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Abstract
We introduce a new class of graphical models that generalizes Lauritzen-Wermuth-Frydenberg
chain graphs by relaxing the semi-directed acyclity constraint so that only directed cycles are for-
bidden. Moreover, up to two edges are allowed between any pair of nodes. Specifically, we present
local, pairwise and global Markov properties for the new graphical models and prove their equiva-
lence. We also present an equivalent factorization property.
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1. Introduction

Lauritzen-Wermuth-Frydenberg chain graphs (LWF CGs) are usually described as unifying directed
acyclic graphs (DAGs) and undirected graphs (UGs) (Lauritzen, 1996, p. 53). However, this is
arguable because the only constraint that DAGs and UGs jointly impose is the absence of directed
cycles, whereas LWF CGs forbid semi-directed cycles which is a stronger constraint. Moreover,
LWF CGs do not allow more than one edge between any pair of nodes. In this work, we consider
graphs with directed and undirected edges but without directed cycles. The graphs can have up to
two different edges between any pair of nodes. Therefore, our graphs truly unify DAGs and UGs.
Hence, we call them UDAGs.

As we will see, UDAGs generalize LWF CGs. Three other such generalizations that can be
found in the literature are reciprocal graphs (RGs) (Koster, 1996), acyclic graphs (AGs) (Lauritzen
and Sadeghi, 2017) and segregated graphs (SGs) (Shpitser, 2015). The main differences between
UDAGs and these three classes of graphical models are the following. UDAGs are not a subclass
of RGs or SGs because RGs only allow certain semi-directed cycles, and SGs do not allow semi-
directed cycles at all. UDAGs are a subclass of AGs. However, Lauritzen and Sadeghi define a
global Markov property for AGs but no local or pairwise Markov property. We define the three
properties for UDAGs. Lauritzen and Sadeghi do define though a pairwise Markov property for
a subclass of AGs called chain mixed graphs (CMGs), but no local Markov property. Moreover,
UDAGs are not a subclass of CMGs because CMGs cannot have semi-directed cycles. In addition
to the local, pairwise and global Markov properties, we also define a factorization property for
UDAGs. Such a property exists for RGs and SGs but not yet for AGs or CMGs. We also note that
the algorithm developed by Sonntag et al. (2015) for learning LWF CGs from data can easily be
adapted to learn UDAGs (see Appendix A). To our knowledge, there is no algorithm for learning
RGs, SGs, AGs or CMGs. Finally, it is worth mentioning that our work complements that by
Richardson (2003), where DAGs and covariance (bidirected) graphs are unified.

The rest of the paper is organized as follows. Section 2 introduces some notation and definitions.
Sections 3 and 4 present the global, local and pairwise Markov properties for UDAGs and prove their
equivalence. Section 5 does the same for the factorization property. Section 6 closes the paper with
some discussion.
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Figure 1: Left: Example of moralization. Right: Example where non-adjacency does not imply
separation.

2. Preliminaries

In this section, we introduce some concepts about graphical models. Unless otherwise stated, all the
graphs and probability distributions in this paper are defined over a finite set of random variables
V . The elements of V are not distinguished from singletons. An UDAG G is a graph with possibly
directed and undirected edges but without directed cycles, i.e. A→ ⋯→ A is forbidden. There may
be up to two different edges between any pair of nodes. Edges between a node and itself are not
allowed. We denote by A ⊸ B that the edge A → B or A −B or both are in G. Given an UDAG
G, the parents of a set X ⊆ V are pa(X) = {B∣B → A is in G with A ∈ X}. The children of X are
ch(X) = {B∣A→ B is in G with A ∈X}. The neighbors of X are ne(X) = {B∣A−B is in G with
A ∈ X}. The ancestors of X are an(X) = X ∪ {B∣B ⊸ ⋯ ⊸ A is in G with A ∈ X}. Moreover,
X is called ancestral set if X = an(X). The descendants of X are de(X) = {B∣A ⊸ ⋯ ⊸ B is
in G with A ∈ X}. The sets just defined are defined with respect to G. When they are defined with
respect to another UDAG, this is indicated with a subscript.

A route between two nodes V1 and Vn of an UDAG G is a sequence of (not necessarily distinct)
edges E1, . . . ,En−1 in G such that Ei links the nodes Vi and Vi+1. A route is called a path if the
nodes in the route are all different. An undirected route is a route whose edges are all undirected. A
section of a route ρ is a maximal undirected subroute of ρ. A section V2 − ⋯ − Vn−1 of ρ is called
collider section if V1 → V2 − . . . − Vn−1 ← Vn is a subroute of ρ. Given a set Z ⊆ V , ρ is said to be
Z-active if (i) every collider section of ρ has a node in Z, and (ii) every non-collider section of ρ
has no node in Z. Given an UDAG G, the moral graph of G is the UG Gm such that A−B is in Gm

if and only if the edge(s) A⊸ B or the route A→ V1 −⋯−Vn ← B are in G. In the latter, note that
A and/or B may occur in V1, . . . , Vn. See Figure 1 (left) for an example. Given a set W ⊆ V , we
let GW denote the subgraph of G induced by W . Given an UG H , we let HW denote the marginal
subgraph of H over W , i.e. the edge A −B is in HW if and only if the edge A −B is in H or the
route A−V1 −⋯−Vn −B is H with V1, . . . , Vn ∉W . A set of nodes of H is complete if there exists
an undirected edge between every pair of nodes in the set. A clique of H is a maximal complete set
of nodes. The cliques of H are denoted as cl(H).

Let X , Y , W and Z be disjoint subsets of V . We represent by X ⊥ pY ∣Z that X and Y are
conditionally independent given Z in a probability distribution p. Every probability distribution p
satisfies the following four properties: Symmetry X ⊥ pY ∣Z ⇒ Y ⊥ pX ∣Z, decomposition X ⊥
pY ∪W ∣Z ⇒ X ⊥ pY ∣Z, weak union X ⊥ pY ∪W ∣Z ⇒ X ⊥ pY ∣Z ∪W , and contraction X ⊥
pY ∣Z ∪ W ∧ X ⊥ pW ∣Z ⇒ X ⊥ pY ∪ W ∣Z. If p is strictly positive, then it also satisfies the
intersection property X⊥pY ∣Z ∪W ∧X⊥pW ∣Z ∪ Y ⇒X⊥pY ∪W ∣Z.
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3. Global Markov Property

Given three disjoint sets X,Y,Z ⊆ V where X,Y ≠ ∅ and Z may be empty, we say that X is
separated from Y given Z in an UDAG G, denoted as X ⊥Y ∣Z, if every path in (Gan(X∪Y ∪Z))m
between a node in X and a node in Y has a node in Z. As the theorem below proves, this is
equivalent to saying that there is no route in G between a node of X and a node of Y that is
Z-active. Note that these separation criteria generalize those developed by Lauritzen (1996) and
Studený (1998) for LWF CGs. Appendix A shows how to implement the second criterion efficiently.

Theorem 1 The two separation criteria for UDAGs in the paragraph above are equivalent.

Proof Assume that there is a Z-active route ρ in G between A ∈ X and B ∈ Y . Clearly, every
node in a collider section is in an(Z). Moreover, every node in a non-collider section is ancestor
of A, B or a node in a collider section, which implies that it is in an(A ∪ B ∪ Z). Therefore,
there is a route between A and B in (Gan(X∪Y ∪Z))m. Moreover, the route can be modified into a
route % that circumvents Z by noting that there is an edge V1 − Vn in (Gan(X∪Y ∪Z))m whenever
V1 → V2 −⋯ − Vn−1 ← Vn is a subroute of ρ. The route % can be converted into a path by removing
loops.

Conversely, assume that there is a path ρ in (Gan(X∪Y ∪Z))m between A ∈ X and B ∈ Y
that circumvents Z. Note that ρ can be converted into a route % in G as follows: If the edge
V1 − Vn in ρ was added to (Gan(X∪Y ∪Z))m because the edge(s) V1 ⊸ Vn or V1 ← Vn or the route
V1 → V2 − ⋯ − Vn−1 ← Vn were in Gan(X∪Y ∪Z), then replace V1 − Vn with V1 ⊸ Vn, V1 ← Vn or
V1 → V2 −⋯ − Vn−1 ← Vn, respectively. Note that the non-collider sections of % have no node in Z
for ρ to circumvent Z, whereas the collider sections of % have all their nodes in an(X ∪ Y ∪Z) by
definition of (Gan(X∪Y ∪Z))m.

Note that we can assume without loss of generality that all the collider sections of % have some
node in an(Z) because, otherwise, if there is a collider section with no node in an(Z) but with
some node C in an(X) then there is a route A′ ⊸⋯ ⊸C with A′ ∈ X which can replace the
subroute of % between A and C. Likewise for an(Y ) and some B′ ∈ Y .

Finally, note that every collider section V1 → V2−⋯−Vn−1 ← Vn of % that has no node in Z must
have a node Vi in an(Z) ∖ Z with 2 ≤ i ≤ n − 1, which implies that there is a route Vi ⊸ ⋯ ⊸ C
where C is the only node of the route that is in Z. Therefore, we can replace the collider section
with V1 → V2 − ⋯ − Vi ⊸ ⋯ ⊸ C ⊸⋯ ⊸Vi − ⋯ − Vn−1 ← Vn. Repeating this step results in a
Z-active route between a node in X and a node in Y .

We say that a probability distribution p satisfies the global Markov property with respect to
an UDAG G if X ⊥ pY ∣Z for all disjoint sets X,Y,Z ⊆ V such that X ⊥ Y ∣Z. Note that two
non-adjacent nodes in G are not necessarily separated. For example, A ⊥ B∣Z does not hold for
any Z ⊆ {C,D,E} in the UDAG in Figure 1 (left). Likewise, C ⊥ D∣Z does not hold for any
Z ⊆ {A,B,E,F,H} in the UDAG in Figure 1 (right). Since AGs include UDAGs, the former also
have this problem.1 Although it cannot be solved for general AGs (Lauritzen and Sadeghi, 2017,
Figure 6), the problem can be solved for the subclass of CMGs by adding edges without altering
the separations represented (Lauritzen and Sadeghi, 2017, Corollary 3.1). Unfortunately, a similar
solution does not exist for UDAGs. For example, adding the edge C ⊸D to the UDAG in Figure 1

1. Although we call it a problem, there is nothing wrong with it per se. It is just a counterintuitive feature.
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Figure 2: Example of UDAG without Markov equivalent LWF CG.

(right) makes A⊥B∣D cease holding, whereas adding the edge C ← D makes A⊥B∣C ∪ F cease
holding. Adding two edges betweenC andD does not help either, since one of them must beC−D.
The following lemma characterizes the problematic pairs of nodes.

Lemma 2 Given two non-adjacent nodes V1 and Vn in an UDAG G, V1 ⊥Vn∣Z does not hold for
any Z ⊆ V ∖(V1∪Vn) if and only if the route V1 → V2−⋯−Vn−1 ← Vn is inG, and Vi ∈ an(V1∪Vn)
for some 1 < i < n.2

Proof To prove the if part, assume without loss of generality that Vi ∈ an(V1). This together with
the route in the lemma imply that G has a route ρ of the form V1 ⊸⋯ ⊸Vi − ⋯ − Vn−1 ← Vn.
If no node in Z is in ρ, then V1 ⊥Vn∣Z does not hold due to ρ. If a node C ∈ Z is in the subroute
Vi − ⋯ − Vn−1 ← Vn of ρ, then V1 ⊥Vn∣Z does not hold due to the route in the lemma. Finally, if
a node C ∈ Z is in the subroute V1 ⊸⋯ ⊸Vi of ρ, then V1 ⊥Vn∣Z does not hold due to the route
V1 → V2 −⋯ − Vi ⊸⋯⊸ C ⊸⋯ ⊸Vi −⋯ − Vn−1 ← Vn.

To prove the only if part, simply consider Z = ∅ and note that V1 and Vn are adjacent in
(Gan(V1∪Vn)

)m only if G has a subgraph of the form described in the lemma.

Finally, we show that the independence models representable with UDAGs are a proper superset
of those representable with LWF CGs. In particular, we show that there is no LWF CG that is
Markov equivalent to the UDAG in Figure 2, i.e. there is no LWF CG that represents exactly the
independence model represented by the UDAG.3 Assume to the contrary that there is a LWF CG
H that is Markov equivalent to the UDAG G in the figure. First, note that A ⊥B∣∅ and A /⊥B∣E
imply that H must have an induced subgraph A → E ← B. Likewise, H must have induced
subgraphs C → F ← D, K → I ← L, and M → J ← N . Next, note that A ⊥ I ∣{E,J} implies
that H cannot have an edge E ← I . Likewise, H cannot have an edge F → J . Note also that
A ⊥ F ∣{B,C,D,E,J} and D ⊥E∣{A,B,C,F, J} imply that H cannot have an edge E ← F or
E → F . Likewise, H cannot have an edge I ← J or I → J . Consequently, H must have a subgraph
of the form

2. In the terminology of Lauritzen and Sadeghi (2017), this route is a primitive inducing walk.
3. We do not mean that this is the simplest such UDAG. We choose this because it allows us to prove our point concisely.
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and thus A⊥N ∣{B,C,D,E,F, I, J,K,L,M} holds in G but not in H , which is a contradiction.
The following lemma shows that the existence of a semi-directed cycle is not sufficient to declare

an UDAG non-equivalent to any LWF CG. Instead, the semi-directed cycle must occur in a particular
configuration, e.g. as in Figure 2. For instance, the lemma implies that the UDAG A→ B ← C −B
is Markov equivalent to the LWF CG A −B −C −A.

Lemma 3 Let G denote an UDAG. If (i) W is an ancestral set of nodes in G of size greater than
one, and (ii) W is minimal with respect to the property (i), then replacing GW with (GW )m in G
results in an UDAG H that is Markov equivalent to G.

Proof
First, note that H is an UDAG because no directed cycle can be created by replacing GW with

(GW )m in G. Now, consider checking whether a separation X ⊥Y ∣Z holds in G and H . Consider
the following cases.

(1.) Assume that an(X ∪ Y ∪ Z) in G includes no node in W . Then, (Gan(X∪Y ∪Z))m =
(Han(X∪Y ∪Z))m and thus X⊥Y ∣Z holds in both G and H or in none.

(2.) Assume that an(X ∪ Y ∪ Z) in G includes exactly one of the nodes in W , here denoted
by A. Then, an(X ∪ Y ∪ Z) in H includes all the nodes in W because W is connected
in G since, otherwise, it is not minimal which is a contradiction. Moreover, note that A
is the only node shared by (Gan(X∪Y ∪Z))m and (GW )m because, otherwise, there must
be a second node in W that is in an(X ∪ Y ∪ Z) in G, which is a contradiction. Then,
(Han(X∪Y ∪Z))m = (Gan(X∪Y ∪Z))m ∪ (GW )m and thus X ⊥Y ∣Z holds in both G and H or
in none.

(3.) Assume that an(X ∪ Y ∪ Z) in G includes more than one of the nodes in W . Then,
(Gan(X∪Y ∪Z))m includes all the nodes inW because, otherwise,W is not minimal which is a
contradiction. Then, (Gan(X∪Y ∪Z))m = (Han(X∪Y ∪Z))m and thus X ⊥Y ∣Z holds in both G
and H or in none. To see it, note that by construction (Gan(X∪Y ∪Z))m and (Han(X∪Y ∪Z))m
differ only if the former has an edge V1 − Vn that the latter does not have. This occurs
only if Gan(X∪Y ∪Z) has a route V1 → V2 − ⋯ − Vn−1 ← Vn, whereas Han(X∪Y ∪Z) has a
route V1 − V2 − ⋯ − Vn−1 ← Vn or V1 − V2 − ⋯ − Vn−1 − Vn. The former case implies that
V1, . . . , Vn−1 are in W whereas Vn is not. This contradicts the fact that W is an ancestral set.
The latter case implies that V1, . . . , Vn are in W , which implies that V1 −Vn is in H , which is
a contradiction.
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Note that the condition in the lemma above is sufficient but not necessary. For instance, the
UDAGs G = {A → B → C} and H = {A → B −C} are Markov equivalent, although W = {B,C}
is not ancestral. Or the UDAGs G = {A → B ← C − A} and H = {A − B − C − A} are Markov
equivalent, although W = {A,B,C} is ancestral but not minimal.

4. Local and Pairwise Markov Properties

We say that a probability distribution p satisfies the local Markov property with respect to an UDAG
G if for any ancestral set W ,

A⊥pW ∖ (A ∪ ne(GW )
m(A))∣ne(GW )

m(A)

for any A ∈ W . Similarly, we say that a probability distribution p satisfies the pairwise Markov
property with respect to G if for any ancestral set W ,

A⊥pB∣W ∖ (A ∪B)

for any A,B ∈W such that B ∉ ne(GW )
m(A).

Theorem 4 Given a probability distribution p satisfying the intersection property, p satisfies the
local Markov property with respect to an UDAG G if and only if it satisfies the pairwise Markov
property with respect to G.

Proof The if part follows by repeated application of the intersection property. The only if part
follows by the weak union property.

Theorem 5 Given a probability distribution p satisfying the intersection property, p satisfies the
pairwise Markov property with respect to an UDAG G if and only if it satisfies the global Markov
property with respect to G.

Proof The if part is trivial. To prove the only if part, let W = an(X ∪ Y ∪ Z) and note that the
pairwise and global Markov properties are equivalent for UGs (Lauritzen, 1996, Theorem 3.7).

Note that the local Markov property for LWF CGs specifies a single independence for each
node (Lauritzen, 1996, p. 55). However, the local Markov property for UDAGs specifies many
more independences, specifically an independence for any node and ancestral set containing the
node. All in all, our local Markov property serves its purpose, namely to identify a subset of the
independences specified by the global Markov property that implies the rest. In the next section, we
show how to reduce this subset.

4.1 Reduction

The number of independences specified by the local Markov property for UDAGs can be reduced
by considering only maximal ancestral sets for any node A, i.e. those ancestral sets W ′ such that
A ∈W ′ and ne(GW ′)m(A) ⊂ ne(GW ′′)m(A) for any ancestral setW ′′ such thatW ′ ⊂W ′′. Note that
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Figure 3: Left: Example where the local Markov property can be improved by considering only
maximal ancestral sets. Right: Example where the factorization property can be improved
by considering only maximal ancestral sets.

there may be several maximal ancestral sets W ′ for A, each for a different set ne(GW ′)m(A) as will
be shown. The independences for the non-maximal ancestral sets follow from the independences
for the maximal ancestral sets by the decomposition property. In other words, for any non-maximal
ancestral set W and A ∈W ,

A⊥pW ∖ (A ∪ ne(GW )
m(A))∣ne(GW )

m(A)

follows from
A⊥pW

′ ∖ (A ∪ ne(GW ′)m(A))∣ne(GW ′)m(A)
where W ′ is the maximal ancestral set for A such that ne(GW )

m(A) = ne(GW ′)m(A). In the
UDAG in Figure 3 (left), for instance, W1 = {A,B,C,D}, W2 = {A,B,C,D,E, I, J,K}, and
W3 = {A,B,C,D,E,F,H, I, J,K} are three ancestral sets that contain the node B. However,
only W2 and W3 are maximal for B: W1 is not maximal because W1 ⊂ W2 but ne(GW1

)m(B) =
ne(GW2

)m(B), and W2 is maximal because W2 ⊂ W3 and ne(GW2
)m(B) ⊂ ne(GW3

)m(B). Note
that W1 specifies B ⊥ pD∣{A,C}, and W2 specifies B ⊥ p{D,E, I, J,K}∣{A,C}. Clearly, the
latter independence implies the former by the decomposition property. Therefore, there is no need
to specify both independences, as the local Markov property does. It suffices to specify just the
second.

A more convenient characterization of maximal ancestral sets is the following. An ancestral set
W ′ is maximal forA ∈W ′ if and only ifW ′ = V ∖[(ch(A)∪de(ch(A)))∖W ′]. To see it, note that
B ∈ ne(GW ′)m(A) if and only if the edge(s)A ⊸B orA→ B or the routeA→ V1−⋯−Vn ← B are
in GW ′ . Note that all the parents and neighbors of A are in W ′, because W ′ is ancestral. However,
if there is some child B of A that is not in W ′, then any ancestral set W ′′ that contains W ′ and B
or any node that is a descendant of B will be such that ne(GW ′)m(A) ⊂ ne(GW ′′)m(A).

The number of independences specified by the pairwise Markov property can also be reduced
by considering only maximal ancestral sets. This can be proven in the same way as Theorem 4.

5. Factorization Property

Theorem 6 Given a probability distribution p satisfying the intersection property, p satisfies the
pairwise Markov property with respect to an UDAG G if and only if for any ancestral set W ,

p(W ) = ∏
K∈cl((GW )

m)

ϕ(K)

where ϕ(K) is a non-negative function.
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Proof It suffices to recall the equivalence between the pairwise Markov property and the factoriza-
tion property for UGs (Lauritzen, 1996, Theorem 3.9).

The following theorem presents a necessary but not sufficient factorization property for UDAGs.
However, compared to that in Theorem 6, it is simpler and resembles the factorization property for
LWF CGs. Given an UDAG G, let C1, . . . ,Ct denote all the sets of nodes such that (i) every
node in Ci is an ancestor of the rest of the nodes in Ci, and (ii) Ci is maximal with respect to
the property (i). Assume that the sets are sorted such that all the edges between a node in Ci and
a node in Cj with i < j are directed from Ci to Cj . Let bd(Ci) = pa(Ci) ∖ Ci. Moreover, let
(GCi∪bd(Ci)

)∗ be the result of adding undirected edges to (GCi∪bd(Ci)
)m until bd(Ci) is a complete

set. Note that for LWF CGs, the sets Ci correspond to the chain components, bd(Ci) = pa(Ci) and
(GCi∪bd(Ci)

)∗ = (GCi∪bd(Ci)
)m. For instance, in the UDAG in Figure 1 (right) we have that C1 =

{A}, C2 = {B}, C3 = {D} and C4 = {C,E,F,H}, and bd(C1) = ∅, bd(C2) = ∅, bd(C3) = {B}
and bd(C4) = {A,D}.

Theorem 7 Let p be a probability distribution satisfying the intersection property. If p satisfies the
pairwise Markov property with respect to an UDAG G, then

p(V ) =∏
i

p(Ci∣bd(Ci)) =∏
i

∏
K∈cl((GCi∪bd(Ci))

∗)
ϕ(K)

where ϕ(K) is a non-negative function.

Proof The first equality follows from the fact that Ci ⊥ (∪j<iCj ∖ bd(Ci))∣bd(Ci) and the fact
that p satisfies the global Markov property with respect to G by Theorem 5. To prove the second
equality for i = t, note that p satisfies the pairwise Markov property with respect to Gm, because V
is an ancestral set. Then, p satisfies the global Markov property with respect to Gm by Theorem 5.
Now, add undirected edges to Gm until bd(Ct) is a complete set, and call the resulting undirected
graph H . Note that p satisfies the global Markov property with respect to H , because H is a super-
graph of Gm. Then, p(Ct, bd(Ct)) satisfies the global Markov property with respect to HCt∪bd(Ct)

(Frydenberg, 1990b, Proposition 2.2). This implies the second equality in the theorem because (i)
(GCt∪bd(Ct)

)∗ = HCt∪bd(Ct)
, (ii) p(Ct, bd(Ct)) = ∏K∈cl((GCi∪bd(Ci))

∗) φ(K) with the normaliza-
tion constant being absorbed in one of the functions in the product (Lauritzen, 1996, Theorem 3.9),
(iii) p(Ct∣bd(Ct)) = p(Ct, bd(Ct))/p(bd(Ct)), and (iv) bd(Ct) is a complete set in (GCt∪bd(Ct)

)∗.
Finally, note that V ∖Ct is an ancestral set and, thus, p(V ∖Ct) satisfies the pairwise Markov prop-
erty with respect to GV ∖Ct . Then, repeating the reasoning above for p(V ∖Ct) and GV ∖Ct proves
the second equality in the theorem for all i.

For instance, in the UDAG in Figure 1 (right) we have that

p(V ) =p(A)p(B)p(D∣B)p(CEFH ∣AD)
=ϕ(A)ϕ(B)ϕ(DB)ϕ(CAD)ϕ(CFA)ϕ(CEF )ϕ(FH)ϕ(HD).

5.1 Reduction

The number of factorizations specified by the factorization property for UDAGs in Theorem 6 can be
reduced by considering only maximal ancestral sets, i.e. those ancestral sets W ′ such that (GW ′)m
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is a proper subgraph of ((GW ′′)m)W ′
for any ancestral set W ′′ such that W ′ ⊂ W ′′. These maxi-

mal ancestral sets do not necessarily coincide with the ones defined in Section 4.1. The factoriza-
tions for the non-maximal ancestral sets follow from the factorizations for the maximal ancestral
sets. To see it, note that for any non-maximal ancestral set W , the probability distribution p(W )
can be computed by marginalization from p(W ′) where W ′ is any maximal ancestral set such
that ((GW ′)m)W = (GW )m. Note also that p(W ) factorizes according to ((GW ′)m)W and thus
according to (GW )m, by (Studený, 1997, Lemma 3.1) and (Lauritzen, 1996, Theorems 3.7 and
3.9). In the UDAG in Figure 3 (right), for instance, W1 = {A,B}, W2 = {A,B,C,D,E}, and
W3 = {A,B,C,D,E,F,H, I} are three ancestral sets. However, only W1 and W3 are maximal:
W2 is not maximal because W2 ⊂ W3 but ((GW3)m)W2 = (GW2)m, and W1 is maximal because
W1 ⊂W3 and (GW1)m is a proper subgraph of ((GW3)m)W1 . Note that W3 specifies

p(W3) = ϕ3(A,B)ϕ3(A,C)ϕ3(B,E)ϕ3(C,D)ϕ3(D,E)ϕ3(A,F )ϕ3(B, I)ϕ3(F,H)ϕ3(H,I)

and W2 specifies

p(W2) = ϕ2(A,B)ϕ2(A,C)ϕ2(B,E)ϕ2(C,D)ϕ2(D,E).

Clearly, the former factorization implies the latter by taking

ϕ2(A,B) = ϕ3(A,B) ∑
F,H,I

ϕ3(A,F )ϕ3(B, I)ϕ3(F,H)ϕ3(H,I)

ϕ2(A,C) = ϕ3(A,C);ϕ2(B,E) = ϕ3(B,E);ϕ2(C,D) = ϕ3(C,D);ϕ2(D,E) = ϕ3(D,E).

Therefore, there is no need to specify both factorizations, as the factorization property does. It
suffices to specify just the first.

A more convenient characterization of maximal ancestral sets is the following. An ancestral set
W ′ is maximal if and only if pa(A∪(an(A)∖W ′))∩W ′ is not a complete set in (GW ′)m for any
node A ∈ V ∖W ′.4 To see it, note that any ancestral set W ′′ that contains W ′ ∪A will also contain
an(A)∖W ′. Note also that no node B ∈ A∪(an(A)∖W ′) has a neighbor or child in W ′ because,
otherwise, B ∈ W ′ which is a contradiction. So, any such node B can only have parents in W ′.
Moreover, since pa(A ∪ (an(A) ∖W ′)) ∩W ′ is not a complete set in (GW ′)m, there must be two
nodes in pa(A ∪ (an(A) ∖W ′)) ∩W ′ that are not adjacent in (GW ′)m. However, there is a path
between these two nodes in (GW ′′)m through A, which implies that (GW ′)m is a proper subgraph
of ((GW ′′)m)W ′

.

6. Discussion

We have introduced UDAGs, a new class of graphical models that unifies DAGs and UGs since
it just forbids directed cycles and it allows up to two edges between any pair of nodes. We have
presented local, pairwise and global Markov properties for UDAGs and proved their equivalence
for positive probability distributions. We have also presented an equivalent factorization property.

Some natural question to tackle in the future follow. We have shown that UDAGs can represent
independence models that LWF CGs cannot. It would be interesting to know how much more
expressive UDAGs are. It would also be interesting to know if these independence models are

4. In the terminology of Frydenberg (1990a), A ∪ an(A) ∖W ′ is a non-simplicial set in (GW ′)m.
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probabilistic, i.e. if for any UDAG there is a probability distribution that is faithful to it. We would
also like to characterize when two UDAGs are Markov equivalent. Finally, we are also interested in
studying methods for parameterizing the factorization for UDAGs proposed.

Appendix A. Separation and Learning Algorithms

In this appendix, we describe an algorithm to check in a finite number of steps whether X ⊥ Y ∣Z
holds inG. Note that the UDAGGmay have infinite routes. The algorithm is essentially the same as
the one developed by Studený (1998) for LWF CGs, which was later slightly improved by Sonntag
et al. (2015). The algorithm basically consists in repeatedly executing some rules to build the sets
U1, U2, U3 ⊆ V , which can be described as follows.

• B ∈ U1 if and only if there exists a Z-active route between A ∈ X and B in G which ends
with the subroute Vi → Vi+1 −⋯ − Vi+k = B with k ≥ 1.

• B ∈ U2 if and only if there exists a Z-active route between A ∈X and B in G which does not
end with the subroute Vi → Vi+1 −⋯ − Vi+k = B with k ≥ 1.

• B ∈ U3 if and only if there exists a node C ∈ U1 ∪U2 and a route C = V1 → V2 −⋯ − Vk = B
in G with k ≥ 2 such that {V2, . . . , Vk} ∩Z ≠ ∅.

The algorithm starts with U1 = U3 = ∅ and U2 =X . The algorithm executes the following rules
until U1, U2 and U3 cannot be further enlarged.

• C ∈ U2, C ⊸D is in G, and D ∉ Z ⇒D ∈ U2.

• C ∈ U1 ∪U2, C →D is in G, and D ∉ Z ⇒D ∈ U1.

• C ∈ U1, C −D is in G, and D ∉ Z ⇒D ∈ U1.

• C ∈ U1 ∪U2, C →D is in G, and D ∈ Z ⇒D ∈ U3.

• C ∈ U1, C −D is in G, and D ∈ Z ⇒D ∈ U3.

• C ∈ U3, and C −D is in G⇒D ∈ U3.

• C ∈ U3, C ←D is in G, and D ∉ Z ⇒D ∈ U2.

One can prove that, when the algorithm halts, there is a Z-active route between each node
in U1 ∪ U2 and some node in X . The proof is identical to the one for LWF CGs by (Studený,
1998, Lemma 5.2) and (Sonntag et al., 2015, Proposition 1). Therefore, X ⊥ Y ∣Z if and only if
Y ⊆ V ∖ (U1 ∪U2).

We now use the result above to develop an algorithm for learning UDAGs from data via answer
set programming (ASP). The algorithm is essentially the same as the one developed by Sonntag
et al. (2015) for learning LWF CGs. ASP represents constraints in terms of first-order logical rules.
Each rule in the constraint declaration is of the form head :- body. The head contains an atom,
i.e. a fact. The body may contain several literals, i.e. negated and non-negated atoms. Intuitively,
the rule is a justification to derive the head if the body is true. The body is true if its non-negated
atoms can be derived, and its negated atoms cannot. A rule with only the head is an atom. A rule
without the head is a hard-constraint, meaning that satisfying the body results in a contradiction.
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Table 1: Algorithm for learning UDAGs.
% input predicate: ind(A,B,Z), the nodes A and B are independent given
% the set of nodes Z

#const n=7.
node(1..n).
set(0..(2**n)-1).

% edges
{ line(A,B) } :- node(A), node(B), A != B. % rule 4
{ arrow(A,B) } :- node(A), node(B), A != B.
line(A,B) :- line(B,A). % rule 6
:- arrow(A,B), arrow(B,A).

% directed acyclity
ancestor(A,B) :- arrow(A,B). % rule 8
ancestor(A,B) :- ancestor(A,C), ancestor(C,B).
:- ancestor(A,B), arrow(B,A).

% set membership
in(A,Z) :- node(A), set(Z), 2**(A-1) & Z != 0. % rule 11
out(A,Z) :- node(A), set(Z), 2**(A-1) & Z = 0.

% rules
inU2(A,A,Z) :- node(A), set(Z), out(A,Z). % rule 13
inU2(A,D,Z) :- inU2(A,C,Z), arrow(D,C), out(D,Z).
inU2(A,D,Z) :- inU2(A,C,Z), line(D,C), out(D,Z).
inU1(A,D,Z) :- inU1(A,C,Z), arrow(C,D), out(D,Z).
inU1(A,D,Z) :- inU2(A,C,Z), arrow(C,D), out(D,Z).
inU1(A,D,Z) :- inU1(A,C,Z), line(C,D), out(D,Z).
inU3(A,D,Z) :- inU1(A,C,Z), arrow(C,D), in(D,Z).
inU3(A,D,Z) :- inU2(A,C,Z), arrow(C,D), in(D,Z).
inU3(A,D,Z) :- inU1(A,C,Z), line(C,D), in(D,Z).
inU3(A,D,Z) :- inU3(A,C,Z), line(C,D).
inU2(A,D,Z) :- inU3(A,C,Z), arrow(D,C), out(D,Z).

% active routes
act(A,B,Z) :- inU1(A,B,Z), A != B. % rule 24
act(A,B,Z) :- inU2(A,B,Z), A != B.

% satisfy all the dependences
:- not ind(A,B,Z), not act(A,B,Z), node(A), node(B), set(Z), A != B,

out(A,Z), out(B,Z). % rule 26

% minimize the number of lines/arrows
:˜ line(A,B), A < B. [1,A,B,1] % rule 27
:˜ arrow(A,B). [1,A,B,2]

% show results
#show.
#show arrow(A,B) : arrow(A,B).
#show line(A,B) : line(A,B), A < B.

Soft-constraints are encoded as rules of the form :˜ body. [W], meaning that satisfying the
body results in a penalty of W units. The ASP solver returns the solutions that meet the hard-
constraints and minimize the total penalty due to the soft-constraints. A popular ASP solver is
clingo (Gebser et al., 2011).

Table 1 shows the ASP encoding of our learning algorithm. The input to the algorithm is the
set of independences in the probability distribution at hand, e.g. as determined from some avail-
able data. These are represented as a set of predicates ind(A,B,Z) indicating that the nodes A
and B are independent given the set of nodes Z. It is known that these pairwise independences
(also called elementary triplets) uniquely identify the rest of independences in the distribution, or
in a semi-graphoid for that matter (Studený, 2005, Lemma 2.2). The predicates node(A) and
set(Z) represent that A is the index of a node and Z is the index of a set of nodes. The predicates
line(A,B) and arrow(A,B) represent that there is an undirected and directed edge from the
node A to the node B. The rules 4 and 5 encode a non-deterministic guess of the edges, which
means that the ASP solver will implicitly consider all possible UDAGs during the search, hence the
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exactness of the search. The rules 6 and 7 enforce the fact that undirected edges are symmetric and
there is at most one directed edge between two nodes. The predicate ancestor(A,B) represents
that the node A is an ancestor of the node B. The rules 8-10 enforce that there are no directed cy-
cles. The predicates in the rules 11 and 12 represent whether a node A is or is not in a set of nodes
Z. The rules 13-23 encode the separation criterion for UDAGs as it was described above. Specifi-
cally, the predicate inU1(A,D,Z) represents that there is a Z-active route from the node A to the
node D that warrants the inclusion of D in the set U1. Similarly for the predicates inU2(A,D,Z)
and inU3(A,D,Z). The predicate act(A,B,Z) in the rules 24 and 25 represents that there is a
Z-active route between the node A and the node B. The rule 26 enforces that each dependence in
the input must correspond to an active route. The rules 27 and 28 represent a penalty of one unit
per edge. Other penalty rules can be added similarly. By calling the ASP solver, the solver will
essentially perform an exhaustive search over the space of UDAGs and return the sparsest minimal
independence map.
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