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Abstract
We consider the Bayesian network structure learning problem, and present a new algorithm for
enumerating the k best Markov equivalence classes. This algorithm is score-based, but uses condi-
tional independence constraints as a way to describe the search space of equivalence classes. The
techniques we use here can potentially lead to the development of score-based methods that deal
with more complex domains, such as the presence of latent confounders or feedback loops. We
evaluate our algorithm’s performance on simulated continuous data.
Keywords: Bayesian networks; structure learning; model selection; score-based methods; contin-
uous variables.

1. Introduction

Learning a Bayesian network structure that explains the data well has been a topic of interest for
a long time. The method we present here combines several desirable properties that have seen
increased interest in the literature recently:

• It is an exact score-based method, meaning that it is guaranteed to find the network that is
optimal according to some score. This contrasts it with heuristic methods, such as those
based on local search, which may end up in a local optimum with a suboptimal score.

• It works on Markov equivalence classes rather than on individual Bayesian network struc-
tures. Bayesian network structures in the same Markov equivalence class impose the same
set of conditional independence relations, and as a result, many scoring criteria will not dis-
tinguish between them.

• It can return the top k equivalence classes rather than just the single best equivalence class.
If there is not enough signal in the data to distinguish clearly between different equivalence
classes, it may be important to know about the equivalence classes that are competing with
the top class. Having a list of good equivalence classes allows us for instance to compute
an approximate Bayesian posterior over the structures, which can be used to answer many
questions, and accompany those answers with measures of uncertainty; see e.g. (Tian et al.,
2010). The combination of this point with the previous point is especially valuable: it means
that the top k will not be polluted by many structures that are actually equivalent, but that
each element in the list will represent new information.

Our method is an example of the branch-and-bound technique. This technique has been applied
to the problem of Bayesian network learning before: see e.g. (de Campos and Ji, 2011; Tian, 2000)
for two different approaches. While using the same technique, our method is novel: it uses a differ-
ent branching operator and different score bounds. The branch-and-bound technique offers several
useful advantages. The first and third properties of our method mentioned above come directly from
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this technique (the second property, namely working on equivalence classes rather than individual
structures, is not inherent in the technique but is the result of our choice of branching operator).
Other advantages are that the algorithm is anytime (it can be stopped early and still give an answer,
including an upper bound to how much better the optimal answer could be), and parallelizable, so
that additional computing power can be used if available to speed up the algorithm’s execution.

In this article, we will focus on the linear Gaussian case rather than on the discrete case. An
important difference for structure learning is that in the discrete case, the number of parameters
grows exponentially with the number of parents of a node, while in the linear case it only grows
linearly. This makes it hard for score-based approaches in the linear case to substantially bound the
number of parents in advance (using results such as Corollary 3 by de Campos and Ji (2011)).

As the problem of Bayesian structure learning is know to be NP-hard (Chickering et al., 2004),
we expect our method to be slow in the worst case. In particular, we expect that our method will
be fast if there are few faithfulness violations in the data (these are conditional independences that
(seem to) hold in the data, but are not implied by the network structure), but will be slowed down
if faithfulness violations are common. By contrast, non-exact methods might be fast also under
faithfulness violations, but would be much more likely to return a suboptimal answer. Thus by
using an exact method like ours, we are giving up some computational efficiency in order to gain
greater reliability of the results.

A major motivation for the present work comes from the problem of structure learning beyond
Bayesian networks. This is of prime importance for causal discovery, where it is vital to distin-
guish correlations due to causal relations between observed variables from correlations due to latent
confounders. Various classes of graphical models have been defined that can make this distinction.
The task of structure learning on these models is typically very difficult, and the most common ap-
proach among score-based methods is local search. However, the possibility of wrong results due
to local maxima makes any causal conclusions we would then draw less reliable. Another chal-
lenge is posed by feedback loops, where the causal relations violate the acyclicity requirement of
Bayesian networks; these arise for example in biological cell signalling networks, an important area
of application of causal discovery.

In these contexts, our algorithm has great potential for being extended to these learning prob-
lems, because it is defined in terms of constraints. For many of the graph classes relevant for causal
inference, the constraints those graphs impose (which are not necessarily limited to conditional in-
dependence constraints) have been well studied; see e.g. (Richardson and Spirtes, 2002; Shpitser
et al., 2014; van Ommen and Mooij, 2017; Forré and Mooij, 2018). Due to this good match, our al-
gorithm is in an excellent position to be a starting point for new exact score-based structure learning
methods on these graph classes.

2. Preliminaries

We write v ⊥ w |S for d-separation of nodes v and w given the set of nodes S. For a DAG G,
we will write [G] to denote its Markov equivalence class, i.e. the set of all DAGs imposing the
same set of conditional independence constraints (thus having the same d-separations) as G. If any
conditional independence constraint imposed by [G] is also imposed by [H], we call [H] a submodel
of [G], which we write as H ≺ G. We write mG for the number of edges in G; note that for all
H ∈ [G], mH = mG.

512



LEARNING BAYESIAN NETWORKS BY BRANCHING ON CONSTRAINTS

As our algorithm works on equivalence classes, we require the scoring criterion to be score-
equivalent, meaning that it assigns the same score to all DAGs in the same equivalence class.
Another property that is often required of the scoring function is that it is decomposable: it can
be written as a sum of scores over the nodes, with each node’s score determined by the variables
associated with that node and its parents. While our method could in principle be used with nonde-
composable scores, this would likely make it less efficient, so we will only consider decomposable
scores here.

3. The Algorithm

In this section, we will first give an overview of branch-and-bound as a general search technique.
Then we will explain our instantiation of it to the problem of learning Bayesian networks.

3.1 Branch-and-Bound

The branch-and-bound search technique is based on the following idea. Suppose we wish to find the
element in some set that maximizes some score. Then start with a single state that is just the entire
set of candidate solutions. The branch operation takes a state and splits it into two new, disjoint
states whose union is equal to the original state. Further, we need to be able to compute an upper
bound for the scores in any state. If a state consists of just one element, we will use its actual score
as the upper bound. We apply these operations until we are in a situation where we have found an
element whose score is larger than the upper bound of each other state. Then we can conclude that
this element maximizes the score, without having explicitly computed the score of many individual
other elements.

It is straightforward to extend this technique to find not just the single maximizing element, but
the top k elements. Define the threshold as the score of the kth-best class we have seen, or as −∞
if we have seen fewer than k different classes so far. Now we will continue to branch states until
all remaining states have upper bounds below this threshold. Similarly, we might want to find all
elements whose score is at most ∆ below the maximum score. This can be accomplished by taking
the threshold equal to the largest score we have seen, minus ∆.

We will primarily use the best-first version of branch-and-bound: in each iteration, we will pick
the state with the largest upper bound and split that state into two new states. This approach has the
advantage that it leads the algorithm to terminate in as few branches as possible: the state it chooses
to branch is one that would need to be branched in any ordering of branchings, because as long as
it is not branched, the overall upper bound will be larger than the threshold. A disadvantage may
be that we are only working on upper bounds, and so it may take a long time until we start seeing
actual solutions, which is important if we want to be able to terminate the algorithm early and still
get acceptable results.

3.2 Learning Bayesian Networks: States, Branching, and Bounding

In general, branch-and-bound works on states; in our case, a state is a set of equivalence classes.
Our branch operation splits a state into those classes that impose some conditional independence
constraint, and those that do not. For any state resulting from these branch operations, we can
describe which equivalence classes are in that state by listing the constraints that each of these
classes must impose, and the constraints none of them impose. In the context of a single branching
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operation, the state we start with will be called the original state, and the resulting states after the
operation will be called the constrained state and the remaining state respectively. All states must
be nonempty.

The other ingredient we need is a way to upper bound the scores of all classes in a state. (We will
assume w.l.o.g. that the score must be maximized.) To bound the score f([G]), we will decompose
it into f([G]) = g([G])−h([G]), where g and h are both monotonically increasing: G ≺ H implies
g(G) < g(H) and h(G) < h(H). Many commonly used scores can be decomposed like this in
a natural way.1 For example, the BIC score (Schwarz, 1978) decomposes into an increasing log-
likelihood term minus an increasing penalty term.Then an upper bound on the likelihood g and a
lower bound on the penalty term h together give the required upper bound on the overall score f .

For establishing an upper bound on g, it will be helpful if a state contains a greatest element
[G] (i.e. for any other class [H] in the state, we have [H] ≺ [G]). Then each class in the state will
have g([H]) ≤ g([G]), so that g([G]) is the upper bound we need. If states could have multiple
maximal classes, then to get a bound on g, we would need to compute values of g for each such
class (computationally costly), or else bound their scores in some other way, e.g. by the value of g
for a class outside the state, which would lead to less tight bounds.

By avoiding certain branching operations, we can ensure that all states we encounter have a
greatest element. We will only consider branches of the form specified by the following proposition.

Proposition 1 Let [G] be the greatest element in the original state. Consider branching on a con-
straint such that the constrained state that would result from the branch will contain at least one
element with mG − 1 edges. The states resulting from this branching will both have a greatest ele-
ment if and only if the constrained state would consist of exactly one class [H] with mH = mG − 1
edges, and of all classes from the original state that are subclasses of [H].

Proof The only way for the remaining state to not contain the class [G] would be by branching on
a constraint that leaves the remaining state empty, which we do not allow. Thus the remaining state
will always still contain the class [G], and so will have a greatest element regardless of the choice
of branching constraint.

Clearly, if the constrained state consists of [H] and its subclasses, [H] will be the constrained
state’s greatest element. For the other direction: If the constrained state contains another class be-
sides [H] with mG−1 edges, then [H] is not a greatest element. A constrained state containing [H]
could not contain fewer other classes than specified, as the constraint we branch on is imposed by
[H] and hence by all its submodels. If the constrained state contains classes that are not subclasses
of [H], then [H] would not be a greatest element, contradicting our requirement.

We say a branching operation is well-behaved if it satisfies these conditions (i.e. if for some [H]
with mH = mG − 1, the constrained state consists of [H] and its subclasses). The requirement
that mH = mG − 1 is a reasonable extra restriction: without such a restriction on [H], the task
of choosing from all possible branching operations would become as hard as solving the learning
problem in one step.

From a given original state, there may be several constraints that all define a well-behaved
branching operation with the same greatest element [H]. Then we see that all those constrained

1. In fact, such a decomposition is possible for any score by taking g([G]) = f([G])+MmG and h([G]) = MmG for
sufficiently large M ; however, the algorithm will be efficient only if g and h can be used to give reasonable bounds
on the score of sets of classes.
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states must in fact be equal, so which of those constraints we choose does not matter. A conve-
nient choice is based on the Delete operator defined by Chickering (2002). This operator trans-
forms an equivalence class into any of its subclasses with one fewer edge, which is exactly what
we do to move from [G] to [H]. Specifically, provided it satisfies some conditions, the operator
Delete(x, y, Z) removes the edge between x and y, and orients all edges between x or y and a node
z ∈ Z towards z.

Using the theory developed by Chickering (2002), we can generate a list of all valid Delete
operators, which tells us all the possible well-behaved branching options available to us. Addi-
tionally, using Corollary 18 from that paper, we can find the difference in scores between [G] and
[H] for any decomposable scoring function. For a given operator Delete(x, y, Z), this gives us a
natural canonical choice of constraint on which to define our branch, from the set of constraints
that lead to the same split: we take the unique constraint imposed by [H ′], where [H ′] is the class
obtained by applying the Delete(x, y, Z) operator to the complete graph. This is the constraint
x ⊥ y |Pay ∪ NAy,x \ Z, where Pay are the parents of y, and NAy,x are the nodes adjacent to x
and having an undirected edge to y (neighbours of y).

3.3 Representation of States

Before we turn to the topic of establishing a lower bound on h, we will briefly turn to the question of
how a state can be represented during the operation of the algorithm. It is clear from the above that
the greatest element [G] plays an important role here, as having a representation of [G] allows us for
example to find all valid Delete operators. Further, to describe a state, we need to know the list of
constraints its classes impose. Because [G] is the greatest element, it contains all this information.

To represent [G], we can use a PDAG or completed PDAG (CPDAG); see e.g. (Chickering,
2002). Because several operations we perform on states require the CPDAG, we will store that as
part of the state representation.

This takes care of the constraints imposed by all classes in a state. To complete the description
of a state, we also need to know which constraints may not be imposed by any of its members. We
can not in general represent this ‘bottom’ of a state by a single class as for the top of a state. For
example, on three nodes a, b, c, after two well-behaved branches, a remaining state may exist that
consists of all equivalence classes for which a 6⊥ b and b 6⊥ c. This state contains no classes with
fewer than two edges, but four classes with two edges (and the saturated class with three edges).
Thus, to represent the bottom boundary of a state, we will keep a list of all d-connections required
in its members.

The list of valid Delete operators we obtain from [G] does not take into account that some
subclasses of [G] may not actually belong to the state, because they have been ruled out by a required
d-connection. Let [H] be the result of applying a given Delete operator to [G]. Then we can use
this operator to branch if and only if [H] is a member of the current state, which is the case if and
only if [H] obeys all required d-connections.

3.4 Lower Bounds on the Penalty Term

To get a lower bound on h, we want to know the smallest penalty among all classes in the state. The
score we are primarily interested in is the BIC score for linear Gaussian models. The BIC penalty
is determined by the number of parameters of a model. In the linear case, the number of parameters
is itself determined by the number of edges, and so will be equal for those equivalence classes in a
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state that have the same number of edges. Hence we do not pay a large price for allowing states that
do not have a least element in the ≺ ordering.

The computational problem we are concerned with is, given a representation of a state, to find
the smallest number of edges among all classes in that state. We did not find an efficient algorithm
for this task in the literature, so we will use a lower bound instead. If this bound is slack, the
algorithm may waste time on states that look more promising than they really are, but its output will
still be correct.

Here we sketch an approach to this problem, based on two ideas. First, suppose that for all
classes in a state, there is an edge between two nodes v andw. We will call this a required adjacency.
The number of required adjacencies is a lower bound for the number of edges in any class in the
state. We refer to Appendix A for more details of how required adjacencies can be determined.

The above works well when many d-connections are enforced in a state, or when [G] is already
fairly sparse so that few branching operations remain. When the algorithm starts out, [G] will be a
complete graph and no d-connections are enforced yet, so it would take many branching operations
from there before we could say anything about the minimum number of edges in a state. To improve
the lower bound in the earlier stages of the algorithm, we use the following observation. If even a
single required d-connection exists between two nodes that are not connected via a path of required
adjacencies, then at least one more edge will be needed, in addition to the edges covering required
adjacencies, to satisfy this d-connection. In fact, each edge we add will reduce the number of
connected components in a graph by at most one, and the number of connected components must
be brought down to the number of connected components from required d-connections in order to
satisfy all of them. So as lower bound on the number of edges, we use the number of required
adjacencies plus the difference in numbers of these two types of connected components.

3.5 Branch-and-Bound Equivalence Search

Pseudocode for the algorithm is given in Algorithm 1. We have called it Branch-and-Bound Equiv-
alence Search, because it is similar to Greedy Equivalence Search (Chickering, 2002), but using
branch-and-bound instead of a greedy approach. Some brief remarks about its implementation are
mentioned here. First, we can use a cache to store scores that have been previously computed, to
avoid computing them again. The question of how to choose a constraint to branch on will be inves-
tigated in the next section. Finally, whenever a new state is enqueued, its bound must be computed,
which involves computing the likelihood of that state’s greatest element. That makes it a convenient
time to compare this class to the current list of results and add it if it is good enough (increasing the
threshold for further classes to be added to the list). A different implementation could do this at a
different time.

4. Experiments

We performed several experiments where we searched for the equivalence class with the highest
BIC score (Schwarz, 1978), with linear Gaussian models.2

The performance of the branch-and-bound algorithm will depend heavily on the way in we
decide which of potentially many branches will be performed. To study the behaviour of many
different branching heuristics, we implemented a version of the algorithm that first precomputes

2. The code for reproducing these results is available online at https://github.com/caus-am/bbes.
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Algorithm 1: BBES
Input: Data D, number k
Output: A list Res consisting of the k equivalence classes with the highest scores on D
Let S be the state consisting of all classes;
Add the greatest element of S to the list of results Res, and update threshold accordingly;
Create a priority queue Q containing only the state S;
while Q is not empty do

Let S be the state in Q with the largest upper bound, and remove it from Q;
If the upper bound of S is below the threshold, exit the while loop;
if S contains two or more classes then

Pick a conditional independence constraint constraint corresponding to a valid
Delete operator on the greatest element of S and such that the class resulting from
applying the operator is also in S;

Create a new state T consisting of those classes in S that impose constraint;
Consider the greatest element in T as a solution, updating Res and threshold;
Let R be S \ T;
Add T and R to the queue Q;

end
end

the entire search space. This is feasible up to n = 6, where the number of equivalence classes is
1,067,825 (Gillispie and Perlman, 2001). This allows us to represent a state as a vector of that many
bits, indicating for each equivalence class whether it is included. This representation effectively
provides an oracle for queries that would otherwise be hard to answer, such as for the exact minimum
penalty among all classes contained in a state, or for the number of classes in the state having that
number of parameters. This way, we can easily test whether such quantities are valuable as part
of a branching heuristic, before putting effort into approximating them in an implementation of the
algorithm that does not have access to a precomputed search space.

For the following experiments, data was generated from linear Gaussian Bayesian networks ran-
domly chosen as follows. First, independently for each pair of nodes with v < w, an arrow is added
from v to w with probability p. Then the nodes are shuffled using a uniformly chosen permutation.
The edge coefficients are sampled independently from the standard Gaussian distribution, and the
variances of the noise terms from Γ(1/2, 1/5). Finally, N data points are sampled from the distri-
bution defined by this linear Gaussian model. Each heuristic was evaluated on the same sequence
of datasets. The results are displayed in Table 1 and 2.

As the tables show, picking a branch at random gives much worse performance of the algo-
rithm than other choices. This supports our claim that a good heuristic is a deciding factor for the
algorithm’s performance.

Of the branching heuristics that look only at the maximum log-likelihood of the constrained
state, the best performance is obtained by taking the branch for which this quantity is smallest
(heuristic ‘s’). An explanation is that taking a branch for which this quantity is larger will create
two new states that will typically both have high priority: the constrained state will have a lower
likelihood but this will be a small difference, and reductions in priority due to changes in penalty
are usually small. This heuristic avoids fragmenting the search space like this as much as possible.
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N = 100 N = 10000
Heuristic p = .2 p = .4 p = .8 p = .2 p = .4 p = .8

random 1655.5 2976.4 3843.5 546.9 1278.6 990.3
−|s− s−1| 1931.3 1282.7 586.8 204.0 210.3 241.2
s 183.2 221.5 259.9 93.4 158.5 231.4
(s < s−1,−|s− s−1|) 867.7 575.0 349.0 182.0 189.6 234.7
−s 13673.3 24496.2 24970.3 6824.7 14008.5 3835.3
(|S|, s) 781.7 1398.4 1652.6 242.2 603.3 551.4
(−|S|, s) 335.4 683.4 1410.8 115.2 429.4 687.0
(b, s) 169.0 407.0 703.8 63.2 259.9 420.1
(b,max(s, t), |S|) 163.1 370.0 674.4 67.9 230.6 407.4
(bmax(s, t)/δc, b, s) 131.4 170.5 225.9 83.5 150.3 227.8
max(s, t) + δb 105.4 145.7 202.7 79.7 145.2 225.8
max(s, t) + 2δb 95.3 134.3 189.2 78.0 142.6 222.3
(b,max(s, t), |S|)* 162.7 370.1 674.5 67.9 230.6 407.4
(bmax(s, t)/δc, b, s)* 115.5 155.1 204.0 68.1 114.0 194.9
max(s, t) + δb* 94.4 131.7 184.4 46.2 80.2 183.5
max(s, t) + 2δb* 86.4 124.6 177.0 34.5 65.2 165.1

Table 1: Number of branching operations performed. The heuristics are specified by sort keys,
and will select the branching operation with the smallest key (this representation is used
because it gives fewer minus signs). Tuples are compared lexicographically, and for
booleans, true comes before false. The quantities used are: s is the upper bound of the
new constrained state taking into account its likelihood but not any changes in the number
of parameters; s−1 is the bound of a fictional state with the same likelihood as the original
but one more parameter; δ is the difference in score from having one more parameter (this
is a constant for BIC); t is the threshold score; S is the conditioning set of the branching
constraint; and b is the fraction of classes with the minimum number of parameters in the
original state that are still in the remaining state. A star denotes that the algorithm looked
at small classes in a state to possibly improve the threshold. Each entry in the table is an
average over 100 datasets; entries with the same N and p were evaluated over the same
sequence of 100 datasets. The best entry in each column is bolded.

The second phase of Greedy Equivalence Search (Chickering, 2002) also works by repeatedly
picking a constraint of the same type as we look for, and ‘moving down’ in the search space to
the class with one fewer edge that imposes this constraint. GES picks the constraint for which
the resulting log-likelihood will be largest. An important difference is that GES does not allow
backtracking: it keeps no record of the set of classes that have become unreachable by taking this
step. The prime consideration is thus to avoid imposing a constraint that is not imposed by the
optimal class. As we can see in the table, GES’s strategy of picking the largest log-likelihood
(heuristic ‘−s’) is not a good choice at all for our branch-and-bound algorithm, as it maximally
fragments the search space.
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N = 100 N = 10000
Heuristic p = .2 p = .4 p = .8 p = .2 p = .4 p = .8

random 629.97 859.37 725.40 212.46 309.55 85.75
−|s− s−1| 938.17 556.72 171.42 90.81 48.74 12.03
s 50.08 39.55 25.12 15.34 11.53 4.67
(s < s−1,−|s− s−1|) 454.71 250.51 82.88 76.36 35.97 8.40
−s 5594.77 7779.62 4863.41 2855.38 3956.40 352.58
(|S|, s) 246.64 360.90 309.27 73.67 135.47 42.03
(−|S|, s) 88.39 121.64 153.00 31.40 61.49 28.91
(b, s) 68.18 112.16 120.20 26.83 58.38 26.90
(b,max(s, t), |S|) 66.48 105.82 117.91 28.11 55.28 25.82
(bmax(s, t)/δc, b, s) 38.96 30.37 19.74 14.57 10.86 4.51
max(s, t) + δb 35.38 27.34 18.18 14.44 10.60 4.46
max(s, t) + 2δb 35.72 27.76 18.77 14.50 10.84 4.43
(b,max(s, t), |S|)* 66.36 105.78 117.74 28.10 55.28 25.85
(bmax(s, t)/δc, b, s)* 40.87 33.08 21.78 14.87 11.70 5.00
max(s, t) + δb* 37.70 29.83 20.02 14.77 11.46 4.78
max(s, t) + 2δb* 37.75 31.15 20.92 15.65 13.36 5.41

Table 2: Number of states that were visited: taken from the queue at least once. This table is
structured as Table 1.

We experimented with several heuristics that also look at other quantities. Some algorithms,
such as PC and FCI (Spirtes et al., 2000), start with testing conditional independences for small
conditioning sets S. However, our results suggest that this can have a significant negative impact on
the performance of our algorithm. Curiously, of the two options, results were better when starting
with large sets S. This should not be taken as a recommendation, as larger sets have important
drawbacks: the score differences are more expensive to compute, and typically less reliable.

Besides the likelihood, the main consideration that should affect the choice of branching opera-
tor is the bound on the penalty. We observed that the heuristics that only look at the likelihood may
often spend a long time on a single state, repeatedly branching off using a constraint that has a large
effect on the likelihood. But as long as the bound on the penalty does not change, the remaining
state will again be at the top of the queue for the next iteration. Heuristics that look at the parameter
b are trying to choose branches that will lead to a refinement of the remaining state’s bound on the
penalty term. The heuristics that put this consideration first did not perform very well.

The best results overall were obtained by a variety of similar heuristics that look primarily at
s, but use b to decide between branching operations for which the difference in s is small. These
heuristics use the term max(s, t) (where t is the threshold, defined in Section 3.1 as the minimum
score a class must have in order to be included in the set of results). This term reflects that the
precise bound of the constrained state is irrelevant if it is below the threshold t.

The heuristics that depend on the value of the threshold t may suffer from the fact that a pure
best-first branch-and-bound strategy does not put any particular effort into improving the value
of the threshold. Therefore, we tested a version of the algorithm that, as part of each branching
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operation, looks at an arbitrary class with the minimum number of parameters from the remaining
state, and adds it to the result if it meets the threshold. Especially if this state has no branching
options that result in large drops of the log-likelihood, it will often be the case that these classes
with the minimum number of parameters are the best scoring classes in the state. In that case,
this strategy will allow the threshold to be improved much faster than otherwise. In terms of the
number of branching operations, the performance of the algorithm benefits from such updates to the
threshold if a heuristic is used that depends on the threshold. However, the opposite is true for the
number of states visited in Table 2.

These experimental results will hopefully provide a useful guide for the development of heuris-
tics that do not have access to an oracle. In particular, the value b proved to be valuable in our
experiments. If a heuristic does not have access to the value b, it could instead prioritize (sets of)
branching operations that will lead to a change in the lower bound on the penalty term. This is
expected to lead to similar behaviour of the algorithm.

5. Discussion and Conclusion

If the best class is sparse, we might be able to find it faster by not trying out all available branches
from the start. We could instead, for instance, initially only evaluate the log-likelihoods that results
from imposing a constraint v ⊥ w |S for |S| ≤ k for some k. If many branching options are already
found this way that would be good choices according to the branching heuristic, then we can pick
one of those; otherwise, we increase k and evaluate additional branching options. As long as we
allow the algorithm to consider and take such branches eventually, we are still guaranteed to find the
true optimal class. This trades off the amount of work done with the quality of the chosen branch,
and further experimentation would be needed to find a good way to do this.

While our Python implementation is currently not fast enough to deal with much larger numbers
of variables, our main vision with this algorithm is that this idea can be extended to other classes
of graphs, so that it can deal with latent confounders, and even feedback loops. As most existing
algorithms for these tasks are not exact, advancement in this area would be invaluable for reliable
causal inference, and the algorithm we presented here may prove to be a good starting point.
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Appendix A. Computing a Lower Bound on the Penalty Term

In this appendix, we provide more details about the approach we sketched in Section 3.4; in par-
ticular, how it can be determined that an adjacency between two nodes is required to hold in all
equivalence classes in a state. Due to space limitations, we do not give the precise graph-theoretical
rules that constitute the algorithm, but rather explain its operation on a slightly higher level.

Algorithm 2: Compute a lower bound on h.
Input: A state, specified by the CPDAG G of its greatest element and a list L of its

required d-connections
Output: A lower bound on the number of edges among classes in the state
Initially mark all adjacencies in G as required;
For each edge that has available branching operators in the state (i.e. not conflicting with

any required d-connection in L), mark that adjacency as not required;
while required adjacency marks were changed in the last round do

Mark all directed edges in G as not fixed;
For each directed edge in G that is part of a v-structure for all deletions of non-required
adjacencies (other than itself), mark it as fixed;

Apply Meek’s rules (Meek, 1995) where they are applicable for all deletions of
non-required edges / changes of non-fixed directed edges, to determine what other
directed edges are fixed;

For each required adjacency x, y for which Pay might have lost a node, or Pay ∪NAy,x

might have gained a node, compared to the original G, mark it as not required;
end
Return the number of required adjacencies, plus the number of required adjacency

components, minus the number of required d-connection components;

Our algorithm for this task (Algorithm 2) proceeds by starting from the state’s greatest element
G, and repeatedly considering what edges might be removed by an available branch operation.
We only track for individual edges whether or not they might be removed; keeping track of this
for all combinations of edges would be much too computationally expensive. Similarly, for each
individual directed edge from v to w, we may ask if its orientation is fixed, meaning that in all
equivalence classes considered so far where v and w are adjacent, the edge is directed with the same
orientation.

Because the goal is to find a lower bound on the number of edges in a state, it is acceptable if
our algorithm marks a required adjacency as not required. However, mistakes in the other direction
would violate the requirement of being a lower bound. So to guarantee correctness, we will mark
an adjacency as not required if a Delete operator could be applied to it after some subset of non-
required edges was already removed and some set of non-fixed directed edges replaced by other
edges — even if no sequence of Delete operators would actually yield a graph in which precisely
those sets of edges are missing or changed. The same type of reasoning is used to determine which
directed edges are fixed: an edge is only marked as fixed if we can guarantee its orientation after
any subset of non-required edges is removed. Also, the list L of required d-connections is ignored
for branching operators that might become applicable, to save computation time. Instead, as soon
as the graph might change in such a way that a branching operation exists on it that did not exist in
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G, we consider the effect of performing this operation. Using the correspondence between branches
and Deletes (see Section 3.2) and the conditions for applicability of Delete operators (Chickering,
2002), we can tell when this happens from changes in Pay and NAy,x.
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