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Abstract
In this work we deal with the problem of learning a maximum weighted (k+1)-order decomposable
graph coarser than a given maximal k-order decomposable graph (also known as hypertree of tree-
width k − 1). An Integer Linear Programming formulation for the problem has recently been
proposed and used in order to solve instances of the problem with a moderate number of vertices.
However, as the problem is known to be NP-hard, it is of practical interest to develop approximate
algorithms able to work with a limited amount of computational resources. In this paper we propose
an approximate Integer Linear Programming formulation for the problem using a threshold distance
which discards the edges that, on average, have a low probability of being contained in the solution.
Experiments have been carried out with weighted graphs and probabilistic graphical models. Using
the proposed formulation we have obtained results close to the optimum, even when most of the
candidate edges were discarded using the distance criterion. The obtained good results indicate that
the approximate formulation has important applications for learning probabilistic graphical models
using decomposable scores, e.g., BDe.
Keywords: Maximum weighted graph, decomposable graphs, bounded maximum clique size,
decomposable models.

1. Introduction

The learning of probabilistic graphical models is usually divided in two parts: structural learning
and parametric learning (Koller and Friedman, 2009). The most common approach to deal with the
structural learning part consists in restricting the search space to structures with desirable proper-
ties. The structural learning can be faced using a search strategy guided by a score function that
measures the goodness of the candidate graph. In some problems, the score function is additively
decomposable in terms of structural components of the graph, such as, the edges or the complete set
of vertices. The structural constraints plus the use of additively decomposable score functions facil-
itates the design of efficient learning algorithms. Sometimes, the structural learning is approached
from the more general perspective of Graph Theory through a maximum weighted graph formula-
tion of the problem. In maximum weighted graph problems the structures are constrained to the set
of candidate structures of the original problem and the weight function is a generalization of the
scoring function that inherits some of its useful properties, e.g. additively decomposable functions.

For instance, in Srebro (2000), the author formally defines the problem of learning the maximum
weighted decomposable graphs with a maximum clique size of k from a graph theoretic perspective.
We call these structures k-order decomposable graphs (kDG). The problem consists of finding a
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kDG which maximizes the sum of the weights associated to its complete sets of vertices. The
problem is NP-hard even for 0-1 weights associated to complete sets of size k = 3, only. Recently,
a set of exact algorithms have been proposed in order to deal with this problem in the context
of graphical models (Corander et al., 2013; Kangas et al., 2014; Studený and Cussens, 2017). In
Srebro (2000, 2003) an algorithm was proposed to deal with the maximum weighted kDG problem
assuming that the weight function is monotone, i.e., the weight of a decomposable graph is equal
or higher after the addition of an edge. Under this assumption the structures that solve the problem
are known to be maximal k-order decomposable graphs (MkDG) (Malvestuto, 1991; Srebro, 2000).
Since the log-likelihood is a monotone function and it is additively decomposable into the complete
sets of vertices, the algorithm proposed by Srebro (2000, 2003) is applied to the problem of learning
the maximum likelihood probabilistic model with kDG structure.

In this paper we deal with a maximum weighted graph problem closely related to the maximum
weighted kDG problem: the maximum weighted (k + 1)-order decomposable graph ((k + 1)DG)
problem (Pérez et al., 2016). This problem imposes an additional structural constraint which re-
duces the space of candidate graphs considered. The problem consists of learning a maximum
weighted (k + 1)DG coarser than a given MkDG (see Problem 1). In Pérez et al. (2016) is shown
that the problem, despite of being a particular case of the problem proposed in (Srebro, 2000), is
still an NP-hard problem. In Pérez et al. (2014) an equivalent formulation of the problem based
on Integer Linear Programming (ILP) is proposed. This approach can be used as a building block
for developing approximate algorithms in order to deal with the maximum weighted kDG problem
(Pérez et al., 2016). Unfortunately, the number of decision variables and restrictions of the ILP for-
mulation can grow cubically with the number of vertices of the graph, n (see Section 4). The poor
scalability of the ILP formulation limits its applicability to problems of MkDGs with a moderate
number of vertices. Moreover, since the problem is NP-hard, and in practice the available computa-
tional resources are limited, it is mandatory to develop computationally scalable approaches to this
problem.

Based on a novel notion of distance in a graph between pairs of vertices, we propose an ap-
proximate ILP formulation for Problem 1 which discards a set of edges that, on average, has low
probability of being included in the solution. The novel ILP formulation shows a better scalability
with respect to n and, given a limited amount of computational resources, outperforms the original
formulation even for moderate values of n. A set of experiments has been carried out concerning two
types of structural learning problems: (1) maximum weighted graph and, (2) probabilistic graphical
models with decomposable scores. Using the reduced formulation we have obtained results close
to the optimum with a small fraction of the computational resources required by the general ILP
formulation.

2. Maximum weighted (k + 1)DG problem

Let G = (V,E) be an undirected graph, where V = {1, ..., n} is a set of indexes called the vertices
and E is a set of pairs of vertices {u, v} called edges. Let G+ = (V +, E+) be an undirected graph.
G+ is coarser than G (or equivalently, G is thinner than G+) when V = V + and E ( E+. An
undirected graph is called a decomposable graph (DG) if for any cycle of length greater than 3 there
exists a chord. Henceforth, we deal with DGs only. A set of vertices is said to be complete in G
when it induces a complete subgraph. The set of all complete sets of vertices of G is denoted by
C(G). The neighborhood of u in G is the set of vertices connected by an edge to u, N(u|G) =
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{v ∈ V : {u, v} ∈ E}. We define the neighborhood of a set of vertices S in G as the set of
vertices connected by edges to all the vertices in S, N(S|G) = {v ∈ V : ∀u ∈ S, {u, v} ∈ E} =⋂

u∈S N(u|G). Note that this definition of neighborhood is the intersection of the neighborhood of
each vertex instead of the union. A set S ⊆ V \ {u, v} that separates u from v in G is called a
separator for u and v. S is called minimal separator if any proper subset of S does not separate u and
v in G. From here on we will consider minimal separators only and we will call them separators, for
the sake of brevity. The set of separators of G is denoted by S(G). A remarkable property of DGs
is that their separators are complete sets (Lauritzen, 1996). We call to the number of separators for
u and v in G the distance between u and v, and it is denoted as lG(u, v). Note that the distance is
0 when {u, v} ∈ E and the distance is 1 when u and v are at different connected components in
G. We say that an edge {u, v} /∈ E has length lG({u, v}) for G, that is, its length corresponds to
the distance between u and v in G. The components associated to a separator S is the set of sets of
vertices that are mutually separated by S and it is denoted by comp(S|G). Thus, given two different
components U, V ∈ comp(S|G), S is the minimal separator for any u ∈ U and v ∈ V . We call to
the size of comp(S|G) the degree of the separator S, dS = |comp(S|G)|, which corresponds to its
multiplicity plus one.

Next, we show a theoretical characterization of the set of the edges that can be added to a DG
maintaining its decomposability (Pérez et al., 2016). These edges are henceforth called candidate
edges.

Theorem 1 (Desphande et al., 2001) Given a DG G = (V,E), an edge {u, v} /∈ E is a candidate
edge if and only if exists S ⊆ V \ {u, v} such that (1) S is the separator for u and v in G, and (2)
{u, v} ⊂ N(S|G). We say that {u, v} is a candidate edge due to S.

Clearly, the addition of a candidate edge {u, v} to G due to S ∈ S(G) creates the clique {u, v} ∪
S. Besides, the addition of a set of edges can change the neighborhood of a separator S and, in
consequence, the set of candidate edges due to S.

In this work we are particularly interested in two types of DGs which control explicitly the
maximum clique size.

Definition 1 A k-order decomposable graph (kDG) is a DG for which the maximum clique size is
k. A maximal k-order decomposable graph (MkDG) is a kDG for which all the cliques are of size
k and the addition of a candidate edge creates a clique of size k + 1.

MkDGs are also known in the literature as (k − 1)-hypertrees (Srebro, 2000). We are interested in
kDGs and MkDGs because Problem 1 is defined in terms of these types of DGs. An MkDG G has
the following interesting structural properties (Malvestuto, 1991): (1) All the cliques of G are of
size k, (2) G has (k − 1)(2n − k)/2 edges, and (3) the size of any separator S ∈ S(G) is k − 1.
MkDGs are maximal in the sense that the addition of any candidate edge creates a clique of size
greater than k. Henceforth, an MkDG will be denoted simply by G and a (k + 1)DG coarser than
G (or G itself) will be denoted by G+.

The foundations being laid out, we can proceed to formally define the maximum weighted graph
problem to be studied.

Problem 1 Let G be an MkDG and letW = {wR : R ⊆ V , where |R| ≤ k+1} be a set of weights
associated to the sets of vertices of size lower than or equal to k + 1. Find a maximum weighted
(k + 1)DG coarser than G:

G∗ = argG+∈Gk+1
maxw(G+) (1)
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where Gk+1 is the set of (k + 1)DGs coarser than G and w(G+) is the weight function given by

w(G+) =
∑

R∈C(G+)

wR (2)

As we will see later, many of the weights included in W are irrelevant for solving Problem 1.
However, in order to highlight the similarities with the more general problem (Srebro, 2000), we
have decided to include the entire setW in the definition of Problem 1. Despite of being a special
case, Problem 1 is still an NP-hard problem for k ≥ 1 (Pérez et al., 2016). In this work we propose
an approximate ILP formulation of this problem which (as will be shown later) obtains results very
close to the optimum while making use of only a small fraction of the computational resources
required by the general formulation.

According to Lemma 2.21 of (Lauritzen, 1996), any DG can be obtained starting from a thinner
DG by adding candidate edges sequentially and, therefore, Problem 1 can be solved by considering
the addition of candidate edges of successive DGs, only. Thus, in order to solve Problem 1 we are
interested in the set of all candidate edges due to S ∈ S(G) that create cliques of size k + 1 for an
MkDG G or for any of the possibles (k + 1)DGs coarser than G, Gk+1.

Definition 2 Let G be an MkDG. An edge (u, v) is called edge of interest (EOI) due to S for G
when it is a candidate edge for G or for a (k + 1)DG G+ coarser than G, and its addition to G
and G+, respectively, creates the clique {u, v} ∪ S of size k + 1. The EOIs due to S for G are
denoted by ES(G)

In order to characterize the set of cliques that can form part of the solution to Problem 1, we
need to determine the set of separators of size k − 1 for G and for any G+. Fortunately, this set
corresponds to the set of separators for G (Pérez et al., 2016), that is, for any G+ coarser than G
{S ∈ S(G) : |S| = k − 1} ⊆ S(G). The set of EOIs for G is E(G) =

⋃
S∈S(G) ES(G) where

ES(G) = {{u, v} : u ⊥G v|S}

is the set of EOIs due to S. By Definition 2 and Theorem 1, the EOI {u, v} ∈ ES(G) is associated
to the clique {u, v} ∪ S.

Once we know the set of separators it is easy to see that the set of cliques of size k + 1 of any
G+ is given by {{u, v} ∪ S : {u, v} ∈ ES(G), for an S ∈ S(G)}. This result can reduce the
set of cliques to be considered to solve Problem 1 from O(nk) to O(n3) and it allows to formulate
Problem 1 as an ILP problem with O(n3) decision variables, in the worst case.

By Theorem 1, the addition of the EOI {u, v} due to S requires to add in advance the edges
{{u, s} : s ∈ S} ∪ {{v, s} : s ∈ S}, which generates G+. The addition of {u, v} to G+ creates
the new complete sets {{u, v} ∪ R : R ⊆ S}, only, and therefore, the addition of {u, v} to G+

creates the new complete sets {{u, v} ∪ R : R ⊆ S}, only. Based on this observation it is possible
to associate a weight to each EOI due to S.

Proposition 1 Let G be an MkDG and let {u, v} be an EOI due to S, {u, v} ∈ ES(G). The
contribution of {u, v} due to S to the total weight of a solution is wu,v|S =

∑
R⊆S w{u,v}∪R.

At this point, the reader should note that in order to solve Problem 1 we only need the subset of
W required to compute the weights associated to EOIs: W(G) = {w{u,v}∪R : R ⊆ S and {u, v} ∈
ES(G), where S ∈ S(G)}
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3. An ILP formulation of Problem 1

This section presents a formulation based on Integer Linear Programing for solving Problem 1
(exact formulation, EF). Let G = (V,E) be the input MkDG. The decision variables of the EF
are binary and correspond to the following set:

{Xu,v|S : S ∈ S(G), {u, v} ∈ ES(G)} (3)

where

Xu,v|S =

{
1, if the EOI {u, v} due to S is included in the solution.
0, if the EOI {u, v} due to S is NOT included in the solution.

(4)

An edge {u, v} is included in the solution if Xu,v|S = 1 for any S ∈ S(G), where {u, v} ∈ ES(G),
while {u, v} is not included in the solution if Xu,v|S = 0 for all S ∈ S(G), where {u, v} ∈ ES(G).
The (k + 1)DG encoded by the decision variables is G+ = (V,E+), where E+ = E ∪ {{u, v} :
Xu,v|S = 1 for some S ∈ S(G)}. As we noted in Section 2, by Proposition 1 the addition of an
EOI {u, v} due to S contributes to the total weight of the obtained (k+1)DG with wu,v|S and, thus,
the assignment Xu,v|S = 1 has the associated weight wu,v|S .

Problem 1 can be stated in the following way in the form of an ILP model:

max
∑

S∈S(G),{u,v}∈ES(G)

wu,v|SXu,v|S (5)

subject to the following set of constraints:

(1)
∑

S∈S(G):{u,v}∈ES(G)Xu,v|S ≤ 1 for {u, v} 6∈ E

(2) [
∑

R∈S(G):{u,v}∈ER(G)

∑
s∈S Xu,s|R]− (k − 1) ·Xu,v|S ≥ −

∑
s∈S 1u,s

[
∑

R∈S(G):{u,v}∈ER(G)

∑
s∈S Xv,s|R]− (k − 1) ·Xu,v|S ≥ −

∑
s∈S 1v,s

for Xu,v|S

(3)
∑

T 6=U∈C
∑

u∈T
∑

v∈U Xu,v|S ≤ |C| − 1 for S ∈ S(G) and C ⊂ comp(S|G)

The constants 1u,v of constraints (2) take the value 1 if {u, v} ∈ E, and 0 otherwise. In constraints
(3), C represents a set of sets of vertices, and T and U are sets of vertices associated to (distinct)
connected components of the graph induced by V \ S.

Constraints (1) guarantee that each EOI is considered by one separator, which ensures that
each edge can be added only once in the solution. Constraints (2) guarantee that {u, v} is in the
neighborhood of S in the solution (see Theorem 1 and Figure 1(a)). In Section 2 we indicate that
Problem 1 can be solved by adding sequentially a set of candidate edges (Lemma 2.21 in (Lauritzen,
1996)). The proposed ILP approach does not define an explicit ordering of the candidate edges
added, but, it is possible to define the following partial ordering among the EOIs: if {u, v} is an
EOI due to S, then the edges {u, s} and {v, s} for s ∈ S not included in G have to be added in
advance. Constraints (3) guarantee that the vertices u and v were separated due to S before the
edge was added. For example, in Figure 1(b), it is possible to add an edge from the component of
v to the component of w because they are separated due to S. On the contrary, an edge from the
component of v can not be added to the component of u because they are not separated due to S.
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(a) Constraints (2): These constraints ensure that
if {u, v} is added to the structure creating the
clique {u, v} ∪ S then u and v are in the neigh-
borhood of S.

(b) Constraints (3): These constraints ensure
that the edges between two vertices in different
connected components form a forest.

Figure 1: This figure illustrates the constraints of the ILP approach to Problem 1. Small circles rep-
resent vertices, large circles separators, ellipses connected components and lines edges.

Note that constraints (3) guarantee that we add a forest among the connected components of each
separator. At this point we would like to highlight that the proposed formulation guarantees that (1)
all the EOIs can be found in at least a coarser (k + 1)DG and (2) each coarser (k + 1)DG is given
by a unique configuration of the decision variables.

4. Size of the exact formulation

The bottleneck of the EF appears to be number of the constraints (3), which is O(
∑

S∈S(G) 2
dS ).

Note that this is exponential in dmax, the maximum degree of the separators of G. The worst case
corresponds to a MkDG with a single separator because in that case there are O(2n−k) constraints
(3). This fact limits the range of applications of the proposed approach to deal with MkDGs with
moderate values of dmax. Fortunately, on average, the number of separators of degree d in a random
tree (M2DG) decreases exponentially with d, O( n

2d
). Thus, for k = 2, in the average case, it can be

said that the number of constraints (3) grows linearly with n (see Section 6). This observation can
be generalized to other values of k.

Surprisingly, in practice, the bottleneck of the EF lies in the number of decision variables and
constraints (1) and (2) (see Table 1 and Figure 2(b)). The number of decision variables corresponds
to the number of EOIs due to the different separators. In the worst case, this number isO(n3). Note
that {u, v} with length l may be an EOI due to l− 1 different separators. The number of constraints
(1) can be O(n2) because it is directly related with the number of different edges. The number of
additive terms in the constraint associated to the edge {u, v} corresponds to l−1. In the worst case,
there areO(n3) additive terms involved in constraint (1). The number of constraints (2) corresponds
to the number of EOIs due to the different separators which can be O(n3). In addition, the number
of terms involved in the constraint associated to the EOI {u, v} (of length l) due to Si isO(l). Thus,
in the worst case the number of terms involved in constraints (2) isO(n4). In summary, the number
of decision variables can be O(n3), and the number of constraints (1) and (2) amounts to O(n3),
with O(n4) additive terms.
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The number of variables and constraints involved in the EF cause ILP solvers to fail with grow-
ing problem size and under the assumption of a limited amount of computational resources. More-
over, even for rather small problems the necessary computation time for deriving an optimal solution
might be unpractically high. In previous experiments (Pérez et al., 2014), it was observed a severe
decrease in the quality of the obtained solutions (with a computation time limit of 3600 seconds)
when the number of vertices approaches 100. The lack of scalability of the ILP model and the
NP-hard nature of the problem motivates the proposal of an approximate ILP formulation which
restricts the set of candidate solutions.

5. An approximated ILP formulation for Problem 1

In this section we present an alternative ILP formulation to deal with Problem 1 (approximated
formulation, AF). This formulation imposes an additional structural constraint based on the length
of the EOIs. The approach avoids the main difficulties of the EF and produces a reduced ILP
problem more suitable for learning MkDGs with many vertices. Even though with this approach
we can sacrifice the possibility to obtain optimal solutions for the original problem, we obtain high-
quality approximate solutions within a limited amount of computation time (see Section 6).

The main idea of the formulation is to reduce the set of EOIs due to S by imposing a constraint
based on a threshold distance lmax:

Elmax
S (G) = {{u, v} ∈ ES(G) : lG(u, v) ≤ lmax}

where 1 < lmax < n is the threshold distance. In other words, an EOI {u, v} due to S is only
considered if there is a path whose length is at most l. The EF presented in Section 3 is modified by
considering {u, v} only if lG(u, v) ≤ lmax. Note that this formulation generates (valid) solutions to
Problem 1 because the constraints associated to an edge {u, v} of length lG(u, v) are given in terms
of edges of lower length.

The motivations behind the use of a threshold distance lmax as a criterion to choose the EOIs
to be considered by the AF is twofold: 1) Discard edges that, on average, have low probability of
being added to the solution, and 2) reduce the size of the ILP model.

1. The addition of an EOI of length l implies the addition of l−2 EOIs of lower length being the
largest of length at least l/2 and the smallest of length 2. Besides, the maximum number of
edges that can be added to a MkDG to solve Problem 1 is n− k. Additionally, two different
EOIs due to different separators may be incompatible due to their set of constraints (2) and
(3), and the possibilities to be incompatible increase with their length. As a consequence of
these intuitions, it is clear that, generally, the number of EOIs of length l included decreases
with l. Therefore, we can say that, the reduced formulation discards the EOIs that, on average
(for random weight functions), are included in the optimal solution with low probability.

2. The number of decision variables increases polynomially with lmax and the increase in the
number of variables implies an increase in the average number of additive terms of the con-
straints (3). Moreover, the number of terms associated to an EOI of length l in constraints
(1) and (2) is O(lG(u, v)). Clearly, lmax can effectively control the number of EOIs and, in
consequence, the number of decision variables, constraints (1) and (2), and the number of
additive terms in the constraints (1), (2) and (3) of the AF (see Table 1).
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In summary, as the distance of an EOI increases its addition becomes more unlikely, the rate of
edges added with this distance is lower and the number of variables and constraints increases un-
necessarily.

6. Experiments

The experimental results outlined in this section were obtained on a cluster of PCs with "Intel(R)
Xeon(R) CPU E5450" CPUs of 8 nuclii of 3000 MHz and 32 Gigabyte of RAM. Moreover, the
Integer Linear Programm (ILP) was solved with IBM ILOG CPLEX V12.1A run of CPLEX was
stopped once (at least) 3600 CPU seconds had passed. The output (result) of CPLEX is the value
of the best feasible integer solution found within the allowed CPU time limit. The results obtained
by CPLEX are compared against the ones of a greedy approach where, at each step, the algorithm
considers the addition of the candidate edge {u, v} due to S with the maximum weight wu,v|S
among the set of candidate edges.

Experimentation has been performed for two types of problems: (1) learning of maximum
weighted (k+1)DGs and (2) learning of decomposable models with (k+1)DG structures using the
Bayesian Dirichlet equivalent uniform score (Koller and Friedman, 2009). The experiments have
been restricted to generating 3DGs from M2DGs (Problem 1 for k = 2). Further experimentation
is left to future work.

6.1 Maximum weighted (k + 1)DG

The instances of Problem 1 have been randomly generated as follows: (1) A M2DG (a tree) with n
vertices G is generated at random using the Kruskall algorithm for maximization where the weights
associated to the edges are randomly generated. (2) The set of weightsW(G) has been uniformly
sampled from the set {−100, 99, ...,−1, 0, 1, ..., 99, 100}. 50 instances have been generated for
each n ∈ {20, 40, 80, 160}. The instances with more than 50, 000 decision variables have been re-
moved because the problem becomes inaccessible with 3600 seconds. The evolution of the obtained
results with respect to n is illustrated in Figure 2. The summary of the obtained results is shown in
Table 1.

The results obtained for the AF with lmax = 8 are very similar to those of the EF, even for the
instances for which the EF obtains the optimum value. Moreover, for n = 80, the AF with lmax = 8
obtains better results than the EF and, on average, it has a gap with respect to an upper bound of the
optimum score close to 10%. The AF with lmax outperforms Greedy in all the instances, even when
Greedy, on average, adds edges of length up to 6.18, 7.16 and 7.8 for n = 40, 80, 160, respectively.
For n = 80 the AF with lmax = 4 has obtained a remarkable result, obtaining a solution close
to the solution obtained with lmax = 8 and spending only an small fraction of the time (0,16
seconds). From the results it can be concluded that the best trade-off between the weight of the
solution and the computational time is obtained with the order of thousands variables, being the
computational time lower than 1 second and the quality of the solution close the best obtained (see
for n = 20, 40, 80, 160 the AF with lmax = 16, 8, 8, 4, respectively).

6.2 Maximum BDe (k+1)DG

The instances of Problem 1 have been randomly generated as follows: (1) A M2DG with n vertices
G is generated at random using the Kruskall algorithm for maximization where the weights asso-
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(a) Weight

(b) Complexity

Figure 2: This figure visually shows the evolution of the average weights, and the average number
of decision variables and contraints (1), (2) and (3) with respect to the number of variables
n.
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Maximum weighted (k + 1)DG
Problem features Greedy ILP

n lmax Vars. Cons. (1) Cons. (2) Cons. (3) Weight Weight time Gap APD
2 26.00 26.00 0.00 665.36 0.02 0.00 -34
4 176.06 86.02 180.08 1098.94 0.02 0.00 11

20 8 552.98 159.58 786.80 39.40 996.60 1190.28 0.12 0.00 21
16 653.64 171.00 965.28 1199.30 0.22 0.00 22
∞ 653.64 171.00 965.28 1199.30 0.23 0.00 22
2 57.58 57.58 0.00 1342.68 0.02 0.00 -40
4 461.00 216.48 489.04 2368.58 0.05 0.00 7

40 8 2255.92 548.68 3414.48 91.72 2231.06 2594.50 0.90 0.00 17
16 4097.04 738.20 6717.68 2629.02 23.81 0.00 19
∞ 4143.14 1482.00 6804.28 2629.02 38.01 0.00 19
2 120.46 120.46 0.00 2842.82 0.01 0.00 -38
4 1054.26 486.02 1136.48 4894.48 0.08 0.00 7

80 8 6839.56 1526.08 10626.96 200.88 4586.68 5414.08 13.32 0.00 18
16 21666.51 2923.66 37484.98 5443.20 2033.88 8.78 19
∞ 24470.53 3081.00 42779.06 5408.76 1839.53 10.69 18
2 250.40 250.40 0.00 5785.18 0.01 0.00 -38

160 4 2321.34 1058.00 2526.68 454.16 9280.88 9959.82 0.16 0.00 7
8 17210.62 3703.58 27014.08 10989.46 1204.90 0.44 19

Maximum BDe (k + 1)DG
Problem features Greedy ILP

n lmax Vars. Cons. (1) Cons. (2) Cons. (3) BDe BDe time Gap APD
2 26.00 26.00 0.00 237.54 0.01 0.00 -39
4 176.06 86.02 180.08 573.93 0.02 0.00 64

20 8 552.98 159.58 786.80 39.40 394.75 737.81 0.23 0.00 126
16 653.64 171.00 965.28 747.12 0.36 0.00 130
∞ 653.64 171.00 965.28 747.12 0.40 0.00 130
2 57.58 57.58 0.00 290.68 0.01 0.00 -40
4 461.00 216.48 489.04 884.18 0.04 0.00 136

40 8 2255.92 548.68 3414.48 91.72 514.57 1257.55 3.85 0.00 269
16 4097.04 738.20 6717.68 1304.75 330.92 0.97 284
∞ 4143.14 741.00 6804.28 1305.63 319.49 1.68 284
2 120.46 120.46 0.00 323.62 0.01 0.00 -31
4 1054.26 486.02 1136.48 998.26 0.04 0.00 147

80 8 6839.56 1526.08 10626.96 200.88 472.60 1649.52 168.36 0.17 333
16 21694.60 2923.66 37541.88 1838.99 2924.95 42.72 385
∞ 24501.84 3081.00 42841.68 1789.32 2411.26 53.88 372
2 250.40 250.40 0.00 316.26 0.01 0.00 -19

160 4 2321.34 1058.00 2526.68 454.16 395.17 1107.13 0.14 0.00 220
8 17210.62 3703.58 27014.08 2225.06 779.55 4.80 592

Table 1: Summary of the results obtained for the generated Instances. The column lmax represents
the threshold distance of the AF where the value∞ represents the EF. The columns Vars.,
Cons-1, Cons-2 and Cons-3 show the average number of decision variables and constraints
(1), (2) and (3), respectively, for the Integer Linear Programming formulation of the prob-
lem. The columns Weight (and BDe) show the average objective function values obtained
by Greedy and ILP. The column Gap provides information about the average optimality
gap (in percent), which refers to the gap between the value of the best valid solution that
was found and the current lower bound at the time of stopping a run. The column APD is
the average percentage deviation of ILP with respect to Greedy.
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ciated to the edges are randomly generated. (2) Starting from a root vertex selected at random we
have transformed G into a directed acyclic graph (DAG). (3) Directed edges are randomly added
preserving until all the vertices has two parents in the resultant DAG G+. (4) A Bayesian networks
B is constructed with the obtained structure G+ and its parameters have been uniformly sampled
from a Dirichlet with the hyper-parameter equal to 0.5 (5) A data set D of size 500 has been sam-
pled from the distribution represented by B. (6) The set of weights have been calculated from D
using the Bayesian Dirichlet equivalent uniform metric with an equivalent sample size of 1. 100
domains have been generated for each n ∈ {20, 40, 80, 160}. The instances with more than 50, 000
decision variables have been removed. We would like to highlight that, in general, the distribution
represented by B can not be represented by a Markov network with a M3DG structure. Moreover,
the treewidth of the obtained DAG is higher than 3 with a high probability and the optimum length
for lmax can not be known in advance. This instances are more difficult because the percentage of
EOIs with positives scores arranges from 30% for n = 20 to 5% for n = 160. The evolution of the
obtained results with respect to n is illustrated in Figure 2. The summary of the obtained results is
shown in Table 1.

The conclusions that can be drawn from these experiments are similar to the conclusions of the
experiments summarized in Section 6.1. The best trade-off between the quality of the solutions and
the required computational resources when the AF has the order of thousands decision variables
(lmax = 16, 8, 8, 4 for n = 20, 40, 80, 160, respectively). In this case, the required time to find the
optimum for the order of thousands variables grows up to hundred of seconds (lmax = 8 for n = 80).
For n = 160 with the order of thousands variables the results are quite poor (see lmax = 4), however,
we believe that setting an lmax between 5 and 7 we can obtain results with a good trade-off. In these
experiments the APD obtained with respect to Greedy grows dramatically as n increases, even for
lmax = 4.

7. Conclusions and future work

The proposed formulation transforms the ILP formulation of Problem 1 into an approximated ILP
formulation of practical interest which is able to work with problems of learning maximum weighted
graphs and decomposable models. The approximate formulation is based on a simple yet effective
heuristic that reduces the number of candidate edges considered to solve Problem 1. By reducing
the number of candidate edges, the proposed approximation can control the size of the produced
ILP formulation (variables and constraints), which is the major bottleneck of the exact formulation
(see Section 4). The heuristic is based on a threshold distance and it discard the edges that, on aver-
age, have a low probability of being contained in the optimal solution (see Section 5). The obtained
experimental results confirm the intuitions behind the distance based constraint. The approximate
formulation has obtained results close to the global optimum, even with small threshold distance
values. For a limited amount of computational resources, e.g. 3600 seconds, we recommend to set
the lmax parameter of the approximated formulation to a value which produces the order of thou-
sands decision variables (see Subsection 6.1 and 6.2 for further details). The proposed approximated
ILP formulation has shown to be an effective strategy in order to approach Problem 1.

In the future, we will develop strategies to further reduce the number of edges to be considered
by the approximated ILP formulation taking into account the set of weights of a particular instance
of Problem 1. Additionally, we will design efficient algorithms to deal with the more general max-
imum weighted K-order decomposable graph problem defined by Srebro (2000). This algorithms
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will be based on the divide-and-conquer strategy presented by Pérez et al. (2016), which construct
a sequence of coarser MiDGs for i = 2, ..., k. The divide-and-conquer approach has shown to be
an effective strategy for learning decomposable models with a bounded maximum clique size.
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