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Abstract
The idea of using decision trees as local models in Bayesian networks is revisited. A class of dyadic
decision trees—proposed previously only for continuous conditioning variables—is augmented by
incorporating categorical variables with arbitrary context-specific recursive splitting of their state
spaces. It is shown that the resulting model class admits computationally feasible maximization
of a Bayes score in a range of moderate-size problem instances. In particular, it enables global
optimization of the Bayesian network structure, including the local structure, using state-of-the-art
exact algorithms. The paper also introduces a related model class that extends ordinary conditional
probability tables to continuous variables by employing an adaptive discretization approach. The
two model classes are compared empirically by learning Bayesian networks from benchmark real-
world and synthetic data sets. The relative strengths of the model classes are discussed.

Keywords: Bayesian networks; decision trees; exact algorithms; structure learning.

1. Introduction

Conditional probability distributions (CPDs) play a central role in probabilistic approaches to clas-
sification, regression, and reasoning under uncertainty in general. In particular, they are a key
ingredient in Bayesian networks (BNs), which compose a multivariate distribution as a product of
univariate CPDs. For statistically efficient learning of a CPD, it is crucial that the number of free
model parameters adapts to the amount of the data. The notion of context-specific independence
(Boutilier et al., 1996) offers an appealing way to achieve this: given certain configuration for a
subset of the predictor variables, the response variable is independent of the remaining predictors.

Among the most popular models of context-specific independence is the classification and re-
gression tree (CART) model (Breiman et al., 1984). It employs a decision tree to partition the
predictor space into regions, in each of which the CPD is constant, letting the model adapt to the
complexity of the data. Unfortunately, learning CART models is computationally intractable, and
so researchers and practitioners have resorted to greedy algorithms (Buntine, 1992; Quinlan, 1993)
or local search (Chipman et al., 1998). While such algorithms perform well in many cases, they
lack performance guarantees. This implies uncontrolled uncertainty concerning the learning results,
which can hamper decision making in applications as well as methods research.

Here, we aim to remove the uncontrolled uncertainty in learning CART models, restricting
ourselves to a moderate number of predictors. While such models do not apply to high-dimensional
classification and regression tasks (without a separate feature selection phase), they can be valuable
as local models in BNs, in which CPDs typically contain just a handful of predictors (the parents of
a node). The idea was put forward by Friedman and Goldszmidt (1996), who however resorted to
greedy algorithms for both finding high-scoring local tree models and global network structures, i.e.,
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directed acyclic graphs (DAGs). Being able to find optimal BN structures with local CART models
would allow more confident comparison of CART against ordinary conditional probability tables
(CPTs), and bringing CART to settings where it does boost the statistical power of BNs, without
compromising exact computations. Exact algorithms not only remove the uncertainty on the quality,
but also tend to perform better in structure learning and density estimation (Malone et al., 2015).

The present work stems from two observations. First, existing exact algorithms can nowadays
find optimal DAGs over several dozens of variables in some hours of computation, provided that
pre-computed local scores for a relatively small number of candidate parent sets are given as input;
see Malone et al. (2018) and the references therein. Thus it remains to be investigated what classes
of local models admit learning within about the same time budget. Second, it is known that a re-
striction of the CART model to so-called dyadic CART essentially inherits the statistical power of
CART and yet enables significantly faster global optimization (Donoho, 1997; Scott and Nowak,
2006; Blanchard et al., 2007). Building on these observations, we present an exact algorithm to
learn BNs with local structure, applicable to mixed sets of categorical and continuous variables.
Specifically, we introduce the partition–dyadic CART (PCART) model; here “partition” refers to
(recursive) splitting of the state spaces of categorical variables—to the best of our knowledge, cate-
gorical predictors have not been allowed in previous works on dyadic CART.

When all variables are categorical, one can compare the performance of PCART against stan-
dard CPTs in a straightforward manner. To compare PCART against analogous “full-table” models
also in the presence of continuous variables, we introduce a full-table (FT) variant of PCART: it
discretizes the involved continuous predictors (but not the response). While FT adapts the number
of states per variable to the data at hand, it renders global optimization computationally feasible,
unlike some more sophisticated discretization schemes (Chen et al., 2017).

Armed with these methodological developments—which are a main contribution of the paper—
we also study empirically the following two questions: What kind of problem instances, in terms
of model complexity and data dimensions, can be solved in a reasonable time? Does PCART boost
the statistical efficiency of structure learning in practice, that is, on benchmark data sets? One
could hypothesize that, thanks to a parsimonius parameterization, PCART enables more powerful
detection of arcs. Our results will support this hypothesis.

2. Preliminaries

We begin by reviewing some basics of BNs and decision trees and learning them from data. We
focus on the key terminology and notation used in later sections; for a more comprehensive treat-
ment, the reader is referred to the literature on graphical models (Koller and Friedman, 2009,
Chs. 3, 5, and 18) and score-based learning of decision trees (Buntine, 1992; Chipman et al., 1998).

2.1 Bayesian Networks

Consider modeling a multivariate probability distribution p(X1, X2, . . . , Xn), where each variable
Xv takes values from some set Sv. Write V for the index set {1, 2, . . . , n} and index by subsets:
e.g., if P ⊆ V denote by XP the tuple (Xv)v∈P and by SP the Cartesian product ×v∈PSv.

A distribution p and a directed acyclic graph (DAG) G = (V,A) form a Bayesian network (BN)
if the joint distribution factorizes into a product of the conditional distributions (CPDs) p(Xv|XGv),
where Gv = {u : (u, v) ∈ A} is the set of parents of v in G. Of the various ways to parameterize a
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CPD p(Xv|XP ), with P ⊆ V \ {v}, we focus on decision trees; a special case of that is the simple
conditional probability table, which applies when all ranges are finite (see Section 3.2).

2.2 Classification and Regression Trees

A decision tree of a multidimensional space is a recursive, axis-parallel, binary partition of the
space. More formally, let T be a rooted binary tree where each node R is a subset of SP of the
form ×u∈PRu. We call T a decision tree of SP if its root is SP and every inner node R and its
two children R′ and R′′ differ in exactly one dimension u ∈ P for which {R′u, R′′u} is a partition
of Ru. The “decision” associated with node R is whether the variable Xu belongs to R′u or R′′u.
Consequently, the leaves of T partition SP . A decision tree Tv of SP and a CPD p(Xv|XP ) are
compatible with each other if, for all leaves R, Xv is independent of XP conditionally on the event
XP ∈ R. In other words, the CPD is constant over each leaf R and piecewise constant over SP .

In order to parameterize the distribution of the response variable Xv in each leaf, we distinguish
between a discrete and a continuous distribution. In this work, we focus on two standard cases:

Categorical distribution: If Sv is finite, we let θx be the probability that Xv = x, for each x ∈ Sv.

Normal distribution: If Sv is the set of reals, Xv is normally distributed with mean µ, variance σ2.

We understand that the parameters are distinct for all v and all leaves of Tv, and omit emphasizing
this in the notation. Depending on whether the response is categorical or continuous we call the
decision tree equipped with the CPD a classification tree or a regression tree, generally a CART.

2.3 Structure Learning

To learn the model structure from data, we take a Bayesian score-based approach. We only note
in passing that the derivations of Sections 3 and 4 also apply to other scoring schemes, especially
penalized maximum-likelihood scores.

Consider a set of data points Xi = (Xi
1, X

i
2, . . . , X

i
n), i = 1, 2, . . . , N . We model the data

points as independent draws from a distribution p whose structure, namely a DAG G = (Gv)v∈V
with a decision tree Tv of SGv for each v ∈ V , are unknown; the parameters of the CPDs are
unknown as well. We will describe a modular prior of the structure and the parameters and obtain
the score as the posterior probability of the structure, by marginalizing out the parameters.

Consider a decision tree Tv of SP . For a single leaf of Tv, we use standard conjugate priors:

Dirichlet: Specify hyper-parameters α=(αx)x∈Sv and let θ ∼ Dirichlet(α).

Normal-inverse-gamma: Specify hyper-parameters ν, λ, µ̄, and a, and let σ2 ∼ IG(ν/2, νλ/2)
and µ|σ2 ∼ N(µ̄, σ2/a).

While we could set the hyper-parameters separately for each Xv, our experiments will focus on the
case where all are set to constant values: α = 1/2 (Jeffreys’s prior), ν = 1, λ = 1, µ̄ = 0, a = 1.

We let the parameters of all leaves of Tv be independent. For a leaf R, let IR = {i : Xi
P ∈ R}

be the index set of the data points that belong to R. If Xv is categorical, we obtain the marginal
likelihood of Tv as

`v(Tv) =
∏

R leaf of Tv

Γ(
∑

x αx)

Γ(NR +
∑

x αx)

∏
x

Γ(NRx + αx)

Γ(αx)
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Figure 1: An example of a PCART model. It represents the conditional probability density
p(X|Y,Z), where X ∈ (0, 10), Y ∈ (0, 100), and Z ∈ {a, b, c, d}.

where NR = |IR| and NRx = |{i ∈ IR : Xi
v = x}|. If Xv is continuous, we get

`v(Tv) =
∏

R leaf of Tv

π−NR/2(λν)ν/2
√
a√

NR+ a

Γ((NR+ ν)/2)

Γ(ν/2)
(sR + tR + νλ)−(NR+ν)/2 ,

where sR = (NR − 1)σ2R, tR = NRa(µR − µ̄)2/(NR + a), µR is the sample mean and σ2R the
sample variance of the NR values Xi

v with i ∈ IR (Chipman et al., 1998).
We let the parameters be independent for each v, so that the marginal likelihood of the structure

(Gv, Tv)v∈V factorizes into a product of the local marginal likelihoods `v(Tv). We also assign a
modular structure prior

p
(
(Gv, Tv)v∈V

)
∝
∏
v∈V

πv(Gv, Tv) ,

where each πv is some (unnormalized) distribution. Various priors of decision trees have been
proposed (Buntine, 1992; Chipman et al., 1998); see Section 3 for the choice in our experiments.

The structure learning problem now becomes that of finding a structure (Gv, Tv)v∈V so as to
maximize the posterior probability

constant×
∏
v∈V

πv(Gv, Tv) `v(Tv) . (1)

As the unspecified (normalizing) constant is the same for all structures, it can be ignored.

3. Partition–Dyadic CART

Partition–dyadic CART (PCART) is a subclass of the CART model, which we obtain by restricting
the way in which the range of a continuous predictor variable is recursively partitioned by the
decision tree. Specifically, we assume the range is an interval and only allow halving it in its
midpoint, whence the name dyadic splits. For the number of recursive dyadic splits per variable we
set an upper bound, the maximum number of splits, we will denote by s. In contrast, for a categorical
predictor we allow arbitrary (binary) partitioning. Figure 1 shows an example of a PCART model.

PCART generalizes dyadic decision trees (Scott and Nowak, 2006), which assume all predictors
be continuous (or binary) and the response be categorical. The motivation for dyadic splits stems
from their ability to guarantee both statistical and computational efficiency: dyadic decision trees
enable computationally feasible global optimization on data sets with up to around a dozen of pre-
dictor variables, and they achieve (in a minimax sense) nearly optimal rates of convergence for a
range of classification problems (Scott and Nowak, 2006; Blanchard et al., 2007).
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3.1 Structure Prior

Having fixed the family of decision trees, we proceed to specify a prior distribution over the family.
To conform to the modular structure of the likelihood function, we construct a prior where the
probability p(T ) of a tree T factorizes over the leaves of T . This yields a decomposable scoring
function, which property is crucial for the optimization algorithm we give in the next section.

We consider priors that assign p(T ) ∝ γl(T ), where l(T ) is the number of leaves of T and
0 < γ ≤ 1 is a constant independent of T . Importantly, we do not set γ to any fixed value,
but we instead let it depend on the number of splits possible in each inner node. Without such
dependency, the prior could distribute nearly all probability to very large decision trees, as their
number overwhelms the number of small trees.

More precisely, we set γ = 1/(4C), where C is the total number of possible splits at an inner
node (ignoring splits made in other inner nodes). We have that C is a sum where each continuous
predictor contributes 1 and each categorical predictor with k possible values contributes 2k−1 − 1.
The factor 4 comes from the number of ordered full binary trees with i inner nodes, given by the ith
Catalan number and equalling to 4i up to a factor polynomial in i. We can interpret the prior as first
drawing the number of leaves from a nearly uniform distribution, then drawing a random full binary
tree with the given number of leaves, drawing a random split independently for each inner node of
the tree, and accepting the tree if it is a valid decision tree.

3.2 PCART As a Local Model

To use PCART as local models in BNs, we need to specify the components πv(Gv, Tv) of the
structure prior. Let P = Gv ⊆ V \ {v} with |P | ≤ D; the maximum indegree parameter D controls
the computational and statistical complexity of the model. For brevity, write T for Tv. We use the
factorization

πv(P, T ) = πv(P )πv(T |P ) c(P ) ,

where c(P ) normalizes πv(T |P ) into a probability distribution for T . It remains to specify πv(P )
and πv(T |P ). We consider two different choices for both.

Our first choice is to set πv(P ) = 1, i.e., the prior is nearly uniform over parent sets of size at
most D. This is the simplest and most “ignorant” prior, which treats all DAGs equally a priori; for
a deeper discussion of graph priors we refer to Angelopoulos and Cussens (2008) and references
therein. We get two models:

PCART (partition–dyadic CART): Let πv(T |P ) = (4C)−l(T ) for all decision trees T of SP with
at most s dyadic splits per continuous variable.

FT (conditional probability table): Supposing all predictor variables are categorical, let F be a
maximal decision tree of SP where each leaf is a singleton {xP } with xP ∈ SP . We let
πv(T |P ) = 1 if T = F and πv(T |P ) = 0 otherwise.

To make the model applicable to continuous predictors, we discretize them into some small
number of bins k based on quantiles of the empirical distribution. If fact, we let each contin-
uous predictor u ∈ P have a dedicated number of bins ku, which takes a value between 2 and
some maximum M (we used M = 7 in our experiments).
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Our second choice is given by πv(P ) = 1
/(

n−1
|P |
)
, i.e., the prior is nearly uniform over the

sizes of the parent sets.1 This prior avoids concentrating almost all prior probability on the densest
graphs; see, e.g., Friedman and Koller (2003) for usage and discussion of this prior. We get the
penalized variants PCARTp and FTp.

Note that BNs with FT and FTp specialize to the standard BNs with CPT (with a uniform and a
non-uniform prior, respectively) when all variables are categorical and have at most M states.

4. Algorithms

The state-of-the-art algorithms for finding a globally optimal BN structure have two phases:

Phase I (Candidate parent set scoring and pruning): For each v ∈ V and P ⊆ V \ {v} with
|P | ≤ D compute the local score gv(P ), defined in terms of the local model and the data
(e.g., prior and likelihood). Prune every set that has a subset with at least as large score.
Return the remaining parent sets and their scores.

Phase II (DAG search): Return a DAG G that maximizes the total score
∏
v∈V gv(Gv).

For phase II we may use existing complete solvers, e.g., ones based on integer linear program-
ming (Bartlett and Cussens, 2017) or A* (Yuan and Malone, 2013). In our experiments we used
the constraint programming based solver CPBayes (van Beek and Hoffmann, 2015), since in our
preliminary study it solved all instances of interest in less than 24 hours.

Our concern is phase I. By the definition of the scoring function (1), the local scores are set by

gv(P ) = max
T

{
πv(P, T ) `v(T )

}
,

where T runs through all local structures on the predictors P . Indeed, it is easy to see that this
assignment quarantees that the algorithm will find a globally optimal structure:

Proposition 1 (Optimality) Let G be a DAG that maximizes
∏
v∈V gv(Gv). Then, for each v ∈ V ,

there exists a Tv such that the structure (Gv, Tv)v∈V maximizes the scoring function (1).

In the case of FT (maximal decision tree), it suffices to enumerate the possible joint discretiza-
tions of the continuous predictors. In the case of PCART each local score requires optimization over
a large number of decision trees. Moreover, the number of required local scores grows rapidly with
the total number of variables n, being n

∑D
d=0

(
n−1
d

)
for maximum indegree D. In the remainder of

this section we detail a dynamic programming algorithm to solve this optimization problem.2

4.1 PCART Structure Optimization

We give a dynamic programming algorithm to find an optimal PCART structure for a response v and
a set of predictors P ⊆ V \ {v}. The algorithm applies to any objective function that factorizes into
a product of local scores f(R) over the leaves R of the tree. Our Bayes score is clearly of this form
as both the prior and the likelihood factorize over the leaves. For every possible decision tree node
R = ×u∈PRu, the algorithm computes, in a top-down fashion, the best score f(R) for the subtree
below R. Thus the score of the root, f(SP ), is the maximum score over all PCART structures.

1. The prior is not exactly uniform because sparser directed graphs are acyclic with higher probability.
2. We have developed a similar algorithm for computing the normalizing term c(P ), which is a sum over decision trees.
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The best subtree score for node R is obtained by considering all possibilities for the node: the
node may be a leaf node, or it is an inner node with two children R′ and R′′. The score of a leaf
is computed from the training data points contained in R as specified in Sections 2 and 3. For an
inner node the score is computed recursively as the product f(R′)f(R′′) of the scores of the child
subtrees. The recursion caches the already computed subtree scores to avoid computing the same
score multiple times. After computing the scores, an optimal decision tree is extracted by tracing
the splits that gave the optimal scores.

With our choice of scores, it happens that a node R that contains no training data points has
to always be a leaf node, and the recursion does not need to advance further. Furthermore, if for
some categorical variable u there are some values in Ru that do not appear in the training data that
is contained in R, we can simply consider a smaller node with the unused values removed. These
optimizations significantly reduce the number of nodes the algorithm has to consider.

We next give an asymptotic upper bound for the number of nodesK the algorithm considers and
for the running time of the algorithm. The bounds will be rather loose: they fail to account for all
the optimizations and special properties of the data sets. For the bounds, let us denote the number
of categorical and continuous predictor variables by A and B, respectively, the maximum number
of categories by k, and the maximum number of recursive splits per continuous variable by s.

Counting the possible nodes simply as the product of at most 2k possible value subsets per
categorical variable and at most 2s+1 subsets per continuous variable, gives an upper bound K =
O(2Ak+B(s+1)). However, in the case when the number of training data points N is low, we get a
better bound similarly to Blanchard et al. (2007) (who assume all variables be continuous): Since
the algorithm only considers nodes that contain at least one training data point, we can bound the
number of nodes by the total number of containing nodes for each data point. The number of value
subsets that contain a given value is at most 2k−1 for each categorical variable and s + 1 for each
continuous variable, yielding an upper bound K = O(N2A(k−1)(s+ 1)B).

Now, for every node the algorithm considers all possible splits—at most 2k for each categorical
variable and one for each continuous variable—and finds the score from an associative array data
structure in O(logK) time. We get the following result.

Proposition 2 (Time complexity) The running time of the PCART optimization algorithm is
O(n(2kA+B)K logK), where K = O

(
min

{
N2A(k−1)(s+ 1)B, 2Ak+B(s+1)

})
.

4.2 Implementation Tricks

The dynamic programming algorithm for finding an optimal PCART structure is easily implemented
using recursion, as described in Section 4.1. However, by carefully tuning the memory represen-
tation of nodes and arranging the algorithm such that we can use a simple sorted list instead of
dynamic associative array data structures, we are able to optimize our C++ implementation3 to run
an order of magnitude faster.

Our implementation stores node R as a bit vector that is a concatenation of fixed-length bitvec-
tors, each of which stores the value subset Ru for a variable u ∈ P . For each continuous variable
with maximum number of splits s, the 2s+1 − 1 possible intervals are stored as (s + 1)-bit binary
numbers. For each categorical variable u, the subset of values Ru ⊆ Su is stored using |Su| bits.
An example of the representation is shown in Figure 2. Using this representation, the operations

3. The code is publicly available at http://www.tba.
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Figure 2: An illustration of the binary node representation. The example corresponds to the PCART
in Figure 1, and consists of two parts: 3 bits for the continuous variable Y (here the maximum
number of splits is 2) and 4 bits for the categorical variable Z. For the continuous variable, the
length of the leading 1-bits and the following 0-bit (in gray) indicates the length of the interval, and
the remaining bits encode the position of the interval.

performed by the algorithm on the nodes translate into efficient bit operations on 64-bit machine
words. The numerical ordering of these bit representations is bottom-up in the dynamic program-
ming, which allows us to iteratively build a sorted list of the node-score-pairs instead of using
recursion and dynamic associative array data structures.

5. Empirical Studies

How does PCART compare to its full-table variants when they are used as local models in Bayesian
network learning? We next study this question from the aspects of (i) capability of recovering a
data-generating DAG, and (ii) the time requirement of phase I (local score computation) and phase II
(DAG optimization). For phase I we use our implementation described in Section 4; for phase II we
use CPBayes (van Beek and Hoffmann, 2015).

5.1 Benchmark Networks

We investigated the capability of the different models to recover a data-generating network structure.
For this purpose, we use the networks Alarm, Insurance, and Water 4, which contain 37, 27, and
32 variables respectively, and are thus suitable for finding the globally optimal DAG with modern
solvers. With a given ground-truth network, we generate a data set of size N and used it to learn
DAGs using the four local models described in Section 3, setting the maximum indegree to D = 4.
We next compared the learned DAGs to the generating DAG using the structural Hamming distance
(SHD) (Tsamardinos et al., 2006). For each network and each sample size N = 50 × 2i, for
i = 0, 1, . . . , 9, we repeated the procedure ten times and averaged the resulting SHDs (Figure 3).

We observe that both PCART variants yield a smaller SHD than FT for all generating networks
and sample sizes. When adding the nonuniform DAG prior to FT, it becomes competitive for Alarm.
A possible explanation is that Alarm has the smallest edge/node ratio of only 1.24, whereas Insur-
ance and Water have 1.93 and 2.06, respectively. A small average indegree leaves little potential for

4. All data sets were obtained from http://www.bnlearn.com/bnrepository
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Figure 3: Structure recovery of benchmark networks.

structured CPDs as the majority of CPTs can be accurately represented with a (small) probability
table. For Insurance and Water the PCART variants yield faster convergence than the FT models.

We also performed a Wilcoxon signed rank test, with level α = 0.01, to compare the SHD
populations of PCARTp and FTp for each network and sample size. For Alarm, the difference is
indeed statistically insignificant: for each sample size the p-value exceeds 0.01. For Insurance and
Water, PCARTp yields a significantly lower SHD than FTp for N ≤ 400 and 3200 ≤ N ≤ 16400,
respectively. These findings coincide well with visual inspection of the learning curves in Figure 3.

5.2 Real Data

All variables in the three benchmark networks are discrete. To evaluate the structure learning per-
formance in the presence of continuous variables, we thus need to utilize real-world data sets, e.g.,
from the UCI Machine Learning Repository (Lichman, 2013).

For evaluating structure learning based on a data set alone, we used a very recent method called
Intersection-Validation (Viinikka et al., 2018), which allows to draw learning curves along the lines
of Figure 3 even when no ground-truth DAG is available. The method checks which structural
features all included learning methods agree upon when learning from the entire data set, and treats
them as surrogate ground truth. Structures learned at smaller subsamples of the data are compared
against this partial network to compute an approximation of SHD, called partial Hamming distance.

Naturally, we may expect Intersection-Validation be the more reliable, the larger the partial
network is, that is, the larger the available complete data set is. Therefore, we picked the four
UCI data sets are (i) suitable to exact structure recovery due to a moderate number of variables
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Figure 4: Structure learning from UCI data sets, evaluated using the intersection–validation method.
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Figure 5: Running times (in seconds) for computing local scores and for DAG optimization. For
each benchmark network and data set, different measurements correspond to different sample sizes.

and (ii) contain more than 5000 data points: mushroom (0/22 continuous variables), parkinsons-
telemonitoring (20/21), turkiye-student-evaluation (31/33), and page-blocks-classification (10/11).
For each data set and learning method, we learned networks from subsamples of 1/2, 1/4, 1/8, and
1/16 of the original sample size and repeated the subsampling process ten times.

The resulting averaged learning curves for the four methods in comparison are shown in Fig-
ure 4. For turkiye-student-evaluation the methods differ only slightly; while FT and FTp achieve
slightly lower partial Hamming distances, none of the methods performs particularly well. In the
remaining three cases, PCART and PCARTp always outperform the FT variants, and in 8 of 12
combinations of data set and sample size by a large relative margin, passing the Wilcoxon signed
rank test with α = 0.01. This demonstrates that structured CPDs can improve structure recovery
not only for purely discrete networks, but also in the presence of continuous variables.

5.3 Running Times

Figure 5 summarizes the running times of the algorithms corresponding to the experiments in the
previous two sections. Plotted is the time needed for computing the local scores against the time
needed by CPBayes to find an optimal DAG given the local scores. Each individual point in the
plots corresponds to the average running time for a concrete sample size.

We note that the difference between the penalized and unpenalized variants are small and thus
focus on the comparison of PCARTp with FTp in the following. Only when the number of variables
n is very small (page-blocks-classification), computing the local scores cleary dominates running
time, as DAG optimization is very fast. The picture changes when n and the sample size grow: DAG
optimization becomes more expensive and its time consumption will eventually surpass that of the
local score computation, which grows only polynomially in n for any bounded maximum indegree
D. Moreover, the running time for CPBayes with PCARTp is often faster than CPBayes with FTp,
probably because the former allows a more effective pruning of the DAG search space.

6. Concluding Remarks

We have advanced the idea of using decision trees as local models in Bayesian networks (Friedman
and Goldszmidt, 1996). We introduced a new model class, PCART, which (i) can handle both
categorical and continuous predictor and response variables, (ii) takes a Bayesian approach, and
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(iii) admits computationally feasible global optimization in a range of problem sizes. Armed with
this, we empirically compared decision trees against their full-table counterparts.

In our experiments we set the parameters that control the computational complexity of the model
(maximum indegree, number of splits) so that the computations of the local scores (phase I) could
be completed within a few hours for each data set. This was motivated by the fact that for some
of the data sets, the state-of-the-art solvers require hours to find an optimal DAG (phase II). There
are two simple ways to expedite phase I, if needed: by setting the complexity parameters to lower
values, and by running the computations in parallel.

Another direction for future research is to more systematically examine the effect of different
parameter priors in PCART and the full-table variants; the choice of the hyperparameter values is
known to affect the learned model for standard CPTs (Silander et al., 2007), and our setting is even
more complex. We suspect that our simple choice to use same constant hyperparameter values over
all data sets and variables could be improved by more local, empirical Bayes-like methods.

A related question is, whether the power of PCART in structure learning transfers to density
estimation, i.e., predictive performance. We have looked at this, and it appeared that the differences
between PCART and the full-table variants are small. We find this observation unsurprising, given
that density estimation is, in a sense, an easier task than structure learning (Viinikka et al., 2018).
One might hypothesize that in density estimation PCART’s ability to learn “weak arcs” is less
important and, moreover, selecting a single (optimal) local structure for each node could lead to
over-fitting. Due to space constraints, we omit presenting and discussing the results in full here.
In addition, PCART and the full-table variants warrant further investigation as alternatives to other
approaches to hybrid Bayesian networks, such as hybrid copulas (Karra and Mili, 2016), iterative
discretization schemes (Chen et al., 2017), or some commonly used simpler discretization methods
that only consider the marginal or pairwise distributions.
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