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Abstract
The same-decision probability (SDP) is a confidence measure for threshold-based decisions. In this
paper we detail various properties of the SDP that allow for studying its robustness to changes in the
threshold value upon which a decision is based. In addition to expressing confidence in a decision,
the SDP has proven to be a useful tool in other contexts, such as that of information gathering. We
demonstrate that the properties of the SDP as established in this paper allow for its application in
the context of explaining Bayesian network classifiers as well.
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robustness; explanations.

1. Introduction

The output of any classifier that bases its decision on some function value exceeding a given thresh-
old is sensitive to changes in that threshold. As a result, not only individual decisions, but also
quality measures that summarize the performance of such classifiers, such as accuracy, sensitivity,
and specificity, depend on the choice of threshold. In fact, ROC-curves are useful tools for display-
ing the trade-off between sensitivity and specificity of a classifier upon varying the threshold. In
this paper we focus on the concept of same-decision probability (SDP), a recently introduced con-
fidence measure for threshold-based decisions made by Bayesian network classifiers (Choi et al.,
2012). In this context, it is assumed that evidence e is available for a (possibly empty) subset of
attributes and that Pr(c | e) ≥ T , that is, the classifier currently outputs decision c based upon its
posterior probability surpassing a given threshold T . The SDP now equals the probability of making
the same decision upon obtaining additional evidence. The SDP thus quantifies the robustness of
threshold-based decisions to changes in evidence. The robustness of such decisions to changes in a
network’s probability parameters can also be analysed, using sensitivity analyses (van der Gaag and
Coupé, 1999). In this paper we focus on the effects of changing the threshold itself.

The SDP has already proven its use in contexts other than measuring decision confidence, such
as in selective evidence gathering (Chen et al., 2014), for value of information computations (Chen
et al., 2015), and for optimal feature selection (Choi et al., 2017). In addition, so-called prime
implicant (PI) explanations were noted to have an SDP of 1 (Shih et al., 2018).

In this paper we further study the SDP and analyse its properties, assuming a given order on
evidence instantiations; how to determine this order is also addressed. Our findings allow for es-
tablishing threshold robustness for both approximate and exact SDP computations. In addition, we
use our findings to exactly specify the relation between the SDP and PI-explanations, opening up
the possibility of alternative algorithms for establishing such explanations. This paper therefore
provides robustness results for threshold-based measures in general and for the SDP in particular,
and moreover illustrates another application context for the SDP.
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Algorithm 1: Computing SDP c,λ(X | e) in a naive Bayesian network
(Pseudocode, adapted from Chen et al. (2014), is for illustration purposes only)

input : naive Bayesian network with class variable C, attributes X = {X1, . . . , Xm}, evidence e;
λ: log-odds threshold

output: Same-Decision Probability pSD

procedure DFS SDP (X∗, y, d) (X∗ = X \Y, partial instantiation y, search depth d)
1: UB ← logO(c | e) + wy +

∑m
i=d+1 maxxi

wxi
(upperbound for

pruning)
2: LB ← logO(c | e) + wy +

∑m
i=d+1 minxi

wxi
(lowerbound for

pruning)
3: if UB < λ then
4: return
5: else if LB ≥ λ then
6: pSD ← pSD + Pr(y | e); return
7: else if d < m then
8: for each value xd+1 of attribute Xd+1 do
9: DFS SDP (X∗ \ {Xd+1}, y xd+1, d+ 1)

main :
global pSD ← 0.0 (initial SDP)
DFS SDP (X, {}, 0) (initial partial instantiation y = {} and search tree depth d = 0)
return pSD

This paper is organised as follows. In Section 2 we present the necessary preliminaries. In
Section 3, we study the SDP and its relation with threshold T , where in Section 4 we detail its use
in PI-explanations. Finally, we end with conclusions and directions for future research in Section 5.

2. Preliminaries

In this paper we consider Bayesian networksB that define a joint probability distribution Pr(V) over
a finite set of discrete stochastic variables V (Jensen and Nielsen, 2007). We assume all variables
V ∈ V to be binary-valued, with v and ¬v ∈ V indicating the possible value assignments, or
instantiations, of V . A capital letter is used to describe a variable or its set of values (the distinction
should be clear from the context); bold face is used in case of multiple variables. Lower case letters
denote (joint) value assignments. We will write y ⊆ x to indicate that y is a partial instantiation of
a subset Y ⊆ X, consistent with x; we use {} to denote an instantiation to an empty set.

We consider Bayesian networks that are used for classification tasks and therefore identify dis-
joint subsets of variables with special roles: C ∈ V is a class variable, and A = (E ∪X) ⊂ V a
set of observable attributes, where E (possibly empty) is already observed, and observations for X
are yet unknown. The Bayesian network classifier now ‘decides’ to classify instantiation e ∈ E as
belonging to class c ∈ C iff Pr(c | e) ≥ T for some threshold T . To measure the confidence in
such a threshold-based decision, Choi et al. (2012) define the Same-Decision Probability (SDP) as
the probability of making this same decision c upon observing attributes X:

SDP c,T (X | e) =
∑
x∈X

Ic,T (x | e) · Pr(x | e), where Ic,T (x | e) =
{

1 if Pr(c | e x) ≥ T
0 otherwise
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Pr(C) Pr(x1 | C) Pr(x2 | C) Pr(x3 | C)
c 2/3 0.8 0.9 0.7
¬c 1/3 0.1 0.4 0.5

Figure 1: A (naive) Bayesian network representing Pr(C X1 X2 X3) = Pr(C)·
∏3
i=1 Pr(Xi | C)

The SDP problem is in general PPPP-complete (Choi et al., 2012) and remains NP-hard in a naive
Bayesian network (Chen et al., 2014). For computing the SDP two algorithms are available: (1) an
approximate algorithm that provides a lowerbound on SDP c,T (X | e), based upon the one-sided
Chebyshev inequality for random variable Q(X) = Pr(c | e X) with variance Var(Q(X)):

SDP -LB c,T (X | e)
def
= 1− Var(Q(X))

Var(Q(X)) + (Pr(c | e)− T )2
(1)

and (2) an exact algorithm that performs a depth-first search in a pruned space of instantiations for
X. Pseudocode assuming a naive Bayesian network is given in Algorithm 1 and further explained
in Section 3.3.1; the algorithm can be generalised by viewing arbitrary networks as naive Bayesian
networks with aggregate attributes (Chen et al., 2014). Algorithm 1 performs all computations for
the threshold comparisons in the above indicator function in log-odds space: Pr(c | e x) ≥ T ⇐⇒
logO(c | e x) ≥ log T

1−T
def
= λ where logO(c | e x) = wx + logO(c | e) follows from

log
Pr(c | e x)

Pr(¬c | e x)
= log

( Pr(x | c e) · Pr(c | e)
Pr(x | ¬c e) · Pr(¬c | e)

)
= log

Pr(x | c e)
Pr(x | ¬c e)

+ log
Pr(c | e)
Pr(¬c | e)

In a naive Bayesian network, all m attributes are independent given the decision variable, and wx

can be simplified to wx =
∑m

i=1wxi . We take SDP c,λ to indicate the use of log-odds.
We now illustrate the above concepts for an example network that serves as a running example.

Example 1 Consider the example Bayesian network from Figure 1, where E = ∅. With a threshold
of T = 0.5, the associated classifier produces the decisions for the various instantiations of X
shown in Table 1. Prior to observing evidence, c is the most likely class value. We are interested in
the probability of making this same decision upon obtaining evidence for X. Summing the relevant
values of Pr(x) (in bold), we find SDP c,0.5(X) = 0.7107, so the confidence in our current decision
is 71.07%. The variance Var(Q(X)) for Q(X) = Pr(c | X) is computed from[∑

x

Pr(c | x)2 · Pr(x)
]
− Pr(c)2

and equals 0.1255, so the lowerbound on this SDP as computed by the approximate algorithm is
1− 0.1255

0.1255+(2/3−0.5)2 = 0.1812, which severely underestimates the true SDP.

3. SDP Properties and Threshold Robustness

In this section we study the relation between threshold T and SDP c,T (X | e). To this end, we first
establish several theoretical properties of the SDP, and then use these to study the robustness of both
exact and approximate SDP computations to changes in T .
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X1 X2 X3 Pr(x) Pr(c | x) logO(c | x) decision PI explanations
x8: ¬x1 ¬x2 ¬x3 0.0940 0.0426 −4.4919 ¬c ¬x1¬x3, ¬x1¬x2
x7: ¬x1 ¬x2 x3 0.0993 0.0940 −3.2695 ¬c ¬x1¬x2
x6: ¬x1 x2 ¬x3 0.0960 0.3750 −0.7370 ¬c ¬x1¬x3
x5: ¬x1 x2 x3 0.1440 0.5833 0.4854 c x2x3
x4: x1 ¬x2 ¬x3 0.0260 0.6154 0.6781 c x1
x3: x1 ¬x2 x3 0.0473 0.7887 1.9005 c x1
x2: x1 x2 ¬x3 0.1507 0.9558 4.4330 c x1
x1: x1 x2 x3 0.3427 0.9805 5.6554 c x1, x2x3

Table 1: Predictions, decisions and explanations for the example classifier (T = 0.5)

3.1 Theoretical Properties of the SDP

To establish the exact effect of threshold variation on SDP c,T (X | e) it is convenient to consider
the order on instantiations for attributes X that is embedded in the function f(X) = Pr(c | e X).

Definition 1 Let f : X → [0, 1] be a function that maps variable instantiations to probabilities.
Then the probability-induced order �f on X is defined as:

x1 �f x2 ⇐⇒ f(x1) ≤ f(x2)

Note that two different instantiations can have the same f -value and thus be equivalent with respect
to �f . As a result, the totally ordered set (X,�f ) can actually have multiple instantiations as
maximal element, denoted x>, or as minimal element, denoted x⊥. We can employ these concepts
in bounding probabilities.

Lemma 2 Let Pr, c, e,X and T be as before, and let x> and x⊥ be maximal and minimal elements,
respectively, of X according to the order �f induced by f(X) = Pr(c | e X). Then

Pr(c | e,x>) ≥ Pr(c | e) ≥ Pr(c | e x⊥)

Proof Pr(c | e) =
∑

x∈X Pr(c | e x) · Pr(x | e), so maxx∈X{Pr(c | e x)} ≥ Pr(c | e) ≥
minx∈X{Pr(c | e x)}.

We will now derive some properties of the SDP. We first show that the SDP is always non-zero.

Proposition 3 Let Pr, c, e,X and T be as before, then SDP c,T (X | e) > 0.

Proof There always exists an xi with Pr(xi | e) > 0 such that Pr(c | e xi) ≥ Pr(c | e) ≥ T .
Hence SDP c,T (X | e) > 0.

We now demonstrate that the SDP can always become one upon changing the threshold.

Proposition 4 Let Pr, c, e, and X be as before, then ∃ T : SDP c,T (X | e) = 1.

Proof Let x⊥ be a minimal element of (X,�f ) with �f induced by f(X) = Pr(c | e X),
then by Lemma 2: Pr(c | e) ≥ Pr(c | e x⊥). Therefore, for any T ≤ Pr(c | e x⊥) we have
SDP c,T (X | e) =

∑
x∈X Pr(x | e) = 1.

We observe from the above proof that, assuming Pr(x⊥ | e) > 0, T ≤ Pr(c | e x⊥) is not only a
sufficient, but also a necessary condition for obtaining an SDP of one.

We can now completely specify the relation between SDP and threshold value.
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Figure 2: Probability line with each xi indicating the location of Pr(c | e xi); in addition the range
of values for T is shown that would give the current decision c for evidence e

Proposition 5 Let Pr, c, e,X and T be as before. Let f(X) = Pr(c | e X) induce the following
order on X: xn �f . . . �f x1. If Pr(c | e) ∈ [ Pr(c | e xk),Pr(c | e xk−1) ], k ∈ [2, n] then

SDP c,T (X | e) =
{ ∑j−1

i=1 Pr(xi | e) if Pr(c | e xj) < T ≤ Pr(c | e xj−1), k ≤ j ≤ n
1 if T ≤ Pr(c | e xn)

Proof Consider Figure 2 which visualises the situation under consideration. The SDP of 1 follows
from Proposition 4 and xn being a minimal element of (X,�f ). The remainder of the result follows
from xj−1 being the smallest element (according to �f ) giving rise to decision c.

The above proofs build on the assumption that we have at least some knowledge of the order on in-
stantiations of X embedded in Pr(c | e X). In the current context these probabilities are computed,
rather than specified, and establishing the order by computing Pr(c | e x) for all x ∈ X is not a
very feasible approach. Sometimes, however, as shown in Section 3.4, we can efficiently exploit
properties of the network’s distribution to establish at least a sufficing partial order on instantiations.

3.2 Threshold Robustness and Improved Lowerbound for Approximate SDP

We consider the SDP-lowerbound SDP -LB c,T (X | e) given in Equation 1, which immediately
provides for studying the relation between the lowerbound and the threshold T . Figure 3(a) shows
the lowerbound as a function of T for five different prior probabilities Pr(c) of the example Bayesian
network from Figure 1. Note that all functions should be undefined for T > Pr(c | e) since
otherwise we would be interested in the SDP for decision ¬c. Also note that the functions have a
rather steep drop off and become zero for T = Pr(c | e), where the current decision is exactly on
the decision boundary defined by T .

To get an impression of the quality of the lowerbound, we further provide in Figure 3(b) the SDP
in our example classifier for different choices of T and prior Pr(c). As already noted by (Choi et al.,
2012), the lowerbound becomes rather weak as it approaches zero. This is perhaps not surprising
given Proposition 3; in fact, its proof provides a means for improving the lowerbound.

Corollary 6 Let Pr, c, e,X and T be as before. Let x> be a maximal element of (X,�f ) with �f
induced by f(X) = Pr(c | e X), where X is restricted to x with Pr(x | e) > 0. Then

SDP c,T (X | e) ≥ max{Pr(x> | e), SDP -LB c,T (X | e)}

The probability Pr(x> | e) is a tighter lowerbound for the SDP than SDP -LB as long as

T ∈
(
Pr(c | e)−

√
Pr(x> | e)

1− Pr(x> | e)
· Var(Q(X)), Pr(c | e)

]
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(a)

Pr(c)

SDPc,T (X) 2/6 3/6 4/6 5/6

0.25 0.4953 0.6030 0.8067 0.8933

T 0.50 × 0.4230 0.7107 0.8933

0.75 × × × 0.8183

Pr(x>) 0.1813 0.2620 0.3427 0.4233

↗ for T > 0.1637 0.2713 0.4109 0.6088

(b)

Figure 3: For different values of Pr(c) in our example network: (a) SDP -LB as a function of
threshold T , (b) the true SDP for different choices of T , and the range of T values for
which bound Pr(x>) improves on (↗) SDP -LB . Values are only specified if Pr(c) ≥ T .

Example 2 For our example network, for different values of Pr(c), the probability Pr(x>) =
Pr(x1 x2 x3) is shown in Figure 3(b). We note that this new bound is still weak compared to
the true SDP values (also shown for various values of T ), yet improves the bound from Equation 1
for a certain range of T -values. As an example (not shown in the table), consider Pr(c) = 1/6. We
find Pr(x>) = 0.1007 which is better than SDP -LB for 0.0762 < T ≤ 1/6.

3.3 Establishing Threshold Robustness for Exact SDP

Although Proposition 5 specifies the exact relation between threshold values and SDP, it does not
directly provide us with a feasible way of establishing this relation. We therefore narrow the scope
of the problem to studying the following question: given an SDP and threshold T , what is the
range of values within which we can change T without changing the SDP? We will argue that
some additional bookkeeping within the exact algorithm for computing the SDP by Chen et al.
(2014) serves to establish the interval of T -values for which the computed SDP holds. In order to
understand the necessary changes, we first highlight some aspects of the original algorithm from the
viewpoint of probability-induced orders.

3.3.1 SDP ALGORITHM FROM AN ORDERING PERSPECTIVE

From the pseudocode in Algorithm 1, we have that the SDP-algorithm consists of a depth-first search
in a search tree that enumerates all possible instantiations of the set X under consideration. To this
end, each attribute has its own layer of nodes in the search tree, and each edge corresponds to a
value of the associated attribute. An example search tree is shown in Figure 4(a). For the purpose of
more efficient SDP-computation, the search tree is pruned using upperbound UB and lowerbound
LB in lines 1 and 2 of the DFS-SDP subprocedure. These bounds do not bound the SDP, but rather
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(a) (b)

Figure 4: (a) Search tree for three binary attributes. Nodes show the associated attribute as well as
the partial instantiation on the path; (b) Subset-lattice for the attributes (grey: sublattice)

the log posterior odds for partial instantiations of X. More specifically, at depth d = 0, UB equals
maxx∈X{logO(c | e x)} and LB = minx∈X{logO(c | e x)}. Or, in our terminology:

at d = 0 : UB = logO(c | e x>) ≥ logO(c | e) ≥ logO(c | e x⊥) = LB

where x> and x⊥ are maximal and minimal elements, respectively, of (X,�f ) with �f induced by
f(X) = Pr(c | e X). At depth j > 0, the partial instantiation y covers j variables from the original
set of variables X and the set X∗ consists of the remaining m− j attributes. Therefore:

at d = j : UB = logO(c | e y x∗>) ≥ logO(c | e y) ≥ logO(c | e y x∗⊥) = LB

where x∗> and x∗⊥ are maximal and minimal elements, respectively, of (X∗,�h) with order �h
induced by h(X∗) = Pr(c | e y X∗). Now, since y and x∗ together form a complete instantiation
of X, the order induced on X∗ by h(X∗) is in fact the same as the order induced on yX∗ by f(X).

The upper- and lowerbounds are used to prevent unnecessary traversal of subtrees. Indeed, if the
log-odds threshold λ exceeds UB , then none of the instantiations represented by the current subtree
will contribute to the SDP, so further traversal of the subtree is unnecessary; similarly, if LB ≥ λ
then all instantiations from the subtree will definitely contribute to the SDP, so further exploration
of the subtree is forestalled and

∑
x∗∈X∗ Pr(x

∗ y | e) = Pr(y | e) is added to the SDP.

3.3.2 EXPLOITING THE SDP ALGORITHM FOR THRESHOLD ROBUSTNESS

From Proposition 5 we have that threshold T can be varied without changing SDP c,T (X | e),
if it remains within the interval ( Pr(c | e xj),min{Pr(c | e), Pr(c | e xj−1)} ] of posterior
probabilities for the two subsequent instantiations xj and xj−1 of X. Instantiation xj−1 now is the
’lowest’ instantiation resulting in a posterior probability of T or higher. Similarly, instantiation xj
is the ’highest’ instantiation that results in a posterior lower than T . The upper- and lowerbounds
currently computed by the SDP algorithm suffice for establishing this robustness interval for the
threshold. Since Algorithm 1 works in log-odds space, we will establish bounds on λ rather than T .

Proposition 7 Let Pr, c, e,X, and λ be as before, and let �f be the order induced by f(X) =
Pr(c | e X). Suppose logO(c | e xj) < λ ≤ logO(c | e xj−1) for two successive instantiations
xj �f xj−1. Let UB(i) and LB(i) be the values for UB and LB , respectively, computed by
Algorithm 1 for every visited node i in the search tree. Then,

logO(c | e xj) = max
i
{UB(i) | UB(i) < λ} and logO(c | e xj−1) = min

i
{LB(i) | LB(i) ≥ λ}
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Proof In a visited leaf node i representing some xi ∈ X, we have that LB(i) = logO(c | e xi) =
UB(i). Therefore, if all leaves of the search tree are visited during search, the proposition is triv-
ially true. We now prove that the proposition remains true upon pruning. If UB(i) < λ then the
search tree is pruned because no instantiation in the subtree will contribute to the SDP; in this case
UB(i) is associated with an instantiation xi �f xj . If logO(c | e xi) = logO(c | e xj) then we
have found our threshold lowerbound; otherwise xj must be in a different subtree. With a similar
argument we can prove that we will find our threshold upperbound even upon pruning.

From the above proposition we have that the following adaptation of Algorithm 1 suffices for estab-
lishing the interval ( λLB , λUB ] within which threshold λ can be varied without changing the SDP:

add to main: λLB ← −∞; λUB ←∞ (initial λ lower- and upperbounds)
return ( λLB , min{logO(c | e), λUB} ] (robustness interval)

add to line 4: λLB ← max{UB , λLB}
add to line 6: λUB ← min{LB , λUB}

Example 3 In our example classifier with threshold λ = 0 (T = 0.5), we have that logO(c) = 1.
The threshold robustness interval found for SDP c,λ(X | e) now is ( −0.7370, min{1, 0.4854} ].
For thresholds within this interval the SDP is guaranteed to remain the same. Lowering the thresh-
old to λ′ ≤ −0.7370 will simply increase the SDP. Since logO(c) > λUB , the SDP will decrease
for 0.4854 < λ′ ≤ 1. Increasing λ′ beyond 1 changes the SDP of interest to SDP¬c,λ′ .

3.4 Probability-Induced Orders and Monotonicity

From the above we can conclude that Algorithm 1 applies to Bayesian networks in general if we
rephrase the upper- and lowerbounds in terms of maximal and minimal elements of (X∗,�f ) for
subsets X∗ of attributes. In addition, we have seen that the probability of maximal element x>

sometimes improves the SDP -LB approximation. Of course, in order to exploit this, we need to be
able to easily establish maximal and minimal elements. In this section we show that in certain cases,
we can easily establish a partial order consistent with �f that suffices for establishing the maximal
and minimal elements relevant for our upper- and lowerbound computations. This problem is related
to that of establishing monotonicity properties.

In Bayesian networks, the concept of monotonicity typically pertains to the posterior distribu-
tions Pr(C | A) (van der Gaag et al., 2004). More specifically, it pertains to cumulative distributions
over C, thereby implicitly assuming an order < on the values of C. Since we are specifically in-
terested in orderings, we will make any such assumptions explicit. A network B is now said to be
(positively) monotone in A with respect to total order < on C and partial order � on A, if for all
values ck of C and instantiations a,a′ of A,

a � a′ ⇒ Pr(C ≤ ck | a′) ≤ Pr(C ≤ ck | a)

We first prove that any monotonicity-inducing order is consistent with �f for a certain value of C.

Proposition 8 Let B, C, and A be as before. Suppose B is monotone in A with respect to partial
order �m on A and total order < on C. Let c be the maximal element of (C,<). Moreover, let �f
be the order induced by Pr(c | A). Then for any two instantiations a and a′ of A, a �m a′ ⇒
a �f a′.
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Proof Assume a �m a′. Then Pr(C ≤ ck | a′) ≤ Pr(C ≤ ck | a) for all values ck of C. This
implies for C = c that Pr(c | a′) ≥ Pr(c | a) and therefore a �f a′.

The partial order �m now suffices for establishing the relevant maximal and minimal elements.

Proposition 9 Let B, C and A = E ∪ Y ∪ X∗ be as before, and let ey be any instantiation of
E ∪Y. Let B be monotone in A with respect to partial order �m and total order < on C. Let c
be the maximal element of (C,<). Then (A,�m) provides for establishing maximal and minimal
elements of (X∗,�h) with order induced by h(X∗) = Pr(c | e y X∗).

Proof (A,�m) can be represented as a lattice, called an assignment lattice (van der Gaag et al.,
2006). The sub-lattice induced by a partial instantiation ey then has eyx∗> and eyx∗⊥ as maximal
and minimal elements, respectively.

Deciding if a network is monotone is in general a coNPPP-complete problem (van der Gaag
et al., 2004). It can, however, be approximated using the QPN1 concept of qualitative influence
(Wellman, 1990). For an arc A → C in the network graph, its qualitative influence is said to be
positive, written S+(A,C), if for all values ck of C and all values a < a′ of A, we have that
Pr(C ≥ ck | a′ z) ≥ Pr(C ≥ ck | a z) for any instantiation z for Z = Par(C) \ {A}, the
set of parents of C other than A. Note that this definition assumes a total order on the values of
each variable; these total orderings together induce a partial order on all joint instantiations of the
variables. Qualitative influences exhibit a number of properties that allow for deriving influences
between any pair of variables from those specified for arcs. Positive qualitative influences suffice
for concluding monotonicity.

Proposition 10 (van der Gaag et al. (2004)) Let B, C, and A be as before. Let �q be the partial
order on A induced by the total orders on the values of the individual variables. If S+(Ai, C) for
each Ai ∈ A then network B is monotone in A with respect to �q.

Combining all the above results we conclude that if we can define total orders on the values of each
variable such that S+(Ai, C) for all Ai ∈ A, then the partial order �q on A induced by these
total orders suffices for establishing any maximal or minimal elements we need for our upper- and
lowerbound computations. For a naive Bayesian network classifier with binary-valued variables we
can always find such orders.

Proposition 11 Let Pr, C and A be as before. For binary-valued variables in a naive Bayesian
classifier, we can always define orderings < on their values such that S+(Ai, C) for all Ai ∈ A.

Proof Without loss of generality, suppose we require ¬c < c for the values of C. For each at-
tribute Ai ∈ A we have that either Pr(ai | c) ≥ Pr(ai | ¬c) or Pr(¬ai | c) ≥ Pr(¬ai | ¬c). So
S+(C,Ai) holds in the former case if we take ¬ai < ai, and in the latter for ai < ¬ai. Since each
Ai is only directly connected to C, its value ordering can be chosen independent from the choice for
the other attributes. The result now follows from the property of symmetry of qualitative influences
for binary-valued variables (Renooij, 2001): S+(C,Ai)→ S+(Ai, C).

1. Qualitative Probabilistic Network: a qualitative abstraction of a Bayesian network.
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Example 4 From the conditional probability tables of our example network in Figure 1 we have
that Pr(xi | c) ≥ Pr(xi | ¬c) for all Xi, i = 1, 2, 3. With ¬c < c and ¬xi < xi for all Xi we
therefore have S+(C,Xi) and S+(Xi, C). The network is thus monotone in X with respect to the
partial order�q induced by the orders<. (X,�q) has maximal element x> = x1x2x3 and minimal
element x⊥ = ¬x1¬x2¬x3. These are also maximal and minimal elements of (X,�f ) with order
�f induced by f(X) = Pr(c | X).

4. SDP and Prime Implicant Explanations

As mentioned before, the SDP has proven its use in various contexts. Here we will argue that our
theoretical analysis of the SDP provides for another application: that of computing explanations.

Shih et al. (2018) propose to take the concept of prime implicant from Boolean logic to provide
a symbolic means for explaining Bayesian network classifiers. A prime-implicant (PI) explanation
for an instantiation of attributes that results in a given decision then equals a minimal partial instan-
tiation that renders the values of the remaining attributes irrelevant to the decision. A PI-explanation
therefore has an SDP of 1 (Shih et al., 2018). However, not every partial instantiation with an SDP
of 1 is a PI-explanation. We can define a PI-explanation in terms of the SDP as follows:

Definition 12 Let Pr, c,A, and T be as before. A PI-explanation for decision c is an instance a′

for A′ ⊆ A such that SDP c,T (A \A′ | a′) = 1 and there exists no a′′ ⊂ a′ with this property.

Numerous algorithms exist for computing prime implicants of logic formulas and the problem
is already NP-hard for just a single prime implicant (Palopoli et al., 1999). For the purpose of ex-
plaining Bayesian network classifiers, Shih et al. (2018) propose two algorithms: one that computes
a prime implicant cover for all instantiations, and one that computes the prime implicants for a sin-
gle instantiation. In both cases, the Bayesian network classifier is first compiled into an Ordered
Binary Decision Diagram (OBDD), which is a tractable representation of the decision function that
maps instantiations of attributes into yes/no decisions. The clear dependency between threshold and
decision is lost in this representation. In fact, a different value for T can result in a different OBDD.

The exact relation between PI-explanations and the SDP, together with our concept of probability-
induced ordering on instantiations provide for an alternative way of computing PI-explanations. We
provide a sketch of an algorithm to this end, which is illustrated in Example 5. As search structure
we use the subset lattice for poset (P(A),⊆), where P(A) denotes the powerset of A; an example
lattice for A = {X1, X2, X3} is shown in Figure 4(b). To compute a PI-explanation for instance
a, we associate with each lattice element Y ⊆ A the probability Pr(c | y a∗⊥), where y ⊆ a,
A∗ = A\Y, and a∗⊥ is a minimal element of (yA∗,�f ) with order�f induced by Pr(c | A). We
traverse the lattice in a breadth-first, bottom-up manner, similar to algorithms typically employed
for item set mining (see e.g. Agrawal and Srikant (1994)). We check if Pr(c | y a∗⊥) ≥ T ; if so,
then SDP c,T (A

∗ | y) = 1 and therefore y is a PI-explanation for any instance a ⊇ y. Since the
SDP for any such non-minimal a will equal 1 as well, we can and should prune all supersets of Y
from the lattice. If Pr(c | a⊥), associated with the empty set, already exceeds the threshold than any
instance will result in the current decision.

Like before, we can keep track of the lowerbounds computed in the process, in order to again
provide an upperbound for the threshold robustness interval within which the current PI-explanations
are guaranteed. The described process can be repeated for decision ¬c and corresponding threshold
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1− T (note that the classifier makes decision ¬c only if Pr(¬c | a) is strictly larger than 1− T , so
all lowerbound threshold comparisons should now use strict inequality).

Example 5 Consider our example classifier and instance x = x1 x2 x3. With threshold T =
0.5, the decision corresponding with this instance is c. Associated with lattice element ∅ is the
lowerbound Pr(c | ¬x1 ¬x2 ¬x3) = 0.0426 (see Table 1); since this lowerbound is below T , we
continue upwards in the lattice. With lattice element X1, we associate Pr(c | x1 ¬x2 ¬x3) =
0.6154 ≥ T . We conclude that SDP c,T (X2 X3 | x1) = 1 and therefore x1 is a PI-explanation
for all instances x1X2X3. The remainder of the lattice for supersets of X1 is then pruned (grey in
Figure 4(b)). For lattice elementsX2 andX3 we find that their respective lowerbounds are below T ;
we therefore proceed with the only remaining element X2X3. Since Pr(c | x2 x3 ¬x1) = 0.5833 ≥
T , we conclude that x2x3 is a PI-explanation for any instance X1x2x3. Moreover, 0.5833 is the
upperbound for T , above which PI-explanations may change.

We repeat the process for instance x = ¬x1¬x2¬x3 with current decision ¬c. Now we have to
proceed to subsets of size two before finding lowerbounds that exceed 1 − T = 0.5. For example,
for lattice element X1X2 we have that Pr(¬c | ¬x1 ¬x2 x3) = 1 − 0.0940 > 1 − T . Therefore,
SDP¬c,1−T (X3 | ¬x1 ¬x2) = 1 and ¬x1¬x2 is a PI-explanation for all instances ¬x1¬x2X3. The
lowest lowerbound encountered equals 1− 0.3750 = 0.6250 and is a strict upperbound on 1− T .
The threshold robustness interval for T that guarantees the validity of all PI-explanations found
therefore equals ( 1− 0.6250, 0.5833 ]. Table 1 lists all PI-explanations for our example network.

Note that in our example the computation of PI-explanations for just two instances actually provides
for establishing the PI-explanations for all instances.

5. Conclusions and Further Research

In this paper we studied the SDP and existing algorithms for computing it. We provided properties
of the SDP by assuming knowledge of a probability-induced order �f on the instantiations under
consideration. This served to improve the lowerbound approximation of the SDP on the one hand,
and also provides another option for turning Algorithm 1 into a version applicable beyond the scope
of naive Bayesian classifiers. Moreover, it allowed us to detail the relation between SDP and PI-
explanations, thereby opening up the possibility of alternative ways of computing PI-explanations.
Most importantly, our analyses provide a means for efficiently establishing a threshold robustness
interval that captures the range of threshold values for which SDP and PI-explanations are guaran-
teed to remain unchanged. Since the interval exactly captures the probability range in which the
classifier shifts from one decision to another, it also applies to other measures that are threshold-
dependent, such as accuracy.

The presentation of our results relies mostly on a theoretical ordering that is not generally avail-
able in practice. We have argued, however, that sufficient information about this ordering can be
established if the network is monotone in its attributes, which can always be easily achieved for
binary-valued naive Bayesian networks. Although the paper assumes all variables to be binary-
valued, the latter result is the only one that actually builds on assumptions that are otherwise not
guaranteed (Woudenberg, 2016).

In this paper we have studied the robustness of the SDP and demonstrated its use as a tool in
yet another context of application. In future research we want to explore possible other applications
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of the SDP and investigate the broader applicability of our probability-induced orderings and their
relation with monotonicity.
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