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Abstract
The literature groups algorithms to learn the structure of Bayesian networks from data in three
separate classes: constraint-based algorithms, which use conditional independence tests to learn
the dependence structure of the data; score-based algorithms, which use goodness-of-fit scores as
objective functions to maximise; and hybrid algorithms that combine both approaches. Famously,
Cowell (2001) showed that algorithms in the first two classes learn the same structures when the
topological ordering of the network is known and we use entropy to assess conditional indepen-
dence and goodness of fit.

In this paper we address the complementary question: how do these classes of algorithms per-
form outside of the assumptions above? We approach this question by recognising that structure
learning is defined by the combination of a statistical criterion and an algorithm that determines
how the criterion is applied to the data. Removing the confounding effect of different choices for
the statistical criterion, we find using both simulated and real-world data that constraint-based al-
gorithms do not appear to be more efficient or more sensitive to errors than score-based algorithms;
and that hybrid algorithms are not faster or more accurate than constraint-based algorithms. This
suggests that commonly held beliefs on structure learning in the literature are strongly influenced by
the choice of particular statistical criteria rather than just properties of the algorithms themselves.
Keywords: Bayesian networks; structure learning; conditional independence tests; network scores;
climate networks.

1. Introduction

Bayesian networks (BNs; Koller and Friedman, 2009) are a class of graphical models defined over
a set of random variables X = {X1, . . . , XN}, each describing some quantity of interest, that are
associated with the nodes of a directed acyclic graph (DAG) G. (They are often referred to inter-
changeably.) The structure of the DAG, that is, the pattern of arcs in G, encodes the independence
relationships between those variables, with graphical separation in G implying conditional indepen-
dence in probability. As a result, G induces the factorisation

P(X | G,Θ) =

N∏
i=1

P(Xi |ΠXi ,ΘXi), (1)

in which the global distribution of X (with parameters Θ) decomposes in one local distribution for
each Xi (with parameters ΘXi ,

⋃
Xi

ΘXi = Θ) conditional on its parents ΠXi . This decomposition
does not uniquely identify a single BN, but groups BNs into equivalence classes (Chickering, 1995)
of models that are probabilistically indistinguishable. All BNs in the same equivalence class have
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the same underlying undirected graph and v-structures (patterns of arcs like Xi → Xj ← Xk,
with no arc between Xi and Xk); and each equivalence class is characterised by the completed
partially-directed acyclic graph (CPDAG) that arises from the combination of these two quantities.

While in principle there are many possible choices for the distribution of X, the literature has
focused mostly on two sets of assumptions. Discrete BNs (Heckerman et al., 1995) assume that
Xi |ΠXi ∼ Mul(πik | j), πik | j = P(Xi = k |ΠXi = j); their parameters are the conditional
probabilities of Xi given each configuration of the values of its parents. As a result, X is also
multinomial. Gaussian BNs (GBNs; Geiger and Heckerman, 1994) assume that theXi are univariate
normals linked by linear dependencies to their parents: Xi |ΠXi ∼ N(µXi + ΠXiβXi , σ

2
Xi

) in
what is essentially a linear regression model of Xi against the ΠXi with regression coefficients
βXi . Equivalently, the Xi |ΠXi can be parameterised with the partial correlations ρXi,Xj |ΠXi\Xj
between Xi and each parent Xj given the rest. In both cases X is multivariate normal. Other
distributional assumptions have seen less widespread adoption due to the lack of exact conditional
inference and simple closed-form estimators (e.g. copulas, Elidan, 2010) or because of limitations
in the DAGs they can encode (e.g. conditional linear Gaussian BNs, Lauritzen and Wermuth, 1989).

1.1 Learning a Bayesian Network from Data

The task of learning a BN with DAG G and parameters Θ from a data set D containing n observa-
tions is performed in two steps in an inherently Bayesian fashion:

P(G,Θ | D)︸ ︷︷ ︸
learning

= P(G |D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

.

Structure learning consists in finding the DAG G that encodes the dependence structure of the data;
parameter learning consists in estimating the parameters Θ given the G obtained from structure
learning. If we assume parameters in different local distributions are independent, they can be
learned in parallel for each node because (1) then implies

P(Θ | G,D) =
N∏
i=1

P(ΘXi |ΠXi ,D).

On the other hand, structure learning is well known to be computationally challenging and several
algorithms have been proposed to solve it, following one of three possible approaches: constraint-
based, score-based and hybrid.

Constraint-based algorithms are based on the seminal work of Pearl on causal graphical mod-
els (Verma and Pearl, 1991). The most commonly used among them is the PC algorithm in its
PC-Stable implementation (Colombo and Maathuis, 2014). PC-Stable first identifies which pairs of
nodes (Xi, Xj) are connected by an arc, regardless of its direction. Such nodes cannot be separated
by any other subset of nodes; this condition is tested heuristically by performing conditional inde-
pendence tests with increasingly large candidate separating sets. Then the algorithm identifies the
v-structures among all the pairs of non-adjacent nodes Xi and Xk with a common neighbour Xj

using the separating sets found earlier; and sets the remaining arc directions using the rules from
Chickering (1995) to obtain the CPDAG describing the identified equivalence class. More recent
algorithms such as Grow-Shrink (Margaritis, 2003) and Inter-IAMB (Yaramakala and Margaritis,
2005) proceed along similar lines, but use faster heuristics to implement the first two steps.
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Score-based algorithms represent the application of general optimisation techniques to BN
structure learning. Each candidate DAG is assigned a network score reflecting its goodness of
fit, which the algorithm then attempts to maximise. Some examples are greedy search, simulated
annealing (Bouckaert, 1995) and genetic algorithms (Larrañaga et al., 1997); a comprehensive re-
view of these and other approaches is provided in Russell and Norvig (2009). These heuristics can
also be applied to CPDAGs, as in the case of Greedy Equivalent Search (GES; Chickering, 2002).

Finally, hybrid algorithms are based on two phases: a restrict phase implementing a constraint-
based strategy to reduce the space of candidate DAGs; and a maximise phase implementing a score-
based strategy to find the optimal DAG in the restricted space. The best-known member of this
family is the Max-Min Hill Climbing algorithm (MMHC) by Tsamardinos et al. (2006); another
example was presented in our previous work (RSMAX2; Scutari et al., 2014).

1.2 Conditional Independence Tests and Network Scores

The choice of which conditional independence test or network score to use in structure learning
depends mainly on the choice of the distribution of X; and is orthogonal to the choice of algorithm.
Here we provide a brief overview of those we will use in this paper, while referring the reader to
Koller and Friedman (2009) for a more comprehensive treatment.

For discrete BNs, conditional independence tests are functions of the observed frequencies
{nijk; i = 1, . . . ;R, j = 1, . . . , C; k = 1, . . . , L} for any pair of variables (X , Y ) given the
configurations of some conditioning variables Z. The most common is the log-likelihood ratio G2

test

G2(X,Y |Z) = 2 log
P(X |Y,Z)

log P(X |Z)
= 2

R∑
i=1

C∑
j=1

L∑
k=1

nijk log
nijkn++k

ni+kn+jk
, (2)

which is equivalent to mutual information and has an asymptotic χ2
(R−1)(C−1)L distribution. For

GBNs, conditional independence tests are functions of the partial correlation coefficients ρXY |Z.
The log-likelihood ratio (and Gaussian mutual information) test takes form

G2(X,Y |Z) = n log(1− ρ2
XY |Z) ∼ χ2

1; (3)

other common options are Fisher’s Z test and the exact t test for partial correlation.
As for network scores, the Bayesian Information criterion

BIC(G;D) =

N∑
i=1

[
log P(Xi |ΠXi)−

|ΘXi |
2

log n

]
, (4)

is a common choice for both discrete BNs and GBNs, as it provides a simple approximation to
log P(G |D) that does not depend on any hyperparameter. log P(G |D) is also available in closed
form for both discrete BNs (Heckerman et al., 1995) and GBNs (Geiger and Heckerman, 1994).

2. Performance as a Combination of Tests, Scores and Algorithms

As it may be apparent from Sections 1.1 and 1.2, we take the view that the algorithms and the
statistical criteria they use are separate and complementary in determining the overall behaviour
of structure learning. Cowell (2001) followed the same reasoning when showing that constraint-
based and score-based algorithms can select identical discrete BNs. He noticed that the G2 test
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in (2) has the same expression as a score-based network comparison based on the log-likelihoods
log P(X |Y,Z)− log P(X |Z) if we take Z = ΠX . He then showed that these two classes of algo-
rithms are equivalent if we assume a fixed, known topological ordering and we use log-likelihood
and G2 as matching statistical criteria.

In this paper we will extend that investigation by addressing the following questions:

Q1 Which of constraint-based and score-based algorithms provide the most accurate structural
reconstruction, after accounting for the effect of the choice of statistical criteria?

Q2 Are hybrid algorithms more accurate than constraint-based or score-based algorithms?

Q3 Are score-based algorithms slower than constraint-based and hybrid algorithms?

More precisely, we will drop the assumption that the topological ordering is known and we will
compare the performance of different classes of algorithms outside of their equivalence conditions
for both discrete BNs and GBNs. We choose questions Q1, Q2 and Q3 because they are most
common among practitioners (e.g. Cugnata et al., 2016) and researchers (e.g., Tsamardinos et al.,
2006; Koller and Friedman, 2009). Overall, there is a general view in the references above and in the
literature that score-based algorithms are less sensitive to individual errors of the statistical criteria,
and thus more accurate, because they can reverse earlier decisions; and that hybrid algorithms are
faster and more accurate than both score-based and constraint-based algorithms. These differences
have been found to be more pronounced at small sample sizes. Furthermore, score-based algorithms
have been found to scale less well to high-dimensional data.

An important limitation we find in these studies is the confounding between the choice of the
algorithms and that of the statistical criteria, which makes it impossible to assess the merits inher-
ently attributable to the algorithms themselves. Therefore, similarly to Cowell (2001), we construct
matching scores and independence tests to make algorithms directly comparable. Consider two
DAGs G+ and G− which differ by a single arc Xj → Xi. In a score-based approach, we can
compare them using BIC from (4) and select G+ over G− if

BIC(G+;D) > BIC(G−;D)⇒ 2 log
P(Xi |ΠXi ∪ {Xj})

P(Xi |ΠXi)
> (|ΘG+Xi | − |Θ

G−
Xi
|) log n

which is equivalent to testing the conditional independence of Xi and Xj given ΠXi using the G2

test from (2) or (3), just with a different significance threshold than the appropriate χ2
1−α quantile.

We will call this test G2
BIC and use it as the matching statistical criterion for BIC to compare

different learning algorithms. For discrete BNs, we will also construct a test from graph posterior
probabilities using Bayes factors,

log P(G+ | D) > log P(G− | D)⇒ log BF = log
P(G+ | D)

P(G− | D)
> 0,

to confirm our conclusions with a second set of matching criteria.

3. Simulation Study

We address Q1, Q2 and Q3 with a simulation study based on reference BNs from the Bayesian
network repository (Scutari, 2012), whose conclusions will then be confirmed using real-world
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climate data in Section 4. Both will be implemented using the bnlearn (Scutari, 2010) and catnet
(Balov and Salzman, 2017) R packages and TETRAD (Landsheer, 2010).

We assess three constraint-based algorithms (PC, GS, Inter-IAMB), two score-based algorithms
(tabu search, simulated annealing for BIC, GES for log P(G |D)) and two hybrid algorithms (MMHC,
RSMAX2) on the networks in Table 1. For each BN:

1. We generate 20 samples of size n/|Θ| = 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 to allow for meaning-
ful comparisons between different BNs.

2. We learn G using (BIC, G2
BIC), and (log P(G |D), log BF) as well for discrete BNs. For the

latter we use the BDeu score (Heckerman et al., 1995) with a prior probability of inclusion of
1/(N − 1) for each parent of each node, which is the default in TETRAD.

3. We measure the accuracy of the learned DAGs using the Structural Hamming Distance (SHD;
Tsamardinos et al., 2006) from the reference BN scaled by the number of arcs |A| of that BN
(lower is better); and we measure the speed of the learning algorithms with the number of
calls to the statistical criterion.

The results for (BIC, G2
BIC) and the discrete BNs are illustrated in Figure 1 for small samples

(n/|Θ| < 1) and large samples (n/|Θ| > 1); results from (log P(G |D), log BF) are very similar
and are not discussed separately for brevity. We find that 1) tabu search and simulated annealing
have the highest SHDs for small samples, while tabu search has the lowest SHD for large samples,
for 10/10 BNs; 2) the SHD of hybrid algorithms is comparable to that of constraint-based algorithms
for all sample sizes and BNs; 3) the SHD of constraint-based algorithms is comparable to or better
than that of score-based algorithms for small sample sizes in 7/10 BNs, but it decreases more slowly
as n increases for all BNs. As for speed, while simulated annealing is consistently slower than other
algorithms, tabu search is in the bottom left panel (“fast, accurate”) for 10/10 BNs in large samples
and for 6/10 BNs in small samples.

The corresponding results for GBNs are shown in Figure 2, and confirm that for all BNs 1) tabu
search and simulated annealing have a larger SHD than constraint-based or hybrid algorithms for
small samples; 2) the SHD of hybrid and constraint-based algorithms is not markedly different at
different sample sizes. With the exception of simulated annealing, all algorithms have very similar
SHD for all large samples. However, neither tabu search nor simulated annealing achieve lower
SHD than constraint-based or hybrid algorithms regardless of the sample size.

4. Real-World Climate Data

Climate networks have recently attracted a great deal of interest due to their potential to analyse
the complex spatial structure of climate data. This includes spatial dependence among nearby lo-
cations, but also long-range spatial dependencies connecting distant regions in the world, known

discrete BN N |A| |Θ| discrete BN N |A| |Θ| GBN N |A| |Θ|
ALARM 37 46 509 MUNIN1 186 273 15622 ARTH150 107 150 364
ANDES 223 338 1157 PATHFINDER 135 200 77155 ECOLI72 46 70 162
CHILD 20 25 230 PIGS 442 592 5618 MAGIC-IRRI 64 102 230
HAILFINDER 56 66 2656 WATER 32 66 10083 MAGIC-NIAB 44 66 154
HEPAR2 70 123 1453 WIN95PTS 76 112 574

Table 1: Reference BNs with their numbers of nodes (N ), arcs (|A|) and parameters (|Θ|).
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Figure 1: Scaled SHD versus speed for GS (blue), Inter-IAMB (sky blue), PC (navy blue), MMHC
(green), RSMAX2 (lime green), tabu search (red) and simulated annealing (gold) and (BIC, G2

BIC)
for the discrete BNs. Shaded points correspond to individual simulations, while diamonds are algo-
rithm averages. The four quadrants in each panel correspond to “fast, inaccurate” (top left), “slow,
inaccurate” (top right), “slow, accurate” (bottom right) and “fast, accurate” (bottom, left) algorithms
with respect to the overall mean performance in the panel.

as teleconnections (Tsonis et al., 2008). These teleconnections represent large-scale oscillation
patterns—such as the El Niño Southern Oscillation (ENSO)—which modulate the synchronous be-
haviour of distant regions (Yamasaki et al., 2008). The most popular climate network models are
complex networks (Tsonis et al., 2006), which are easy to build since they are based on pairwise
correlations (arcs are established between pairs of stations with correlations over a given thresh-
old) and provide topological information in the network structure (e.g. highly connected regions).
Bayesian networks have been proposed as an alternative methodology for climate networks that can
model both marginal and conditional dependence structures and that allows probabilistic inference
(Cano et al., 2004). However, learning such networks is computationally demanding and choosing
an appropriate structure learning algorithm is crucial. Here we consider an illustrative case study
modelling global surface temperature and we reassess the performance of the different learning
methods we used in Section 3.
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Figure 2: Scaled SHD versus speed using (BIC, G2
BIC) for GBNs, formatted as in Figure 1.
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Figure 3: (a) Global mean temperature for 1981 to 2010 on a global 10◦ grid from the NCEP
reanalysis. (b) Anomaly for January 1998 (strong El Niño episode).

4.1 Data and Methods

We use monthly surface temperature values on a global 10◦-resolution (approx. 1000 km) regular
grid for a representative climatic period (1981 to 2010), as provided by the NCEP/NCAR reanaly-
sis1. Figure 3 shows the mean temperature (climatology) for the whole period as well as the anomaly
(difference from the mean climatological values) for a particular date (January 1998, from a strong
El Niño episode with high tropical Pacific temperatures).

The surface temperature at each gridpoint is assumed to be normally distributed; hence we
construct GBNs from the data in which nodes represent the (anomaly of) surface temperature at
different gridpoint and arcs represent spatial dependencies. Thus, we define Xi as the monthly
anomaly value of the temperature at location i for a period of 30 years (n = 30 × 12 = 360).
The anomaly value is obtained by removing the mean annual cycle (i.e. the 30-year mean monthly
values) from the raw data. The location of a gridpoint i is defined by its latitude and longitude.
Hence the node set X in the corresponding network is characterised as X = {X1, . . . , XN} with
N = 18× 36 = 648.

Similarly to Section 3, we assess two constraint-based algorithms (PC, GS), two score-based
algorithms (tabu search and hill climbing, HC) and one hybrid algorithm (MMHC). Note, however,

1. https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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that in this case the sample size is fixed to what was considered a “small sample” even for a DAG
with no arcs: n/|Θ| 6 360/(648× 2) = 0.28.

In order to construct an appropriate pair of matching criteria, we introduce an extended version
of BIC in which we introduce a regularisation parameter γ that penalises the number of parameters.
We refer to this score as BICγ , with BICγ = BIC if γ = 0, defined as

BICγ(G;D) =

N∑
i=1

[
log P(Xi |ΠXi)− |ΘXi |

(
log n

2
− γ logN

)]
.

From BICγ we then construct the corresponding independence test G2
BICγ

as follows:

BICγ(G+;D) > BICγ(G−;D)⇒ 2 log
P(Xi |ΠXi ∪ {Xj})

P(Xi |ΠXi)
> (|ΘG+Xi |−|Θ

G−
Xi
|)(2γ logN+log n).

The additional regularisation in G2
BICγ

is required to make constraint-based algorithms reliable;
using G2

BIC with climate data often results in learning graphs that are not valid CPDAGs. For all
algorithms (BICγ , G2

BICγ
) allow us to obtain graphs of comparable size n/|Θ|. We have chosen to

scale γ with the factor 2|ΘG+Xi | − |Θ
G−
Xi
| log p as in the EBIC score from Chen and Chen (2012) due

to its effectiveness in feature selection. We refer to the range of γs in which an algorithm can return
directed acyclic graphs (DAGs) as the parameter range of the algorithm.

Motivated by the above, we proceed as in Section 3 but with the following changes:

1. We generate 5 permutations of the order of the variables in the data to cancel local preferences
in the learning algorithms (see e.g. Colombo and Maathuis, 2014).

2. From each permutation, we learn G using (BIC, G2
BIC) as well as (BICγ , G2

BICγ
) for different

values of γ ∈ (0, 50].

3. Since we do not have a “true” model to use as a reference, we measure the accuracy of learned
BNs along the parameter range of the algorithm by their log-likelihood. We also analyse
the long-distance arcs (teleconnections) established by the DAGs and assess their suitability
for probabilistic inference by testing the conditional probabilities obtained when introducing
some El Niño related evidence.

4.2 Results

Figure 4 shows the performance (speed, performance and number of arcs) of various structure learn-
ing algorithms as a function of γ, using the same colours as in Figure 1 (with the exception of hill
climbing, which is new in this figure and it is shown in orange). Figure 5 (a-b) shows the resulting
graphs for the representative network from MMHC in Figure 4c and a comparable intermediate
network of tabu search. This figure also compares the suitability of the learned BNs for proba-
bilistic inference by propagating an El Niño-like evidence (V81 = 2, i.e. warm temperatures in the
corresponding gridbox in tropical Pacific).

Constraint-based GS and PC produce BNs with the highest log-likelihood in the high parameter
penalisation region (γ ≥ 10). However, they do not produce valid DAGs for low parameter penali-
sation (γ < 10), yielding a maximum number of 501 arcs (smaller than the number of nodes) with
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that orange results are on top of red ones in some cases. For clarity panel (a) includes the mean
of the 5 realisation results for each γ. Labelled points in (a) have means returned by MMHC for
γ ∈ {0, 0.2, 0.5} that are in speed-range higher than 7.0. Labelled points in (c) represent the biggest
networks of tabu for γ ∈ {0, 0.2} and the biggest networks found by MMHC and PC (to be analysed
in Figure 5).
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Figure 5: DAGs learned by (a) tabu search (intermediate) and (b) MMHC with γ = 0. Tele-
connections are shown in black. (c) and (d) show the differences of the conditional and marginal
probabilities obtained with both Bayesian networks after propagation of V81 = 2 (denoted with a
black box), simulating El Niño conditions.

no large arcs representing teleconnections when γ ≥ 10. MMHC exhibits the poorest log-likelihood
values and produces a maximum number of 898 arcs, including only a few teleconnections (Figure
5b). The absence of a sufficient number of teleconnections makes both unsuitable for propagating
evidence (Figure 5d). Therefore, tabu search and HC (with almost identical results) produce the best
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results, with large networks (with over 2500 arcs for γ ≤ 0.2) and high likelihood values. In this
case, even intermediate networks (with around 1500 arcs) include a large number of teleconnections
and allow propagating evidences with realistic results (Figures 5a and c).

Finally, we find that score-based algorithms are faster than both hybrid and constraint-based al-
gorithms. The difference in speed is relatively amplified compared to MMHC for γ ∈ {0, 0.2, 0.5, 1, 1.5, 2}
accounting for the fact that in this region the score-based algorithms return DAGs containing more
edges than MMHC for the same γ.

5. Conclusions

In this paper we revisited the problem of assessing different classes of BN structure learning algo-
rithms; we improved over existing comparisons of learning accuracy and speed in the literature by
removing the confounding effect of different choices of statistical criteria. Interestingly, we found
that constraint-based algorithms are more accurate than score-based algorithms for small sample
sizes (Q1); and that they are as accurate as hybrid algorithms (Q2). We also found that tabu search,
as a score-based algorithm, is faster than constraint-based algorithms more often than not (Q3).
For climate data we found that score-based algorithms produce the largest networks allowing good
propagation of evidence. These results, which we confirmed on both simulated data and real-world
climate data, are intended to provide guidance for additional studies; we do not exclude the existence
of other sources of confounding, such as tuning parameters, which should be further investigated.
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