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Abstract
Structure learning algorithms aim to retrieve the true causal structure from a set of observations.
Most times only an equivalence class can be recovered and a unique model cannot be singled out.
We hypothesized that casual directions could be inferred from the assessment of the strength of po-
tential causal effects and such assessment can be computed by intervals comparison strategies. We
introduce SLICE (Structural Learning with Intervals of Causal Effects), a new algorithm to decide
on unresolved relations, which taps on the computation of causal effects and an acceptability in-
dex; a strategy for intervals comparison. For validation purposes, synthetic datasets were generated
varying the graph size and density with samples drawn from Gaussian and non-Gaussian distribu-
tions. Comparison against LiNGAM is made to establish the performance of SLICE over 1440
scenarios using the normalised structural Hamming distance (SHD). The retrieved structures with
SLICE showed smaller SHD values in the Gaussian case, improving the structure of the retrieved
causal model in terms of correctly found directions. The acceptability index is a good predictor of
the true causal effects (R2 = 0.62). The proposed strategy represents a new tool for discovering
unravelled causal relations in the presence of observational data only.

Keywords: causal discovery, causal effects, structure learning.

1. INTRODUCTION

A set of causal relations can be expressed through a causal graphical model (CGM) (Pearl, 2009).
The structure of a CGM can be specified by an expert or retrieved from data by a structure learn-
ing algorithm (SLA). Several SLAs split the learning problem into the search and the orientation
phases. The search stage decides on the existence of a link, and the orientation stage decides on the
direction of the information flow. Search strategies can produce an equivalence class – a collection
of statistically equivalent solutions – (where the true causal model is expected to be a member) or a
single structure of the causal model based on different assumptions. Under certain circumstances,
SLA can achieve success in retrieving relations but fail when disentangling the cause from the effect
of such retrieved relation. When departing merely from observational data (samples of the system
of interest without manipulating any variables), under Gaussianity, traditional SLA can only retrieve
an equivalence class. They are unable to pick the true causal model among the statistically equiva-
lent members of such equivalence class. A specific assumption of non-Gaussian disturbances could
yield a single structure (Shimizu et al., 2006). However, deviations from a multivariate Gaussian
distribution are hard to estimate in high dimensions (Maathuis et al., 2009). Then assuming Gaus-
sian interventional (experimental) information could be helpful. The incorporation of interventional
information becomes a necessary aid to isolate the solely causal model.

Causal inferences can be formulated without manipulation (Pearl, 2009, Ch. 11.4.5), manipula-
tion permits detecting useful properties of a system, and hence, contributing to the identification of
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cause-effect pairs (Eberhardt et al., 2005). Given that an essential feature of causation is responsive-
ness, that is a change in the effect given a change in the cause, it makes sense to devise strategies to
orient undefined causal relations based on observed effects.

In this paper, we address the problem of orienting unresolved directions of causal graphical
models. We describe our proposal as founded on the relationship between the size and directionality
of the effects. We hypothesise that an orientation strategy based on comparing the size and direction
of potential causal effects will unravel undefined causal relations.

1.1 Related Work

Typical classification of SLA groups them into score-based (Lam and Bacchus, 1994; Campos,
2006) and constraint-based (Cooper and Herskovits, 1992; Claassen and Heskes, 2012) approaches.
Score-based methods retrieve a structure which obtains a maximum score fitting the data. Constraint-
based strategies start with a complete connected/disconnected network and remove/add links follow-
ing conditional independence tests. Further, strategies for learning CGM can be broadly organised:
(i) depending on the input data which can be observational, interventional or hybrid, (ii) regarding
the learning strategy, these can either maximise the number of edges or attempt to obtain full iden-
tifiability, and (iii) depending on the criterion to decide the directionality of the edges they could be
based on interventions or causal effects.

Works starting from observational data and orienting edges based on interventions include
(Meganck et al., 2006; Borchani et al., 2007; Masegosa and Moral, 2013; Shimizu et al., 2006).
In these works, different utility functions based on entropy, connectivity and costs are explored.
Both single and multiple interventions are evaluated, and the causal structures are determined based
on the obtained score. In (He and Geng, 2008) randomised experiments and quasi-experiments
are performed for orientation. Eberhardt (2008) proved the conjecture of the sufficient and neces-
sary number of experiments to uniquely identify the causal structure from a Markov equivalence
class. Hyttinen et al. (2013) adapted existing concepts in combinatorics for experimental selection
to address the causal discovery problem. From an interventional dataset, Eaton and Murphy (2007)
retrieved the causal structure while the manipulated variables are discovered. Hauser and Peter
(2012) explored strategies for orienting the maximum number of edges per intervention and the dis-
covery of a full identifiable model. Using a hybrid solution, Hauser and Bühlmann (2015) obtained
an interventional equivalence class smaller than the one obtained by only observations by jointly
combining observational and interventional data. Regarding full identifiability, Shimizu et al. pro-
posed the Linear Non-Gaussian Acyclic Models (LiNGAM) algorithm for learning a unique graph
structure from observational data (Shimizu et al., 2006). LiNGAM relies on the assumptions of
linear generating functions, non-Gaussian noise in structural equation models and no unobserved
confounders. LiNGAM yields good estimations when the non-Gaussian disturbances assumption
hold and large sample sizes (e.g., > 10000) are available.

Different from previous works, ours gives the possibility to go a step further when an SLA can
only find a set of potential causal structures. SLICE offers the plausibility to take a partially directed
causal graph and generates a complete casual structure with stability in high-dimensional scenarios
and able to cope with Gaussian and non-Gaussian variables.
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2. PRELIMINARY DEFINITIONS

We shall denote variables by capital letters (e.g., X,Y, Z) and the values assigned to them with
lower-case (e.g., x, y, z). Sets will be denoted by bold letters e.g., X = {X1, . . . , Xn}, x =
{x1, . . . , xn}. Formally, a causal system can be represented by means of a structural causal model
(Definition 1).

Definition 1 ((Pearl, 2009, Sect. 1.5) Structural Causal Model) A structural causal model (SCM)
is a triplet {U,V,F} (Pearl et al., 2016) where U is a set of exogenous variables, V is a set
endogenous variables, and F is a set of functions, such that:

i Every variable V ∈ V is caused (takes its value) by f : (U ∪ V ′) → V, such that V ′ ⊂ V
and f ∈ F .

ii Every V ∈ V is takes its value from at least one exogenous variable.
iii Variables in U are caused by some mechanism that we decide not include in the system.

An SCM can be represented by means of a directed acyclic graph (DAG). A DAG G is an
ordered pair (X,E) comprising a set of vertices X = {U ∪ V} and a set of ordered pairs E =
(Xi, Xj). In a causal context, edges of the form Xi → Xj means that Xi is a cause of Xj and the
set of functions F has the form Xi = fi(pai) where pai is the set of its parents (direct causes).

Definition 2 (Equivalence class (of graphs)) A class of equivalence (of graphs) is a subset G =
{G : G ∼ G , G,G ∈ G∗}, where G ∼ G indicates that there is an equivalence relation between G
and G, with G∗ being the set of all possible equivalence classes.

Definition 3 (Intervention (on a causal probabilistic model)) The atomic intervention denoted by
do(Xi = xi) or do(X̂i), amounts to removing the equation Xi = fi(pai, Ui) from the model and
substituting Xi = xi in the remaining equations. The new model represents the behaviour of the
system under the intervention do(Xi = xi) and, when solved for the probability distribution (P ) of
Xj , yields the causal effect of Xi on Xj denoted as P (Xj |x̂i).

Interventions in a graphical model are performed by applying the do() operator (Pearl, 2009).
An intervention on a variable in the graphical model generates a manipulated version of P . The
probability of a variable Y given the intervention of a variableX , is expressed as P (Y |do(X = x)),
or P (Y |x̂) for short. The post-intervention joint distribution P ′ over X1, X2, . . . , Xn when do(x̂i)
is given by Equation 1:

P (v1, v2, . . . , vn|v̂i) = P ′(vi)
∏

j|Vj /∈Vi

P (vj |paj), (1)

Definition 4 (Causal Effect) Given two disjoint sets of variables, X and Y , the causal effect of X
on Y , denoted as θy|x̂, is a function from X to the space of probability distributions on Y . For each
realisation x of X , θy|x̂ gives the probability of Y = y induced by deleting from Xi = fi(pai) all
equations corresponding to variables in X and substituting X = x in the remaining equations.
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3. CAUSAL EFFECTS FOR EDGE ORIENTATION

In CGMs, interventions quantify the extent of influence over a variable given the manipulation
of another. To compute the causal effect of one variable over another, a complete defined CGM
is needed. The rules of the do calculus can be applied when a single structure (DAG) is present.
There are algorithms for computing causal effects when a DAG is given (Lauritzen, 2001; Tikka and
Karvanen, 2017). However, in many scenarios, the CGM has to be estimated from observational
data only. In this case, it is usually infeasible to isolate the true causal model, but an equivalence
class of the true causal model can be probably obtained. Either a completed partially directed
acyclic graph (CPDAG) or a partially ancestral graph (PAG) can be obtained depending on whether
the assumption of causal sufficiency (allowing for hidden common causes) is made or not. Here, we
rely on the causal sufficiency assumption; consequently, we deal with CPDAG structures. Given a
data set, a CPDAG can be retrieved by different algorithms (Chickering, 2002; Spirtes et al., 2000).

When a causal structure is known, for example X0 → X1 → X2, and supposing that X0 =
ε0, X1 = 2X0 + ε1 and X2 = 3X1 + ε2, then the operation P (X2|do(X1)) can be computed by
removing all the terms of X0 in the equation of X1 and graphically by deleting all incoming arcs
to X1. Further, under linearity, the manipulation of X1 and observation of its effect in X2, that is
P (X2|do(X1 = x1))− P (X2|do(X1 = x1 + 1)) , can be established by the regression coefficient
of X1 in X2 ∼ β · X1 + ε2. This coefficient is β 6= 0 when the observed variable (X2) is not in
the parents set of the intervened variable (X1) and β = 0 zero when the observed variable is in the
parents set of the intervened one. For the reverse effect, when X2 is intervened and X1 is observed,
the causal effect is zero. It follows that the causal effect computed in the true causal direction (X1

manipulated and X2 observed) should result in a greater causal effect than the one computed in the
reverse of the true causal direction (X2 manipulated and X1 observed) regardless of the value of β,
since |β| > 0 is expected. This example can be extended to the case when the true causal structure
is not known, but we have a set of potential causal structures e.g., for equivalence classes of DAGs.
In such cases, it is possible to compute causal effects when the true causal structure is not known
but, instead of obtaining a scalar, a multi-set of potential causal effects is computed (Maathuis et al.,
2009). Multi-sets can be characterised in terms of their lower and upper bounds. We propose to
consider these bounds as intervals of causal effects (ICE) (see formal definition below) for their later
comparison. Let X1 ↔ X2 be a CPDAG representing an equivalence class of an unknown causal
structure and let ICE1 and ICE2 be two intervals of causal effects computed by manipulating X1

and observing X2 and vice versa obtained from the potential structures X1 → X2 and X1 ← X2

respectively. The true causal direction between X1 and X2 can be found by identifying whether
ICE1 > ICE2 or ICE1 < ICE2 (as the base case where |β| > 0). In this sense, a suitable
procedure for intervals comparison is requiered for the computation of the estimated causal effects.

Intervention calculus when the DAG is absent (IDA) is an algorithm to compute the bounds of
causal effects when the true DAG is not known (Maathuis et al., 2009). The details of IDA can
be found in (Maathuis et al., 2009, 2010), but briefly, IDA aims to compute the causal effect on a
variable Y given the manipulation of a variable X departing from a set of observational data. An
equivalence class is estimated from the observations using the PC algorithm (Spirtes et al., 2000),
and then, by applying the do calculus the multiset of causal effects observed in Y by intervening X ,
denoted by ΘY |X̂ , is computed for themmembers in the equivalence class, that is ΘY |X̂ = {θj

Y |X̂
}

for j = 1 . . .m. If all θj
Y |X̂

are the same, it is understood that the causal effect has been uniquely
determined. Otherwise, different potential causal effects would be obtained. In such case, the lower
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and upper bounds of ΘY |X̂ can be obtained as the minimum and maximum absolute values as

[min|θj
Y |X̂
|,max|θj

Y |X̂
|].

If given a set of observations by an unknown CGM entailed in the equivalence class G, it is
possible to estimate a multiset of potential causal effects Θ, then, we hypothesise it is possible to go
backwards, whereby Θ encodes clues about the undefined links in G. Consequently, the equivalence
class can be shrunk (i.e. diminish the number of undefined causal links) perhaps to a single causal
structure. We argue that it is possible to estimate the causal direction in an undefined edge X − Y
based on the assessment of the potential causal effects of X on Y in contrast to the potential causal
effects of Y on X , that is ΘY |X̂ vs. ΘX|Ŷ . The problem here is elaborating a suitable strategy
for the assessment of both multisets. We propose the use of the lower and upper bounds of causal
effects as intervals of causal effects established in Definition 5.

Definition 5 (Interval of causal effects) The interval of causal effects (ICE) of X on Y is defined
as ICEY |X̂ = [min|θj

Y |X̂
|,max|θj

Y |X̂
|], where | · | is the absolute value and θj

Y |X̂
is the potential

causal effect on Y given the manipulation of X for every member of an equivalence class G.

3.1 Acceptability index for intervals comparison

Multisets in R are proxied here by closed intervals in R. (Sengupta and Pal, 2000) proposed a
strategy for comparing closed intervals in R. Let I be the set of all closed intervals in R, and
let A,B ∈ I be the interval proxies of the multisets with [aL, aR] ⊆ R and [bL, bR] ⊆ R as
lower and upper bounds of A and B respectively. A and B can be represented by their midpoint
m(·) and half-width w(·). For example, A = 〈m(A), w(A)〉, with m(A) = (aL + aR)/2 and
w(A) = (aR − aL)/2.

Regardless, it should not be assumed that the original multisets A or B are continuous, nor that
the mid-point belongs to the original multisets. The acceptability function A< : I × I → [0,∞) is
defined as per Eq. 2:

A<(A,B) =
m(B)−m(A)

w(B) + w(A)
, (2)

withA andB pre-ordered by their midpoints i.e. m(A) ≤ m(B) andw(A)+w(B) 6= 0. A<(A,B)
can be interpreted as a rate of satisfaction of premise A < B, where < implies an order relation
between A and B. Since the image of A< is [0, inf), the acceptability of A < B can be classified
according to expression 3:

A<(A < B) =


= 0 if m(A) = m(B),

> 0 and < 1 if m(A) < m(B) and aR > bL

> 1 if m(A) < m(B) and aR ≤ bL

(3)

If A<(A,B) = 0 we reject the idea that A is inferior to B. If 0 < A<(A,B) < 1, then A is
inferior to B to some extent with uncertainty. And for A<(A,B) ≥ 1 we have “absolute” certainty
that B is superior to A. Other interval comparison strategies exist in the literature, but we choose
(Sengupta and Pal, 2000) because the acceptability index in Equation 2, can be easily calculated in
terms of the upper and lower bounds of a multiset of causal effects. Moreover, a threshold could be
set to control an allowed uncertainty level for the orientation of undefined edges.
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4. STRUCTURE LEARNING WITH INTERVALS OF CAUSAL EFFECTS

Our algorithm attempts for resolving the causal direction from a set undefined causal edges. It iter-
atively selects the pairs of variables with the smallest interval-overlapping regarding their intervals
of causal effect and the chosen pair indicates the cause and the effect in that relation.

Given a departing equivalence class G represented by a CPDAG, we extract the set T of un-
defined edges from G; (X,Y ) ∈ T|X − Y ∈ G. For every pair (X,Y ) ∈ T, the causal effects
of intervening X over Y , ΘY |X̂ and vice versa ΘX|Ŷ are computed. The lower and upper bounds
of multi-sets ΘY |X̂ and ΘX|Ŷ are used to establish ICEY |X̂ and ICEX|Ŷ , The midpoints of both
ICEs are calculated in order to conform the premise A < B where A and B are the ICE with the
minimum and maximum midpoint respectively. Consistent with the previous ordering step, one of
the pairs, (X,Y ) or (Y,X), is stored in the set To as the ordered pair meaning the potential causal
direction. Then, the acceptability index (A< in Eq. 2) is computed across all pairs of intervals and
is stored in Aset. The argument of the maxima A< in Aset is chosen as the index pointing out the
pair in To, which is estimated as the causal orientation. The application of the set of Meek rules1

(Meek, 1995) is attempted. Finally, the set T is updated and the whole process is iteratively carried
out until no more undefined edges remain. Our algorithm has been developed in R language and
can be downloaded from https://github.com/smonterohdz/slice.

Figure 1: The general idea for orientation via causal effects. Starting from a CPDAG from which a
multiset of causal effects is computed, a set of intervals of causal effects (ICEs) is generated from
the lower and upper bounds of the multisets. Then, the acceptability indexA is computed from both
ICEs. Orientation is performed regarding the maximum A and the CPDAG is then reduced.

The proposed strategy for causal structure learning is illustrated in Figure 1 and formalised as the
structure learning with intervals of causal effects (SLICE) presented in Algorithm 1. SLICE aims
at the identification of a single causal structure. The computational complexity of SLICE is O(gu)
with g = #({Gi ∈ G}) and u = #(T) where #(·) is the cardinality. The current implementation
of SLICE assumes linear functions since we employ IDA for causal effects estimation. Extension to
other probability distributions can be achieved by applying the inference rules of do-calculus (Pearl,
2009, Sec. 3.4.2).

SLICE assumes it starts from a correct CPDAG, that is, a correct skeleton with the all the v-
structures correctly identified. When SLICE finds an undefined edge X − Y , it attempts orienting
X → Y or X ← Y according to the procedure of assessing intervals. This assumes that X − Y
was a correctly identified dependency. However, in cases of false positives (FP), SLICE will fail as

1. A set of four directionality rules to partially orient a causal graph given some edges patterns.
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it will be attempting to orient an edge that should not exist. In other words, SLICE has not have
integrated a mechanism to detect FP in the input CPDAG.

1 Algorithm: SLICE: Structure learning with intervals of causal effects.
Data: Observations from the set of variables V, an initial CPDAG G
Result: An estimated directed acyclic graph Ge

2 Extract the set of undefined edges T from G;
3 repeat
4 Aset := ∅ ;
5 To := ∅;
6 foreach (X,Y ) ∈ T do
7 Compute the multisets of causal effects ΘY |X̂ and ΘX|Ŷ with IDA ;
8 Determine ICEX|Ŷ and ICEY |X̂ (Def. 5);
9 if m(ICEX|Ŷ ) ≤ m(ICEY |X̂) then

10 A :=ICEX|Ŷ ;
11 B :=ICEY |X̂ ;
12 To := To ∪ {(X,Y )};
13 else
14 A :=ICEY |X̂ ;
15 B :=ICEX|Ŷ ;
16 To := To ∪ {(Y,X)};
17 end if
18 Aset := Aset ∪ {A<(A,B)};
19 end foreach
20 (V1, V2) := To[argmax(Aset)];
21 Orient as V1 → V2 in G ;
22 Apply Meek rules to G;
23 Update the set of undefined edges T from G;
24 Ge := G;
25 until T = ∅;
26 return Ge

5. EXPERIMENTS AND RESULTS

5.1 Generation of synthetic models

Algorithm 1 was tested on synthetic models by varying the number of variables, the density of con-
nection between nodes and number of data samples. Each synthetic model consists of a DAG Gt, a
set of linear functions F , and a set of observations D. The synthetic DAGs and their set of obser-
vations D were generated using the randomDAG and rmvDAG functions of the R package pcAlg
(Kalisch et al., 2012) (v2.5-0, https://CRAN.R-project.org/package=pcalg). The
procedure for generating the synthetic models and data sets is described in the pcAlg package doc-
umentation. Briefly, every Xi node (i = 1, . . . , n) in Gt is forward connected (Xi → X{i+1,...,n})
to k neighbours, with k < (n − i) chosen with probability pc. The edges in Gt are randomly
weighted between 0.1 and 1.0. To generate D, every Xi node in Gt is visited in topological order
and its value is given by function Xi = fi(pai, ei) ∈ F where pai is the set of parents of the Xi

node and ei is an error term with a specific probability distribution. Every fi(·) function is defined
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as fi = w1 · X1 + . . . + wh · Xh + ei where 1, . . . , h indicates the h parents of the Xi node.
Observations in D are sampled by evaluating each fi(·) as many times as needed.

5.2 Model evaluation

For evaluating models, we use the normalised structural Hamming distance (SHD). SHD has been
used before in the assessment of algorithms for causal structure learning (Peters and Bühlmann,
2015; Hauser and Peter, 2012; Tsamardinos et al., 2006; Colombo and Maathuis, 2014; Kalisch and
Bühlmann, 2014). The SHD is defined as the minimum number of edge insertions, deletions, and
changes needed to transform one model into another (Tsamardinos et al., 2006, Algorithm 4). We
computed the SHD between the sub-graphs of the true and the estimated causal model induced by
the set of undefined edges in the initial equivalence class. Let graphsGt = (V,Et), G = (V,Ec) and
Ge = (V,Ee) be the true model, the initial equivalence class and the estimated model, respectively,
where V , Et, Ec and Ee are the sets of nodes, edges in the true model, edges in the initial equiv-
alence class and edges in the estimated model, respectively. We defined the subset of undirected
edges as T ⊆ Ec|(Vi, Vj) ∈ T iff (Vi, Vj)∧ (Vj , Vi) ∈ Ec, we computed SHD(Gt[T], Ge[T]). An
SHD=0 indicates a perfect match, and a value of SHD=1 means that no estimated edge matches any
edge in the true causal model. Values of SHD > 1 indicate that, although there are no coincident
edges, the estimated model resulted with more (spurious) edges. Figure 2 illustrate the induced
sub-graph on the true model, the equivalence class and the estimated model.

Figure 2: Example of model evaluation in induced sub-graphs. The subset S is determined by the
undefined edges (bold edges and nodes) in the initial equivalence class (middle), then is extracted
from the true (left) and estimated model (right) model. The SHD is computed between the induced
sub-graphs Gt[S] and Ge[S], the sub-graphs in grey are not considered in SHD computation.

5.3 Validation

Concurrent validity is shown by comparing SLICE output against true synthetic data. We generated
several synthetic causal models by varying the sample size (D), number of variables or nodes (n),
and the connection density (pc). For every model two sets D sized 1, 000 and 10, 000 were gener-
ated. We evaluate the performance of the algorithm for n = {4, 8, 16, 32, 64, 100} and a connection
density pc = {0.25, 0.85}. Besides, we explored two scenarios regarding the initial CPDAG; when
the initial CPDAG is estimated and may contain errors in the skeleton, and when the initial CPDAG
is correct. Thirty replications (model instances) were made for every combination of parameters
(number of variables and density of connections) for a total of 1440 cases. Initial CPDAG were
estimated with the PC algorithm (Spirtes et al., 2000) with alpha=0.01 by using the version imple-
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mented in the R package pcAlg (Kalisch et al., 2012) (v2.5-0). The SHD between the estimated and
the true models is reported (Fig. 3a).

We explored the performance when errors are drawn from a Gaussian distribution N (0, 1)
and from a non-Gaussian distribution. The non-Gaussian distribution was generated as described
in Shimizu et al. (2006); briefly a Gaussian distribution was raised to an exponent in the range
[0.5, 0.8] ∪ [1.2, 2.0]. For reference, SLICE results are shown against LiNGAM (Shimizu et al.,
2006) over the same set of synthetic models. LiNGAM was chosen for comparison because it as-
sumes linear functions and no unobserved confounders (assumptions shared with SLICE). Results
are summarised in Fig. 3a. In both scenarios, under Gaussian and non-Gaussian errors disturbances,
when the initial CPDAG does not contain all the conditional (in)dependence relations, SLICE fails
to correctly orient about 25% of the links, and the dispersion increases when the true causal model
has a 85% of connectivity density.

Note that this is not an error of SLICE but of the algorithm used for equivalence class estima-
tion, and SLICE simply propagates that error. If the structure search algorithm is affected by the
number of variables and samples, then it is probable that it generates false positive or Type I er-
rors (spurious undefined edges) or false negatives or Type II errors (missing links) in the estimated
CPDAG. In cases of false positives, SLICE attempts to orient spurious links and regardless on the
decided orientation, the directed edge will make the final structure more distant from the true causal
model. Analogously, in the case of missing edges, SLICE will be limited since the set of undefined
edges will be incomplete. For the non-Gaussian case, LiNGAM obtained approximately the com-
plete causal structures, as expected. However, SLICE was able to identify the 75% in most cases.
Expectedly, the best results are obtained when SLICE departs from a correct CPDAG from Gaussian
distribution. SLICE results are shown to be more consistent when the number of variables increases
where LiNGAM seems to make random guesses or fails to finish the procedure. SLICE seems to be
less affected by connectivity density, although the dispersion increases as the number of variables
does. Regarding the execution time for learning a single model, in average, SLICE scales better
than LiNGAM on a 3.6 GHz Intel Core i7 processor with 15 GB RAM using R 3.4.1 in Debian 9.4
OS. SLICE takes µ = 0.26 ±1.02 seconds when starts with a correct CPDAG and µ = 0.05 ±0.07
seconds when the CPDAG is estimated and LiNGAM delays µ = 4.82 ± 9.78 seconds.

5.4 Relation between the true causal effects and the acceptability index

The idea of considering multisets of causal effects as intervals (ICE) combined with the assessment
of them by computing the acceptability value (A) form a heuristic able to orient undefined causal re-
lations in most cases. To investigate whether theA index encodes any information regarding causal
effects we perform a regression analysis between the acceptability values and the true causal effects.
For every pair of variables forming an undefined edge in an initial equivalence class we computed
the A index of ICEs in both directions, also we computed the true causal effects considering the
same pair of variables but now in the true causal model. If X − Y is in G and X → Y is in Gt we
contrast A<(ICEX|Ŷ , ICEY |X̂) versus θGt

Y |X̂
.

Figure 3b shows the behaviour of causal effects associated with the A< index. Regression
analysis suggests that the acceptability index (without outliers A< = 1.0) among potential causal
effects is a good predictor of the true causal direction (R2 = 0.62). Our heuristic of orienting
undefined edges on the base of greater acceptability value appears appropriate for choosing the
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(a) (b)

Figure 3: a) Normalised SHD (mean – line – and standard deviation – shaded area –) for SLICE
given a correct CPDAG, SLICE given an estimated CPDAG and LiNGAM algorithms. Results
for the 0.2 and 0.85 connectivity density are presented in columns and error distribution (Gaus-
sian and non-Gaussian) in rows. Smaller values (close to zero) indicate better match with the true
causal model (best seen in color). b) Relation between acceptability index and true causal effects.
Regression analysis (red line) indicates that acceptability values significantly predicted true causal
effects.

most probable correct orientation. A threshold on the acceptability value may provide some error
control at the expense of not isolating a single model.

6. CONCLUSIONS

We have addressed the learning of the structure of causal graphical models and contributed with a
new algorithm capable of deciding a single DAG by using causal effects during the orientation stage.
Our proposal’s rational is founded on the idea of the size and directionality of the causal effects. The
new orientation strategy unravels undefined causal relations by computing causal effects of a pair
of variables conforming undefined edges. When the initial CPDAG is correct, our results show a
significant improvement in terms of SHD compared to LiNGAM algorithm. The performance of
SLICE subtly decreases in cases where the initial CPDAG is not correctly estimated, e.g., as it may
be the case when using PC for the structure search stage, yet it still outperforms LiNGAM in many
cases. Our proposal can be extended by incorporating more elaborated methods for causal effects
estimation as presented in (Hyttinen et al., 2015) and exploring alternative methods for multisets
comparison. The performance of SLICE when error disturbances are generated from non-Gaussian
distributions (assumed by LiNGAM) suggested SLICE outperforms LiNGAM. Finally, the current
approach relies on the causal sufficiency assumption and dropping such assumption is critical for
applicability in many real-world domains.
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J. Peters and P. Bühlmann. Structural Intervention Distance for Evaluating Causal Graphs, 2015.

A. Sengupta and T. K. Pal. On Comparing Interval Numbers. European Journal of Operational
Research, 127(1):28–43, 11 2000.

S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. A Linear Non-Gaussian Acyclic Model
for Causal Discovery. Journal of Machine Learning Research, 7:2003–2030, 2006.

P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, Cam-
bridge, Massachusetts, USA, 2nd edition, 2000.

S. Tikka and J. Karvanen. Identifying Causal Effects with the R Package causaleffect. Journal of
Statistical Software, 76(12), 2017.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min Hill-Climbing Bayesian Network
Structure Learning Algorithm. Machine Learning, 65(1):31–78, 10 2006.

307


	INTRODUCTION
	Related Work

	PRELIMINARY DEFINITIONS
	CAUSAL EFFECTS FOR EDGE ORIENTATION
	Acceptability index for intervals comparison

	STRUCTURE LEARNING WITH INTERVALS OF CAUSAL EFFECTS
	EXPERIMENTS AND RESULTS
	Generation of synthetic models
	Model evaluation
	Validation
	Relation between the true causal effects and the acceptability index 

	CONCLUSIONS

