is a classification-
equivalent C-DAG G with no parents for C. We first formalize such a minimal class-focused DAG
(MC-DAG) structure, and then show how to convert a C-DAG into a classification-equivalent MC-
DAG.

Definition 3 A DAG G = (V,EG) is a minimal class-focused DAG (MC-DAG) with respect to the
variable C if and only if it satisfies the following condition: ∀X,Y ∈ V, if X → Y ∈ EG then
C → Y ∈ EG .

In words, an MC-DAG is a C-DAG that only allows children of C to have parents (see Figure 1).
Dispensing with the parents of C, PaH(C), while maintaining classification equivalence, is possible
by observing that, unlike PH(c,x), PH(c | x) is unaffected by conditional independence constaints
that hold only when C is not observed. This is because we compute P (c | x) as ∝ P (c)P (x | c),
setting each value of C as evidence. Thus, for the C-DAG H, where X ⊥⊥H Y necessarily holds
for all X,Y ∈ PaH(C), there exists a DAG G such that X 6⊥⊥G Y for all X,Y ∈ PaH(C) while
nonetheless PH(c | x) = PG(c | x). To account for X 6⊥⊥H Y | C for all X,Y ∈ PaH(C) it suffices
for G to have (1) every X ∈ PaH(C) as a child of C and (2) an arc for every pair {X,Y }, for all
X,Y ∈ PaH(C). Thus, any C-DAG H can be represented by an MC-DAG G with PaG(C) = ∅.
We prove this by showing that a C-DAGH can be converted into a classification-equivalent C-DAG
H′ with one class parent less (Proposition 4). The conversion to an MC-DAG follows by repeating
such parent removals until there are no more parents of C (Proposition 5). Figure 1 (above) shows
a C-DAGH and its classification-equivalent MC-DAG G.

Proposition 4 For a C-DAG H with X → C there is a classification-equivalent C-DAG H′ such
that X → C is reversed to C → X .

Proof Consider a C-DAG H with X ∈ PaH(C). Let H′ = H. By Definition 2, PaH′(X) = ∅
and ChH′(X) ⊇ C. Now reverse the arc X → C in H′ into C → X . H′ is a valid DAG because
we did not introduce a cycle: a Y ∈ ChH′(X) cannot be an ancestor of C since, by Definition 2,
Y ∈ ChH′(C) and a path from Y to C would imply that there was a cycle in H′ before the re-
versal. Since PaH′(X) = ∅, the reversal did not introduce a v-structure centered around X . The
reversal did drop the v-structures X → C ← Y centered around C, ∀Y ∈ PaH(C) \X , replacing
them with serial connections Y → C → X . After the reversal, H′ and H differ as follows: for all

275

MIHALJEVIĆ ET AL.

Y ∈ PaH(C) \X , (1) X ⊥⊥H Y while X 6⊥⊥H′ Y ; and (2) X 6⊥⊥H Y | C while X ⊥⊥H′ Y | C.
(1) does not affect classification equivalence of H and H′ since we compute P (c | x) by always
conditioning on C, via ∝ P (c)P (x | c). (2) can be remedied by adding to H′ an arc Y → X for
every Y ∈ PaH(C) \ X . Now add one such arc Y → X to H′. This introduced no cycles in H′
because PaH′(Y) = ∅ and therefore there is no directed path from X to Y in H′. Before adding
Y → X , the only parent of X in H′ was C, PaH′(X) = C, and thus adding Y → X only intro-
duced the v-structure Y → X ← C. Since Y ∈ PaH′(C), Y 6⊥⊥H′ C | X was already true, and
the only effect of adding Y → X was to render X 6⊥⊥H′ Y | C, which was our purpose (because
X 6⊥⊥H Y | C). After the addition, PaH′(X) = {Y,C}. Now add to H′ the arc Q → X , for
Q ∈ PaH(C) \ {X,Y }. The only independence constraint inH′ conditional to C that this addition
modified is that now Q 6⊥⊥H′ X | C, because the two introduced v-structures, Q → X ← C and
Q → X ← Y , modified no such constraints. The reasoning regarding Q → X → C in analo-
gous to that for Y → X → C. Regarding Q → X ← Y , Q 6⊥⊥H′ Y | C was already true due
to the v-structure Q → C ← Y in H′. For each next Z ∈ PaH(C) \ {X,Y,Q} added to H′ it
follows by induction that the only independence constraint conditional to C modified is to render
Z 6⊥⊥H′ X | C. After adding toH′ arcs Y → X for every Y ∈ PaH(C) \X , Y 6⊥⊥H′ X | C holds
and there are no independence constraints conditional to C holding in H′ that do not also hold in
H. Thus,H′ is classification-equivalent toH. It is easy to see that it is also a C-DAG.

Proposition 5 For each C-DAGH there is a classification-equivalent MC-DAG.

Proof The proof is constructive. Start with G = H. At each step, produce a classification-equivalent
C-DAG G′ with one less parent of C than G. Set G = G′. Repeated application will produce a
classification-equivalent MC-DAG.

Any DAGH and its unique C-DAGHC subgraph can be mapped to multiple equivalent MC-DAGs,
obtained by choosing the arcs X → C which to reverse in a different order. An MC-DAG G is not
a subgraph ofHC (unless PaHC

(C) = ∅ andHC is an MC-DAG itself), as it contains the reversed
arcs to PaHC

(C) and arcs among PaHC
(C) (shown in red in Figure 1). Note that PHC

(c,x) =
PG(c,x) need not hold and thus the generative scores of HC and G might differ. While an MC-
DAG may have more parameters than a classification-equivalent C-DAG, due to the added arcs
among PaHC

(C), these parameters only make explicit the lack of independence among PaHC
(C)

conditional on C already present in PHC
(c,x).

Since every C-DAG is an MC-DAG, but not vice-versa, the MC-DAG space is smaller. It is
nonetheless sufficient, as for each C-DAG there is at least one classification-equivalent MC-DAG.
We argue that it is also more suitable for greedy learning algorithms. Consider a forward search
starting from an empty graph H′ = (V = {X,Y, Z,C},EG′ = ∅), using penalized log-likelihood
to learn from D, a limited-N sample taken from B = (G′,θ), with G′ = ({X,Y, Z,C},EG′) shown
in Figure 1. After two iterations, the search may have reached the state with EH′ = {X → C,C ←
Y }. Then, its only option to account for X 6⊥⊥G′ Z | C is to add Z as a parent of C in H′. This,
however, renders Z 6⊥⊥H′ Y | C, although Z ⊥⊥G′ Y | C, producing a model more complex that
G′. Alternatively, the complexity added by having Z 6⊥⊥H′ Y | C would lead the algorithm to halt,
adding no arc between C and Y , or to add Y as a child of C, either way introducing independence
constraint Y ⊥⊥ Z | C missing from G′. Proceeding in a MC-DAG space, however, the same

276

BAYESIAN NETWORK CLASSIFIERS WITH EQUIVALENCE CLASSES

Figure 1: Above: A C-DAG H (left) and a classification-equivalent MC-DAG G (right). Only
C and ChH(C) = {Z,U} have parents in H. In G, all arcs incoming to C in H are
reversed and there is an arc between every pair in PaH(C) (shown in red). Only ChG(C)
= {Z, Y,X, V, U} have parents in G. Below: An MC-DAG G′ (right) and a classification-
equivalent C-DAGH′ (left) which lacks the constraint Y ⊥⊥ Z | C present in G′.

algorithm could have X and Y as children of C after two steps, and could recover the true structure
in the following iterations.

4. Adapted GES algorithm for learning MC-DAGs

In this section we describe the adapted GES algorithm which visits only equivalence classes which
contain MC-DAGs. We achieve this by means of additional operator validity conditions, discarding
operators that produce CPDAGs outside this space. We begin by describing the properties of a
CPDAG that has an MC-DAG consistent extension. We then provide the operator validity criteria.

4.1 CPDAGs for representing equivalence classes of MC-DAGs

The following conditions are needed for a CPDAG to have an MC-DAG as a consistent extension:

Proposition 6 A CPDAG P = (V,EP) has an MC-DAG as consistent extension if:

1. ∀X → Y ∈ EP : (Y ∈ Ch(C)) or (X ∈ {ChP(C),NbrP(C), C}, Y ∈ {NbrP(C)})

2. ∀X − Y ∈ EP : X,Y ∈ {ChP(C),NbrP(C), C}

Proof Assume that the conditions in Proposition 6 hold for a CPDAG P . We need to find a G ∈
cext(P) such that every arc X → Y in G is such that Y ∈ChG(C). All arcs in G are either directed

277

MIHALJEVIĆ ET AL.

or undirected in P . Consider first an arc X → Y in G corresponding to an edge X − Y in P . By
condition (2) in Proposition 6, Y ∈ {ChP(C),NbrP(C), C}. If Y ∈ ChP(C), the desired condi-
tion already holds in G for X → Y . Otherwise, the arc C − Y in P might be directed as Y → C in
G. |PaG(C)| > 1 may hold if every pair Z,Q ∈PaG(C) is adjacent in G and thus the Z → C ← Q
are not v-structures. However, we will only prove the result for the case when |PaG(C)| = 1. With
|PaG(C)| = 1, there is an equivalent DAG G′ with Y ∈ ChG(C), obtained by reversing Y → C in
G. G′ has no cycles, because PaG(C) = Y and thus there is no other path from Y to C in G′. The
reversal does not introduce any new v-structures into G′ and thus does not modify its independence
constraints. This is because reverting C − Y as C → Y only adds v-structures C → Y ← Z
for Z ∈ PaG′(Y) \ {C,AdjG(C)}. Necessarily, PaG′(Y) ⊆ NbrP(Y) ∪ PaP(Y). For all
Z ∈ NbrP(Y) it follows from condition (2) in Proposition 6 that Z ∈ { C, Ch(C), Nbr(C)}.
For all Z ∈ PaP(Y), it follows from condition (1) that if Z 6∈ AdjP(C) then Y ∈ ChP(C)
and C → Y is already in the desired direction in P . Otherwise, if Z ∈ AdjP(C) no v-structures
are introduced by orienting C − Y as C → Y . Thus, for a P that satisfies conditions (1) and (2),
there is a G′ ∈ cext(P) such that all undirected edges in P are directed into ChG(C). Consider
now the remaining case a directed arc X → Y in P . By condition (1), if X 6∈ {C,AdjP(C)},
then Y ∈ ChP(C) and the condition is met. Otherwise, Y ∈ NbrP(C). As dicussed for the
case of an undirected arc X − Y , there is a G ∈ cext(P) such that Y − C is directed as C → Y .
Thus, for a P complying with the conditions in Proposition 6 there is an MC-DAG G′ ∈ cext(P).

4.2 Insert operators

For a current state P , the Insert(X,Y,T) operator is:

Definition 7 (Chickering (2002b)) Insert(X,Y,T)
For non-adjacent nodes X and Y in P , and for any subset T of the neighbors of Y that are not
adjacent to X, the Insert(X,Y,T) operator modifies P by (1) inserting the directed edge X → Y ,
and (2) for each T ∈ T, directing the previously undirected edge between T and Y as T → Y .

Chickering (2002b) defined validity conditions for Insert(X,Y,T) that can be checked on the
CPDAG. The following additional conditions ensure that the operator can produce an MC-CPDAG.

Proposition 8 Let P ′ be a PDAG obtained by applying a valid Insert(X,Y,T) to a CPDAG P that
has a consistent extension G which is an MC-DAG. P ′ has a consistent extension G′ which is an
MC-DAG if Y ∈ {ChP ′(C),NbrP ′(C)}.

Proof We need to find a DAG G′ ∈ cext(P ′) that satisfies the conditions in Definition 3, that
is, with each arc directed towards a child of the class variable. After applying Insert(X,Y,T), P ′
differs form P in that it contains the arc X → Y and that undirected edges T − Y for T ∈ T have
been oriented as T → Y . These arcs will be identically oriented in every G′ ∈ cext(P ′). The
remaining arcs in G′ are either oriented as in G, because they are compelled in P , or can be oriented
as in G because they are reversible in P . Thus it suffices to show that, by proving Y ∈ ChG′(C),
the arcs X → Y and T → Y , for every T ∈ T, satisfy Definition 3. If Y ∈ ChP(C) our
condition is already satisfied because Y ∈ ChG′(C) for any G′ ∈ cext(P). If Y ∈ NbrP(C),

278

BAYESIAN NETWORK CLASSIFIERS WITH EQUIVALENCE CLASSES

we need to prove that C − Y can be oriented as C → Y in G′ without modifying the indepen-
dence constaints in G. Orienting C − Y as C → Y forms v-structures C → Y ← Z in P ′
for all Z ∈ {T,PaP(Y)} \ AdjP ′(C) as well as C → Y ← X if X 6∈ AdjP ′(C). We first
show that {T,PaP(Y)} \ AdjP ′(C) = ∅. Namely, because Y ∈ NbrP(C) and all T ∈ T,
by Definition 7, have incident undirected arcs, it follows, due to condition 2 in Proposition 6, that
{T,PaP(Y)} ⊆ AdjP ′(C) and thus {T,PaP(Y)} \AdjP ′(C) = ∅. If X 6∈ AdjP ′(C), by con-
dition (1) in Proposition 6, Y ∈ ChP(C), so C → Y is already properly oriented in P . Therefore,
enforcing in G the direction C → Y for C − Y in P does not modify the independence constraints
in G′. Thus, for a P that matches the condition, the Insert(X,Y,T) operator produces a CPDAG
such that MC-DAG G ∈ cext(P).

4.3 Delete operators

For a current state P , we apply the Delete(X,Y,H) operator, followed by the Post-Delete(X,Y) if
X = C. The operators are:

Definition 9 (Chickering (2002b)) Delete(X,Y,H)
For adjacent nodes X and Y in P connected either as X − Y or X → Y , and for any subset H of
the neighbors of Y that are adjacent to X , the Delete(X,Y,H) operator modifies P by deleting the
edge between X and Y , and for each H ∈ H, (1) directing the previously undirected edge between
Y and H as Y → H and (2) directing any previously undirected edge between X and H as X → H .

Definition 10 Post-Delete(X,Y)
Let P ′ be a PDAG obtained after applying a valid Delete(X,Y,H) to P . Then, if X = C, the
Post-Delete(X,Y) operator deletes in P ′ all directed arcs Z → Y , and orients all undirected edges
Z − Y as Y → Z, for any Z ∈ V.

The conditions given in Chickering (2002b) specify whether the Delete(X,Y,H) operator is valid
for a given X , Y , and H. If X = C, the delete renders Y 6∈ {ChP(C),NbrP(C)}. Thus, if it
contains incoming or undirected edges into Y , P ′ does not satisfy the conditions in Proposition 6
that ensure there is an MC-DAG G′ ∈ cext(P ′). Post-Delete(X,Y) removes the violating arcs
ensuring that P satisfies the conditions in Proposition 6.

Proposition 11 Let PDAG P ′ be the result of applying a valid Delete(X,Y,H), for X = C, fol-
lowed by a Post-Delete(X,Y), to a PDAG P . There exists a DAG G′ that is a consistent extension
of P ′ and is classification-equivalent to any MC-DAG G that is a consistent extension of P .

We only sketch the proof for brevity. Because Post-Delete(X,Y) ensured that P ′ matches the
conditions in Proposition 6, it follows that is there is a DAG G′ ∈ cext(P ′). Once Delete(X,Y,H)
rendered Y not adjacent to C, none of its incoming arcs affect classification-equivalence because
they are not part of the minimal C-DAG subgraph of P (see Definition 2). Thus, we can delete them
to obtain a PDAG with no parents for nodes that are no children of C. The undirected edges into Y
would necesarily be oriented away from Y in a valid MC-DAG.

Proposition 12 Let PDAG P ′ be the result of applying a valid Delete(X,Y,H), followed by a valid
Post-Delete(X,Y), to a CPDAG P that has a consistent extension G which is an MC-DAG. P ′ has
a consistent extension G which is an MC-DAG if C 6∈ H.

279

MIHALJEVIĆ ET AL.

Proof G′ is an MC-DAG if all its arcs are directed towards a child of C. We need to ensure
that: (1) If Y 6∈ {ChG′(C),NbrG′(C)}, then PaG′(Y) = ∅; (2) H ∈ ChG′(C), for all H ∈
H. Y 6∈ {ChG′(C),NbrG′(C)} only happens if X = C. In that case, Post-Delete(X,Y) en-
sures that PaG′(Y) = ∅, satisfying the first condition. Regarding the second condition, H ∈
{ChP(C),NbrP(C), C}, for all H ∈ H, by condition (2) in Proposition 6. If C 6= H , the
second condition can be satisfied. Otherwise, P ′ will contain a v-structure X → C ← Y . Thus for
every G′ ∈ cext(P ′), PaG′(C) 6= ∅ and therefore such G′ is not an MC-DAG. Thus, for C 6∈ H,
Delete(X,Y,H) followed by Post-Delete(X,Y) produce a CPDAG that has an MC-DAG as a con-
sistent extension.

5. Local discriminative scoring for CPDAGs

Chickering (2002b) specified how to efficiently score Insert(X,Y,T) and Delete(X,Y,H) operators
for decomposable scores, without converting the current state’s CPDAG into DAGs. We cannot
do this for discriminative scores such as conditional log-likelihood, as 1) they do not decompose
over the network; and (2) we need a fully parameterized DAG to compute the underlying class-
conditional probability P (c | x).

With complete data we can, however, efficiently update the P (c,x) of the current state P for
each c and each x in our data set D, without recomputing it from scratch, and then recompute the
P (c | x) and the discriminative score from the updated P (c,x). This technique was described by
Keogh and Pazzani (2002) for single arc insertion into a one-dependence Bayesian classifier. We
adapt it for CPDAG Insert(X,Y,T) and Delete(X,Y,H) operators for MC-DAGs.

Let A be the N × rc matrix holding the PG(c,x) for each c and each x in D, where N is
the number of training instances in D and rc the number of distinct class values, G is any DAG ∈
cext(P) and P is our current CPDAG. A valid Insert(X,Y,T) that yields a CPDAG P ′ is such that
there is a G′ ∈ cext(P ′), equal to a G ∈ cext(P) plus the arc X → Y . Since PG(c,x) is identical
for any G ∈ cext(P ′), we get PG′(c,x) by updating A to account for the new arc,

a′ij = aij ×
PG′(y

(i) | x(i), t(i),pa∗G(y)(i), cj)
PG(y(i) | t(i),pa∗G(y)(i), cj)

,

where the i superscript denotes the values in the i-th instance of D and pa∗G(X) denotes PaG(C)
\C. The above assumes that C ∈ PaG(Y), which is ensured by Proposition 8. Because we only
have access to P , and not to G, we do not know PaG(Y). Yet, there exists an adequate G such that
its parents are fully determined by P and the insert operator: PaG(Y) = {T, C,PaP(Y)}. Such
G exists because we can orient all undirected edges Y −N , N ∈ NbrP(Y) \T \ C, as outgoing
from Y , because the inser operator may have only compelled them as outgoing from Y , by adding
T and C as parents of Y , and not the other way around. To compute the update, we do not need
G and G′, but only the probabilities PG(y(i) | x(i), t(i),pa∗G(y)(i), cj) and PG′(y

(i) | pa∗G′(y)(i), cj)
which we can re-estimate from D each time.

For a Delete(X,Y,H), the update is analogous: a′ij = aij ×
PG′ (y

(i)|pa∗G(y)
(i),cj)

PG(y(i)|x(i),pa∗G(y)
(i),cj)

. A Post-

Delete(X,Y) does not change P (c | x) so this suffices. Thus, for each operator, we update P (C,x)
in O(Nrc) time, independently of the number of features n.

280

BAYESIAN NETWORK CLASSIFIERS WITH EQUIVALENCE CLASSES

6. Experimental evaluation

We compared our method (MG, short for MC-DAG GES) to the method by Acid et al. (2005) (abbre-
viated with A) and a number of k-dependence Bayesian classifiers, that is, augmented naive Bayes
models with up to k predictor parents per predictor. Namely, we used the naive Bayes (DB0, the 0
standing for 0-dependence), a 1-dependence classifier learned with a hill-climbing search and a dis-
criminative score (DB1

HC ; Keogh and Pazzani, 2002) and its 2-dependence generalization (DB2
HC)

implemented in the bnclassify R package (Mihaljević et al., 2018), and the optimal log-likelihood
1-dependence classifier (DB1

CL; Friedman et al., 1997). For comparison with the corresponding
k-DB, we also limited the number of parents per predictor for MG to 1 (MG1), 2 (MG2), or left it
unbounded (MG). We considered both an empty graph and a naive Bayes as the initial state of the
search (the latter indicated with the NB subscript, e.g., MGNB).

We used data sets from the UCI repository (Dheeru and Karra Taniskidou, 2017), together with
the mofn-3-7-10 dataset by Kohavi and John (1997) (see Table 1). We discretized numeric
variables with the Fayyad and Irani (1993) method and removed instances with missing values,
except in voting, where we treated them as a separate value. For all MG and DBHC variants we
used 10-fold stratified cross-validation accuracy estimate as the scoring function, with the greedy
search proceeding as long as the score did not degrade. For the DB1

CL, we used log-likelihood as
the score.

MGNB strongly outperformed all methods on car and nursery (see Table 1), and all meth-
ods but A on mofn-3-7-10. Both unbounded variants of MG (i.e., MGNB and MG) were out-
performed only on the mushroom data set, by DB1

CL, the only non-greedy algorithm, and by A.
Differences between the best unbounded MG and the remaining methods were not significant on
the remaining data sets. The difference with DB1

CL on mushroom is possibly due to the greedy
nature of MG: DB1

CL is able to find the optimal 1-DB with respect to log-likelihood, with 21 aug-
menting arcs, while MGNB and MG added one and zero arcs, respectively, to their initial structures.

Traversing the space of equivalence classes, rather than that of DAGs, did not provide an advan-
tage when bounding the number of predictor parents. Namely, MG1

NB only outperformed DB1
HC on

tictac, with no additional significant differences between them, nor between MG2
NB and DB2

HC .
MGNB only visited slightly more distinct structures than DBHC . For example, on a single run on
voting MG1

NB visited 968 states after ten iterations, versus 961 states by DB1
HC . While the dif-

ference grows with the number of augmenting arcs included, it would still be negligible on voting
with the maximal 16 of iterations.

MGNB strongly outperformed MG on car, nursery, tictac, crx, mofn-3-7-10, and
kr-vs-kp while MG was better on iris and voting. The poor performance of MG was due to
it returning extremely sparse graphs: an empty graph for mofn-3-7-10 and one with three arcs
on car. On the other hand, MG was accurate on voting by using only four predictor variables,
while MGNB added 15 augmenting arcs and used all predictors.

7. Conclusion

We have specified the smallest DAG subspace that covers all possible class-conditional distributions.
We presented an algorithm to traverse the equivalence classes in this space by adapting the greedy
equivalence search algorithm. Finally, we specified how to compute the discriminative score of a

281

MIHALJEVIĆ ET AL.

Table 1: Predictive accuracy estimated with 10-fold stratified cross-validation. N is the number of
data instances, n the number of predictor variables, and rc the number of distinct classes.
A shows the accuracy for the method by Acid et al. (2005) reported in their paper.

MG1
nb MG2

nb MGnb MG1 MG2 MG DB1
hc DB2

hc DB1
cl DB0 A N n rc

iris 0.93 0.94 0.91 0.9 0.91 0.94 0.94 0.93 0.93 0.94 0.95 150 4 3
car 0.95 0.94 0.98 0.86 0.86 0.86 0.94 0.95 0.94 0.86 0.93 1728 6 4

nursery 0.95 0.96 0.97 0.9 0.9 0.9 0.95 0.96 0.93 0.9 0.94 12960 8 5
breast 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.96 0.98 0.98 683 9 2
tictac 0.74 0.89 0.90 0.71 0.78 0.75 0.71 0.90 0.76 0.69 958 9 2
glass 0.74 0.75 0.74 0.74 0.74 0.74 0.75 0.72 0.74 0.74 0.73 214 9 6

mofn-3-7-10 0.94 0.94 1.00 0.86 0.86 0.86 0.93 0.93 0.93 0.86 1.00 1324 10 2
wine 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.99 178 13 3

crx 0.87 0.87 0.87 0.85 0.85 0.84 0.86 0.86 0.86 0.86 0.87 653 15 2
voting 0.91 0.9 0.91 0.95 0.94 0.95 0.91 0.9 0.94 0.9 435 16 2
tumor 0.48 0.46 0.47 0.48 0.48 0.48 0.47 0.45 0.38 0.48 132 17 18

lymphography 0.84 0.84 0.86 0.85 0.85 0.84 0.84 0.84 0.84 0.85 0.82 148 18 4
mushroom 0.98 0.98 0.98 0.97 0.97 0.97 0.99 0.98 1.00 0.97 1.00 5643 22 2

iono 0.92 0.92 0.91 0.92 0.92 0.92 0.92 0.92 0.93 0.92 351 34 2
dermatology 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.97 0.98 358 34 6

soybean 0.91 0.92 0.92 0.91 0.91 0.91 0.91 0.92 0.93 0.91 0.9 562 35 19
kr-vs-kp 0.96 0.97 0.98 0.88 0.88 0.88 0.96 0.97 0.92 0.88 0.97 3196 36 2

molecular 0.88 0.9 0.92 0.91 0.91 0.91 0.9 0.9 0.81 0.91 106 57 2

CPDAG search operator in a time that is independent of the number of variables and that does not
require converting the CPDAG into a DAG.

Future work includes evaluating our algorithm on additional synthetic and real-world data sets,
to better assess its merits. It is possible that a different search algorithm could take better advantage
of equivalence classes when the nodes’ in-degree is bounded, as for the k-dependence models.
Adapting our algorithm to traverse the space of augmented naive Bayes models, rather than that of
MC-DAGs, would amount to simple additional restrictions to operator validity conditions.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 Research and Inno-
vation Programme under Grant Agreement No. 785907 (HBP SGA2), the Spanish Ministry of
Economy, Industry and Competitiveness through the Cajal Blue Brain (C080020-09; the Spanish
partner of the EPFL Blue Brain initiative) and TIN2016-79684-P projects, the Regional Government
of Madrid through the S2013/ICE-2845-CASI-CAM-CM project, and Fundación BBVA grants to
Scientific Research Teams in Big Data 2016.

References

S. Acid and L. de Campos. Searching for Bayesian network structures in the space of restricted
acyclic partially directed graphs. Journal of Artificial Intelligence Research, 18:445–490, 2003.

282

BAYESIAN NETWORK CLASSIFIERS WITH EQUIVALENCE CLASSES

S. Acid, L. de Campos, and J. G. Castellano. Learning Bayesian network classifiers: Searching in a
space of partially directed acyclic graphs. Machine Learning, 59(3):213–235, 2005.

C. Bielza and P. Larrañaga. Discrete Bayesian network classifiers: A survey. ACM Computing
Surveys, 47(1), 2014.

D. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine
Learning Research, 2:445–498, 2002a.

D. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning
Research, 3:507–554, 2002b.

D. M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks is
NP-hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017. URL http://
archive.ics.uci.edu/ml.

U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for classifica-
tion learning. In Proceedings of the 9th International Joint Conference on Artificial Intelligence,
pages 1022–1029. Morgan Kaufmann, 1993.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29:
131–163, 1997.

E. J. Keogh and M. J. Pazzani. Learning the structure of augmented Bayesian classifiers. Interna-
tional Journal on Artificial Intelligence Tools, 11(4):587–601, 2002.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1):
273–324, 1997.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
press, Cambridge, MA, USA, 2009.

B. Mihaljević, C. Bielza, and P. Larrañaga. bnclassify: Learning Discrete Bayesian Network Classi-
fiers from Data, 2018. URL https://CRAN.R-project.org/package=bnclassify.
R package version 0.4.0.

M. Minsky. Steps toward artificial intelligence. Transactions on Institute of Radio Engineers, 49:
8–30, 1961.

M. Pazzani. Constructive induction of Cartesian product attributes. In Proceedings of the Informa-
tion, Statistics and Induction in Science Conference, pages 66–77, 1996.

N. A. Zaidi, J. Cerquides, M. J. Carman, and G. I. Webb. Alleviating naive Bayes attribute indepen-
dence assumption by attribute weighting. Journal of Machine Learning Research, 14:1947–1988,
2013.

283

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://CRAN.R-project.org/package=bnclassify

	Introduction
	Preliminaries
	Minimal C-DAGs
	Adapted GES algorithm for learning MC-DAGs
	CPDAGs for representing equivalence classes of MC-DAGs
	Insert operators
	Delete operators

	Local discriminative scoring for CPDAGs
	Experimental evaluation
	Conclusion

