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Abstract
For classification problems, Bayesian networks are often used to infer a class variable when given

feature variables. Earlier reports have described that classification accuracies of Bayesian networks
achieved by maximizing the marginal likelihood (ML) were lower than those achieved by maximiz-
ing the conditional log likelihood (CLL) of a class variable given the feature variables. However,
the reports stated no reason why CLL outperformed ML. Differences between the two scores’ per-
formances in those earlier studies might depend on their respective learning algorithms: they were
approximate learning algorithms, not exact ones. The present study compared the classification per-
formances of Bayesian networks with exact learning using ML and those with approximate learning
using CLL. Results demonstrate that the performance of Bayesian networks achieved by maximiz-
ing ML is not necessarily worse than that achieved by maximizing CLL. However, the results also
show that classification accuracies with exact learning by ML are much worse than those by other
methods when the class variable has numerous parents and few children. To resolve this difficulty,
this study proposed exact learning augmented naive Bayes (ANB) using Markov blanket feature
selection. Some comparison experiments demonstrated that the proposed method outperforms the
other methods.
Keywords: Bayesian networks; classification; structure learning; augmented naive Bayes

1. Introduction

Classification, which is the inference of labels assigning the objective class from related features
data, plays an important role in real-world problems.

The naive Bayes classifier, in which the feature variables are conditionally independent given
a class variable, is a popular classifier (Minsky, 1961). Initially, the naive Bayes was not expected
to provide highly accurate classification because actual data generation models are more complex.
Therefore, the general Bayesian network (GBN) was expected to outperform the naive Bayes, but
Friedman et al. (1997) demonstrated that the naive Bayes sometimes outperformed GBN using
greedy search to find the smallest Minimum Description Length (MDL) score, which was originally
intended to approximate marginal likelihood (ML). They explained the reason for this intention by
decomposing the MDL into the log likelihood (LL) term, which reflects model fitting to training
data and the penalty term which reflects the model complexity. Moreover, they decomposed the
term LL into a conditional log likelihood (CLL) of the class variable, which is related directly to the
classification and a joint log likelihood of the feature variables, which is not related directly to the
classification.

Consequently, they claimed that conditional MDL (CMDL) score, which is a modified MDL
replacing the term LL by the term CLL, should be minimized to achieve a Bayesian network with
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highly accurate classification. However, unfortunately, the CLL has no closed-form equation to
estimate the optimal parameters. This fact implies that some optimization algorithms must be em-
ployed, such as gradient descent over the space of parameters (e.g., Extended Logistic Regression
algorithm (Greiner and Zhou, 2002)). When learning the network structure, this search must be
repeated for each structure candidate, which renders the method computationally expensive.

As a simple solution to the problem, Friedman et al. (1997) proposed the augmented naive
Bayes classifier (ANB) in which the class variable directly links to all feature variables and for
which links among feature variables are allowed. Actually, ANB ensures that all feature variables
can contribute to the classification. Later, restricted ANBs of various kinds were proposed, such
as Tree-augmented naive Bayes (TAN) (Friedman et al., 1997) and Forest-augmented naive Bayes
(FAN) (Lucas, 2002).

Because maximizing CLL is difficult, various approximation methods to maximize CLL have
been proposed. Carvalho et al. (2013) proposed the approximate conditional log likelihood (aCLL)
score, which is decomposable and computationally efficient. Furthermore, Grossman and Domingos
(2004) proposed a learning structure method using a greedy hill-climbing algorithm (Heckerman
et al., 1995) to maximize CLL approximately. They experimentally demonstrated that the proposed
methods outperformed methods using the greedy hill-climbing algorithm to minimize MDL.

However, they stated no reason why CLL outperformed ML. Differences between the two
scores’ performances in those earlier studies might depend on their respective learning algorithms:
they were approximate learning algorithms, not exact ones.

Recently, many algorithms of exact learning GBN to maximize ML were proposed (Silander
and Myllymäki, 2006; Yuan and Malone, 2013; Cussens, 2012).

First, this study compares the classification performances of the Bayesian networks exactly
learned by ML and those approximately learned by CLL. Results show that maximizing ML does
necessarily not provide worse classification accuracies than maximizing CLL does. However, the
results also show that classification accuracies with exact learning by ML are much worse than
those by other methods when the class variable has numerous parents and few children in the ex-
actly learned networks. When a class variable has numerous parents, the estimation of conditional
probability parameters of the class variable becomes unstable because the number of patterns of the
parents’ values becomes large. Then the sample size for learning the parameters becomes sparse.
However, the conditional probability parameters of the children given the class variable can be esti-
mated stably as sufficiently reflecting the data because the number of parameters increases linearly
as the number of children increases. Therefore, a small number of children of the class variable
might be unable to reflect the feature data for classification when the sample size is insufficiently
large.

To resolve the difficulty, this study proposes an exact learning ANB by maximizing ML over
the class variable’s Markov blanket in the exactly learned GBN, which is a set of relevant variables
affecting the classification in the GBN structure. The proposed algorithm uses dynamic program-
ming (DP). This employs the Bayesian Dirichlet equivalent uniform (BDeu) score: one of the most
popular learning scores (Heckerman et al., 1995; Buntine, 1991). Some comparison experiments
conducted with other methods show that the proposed method outperforms the other methods.
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2. Bayes classifiers

2.1 Bayesian network

Let X = {X0, X1, · · · , Xn} be a set of n+ 1 discrete variables; Xi, (i = 0, · · · , n) can take values
in the set of states {1, · · · , ri}. We write Xi = k when we observe that an Xi is state k. According
to the Bayesian network structure S, the joint probabilities distribution is given as

P (X0, X1, · · · , Xn) =

n∏
i=0

P (Xi | Πi, S), (1)

where Πi is the parent variable set of Xi. Letting θijk be a conditional probability parameter of
Xi = k when the j-th instance of the parents of Xi is observed (We write Πi = j), we define Θ =
{θijk} (i = 0, · · · , n; j = 1, · · · , qi; k = 1, · · · , ri). A Bayesian network is a pair B = (S,Θ).
Buntine (1991) assumed the Dirichlet prior and used an expected a posteriori (EAP) estimator θ̂ijk:

θ̂ijk =
αijk +Nijk

αij +Nij
. (2)

In that equation,Nijk represents the number of samples ofXi = k when Πi = j,Nij =
∑ri

k=1Nijk.
Also, αijk denotes the hyperparameters of the Dirichlet prior distributions (αijk is a pseudo-sample
corresponding to Nijk); αij =

∑ri
k=1 αijk.

The first learning task of the Bayesian network is to seek a structure S optimizing a given score.
The most popular marginal likelihood (ML) score of Bayesian network (using a Dirichlet prior over
model parameters) finds the maximum a posteriori (MAP) structure when we assume a uniform
prior over structures, as described by Buntine (1991) and Heckerman et al. (1995). In addition, the
Dirichlet prior is known as a distribution that ensures likelihood equivalence. This score is known
as Bayesian Dirichlet equivalence (BDe) (Heckerman et al., 1995). Given no prior knowledge, the
Bayesian Dirichlet equivalence uniform (BDeu), as proposed earlier by Buntine (1991), is often
used. Let D = {x1, · · · ,xd, · · · ,xN} be training dataset and let each xd be a tuple of the form
〈xd0, xd1, · · · , xdn〉. For the analyses presented in this paper, we assume no missing data throughout.
The BDeu score is represented as

P (D | S) =
n∏
i=0

qi∏
j=1

Γ( αqi )

Γ( αqi +Nij)

ri∏
k=1

Γ( α
riqi

+Nijk)

Γ( α
riqi

)
, (3)

where α is a hyperparameter.
The Minimum Description Length (MDL), which approximates ML, is also often used, as pre-

sented below.

MDL(B | D) =
logN

2
|Θ| −

N∑
d=1

logP (xd0, x
d
1, · · · , xdn | B), (4)

|Θ| represents the number of parameters. Consequently, the first term is the penalty term, which
signifies the model complexity. The second term, log likelihood (LL), is the fitting term, which
represents model fitting to the training data.
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2.2 Bayes classifiers

A Bayes classifier can be interpreted as a Bayesian network for which X0 is the class variable and
for which X1, · · · , Xn are feature variables. Given an instance 〈x1, · · · , xn〉 for feature variables
X1, . . . , Xn, the Bayes classifier B infers the class c by maximizing the posterior probability as

ĉ = arg max
c∈{1,··· ,r0}

P (c | x1, · · · , xn, B) = arg max
c∈{1,··· ,r0}

n∏
i=0

qi∏
j=1

ri∏
k=1

(θijk)
1ijk (5)

= arg max
c∈{1,··· ,r0}

q0∏
j=1

r0∏
k=1

(θ0jk)
10jk ×

∏
i:Xi∈C

qi∏
j=1

ri∏
k=1

(θijk)
1ijk ,

where 1ijk = 1 if Xi = k and Πi = j in case 〈x1, · · · , xn〉 and 1ijk = 0 otherwise. Furthermore,
C is a set of children of the class variable X0. From Equation 5, we can infer class c given only the
values of the X0’s parents, the X0’s children, and the parents of the X0’s children, which are called
a Markov blanket of X0.

However, Friedman et al.(1997) reported that the Bayes classifier minimizing MDL can not
optimize the classification performance. They proposed the sole use of the conditional log likelihood
(CLL) of the class variable given the feature variables instead of the log likelihood for learning
Bayes classifier structures. Consequently, they proposed conditional MDL (CMDL), which is a
modified MDL replacing LL by CLL, as shown below.

CMDL(B | D) =
logN

2
|Θ| −

N∑
d=1

logP (xd0 | xd1, · · · , xdn, B) (6)

Unfortunately, no closed-form formula exists for optimal parameter estimates to maximize CLL.
Therefore, for each structure candidate, learning the network structure minimizing CMDL requires
some search methods such as gradient descent over the space of parameters. For that reason, exact
learning network structures by minimizing CMDL is computationally infeasible.

As a simple means of solving the problem, Friedman et al. (1997) proposed the augmented naive
Bayes classifier (ANB), which ensures an edge from the class variable to each feature variable and
which allows edges among feature variables. Furthermore, they proposed tree-augmented naive
Bayes (TAN), in which the class variable has no parents and in which each feature variable has the
class variable and at most one other feature variable as a parent variable.

On the other hand, various approximate methods to maximize CLL have been proposed. Car-
valho et al. (2013) proposed an approximate conditional log likelihood (aCLL) score, which is
decomposable and computationally efficient. Let SANB be an ANB structure of B. Then we define
Π∗i = Πi \ {X0} based on SANB . In addition, let Nijck be the number of samples of Xi = k when
X0 = c and Π∗i = j (i = 1, · · · , n; j = 1, · · · , q∗i ; c = 1, · · · , r0; k = 1, · · · , ri), and let N ′ > 0
be the number of pseudo-counts. Under several assumptions, aCLL can be represented as

aCLL(SANB | D) ∝
n∑
i=1

q∗i∑
j=1

ri∑
k=1

r0∑
c=1

(
Nijck + β

r0∑
c′=1

Nijc′k

)
log

Nij+ck

Nij+c
, (7)

where

Nij+ck =

{
Nijck + β

∑r0
c′=1Nijc′k if Nijck + β

∑r0
c′=1Nijc′k ≥ N ′

N ′ otherwise,
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Nij+c =

ri∑
k=1

Nij+ck.

A value of β is found using a Monte-Carlo method to approximate CLL. When the value of β is
optimal, aCLL is a minimum-variance unbiased approximation of CLL.

Moreover, Grossman and Domingos (2004) proposed a learning structure method using a greedy
hill-climbing algorithm (Heckerman et al., 1995) by maximizing CLL while choosing parameters
by maximizing LL.

These reports described that the classifier maximizing the approximated CLL provides better
performance than that maximizing the approximated ML.

However, they specified no reason why CLL outperformed ML. Differences of performance be-
tween MDL and CLL in earlier studies might depend on the employed learning algorithms because
they used not exact but approximate learning algorithms.

3. Classification accuracy of exact learning GBN

This section presents experiments comparing the classification accuracy of the exactly learned GBN
by maximizing ML with that of the approximately learned network structure methods by maximiz-
ing CLL. Although BDeu has rarely been used for Bayesian classifiers, de Campos et al. (2014)
proposed an extended TAN classifier by maximizing the BDeu score. The results demonstrated the
effectiveness of the proposed method. This study also employs BDeu for learning a structure. Al-
though determination of hyperparameter α of BDeu is difficult (Silander et al., 2007; Steck, 2008;
Ueno, 2008; Suzuki, 2017), we use α = 1.0, which allows the data to reflect the estimated parame-
ters to the greatest degree possible (Ueno, 2010, 2011).

The experiment compares the classification accuracies of the following six methods.

• GBN-BDeu: Exact learning GBN method by maximizing BDeu.

• Naive Bayes

• GBN-CMDL (Grossman and Domingos, 2004): Greedy learning GBN method using the hill-climbing
by minimizing CMDL.

• BNC2P (Grossman and Domingos, 2004): Greedy learning method with at most two parents per
variable using the hill-climbing by maximizing CLL (choosing parameters by maximizing LL).

• TAN-aCLL (Carvalho et al., 2013): Exact learning TAN method by maximizing aCLL.

• gGBN-BDeu: Greedy learning GBN method using the hill-climbing by maximizing BDeu.

We used EAP estimators as conditional probability parameters of the respective classifiers. Hy-
perparameters αijk of EAP were determined as 1/(riqi).

This experiment used 43 classification benchmark datasets from the UCI repository. Continuous
variables were discretized into two bins using the median value as cut-off, as in (de Campos et al.,
2014). In addition, data with missing values were removed from the datasets.

Table 1 presents the results. In Table 1, the values in bold represent the best accuracies for each
dataset. Here, the classification accuracy indicates the average percentage correct of classifications
from ten-fold cross validation. Moreover, to investigate the relation between the classification ac-
curacy and the GBN structure, Table 2 presents details of the achieved structures using GBN-BDeu.
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No. Dataset Variables
Sample

size Classes
Naive-
Bayes

GBN-
CMDL BNC2P

TAN-
aCLL

gGBN-
BDeu

GBN-
BDeu

ANB-
BDeu

1 Balance Scale 5 625 3 0.9152 0.3333 0.8560 0.8656 0.9152 0.9152 0.9152
2 banknote authentication 5 1372 2 0.8433 0.8819 0.8797 0.8761 0.8819 0.8812 0.8812
3 Hayes-Roth 5 132 3 0.8182 0.6136 0.6894 0.6742 0.7525 0.6136 0.8182
4 iris 5 150 3 0.7133 0.7800 0.8200 0.8200 0.8133 0.8267 0.8200
5 lenses 5 24 3 0.7500 0.8333 0.6667 0.7083 0.8333 0.8333 0.7500
6 Car Evaluation 7 1728 4 0.8571 0.9497 0.9416 0.9433 0.9416 0.9416 0.9427
7 liver 7 345 2 0.6319 0.6145 0.6290 0.6609 0.6029 0.6087 0.6348
8 MONK’s Problems 7 432 2 0.7500 1.0000 1.0000 1.0000 0.8449 1.0000 1.0000
9 mux6 7 64 2 0.5469 0.3750 0.5625 0.4688 0.4063 0.4531 0.5469
10 led7 8 3200 10 0.7294 0.7366 0.7375 0.7350 0.7297 0.7294 0.7294
11 HTRU2 9 17898 2 0.7031 0.7096 0.7070 0.7018 0.7188 0.7305 0.7188
12 Nursery 9 12960 3 0.6782 0.7126 0.6092 0.5862 0.7126 0.7126 0.6782
13 pima 9 768 9 0.8966 0.9086 0.9118 0.9130 0.9092 0.9112 0.9141
14 post 9 87 5 0.9033 0.5823 0.9442 0.9177 0.9291 0.9340 0.9181
15 Breast Cancer 10 277 2 0.9751 0.8917 0.9473 0.9488 0.7058 0.9751 0.9751
16 Breast Cancer Wisconsin 10 683 2 0.7401 0.6209 0.6823 0.7184 0.7094 0.7184 0.7040
17 Contraceptive Method Choice 10 1473 3 0.4671 0.4501 0.4745 0.4705 0.4440 0.4542 0.4650
18 glass 10 214 6 0.5561 0.5654 0.5794 0.6308 0.4626 0.5701 0.6449
19 shuttle-small 10 5800 6 0.9384 0.9660 0.9703 0.9583 0.9683 0.9693 0.9716
20 threeOf9 10 512 2 0.8164 0.9434 0.8691 0.8828 0.8652 0.8887 0.8730
21 Tic-Tac-Toe 10 958 2 0.6921 0.8841 0.7338 0.7203 0.6754 0.8340 0.8497
22 MAGIC Gamma Telescope 11 19020 2 0.7482 0.7849 0.7806 0.7631 0.7844 0.7873 0.7874
23 Solar Flare 11 1389 9 0.7811 0.8265 0.8315 0.8229 0.8431 0.8431 0.8229
24 heart 14 270 2 0.8259 0.8185 0.8037 0.8148 0.8222 0.8259 0.8185
25 wine 14 178 3 0.9270 0.9438 0.9157 0.9326 0.9045 0.9270 0.9270
26 cleve 14 296 2 0.8412 0.8209 0.8007 0.8378 0.7973 0.7973 0.8277
27 australian 15 690 2 0.8290 0.8312 0.8348 0.8464 0.8420 0.8536 0.8246
28 crx 15 653 2 0.8377 0.8346 0.8208 0.8560 0.8622 0.8591 0.8515
29 EEG 15 14980 2 0.5778 0.6787 0.6374 0.6125 0.6732 0.6814 0.6864
30 Congressional Voting Records 17 232 2 0.9095 0.9698 0.9612 0.9181 0.9741 0.9655 0.9483
31 zoo 17 101 5 0.9802 0.9109 0.9505 1.0000 0.9505 0.9307 0.9505
32 pendigits 17 10992 10 0.8032 0.9062 0.8719 0.8700 0.9253 0.9290 0.9279
33 letter 17 20000 26 0.4466 0.5796 0.5132 0.5093 0.5761 0.5761 0.5935
34 ClimateModel 19 540 2 0.9222 0.9407 0.9241 0.9333 0.9370 0.9000 0.8426
35 Image Segmentation 19 2310 7 0.7290 0.7918 0.7991 0.7407 0.8026 0.8156 0.8225
36 lymphography 19 148 4 0.8446 0.7939 0.7973 0.8311 0.7905 0.7500 0.7770
37 vehicle 19 846 4 0.4350 0.5910 0.5910 0.5816 0.5461 0.5768 0.6253
38 hepatitis 20 80 2 0.8500 0.7375 0.8875 0.8750 0.8500 0.5875 0.6250
39 german 21 1000 2 0.7430 0.6110 0.7340 0.7470 0.7140 0.7210 0.7380
40 bank 21 30488 2 0.8544 0.8618 0.8928 0.8618 0.8952 0.8956 0.8950
41 waveform-21 22 5000 3 0.7886 0.7862 0.7754 0.7896 0.7698 0.7846 0.7966
42 Mushroom 22 5644 2 0.9957 1.0000 1.0000 0.9995 1.0000 0.9949 1.0000
43 spect 23 263 2 0.7940 0.7940 0.7903 0.8090 0.7603 0.7378 0.8240

average 0.7764 0.7721 0.7936 0.7943 0.7867 0.7963 0.8061
p-value 0.0031 0.0414 0.0067 0.0561 0.0629 0.2263 -

Table 1: Accuracies of respective classifiers for 43 datasets

”Parents” in Table 2 presents the average maximum number of parents of the class variable from the
GBN-BDeu based learned structures, ”Children” denotes the average number of children of the class
variable from the GBN-BDeu based learned structures. ”Sparse data” denotes the average number
of patterns of X0’s parents value j with null data, N0j = 0 (j = 1, · · · , q0) from the GBN-BDeu
based on learned structures. ”MBsize” represents the average number of the Markov blanket size
from GBN-BDeu based on learned structures.

From Table 1, GBN-BDeu shows the best average accuracy among the methods explained above.
This result suggests that the performances of Bayesian networks by maximizing ML are not neces-
sarily worse than those by maximizing by CLL. However, it is noteworthy that GBN-BDeu provides
much worse accuracies than those for the other methods do in No. 3 and No. 9 datasets. In these
datasets, the learned class variables by GBN-BDeu have no child. Numerous parents are shown in
”Parents” and ”Children” of Table 2. When a class variable has numerous parents, estimation of
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No. Dataset Variables Classes
Sample

size Parents Children
Sparse
data MBsize

Missing
variables

Extra
variables

Max
parents

1 Balance Scale 5 3 625 0.4 3.6 0.0 4.0 0.0 0.0 1.0
2 banknote authentication 5 2 1372 0.0 2.0 0.0 4.0 0.0 0.0 4.0
3 Hayes–Roth 5 3 132 3.0 0.0 17.2 3.0 0.0 0.0 1.0
4 iris 5 3 150 1.8 1.2 0.0 3.0 0.0 0.0 2.0
5 lenses 5 3 24 1.1 1.0 0.0 2.0 0.0 0.1 1.1
6 Car Evaluation 7 4 1728 2.0 3.0 0.0 5.0 0.0 0.0 2.0
7 liver 7 2 345 0.0 1.9 0.0 3.4 1.6 0.0 2.0
8 MONK’s Problems 7 2 432 3.0 0.0 0.0 3.0 0.0 0.0 3.0
9 mux6 7 2 64 5.8 0.0 5.2 5.8 0.2 0.0 1.0
10 led7 8 10 3200 0.9 6.1 0.0 7.0 0.0 0.0 1.0
11 HTRU2 9 2 17898 1.8 4.2 0.0 7.0 0.0 0.0 3.0
12 Nursery 9 5 12960 4.0 3.0 0.0 7.0 0.0 0.0 3.0
13 pima 9 2 768 1.4 1.7 0.0 4.0 0.0 0.2 2.0
14 post 9 3 87 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 Breast Cancer 10 2 277 0.9 8.0 0.0 8.0 0.0 0.9 1.0
16 Breast Cancer Wisconsin 10 2 683 0.7 0.3 0.0 1.0 0.0 0.0 1.0
17 Contraceptive Method Choice 10 3 1473 0.7 0.8 0.0 1.5 0.5 0.2 1.2
18 glass 10 6 214 0.6 3.1 0.0 4.2 0.8 0.1 1.6
19 shuttle-small 10 6 5800 2.0 4.0 0.0 7.0 0.0 0.0 5.0
20 threeOf9 10 2 512 5.0 2.1 0.0 7.6 1.4 0.0 2.4
21 Tic-Tac-Toe 10 2 958 1.2 2.2 0.0 5.1 0.9 0.2 3.0
22 MAGIC Gamma Telescope 11 2 19020 0.0 6.1 0.0 8.0 0.0 0.0 4.0
23 Solar Flare 11 9 1389 0.8 0.2 0.0 0.1 0.9 0.9 1.0
24 heart 14 2 270 1.8 4.2 0.0 6.0 1.0 0.3 1.5
25 wine 14 3 178 1.7 5.3 0.0 7.0 0.0 1.1 2.1
26 cleve 14 2 296 1.8 4.5 0.0 6.3 0.7 0.3 2.0
27 Australian 15 2 690 1.4 2.8 0.0 4.2 0.8 0.3 2.2
28 crx 15 2 653 1.3 2.8 0.0 2.9 1.1 1.3 2.0
29 EEG 15 2 14980 0.4 8.2 0.0 12.8 0.2 0.0 5.0
30 Congressional Voting Records 17 2 232 1.3 2.6 0.1 5.2 1.8 1.0 2.8
31 zoo 17 5 101 4.3 1.6 20.3 6.9 3.1 0.5 3.5
32 pendigits 17 10 10992 2.6 13.4 0.1 16.0 0.0 0.0 5.6
33 letter 17 26 20000 2.9 9.1 0.0 13.0 0.0 0.0 5.0
34 ClimateModel 19 2 540 1.8 4.4 0.0 15.9 1.1 0.7 14.0
35 Image Segmentation 19 7 2310 0.7 10.4 0.0 12.7 0.3 0.5 4.1
36 lymphography 19 4 148 1.6 5.9 0.2 9.0 1.0 4.1 8.0
37 vehicle 19 4 846 1.1 5.1 0.1 9.0 2.0 1.1 3.6
38 hepatitis 20 2 80 1.3 6.1 0.4 13.1 1.9 2.9 10.7
39 German 21 2 1000 1.1 2.8 0.0 3.9 2.1 0.2 1.2
40 bank 21 2 30488 4.1 2.0 32.5 9.9 0.1 0.0 5.0
41 waveform-21 22 3 5000 3.8 10.1 0.0 13.9 0.1 0.6 4.0
42 Mushroom 22 2 5644 1.3 3.3 9.0 6.1 12.9 0.3 5.2
43 spect 23 2 263 2.0 3.4 0.0 6.4 2.6 1.3 2.5

Table 2: Statistics summary of GBN-BDeu and MANB-BDeu

the conditional probability parameters of the class variable becomes unstable because the number
of patterns of the parents values becomes large. Then the samples for the learning the parameters
becomes sparse as presented in ”Sparse data” of Table 2. However, the conditional probability pa-
rameters of the children given the class variable can be estimated stably as sufficiently reflecting the
data because the number of parameters increases linearly as the number of the children increases.
Therefore, a small number of children of the class variable might be unable to reflect the feature
data for classification when the sample size is insufficiently large.

This analysis suggests that exact learning GBN by maximizing BDeu so as to have a small num-
ber of parents of the class variable and numerous children of the class variable might improve the
accuracies of GBN-BDeu. A straightforward approach to ensure this idea is an exact learning ANB
structure because the class variable has no parents: all the feature variables are children. However,
Naive Bayes and TAN-aCLL, in which all feature variables are children of the class variable, pro-
vide much worse accuracy than GBN-BDeu does when the Markov blanket size of GBN-BDeu is

445



SUGAHARA, UTO AND UENO

smaller than the number of all feature variables, as presented in Table 2. This result implies that
ANB includes irrelevant feature variables with the class variable. These variables are known to have
lower classification accuracy often because they only introduce noise in the classification (Langley
and Sage, 1994). To avoid irrelevant variables in the feature variables, this study employs feature
selection by finding the Markov blanket of a class variable.

4. Exact learning ANB

This section presents the algorithm of an exact learning method of ANB by maximizing the BDeu
score over Markov Blanket of the class variable. The proposed algorithm employs dynamic pro-
gramming (DP) (Silander and Myllymäki, 2006). The DP algorithm seeks an optimal score from
all structures including all variables, but our algorithm searches from all structures including only
feature variables always having the class variable as a parent. Specifically, the procedure includes
the following four steps:

1. Find the Markov blanket M from the learned optimal GBN structure over all variables using (Silander
and Myllymäki, 2006).

2. Compute the local log BDeu scores for all possible m2m−1 (Xi,Π
∗
i ∪ {X0}) pairs over M ∪ {X0},

where m is size of M . The local score for variable Xi given parents Π∗
i and the class variable X0 is

defined as

Score(Xi | Π∗
i , X0)

=

q∗i∑
j=1

r0∑
c=1

[
log

(
Γ( 1

q∗i r0
)

Γ( 1
q∗i r0

+
∑ri

k=1Nijck)

)
+

ri∑
k=1

log

(
Γ( 1

riq∗i r0
+Nijck)

Γ( 1
riq∗i r0

)

)]
.

3. For each feature variable Xi ∈ M , find the best parent set in candidate parent set Z ∪ {X0} for all
Z ⊆M \ {Xi}.

4. Find the optimal ANB structure over M .

During the local score calculations and the best parent searches, the class variable X0 is always
included as a parent of all the feature variables. After step 3, one can find the optimal ANB structure
using the same procedures as those proposed by Silander and Myllymäki (2006).

5. Experiments

This section presents numerical experiments that were conducted to evaluate the effectiveness of the
proposed method. First, we compare the classification accuracies of exact learning ANB method
without Markov-blanket-based feature selection (designated as ANB-BDeu) with those of the other
methods in Section 3. The procedure of ANB-BDeu is obtained by replacing M of the procedure
in section 4 by all the feature variables. To confirm the significant differences of ANB-BDeu from
the other methods, we applied Hommel’s tests (Hommel, 1988), which are used as a standard in
machine learning studies (Demšar, 2006). The p-values are presented at the bottom of Table 1.
Results show that ANB-BDeu outperforms Naive Bayes, GBN-CMDL, and BNC2P at the p < 0.05
significance level. ANB-BDeu improves the accuracy of GBN-BDeu when the class variable has
numerous parents and a small number of children, which is true of the No. 3, No. 9, and No.
31 datasets, as presented in Tables 1 and 2. The difference is not statistically significant. It is
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No. Dataset Variables
Sample

size Classes
MNaive-

Bayes
MGBN-
CMDL

MBNC
2P

MTAN-
aCLL

MgGBN-
BDeu

GBN-
BDeu

MANB-
BDeu

1 Balance Scale 5 625 3 0.9152 0.3333 0.8560 0.8656 0.9152 0.9152 0.9152
2 banknote authentication 5 1372 2 0.8433 0.8819 0.8783 0.8761 0.8812 0.8812 0.8812
3 Hayes-Roth 5 132 3 0.8333 0.6136 0.7197 0.7879 0.7980 0.6136 0.8333
4 iris 5 150 3 0.8267 0.7800 0.8200 0.8200 0.8200 0.8267 0.8267
5 lenses 5 24 3 0.8333 0.8333 0.8333 0.8333 0.8750 0.8333 0.8333
6 Car Evaluation 7 1728 4 0.8559 0.9242 0.9375 0.9363 0.9416 0.9416 0.9416
7 liver 7 345 2 0.6348 0.6348 0.6000 0.5942 0.6000 0.6087 0.5855
8 MONK’s Problems 7 432 2 0.7500 1.0000 1.0000 1.0000 0.8194 1.0000 1.0000
9 mux6 7 64 2 0.5469 0.3750 0.6250 0.4688 0.3906 0.4531 0.5469
10 led7 8 3200 10 0.7294 0.7363 0.7375 0.7350 0.7303 0.7294 0.7294
11 HTRU2 9 17898 2 0.7083 0.7057 0.7044 0.7070 0.7305 0.7305 0.7227
12 Nursery 9 12960 3 0.7126 0.7126 0.7126 0.7126 0.7126 0.7126 0.7126
13 pima 9 768 9 0.9102 0.9046 0.9076 0.9141 0.9083 0.9112 0.9141
14 post 9 87 5 0.8996 0.8775 0.9322 0.9103 0.9258 0.9340 0.9174
15 Breast Cancer 10 277 2 0.9751 0.8909 0.9663 0.9458 0.9429 0.9751 0.9751
16 Breast Cancer Wisconsin 10 683 2 0.7184 0.7184 0.7184 0.7184 0.7184 0.7184 0.7166
17 Contraceptive Method Choice 10 1473 3 0.4549 0.4542 0.4555 0.4535 0.4501 0.4542 0.4549
18 glass 10 214 6 0.5841 0.5514 0.5467 0.5841 0.5047 0.5701 0.5654
19 shuttle-small 10 5800 6 0.9360 0.9645 0.9666 0.9605 0.9690 0.9693 0.9693
20 threeOf9 10 512 2 0.8145 0.8750 0.8750 0.8809 0.8652 0.8887 0.8711
21 Tic-Tac-Toe 10 958 2 0.7182 0.8476 0.7244 0.7213 0.7359 0.8340 0.8476
22 MAGIC Gamma Telescope 11 19020 2 0.7520 0.7841 0.7807 0.7699 0.7875 0.7873 0.7880
23 Solar Flare 11 1389 9 0.8431 0.8431 0.8431 0.8431 0.8431 0.8431 0.8431
24 heart 14 270 2 0.8222 0.8185 0.8148 0.8259 0.7889 0.8259 0.8296
25 wine 14 178 3 0.9607 0.9494 0.9438 0.9494 0.9326 0.9270 0.9326
26 cleve 14 296 2 0.8176 0.8176 0.7804 0.8108 0.7905 0.7973 0.8108
27 australian 15 690 2 0.8536 0.8580 0.8493 0.8522 0.8507 0.8536 0.8507
28 crx 15 653 2 0.8622 0.8545 0.8545 0.8622 0.8576 0.8591 0.8622
29 EEG 15 14980 2 0.5774 0.6790 0.6389 0.6111 0.6670 0.6814 0.6935
30 Congressional Voting Records 17 232 2 0.9353 0.9698 0.9655 0.9397 0.9655 0.9655 0.9569
31 zoo 17 101 5 0.9406 0.9406 0.9307 0.9307 0.9505 0.9307 0.9505
32 pendigits 17 10992 10 0.8032 0.9062 0.8719 0.8700 0.9253 0.9290 0.9297
33 letter 17 20000 26 0.4536 0.5796 0.5068 0.5036 0.5636 0.5761 0.5779
34 ClimateModel 19 540 2 0.9259 0.9407 0.9222 0.9352 0.9370 0.9000 0.8667
35 Image Segmentation 19 2310 7 0.7662 0.7848 0.7918 0.7922 0.8022 0.8156 0.8203
36 lymphography 19 148 4 0.8176 0.7027 0.7770 0.8041 0.7770 0.7500 0.8108
37 vehicle 19 846 4 0.4634 0.5816 0.5721 0.5922 0.5437 0.5768 0.6028
38 hepatitis 20 80 2 0.8750 0.8500 0.8625 0.8500 0.8625 0.5875 0.6625
39 german 21 1000 2 0.7210 0.7250 0.7350 0.7230 0.7230 0.7210 0.7240
40 bank 21 30488 2 0.8680 0.8955 0.8924 0.8777 0.8954 0.8956 0.8966
41 waveform-21 22 5000 3 0.7852 0.7912 0.7806 0.7814 0.7626 0.7846 0.7920
42 Mushroom 22 5644 2 0.9970 0.9991 0.9991 0.9972 1.0000 0.9949 1.0000
43 spect 23 263 2 0.7865 0.7303 0.7416 0.7715 0.7715 0.7378 0.7603

average 0.7867 0.7801 0.7993 0.7981 0.7961 0.7963 0.8074
p-value 0.0089 0.0054 0.0104 0.0057 0.0188 0.0301 -

Table 3: Accuracies of respective classifiers achieved using feature selection for 43 datasets

noteworthy that the accuracies of ANB-BDeu are much worse than those provided by GBN-BDeu
for the No. 5 and No. 14 datasets. Markov blanket sizes of these datasets are much smaller than
the number of all feature variables, as shown in Table 2. Results show that feature selection by
the Markov blanket is expected to improve the classification accuracies of the exact learning ANB
method, as described in Section 3.

Next, we conduct experiments comparing the classification accuracies of the seven methods in
Table 1 using Markov blanket feature selection (We apply ’M’ as a prefix to each method name in
Table 1). Table 3 shows the average accuracies and p-values of Hommel’s tests. Results show that
MANB-BDeu outperforms all the compared methods at the p < 0.05 significance level.

”Max parents” in Table 2 presents the average maximum number of parents learned by MANB-
BDeu. A value of ”Max parents” represents the complexity of the structure learned by MANB-BDeu.
The results show that accuracies of MNaive Bayes are better than those of MANB-BDeu when the
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sample size is small, such as No. 36 and No. 38 dataset. In these datasets, values of ”Max parents”
are large. When a variable has numerous parents, estimation of the variable parameters tends to
become unstable as described in Section 3. MNaive Bayes can avoid this phenomenon because the
maximum number of parents is constantly only one. However, MNaive Bayes cannot learn relations
among feature variables at all. Therefore, MNaive Bayes shows much worse accuracies than those
for the other methods when the sample size is large such as No. 8 and No. 29 datasets.

MGBN-CMDL shows much worse accuracies than those for the other methods in No. 1, No.
3, No. 9, No. 14, and No. 15 datasets because the penalty term of CMDL does not correspond to
CLL. Actually, the penalty term was not derived from the conditional marginal likelihood but from
the ML. MBNC2P and MTAN-aCLL avoid CLL to prefer adding extra edges with a restriction of at
most two parents per variable instead of using the penalty term. However, the small upper bound
of maximum number of parents tends to cause poor representational power of the structure (Ling
and Zhang, 2003). As a result, accuracies of the two methods tend to be worse than those of the
MANB-BDeu in datasets on which the value of ”Max parents” is greater than two, such as the No.
29 dataset. However, like Naive Bayes, the two methods show better accuracies than MANB-BDeu
does when the sample size is small such as the No. 38 dataset.

MgGBN-BDeu also shows better accuracy than MANB-BDeu does for small samples, although
MgGBN-BDeu obtains worse accuracy for large samples such as the No. 29 and No. 33 datasets.
The reason is that the exact learning methods estimate the network structure more precisely than the
greedy learned structure for larger samples.

MANB-BDeu improves the accuracies of GBN-BDeu when the class variable has numerous
parents and a small number of children such as the No. 3, No. 9, and No. 31 datasets, similarly to
ANB-BDeu. The reason is that MANB-BDeu avoids the sparse-data problem of GBN-BDeu.

Finally, we compare MANB-BDeu and ANB-BDeu. The difference of the two methods is
whether a Markov blanket feature selection is used or not. ”Missing variables” are the average
numbers of relevant variables to a class variable that are discarded by the feature selection. ”Extra
variables” are the average number of irrelevant variables to a class variable that are selected by the
feature selection. We do not know the true relevant variable set. Therefore, we regard it as a class
variable’s Markov blanket of the learned structure by GBN-BDeu using whole training data. Results
demonstrate that accuracies of MANB-BDeu tend to be much better than those of ANB-BDeu in
datasets when the value of ”MBsize” is small, such as No. 5 and No. 25 datasets. Consequently, the
discarding numerous irrelevant variables in the features improves the classification accuracy. The
values of ”Extra variables” tend to be small for almost all datasets. In contrast, the accuracies of
MANB-BDeu tend to be worse than those of ANB-BDeu when the value of ”Missing variables” is
large, such as the No. 7, No. 39, No. 43 dataset. It is noteworthy that the accuracy of MANB-BDeu
is the highest, although the value of ”Missing variables” is somewhat large in the No. 42 dataset.
The reason is that the Markov blanket includes important feature variables because the sample size
for learning is sufficiently large. Generally speaking, the value of ”Missing variables” tends to be
small when the sample size is large such as those of the No. 12, No. 22, and No. 40 datasets. These
results show that MANB-BDeu outperforms ANB-BDeu when the sample size is large.

6. Conclusions

First, this study compares the classification performances of the Bayesian networks exactly learned
by BDeu and those approximately learned by CLL. Surprisingly, the results demonstrated that the
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performance of Bayesian networks achieved by maximizing ML is not necessarily worse than that
from maximizing CLL. However, the results also show that the classification accuracies of the
Bayesian networks exactly learned by BDeu are much worse than those by the other methods when
the class variable has numerous parents and a few children. To solve the problem, second, this
study proposes an exact learning ANB by maximizing BDeu over the class variable’s Markov blan-
ket in the exact learned GBN. The experimentally obtained results show that the proposed method
significantly outperforms approximately learned structure by maximizing CLL. However, the classi-
fication accuracy of the proposed method tends to lower when the Markov blanket feature selection
discards numerous relevant variables to the class variable. Results show that the number of the dis-
carded relevant variables tends to be small when the sample size is large. Therefore, the proposed
method improves the classification accuracy when the sample size is large.

Our proposed method improves the performance of a Bayes classifier learned by BDeu when
data are sparse. Recently, Scutari (2016, 2018) reported that BDeu should not be used for sparse
data. They proposed a new Bayesian–Dirichlet sparse (BDs) score that provides better accuracy
for sparse data. Therefore, if using the BDs score instead of the BDeu for exact learning GBN and
ANB, then the classification accuracies might be improved.
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