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Abstract

Gaussian graphical models have received much attention in the last years, due to their flexibility
and expression power. However, the optimisation of such complex models suffer from compu-
tational issues both in terms of convergence rates and memory requirements. Here, we present a
forward-backward splitting (FBS) procedure for Gaussian graphical modelling of multivariate time-
series which relies on recent theoretical studies ensuring convergence under mild assumptions. Our
experiments show that a FBS-based implementation achieves, with very fast convergence rates, op-
timal results with respect to ground truth and standard methods for dynamical network inference.
Optimisation algorithms which are usually exploited for network inference suffer from drawbacks
when considering large sets of unknowns. Particularly for increasing data sets and model complex-
ity, we argue for the use of fast and theoretically sound optimisation algorithms to be significant to
the graphical modelling community.

Keywords: graphical inference; convex optimization; fused lasso; sparse models.

1. Introduction

The graphical modelling problem has received a lot of attention in recent years. In particular, graph-
ical models have evolved in complexity, often challenging state-of-the-art minimisation methods.
Given a graph G = (V, &), where V = {1,...,d} is a finite set of vertices, and £ C V x Vis a set
of edges, an undirected Gaussian graphical model (GGM) is a multivariate Gaussian random vari-
able X = (X1, ..., X4) on R? with distribution \(1, ©2) where (i) there is no distinction between
an edge (7,j) € € and (j,7) (undirected graph), and (ii) the conditional independence between two
variables X; and X; given all the others is encoded in G, meaning that X; and X are conditionally
independent given the others if and only if (i,j) ¢ & (Lauritzen, |1996). Moreover, the precision
matrix © = Y71 encodes the structure of the graphs, since (i,5) ¢ & if and only if ©; ; = 0. In
the context of graphical inference, which aims to recover the precision matrix, several models have
been recently proposed. One of the best known method for such task is the graphical lasso (Fried-
man et al., 2008). Then, based on this method, different variations have been also proposed, which
take into account more components, in order to be able to capture the complexity of a wide range
of systems. Examples include the latent variables graphical lasso, which considers the presence of
latent unmeasurable factors during the inference of the network (Chandrasekaran et al., 2010; Ma
et al., 2013), the joint graphical lasso, for multi-class graph inference (Danaher et al., [2014)), time-
varying graphical lasso, to model dynamical systems by inferring multiple (while related) networks
in time (Hallac et al., 2017)), and the latent variable time-varying graphical lasso, which models a
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dynamical system while taking into account latent factors that may change during the evolution of
the system (Tomasi et al., [2018]).

Such models, while powerful for real and complex systems, introduce non-trivial challenges from
the computational point of view. In this context, a popular optimisation algorithm is the alternat-
ing direction method of multipliers (ADMM), which can cope with complex graphical lasso-based
models (Boyd et al.,2010). ADMM partitions the problem into multiple (easier) sub-problems, so
that the solution of the global problem is found as the consensus among the solutions of the smaller
sub-problems. While offering a great flexibility for optimising even very complex models, a draw-
back of ADMM is the need of variable duplication, before finding a consensus. This may lead to a
slow convergence rate and to a high computational cost (both in terms of computing resources and
memory requirements). On the other hand, other options make assumptions that are not satisfied in
the setting of graphical models.

Contribution In this paper, we propose a new algorithm for graphical modelling of multivariate
time-series, based on the forward-backward splitting (FBS) method. We rely on recent advances on
such method which introduces suitable line searches for the parameters of the algorithm and relax
the assumptions, so to include the type of problems we are interested in, while maintaining strong
theoretical convergence guarantees (Salzo, 2017). In particular, we focus on time-varying graphical
lasso (TGL), which aims to infer a network among variables that can change during the time through
specific evolutionary patterns. We cover two types of temporal transitions (Hallac et al., 2017): (i)
a possibly discontinuous behaviour with few time changes in the links, by using a total variation
penalty term; (ii) a smooth transition, adopting a square norm penalty term. We validate the perfor-
mance of our algorithm by comparing it against the ground truth and the state-of-the-art method in
this context, that is, ADMM. Our results show that our FBS-based methods are significantly faster
than ADMM. Also, since FBS algorithms do not require variable duplication, the spatial complexity
is lower than ADMM. This is a fundamental feature for the analysis of large networks. We empha-
sise the need of investigating alternative optimisation methods for such complex problems, which
can deal with the increasing dimensionality of the data sets. Our work is an attempt in this direction,
showing FBS-based graphical models to be a effective alternative.

Outline The rest of the paper is organised as follows. Section [2| recalls time-varying graphical
lasso models and FBS minimisation algorithms. Our main contribution is detailed in Section [3.1}
where we provide two alternatives FBS algorithms with line searches for two types of time-varying
graphical lasso models. We extensively validated our FBS-based methods under synthetic experi-
ments in Section {] Finally, we conclude in Section [5] with a discussion on the results and future
research directions.

2. Background

In this section we recall time-varying graphical lasso (TGL) models and recent advances on the
forward-backward splitting (FBS) algorithm for the minimisation of composite convex and possibly
nonsmooth objective functions.

In what follows, we denote by H a generic Euclidean space, and by (-, -) its scalar product. For
every square symmetric matrix A € R%? A = 0 means that A is positive definite, and the space
of such matrices is denoted by S‘i 4
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2.1 Time-Varying Graphical Lasso

Consider a series of observations (x(t))1<i<n,, '(t) € R4, ¢t = 1,...,T, each one drawn from
a multivariate Gaussian distribution N (0, ( )) Network inference aims at recovering at each
time ¢ the interaction structure ©; = X(¢)~! of the d variables, starting from n; observations
{x!(t),...,x™(t)} (Hallac et al., 2017). The goal is to find a set of precision matrices ©; € S% ,
t = 1,...,T, that represents the dynamical network at different time points ¢. Then, the time-
varying graphical lasso (TGL) problem is defined as follows:

T T-1
mlnlmlzez —ng (S, 0¢) + « H@tHod L+ 5 Z Y(Op41 — Oy), €))
®t€S++ =1

where
o Sy =(1/ny) >, @'(t) ® x'(t) is the empirical covariance matrix at time ¢;

e /(S;,0;) = logdet(©;) — tr(S;0;) is the Gaussian log-likelihood (up to a constant and
scaling factor), where ©; is positive definite;

e || |loq,1 is the off-diagonal ¢;-norm, which promotes sparsity in the precision matrix (exclud-
ing the diagonal);

e ¢ encodes prior information on the qualitative time behaviour of the network.

Different choices of ¢ reflect different evolutionary patterns of the interactions of variables in play
and in (Hallac et al., 2017) several options are considered. Among these, here we focus on the ¢;
norm, which gives rise to a total variation penalty term, that is, (O 11 — ©;) = ||O¢11 — O|1 =
Zgjzl |0141,5,j — 01,4,5] and the square of the ¢> norm, meaning that )(©;41 — ;) = [|Op41 —
613 = Zf i1 041,55 — Orij |2. The first choice is suitable when one expects few edges to change
between subsequent time points, whereas the second is appropriate when the dynamic smoothly
varies over time. A solution to problem (1]) has been proposed via ADMM in (Hallac et al., 2017).
We stress that while favouring a relatively easy implementation for this model, ADMM requires a
duplication of variables which may not always be feasible in practice, due to computational con-
straints, particularly for high-dimensional data.

2.2 Forward-Backward Splitting with Mild Differentiability Assumptions

Forward-backward splitting (FBS) (Combettes and Wajs|,[2005) is an algorithm for the optimisation
of objective functions of the following form:

minimize f(z) + 9(v), @)
where H is an Euclidean space, f is convex and smooth, while g is convex and possibly non-smooth.
The form (2)) covers our objective problem (I]), where depending on the different choices of 1), the
smooth part f may include the negative Gaussian log-likelihood only, or the last term too. The
idea behind the method is to make a descent step of size y towards the direction of gradient of
the smooth part f (the forward step), then to project the point back via the proximity operator of
g (the backward step), and finally to perform a relaxation step of size A € ]0,1]. Such algorithm
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Algorithm 1: Forward-Backward splitting with Line Search (FBS-LS).

fork=1,... do

choose v € Ry ;

B =2k~ Vf(ab);

y" = prox,,,(#*) = argmin 9(2) + 5z -

&*|%;

choose A €]0, 1];
phtl = ok + )\k(yk _ a?k);

has strong theoretical guarantees (Combettes and Wajs|, 2005} [Beck and Teboullel, [2009). However,
these results require the smooth part f to have a Lipschitz continuous gradient on the whole space
‘H. This is not our case, unfortunately, since the negative Gaussian log-likelihood is defined on
the open convex cone Si L C R*? and its gradient is not Lipschitz continuous. Only recently,
global convergence guarantees along with rates of convergence in function values were extended
to a wider class of functions (Salzo, 2017) that indeed covers our objective problem (I)). Such
guarantees rely on suitable line-search backtracking procedures that adaptively select the stepsize
~ and/or the relaxation parameter ), keeping the iterations inside the domain Si . Algorithm
presents a generic form of FBS. We adopt two alternative line-search strategies that are studied in
(Salzol [2017)). In the first method the line search is only on the parameter -, whereas the second
method performs a line search on both ~; and A;. For the sake of compactness we set

J(@,7,A) =z + Aproxy(z — 7V f(2)) — z),
so that ¥+ = J(2F, vy, Ap).

LS(7). Set \x = 1 and let §, ¢ € ]0,1[, ¥ € ]0, 1]. Then -y, = 7' where i is the smallest integer so
that

FI 1)) — Fa?) < (F — 2F V() + jkuy’“ 2.

LS(v, ). Let §,¢ € ]0,1[, 7, A € ]0,1]. Then 7 :_"yei and i is the smallest integer so that
Ta prox%g(mk — 7,V f(zF)) € S4, and Ay = e’ where j is the smallest integer so that

Pk M) — F(a*) < A <<yk - 1) + - x’fnZ) |

In (Salzo, 2017) it is proved that Algorithm [1| with any of the above line searches gives a sequence
(2*)zen converging to a minimiser of f 4 g and such that (f 4 g)(2*) — min, (f 4+ g)(z) = o(1/k).

3. Time-varying Network Inference via Forward-Backward Splitting

In this section, we formally present two problems of time-varying network inference under smooth
and bounded variation temporal transitions. Then, we present our main contribution, which consists
in two procedures, based on the forward-backward splitting algorithm, that are ensured to converge
to a solution of the above problems.
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3.1 Problem Formulation
We consider the following two time-varying graphical lasso models:

T-1

mlnlmlzez —ng (S, 04) + « H@tHod 1+ 5 Z 1©t41 — Ol (TGL-47)
Oest, 1o t=1
and
T-1
mlnlmlzez —ng (S, 04) + « H@tHod 1+ 5 Z 1941 — @tHQ , (TGL-/3)
Oesty 1o t=1

where S is the empirical covariance matrix, defined as in Section [2.1]

In order to put the above minimisation problems in the form (@), we set H = (R>*)7, @ =
(©1)1<t<r With O = (04 j)1<i j<a € R?*? being the precision matrix at time ¢, and f and g as
follows:

Case (TGL-(1). f(©) =" —n; £(S;,©;) and
T T
0) = 042 1O¢lloa + ﬁz [©t+1 — Ol
t=1 t=1

d T d T
=a Y > (0l + 8D N1y — Oril
ij=1t=1 ij=1t=1
i

d
=Y [(1=6i)allf.ijll, + BTV(6..;)],
i,j=1

where J; ; is the Kronecker symbol and T'V(+) is the 1D total variation on R .

Case (TGL-(2). f(©) = "L —n, £(S;,0:) + 8L 10441 — O[3 and

d

= 042 1©¢lloqr = Y (1 =6 ;)all6. il -

i,j=1
We note that in both cases the function g is convex and separable, meaning that
d
©) =Y 6ij(0ij), 0ij=(Orijh<i<r,
i,j=1
where, for every (i,7) € {1,...,d}?,

(1—-10;;) |8, + BTV (0) in the case (TGL-{1),

i R =R, gi;(0) =
Gij: 9i,j(0) {(1_52,7].)0[”9‘1 in the case (TGL-£3).

Therefore, the proximity operator of g can be computed component-wise (Combettes and Wajs,
2005). Moreover, in the case (TGL-¢;) the components of g consist in a 1D total variation penalty
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if ¢ = 7 and in a fused lasso penalty otherwise. We stress that it is possible to exactly compute the
proximity operator of such penalties by mean of a finite termination procedure (Condat, |2013)). On
the other hand, in the case (TGL-/3), the proximity operator of gi,; reduces to a soft-thresholding
operation (Combettes and Wajsl [2005)). Finally, we remark that in each of the above cases the
function f is defined on the open convex cone Si 4, itis convex, and its gradient is

([ n1(S1 -6
 o-1
n1(S2 — ©5 ) in the case (TGL-£7)
TLT(ST — @El)
Vf(©)= <
ni(S1 — 67" ©1 -6,
_ —1 2 _ _
77,1(52 @2 ) + 25 @2 61 @3 in the case (TGL'E%)'
np(Sr — 071 Or —Or_1

. . . . . d
This shows that V f is (only) locally Lipschitz continuous on 8¢ , .

3.2 Algorithm

We now give two instances of Algorithm[I|which correspond to two types of line-search procedures
and can be applied to both problems (TGL-/1) and (TGL-£3). Algorithmimplements a line-search
on the step-size v only, whereas Algorithm [3| performs a line-search on the relaxation parameter A
and an additional backtracking procedure on the step-size <y in order to keep the sequence of the
iterates feasible. The operations Prox. . . and V f are those described in Section

We note that, since f and g are convex and V f is locally Lipschitz continuous on Si -, it follows
from (Salzo, 2017) that Algorithms [2|and |3| are ensured to converge with a rate o(1/k). We stress
that both the proposed algorithms are equivalent in terms of convergence properties and computa-
tional cost. However, in practice, they may behave differently depending on the applications, as
shown in Section ]

Stopping Criterion. Since Y* = prox,, g((;)k ), it follows that (@% — Y'*) /~, € dg(Y'*), where
0g is the subdifferential of g. Our stopping criterion is based on the following residual

Ak k
RF=Vf(Y") + G)%Y, 4)

which belongs to d(f + ¢)(Y*) and, in view of the expression of © in Algorithm and can also
be written as
@k o Yk

RF =Vf(YF) - Vf(OF) +
83

&)

Since Y* — @ — 0as k — 400 (Salzol [2017) and V £ is locally Lipschitz continuous, it follows
that (R")en is a sequence of subgradients of f + g (each one at the point Y'*), that converges to
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Algorithm 2: FBS-LS() for time-varying network inference.

choose € € ]0,1[,5 > 0,and 6 € ]0,1[;
choose ®° and set y_; = 7e ;

for £k =0,1,... (until convergence) do
initialise v = yx_1/¢€;
do
Y e

OF = @F — YV f(OF) = (0%)1<; j<a;
for each interaction ij do

t yzlfj = PrOXqy, ; (05]),
Y* = (yf;)i<ij<as

2

G = (YF - ©F, V(@) + (5/7) Y - ©F,;
while Y £ 0 0r YF £ 0, ,or YE # 0or f(YF) — f(OF) > (4
e =
ekt — yk.

Algorithm 3: FBS-LS(v, A) for time-varying network inference.

choose € €]0,1[,5 > 0,A €]0,1],and § €]0,1[;
choose ®° and set y_1 = J€, A\g = A ;

for £ =0,1,... (until convergence) do
initialise v = yx_1/e and A = \g_1/¢;
do
v ye;

OF = @F — YV f(OF) = (0)1<; j<a;
for each interaction ij do

t yzlfj = PIOXyg, ; (051)’
Yk = (yllfj)lﬁi,j,gd = (Y1k7 SRR le“c)’
while Y £ 00or YF £ 0,---, or Y # 0
do
A Ae;
e = @F + A(YF — ©F);

2

= (YF— 0" Vf(O") + (5/7) [Y* — O
while f(©""!) — f(©%) > A\(i;
Ve =175

zero. A scale invariant stopping criterion can be obtained by adopting the condition r¥ < e,ps or
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frfl < €4ps, Where
| R
max { [|[Vf(Y*)[|,,

I L

}+er "R e
2

I,
@Ok_yk
’Yk

are the relative and normalised residuals respectively, €, iS an absolute tolerance parameter, and
€, and €, are small constants to prevent the denominator from being zero (Goldstein et al., 2014).

3.3 Complexity

In Algorithms [2] and [3] the most expensive step lies in the inversion of 7" matrices, required by the
gradient of f (Equation (3)). The complexity per iteration is equivalent to that of the ADMM pro-
posed by Hallac et al.| (2017). Indeed, the optimisation of TGL with ADMM requires an eigenvalue
decomposition at each iteration. Hence, both minimisation methods have complexity of O(T'd?)
per iteration. We recall that both the matrix inversion problem and the eigenvalue decomposition
problem can be solved by more efficient algorithms with lower complexity. Employing such algo-
rithms can significantly improve the time performance of our FBS-based algorithms as well as of
ADMM. Finally, exploiting a particular structure of the ® matrix (such as a block structure) may
be an additional benefit in the matrix inversion operation. We leave such improvements as a future
work.

4. Experiments

The performance of the proposed methods has been assessed on synthetic data in terms of the
number of iterations, execution time, and space scalability. In particular, we compared the two
proposed algorithms FBS-LS() (Algorithm [2)) and FBS-LS(~, A) (Algorithm |3)) with the ADMM
algorithm, which is the state of the art in the context of time-varying network inference (Hallac
et al., 2017).

4.1 Convergence

Data were generated starting from a set of precision matrices ® = (01, ..., Or), related in time
according to a specific behaviour while guaranteeing that ©; € Si L fort=1,...,T. In particular,
we generated two data sets according to different temporal behaviours, consisting of n; = 200
samples in R? with d = 200 and 7" = 10 time stamps. The first data set was obtained by modelling
the interactions between variables across time according to a square waveform. Under such schema,
the interactions may be zero or positive at particular time points, but the transition between those
states is non-smooth. The second data set is generated modelling variable interactions according to
a smooth sinusoidal behaviour. Hence, the interactions were constrained to change slowly in time.
Additional details on data generation can be found in the implementation (see Section [6)).

We considered the time-varying graphical lasso with the two temporal penalties (TGL-¢;) and
(TGL-£2), according to the type of the data set. As for the hyperparameters («, 3), we considered
the search space [0.1, 1] x [0.1, 5] for (TGL-¢1) and [0.1, 1] x [0.01, 0.1] for (TGL-£3). We performed
a Bayesian optimisation procedure, and we checked that the best hyperparameters lie in the inte-
rior of the search space (do not belong to the boundary). In particular, (o*, 8*) = (0.111,4.855)
for (TGL-¢1), while (a*, 3*) = (0.789,0.020) for (TGL-£3). Then, we set a grid on the search
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precision 0.1 0.01 0.001

score iter. time [s] iter. time [s] iter. time [s]

FBS-LS(v) 22+1 4.8 £0.7 24 +1 51+0.4 26+1 5.0+0.3
{1 FBS-LS(v,)) 22+1 4.6 +£0.7 24 +1 54+0.5 26+ 1 5.6 £0.5

ADMM 1060 + 553 75.2+£39.8 2623 £1757 184.3+122.3 4312+1536 301.6+107.4

FBS-LS(v) 72+ 19 79 +2.7 107 £ 30 11.7+4.1 137 £40 149455
Z% FBS-LS(v, ) 72+19 8.3+28 104 £+ 31 12.1+4.5 129 +41 14.9 £ 6.0

ADMM 192 + 24 13.24+1.7 252 4+ 42 173 £3.1 453 4+ 66 30.4 £+ 3.8

Table 1: Comparison between FBS with line search and ADMM. We ran the algorithms for several values
of (a, B). The table displays the average and standard deviation of the number of iterations and CPU times
across the different runs for achieving lobi,—m-|/|m.| < e, with ¢ € {0.1,0.01,0.001}. For each pair of hy-
perparameters, the minimum m. is estimated as the best value obtained in 500 iterations among the different
algorithms.

space and ran the two proposed algorithms FBS-LS(v) and FBS-LS(v, M) as well as ADMM, for
the corresponding values of the hyperparameters.

We evaluated the performance of the proposed methods with respect to the ground truth. We com-
puted the mean squared error (MSE) for each algorithm after convergence, defined as MSE =
% ST 108 — 6{")|12, where © denotes the ground truth, © is the inferred precision ma-
trix, and the superscript (u) refers to the upper triangular part of the matrix (excluding the diagonal).
The achieved MSE was the same for each algorithm (0.648 - 10~ for (TGL-¢;), 0.498 - 10~ for
(TGL-£2)).

Table (1| reports the performance of the three algorithms across the different runs in terms of the
number of iterations and CPU times for achieving a given precision. In this experiment, both FBS-
based algorithms clearly outperform the ADMM. FBS-based algorithms are able, in only a few
iterations, to increase the precision of order of magnitudes, for both ¢; and ﬁ% set of experiments.
We note, however, that the difference in the convergence behaviour with respect to ADMM is less
substantial in the case of ¢3. In the case of £1, FBS has a higher cost per iteration with respect to
ADMM. This is due to the computation of the proximity operator of the fused lasso penalty. In
the case of /3, instead, the cost is lower because the proximity operator of the nonsmooth (penalty)
term simplifies to a soft-thresholding. Finally, for (TGL-£2), we point out the better performance of
FBS-LS(7, A\) against FBS-LS(7).

Figure[I|shows the relative objective value across the first 100 iterations and multiple runs for FBS-
based algorithms and ADMM. The averaged value is depicted in bold line. In particular, in the case
of the (TGL-{;), FBS-based algorithms clearly surpass the ADMM in terms of convergence rate
(Figure[Ia). We note that the two algorithms FBS-LS(v) and FBS-LS(~y, A) completely overlap in
the case of (TGL-/;), whereas FBS-LS(, A) shows to convergence slightly faster than FBS-LS(7).
The poor convergence rate of ADMM may be due to the need of reaching a consensus among a
large number of variables which a typical scenario in the inference of time-varying networks.

4.2 Scalability

FBS- and ADMM-based optimisations feature different memory requirements. In particular, FBS-
based implementation requires O(2dT) in space, for keeping in memory both the precision and
empirical covariance matrices at all time points. Instead, ADMM-based implementation requires
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Figure 1: Relative objective value (decreasing) at each iteration. The relative value is obtained as
lobjy, —m«|/|m, |, where m. is the minimum objective value obtained across 500 iterations, and obj,, is the
value of the objective function at iteration k. In both cases, FBS-based algorithms converge to the minimum
faster with respect to ADMM.

more variables due to the consensus framework and the presence of dual variables. More specifi-
cally, in our setting, it requires O(4d?(2T — 1)) space complexity (Hallac et al.,[2017). The differ-
ence between the two complexities consists in a multiplicative factor which, however, may have an
impact in the analysis of large data sets.

Figure shows the difference in space complexity as the number of unknowns (7'd(d + 1)/2) of the
problem grows. We note that such computations do not take into account the use of optimised data
structures for sparse data. Better performance may be achieved by exploiting the structure and the
sparsity of the involved matrices, but we leave such investigation for future work.

4.3 Model Selection

The hyperparameters of the methods have been selected by using a cross-validation procedure. In
particular, we used the Monte Carlo cross-validation that repeatedly splits the data set in two mutu-
ally exclusive sets, namely learning and test sets (Molinaro et al., [2005)). For each hyperparameter
combination, the model was trained on the learning set and the likelihood of the model was esti-
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80GB RAM

2
S
9
e 8GB RAM
S 109 == e e T e
al
£
9 108 4
= —— ADMM
—— FBS
107 : . . . . .
0-10° 1-10° 2-10° 3-10° 4-10° 5-10°

Number of unknowns

Figure 2: Memory requirements as the number of unknowns grows, with 7" = 50 and d varying. Each matrix
entry is stored in double precision.

mated on the independent test set. We selected the combination of hyperparameters based on the
average maximum likelihood of the model across multiple splits of the data set. Then, the selected
hyperparameters were used for both FBS- and ADMM-based algorithms, for which the functional
is the same. Since the number of TGL-FB hyperparameters is large, we used a Gaussian process-
based Bayesian optimisation procedure to choose the best combination of hyperparameters for each
data set, based on the expected improvement strategy (Snoek et al., [2012).

We note that, in real cases when the temporal dynamics is not known, it is possible and advantageous
to include the choice of the temporal behaviour in a cross-validation procedure.

5. Conclusions and Future Work

In this work, we presented a new algorithm for the graphical modelling of multivariate time-series,
which is based on a forward-backward splitting procedure. We cover two significant types of tempo-
ral behaviours, that is, a nonsmooth transition with few interaction changes, and a smooth transition
where the system evolves slowly. Our experiments proved that the proposed method is more effi-
cient than ADMM in terms of number of iterations, CPU time and memory requirements.

Further improvements on our contribution may be achieved by exploiting the structure of the in-
volved matrices (e.g., the block structure of precision matrices) in order to increase the efficiency in
the computation of V f. Also, we plan to apply the FBS algorithm on different graphical models,
such as those considered by |Danaher et al.| (2014) and [Tomasi et al.| (2018). We expect that, when
increasing the complexity of models, FBS-based graphical models would prove even more effective.

We believe that this work could pave the way to develop solid graphical models with increasing
complexity, leading to further advances in pattern recognition.

6. Availability and Implementation

The minimisation algorithm is implemented in an open-source Python framework, available under
BSD-3-Clause at https://github.com/fdtomasi/regain. It is fully compatible with
the scikit-learn library of machine learning algorithms. It provides a straightforward and intuitive
interface, while relying on low-level high-performance libraries for numerical computations that
lead to a fast and scalable optimisation algorithm, even with an increasing number of unknowns.
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