
Proceedings of Machine Learning Research vol 72, 487-498, 2018 PGM 2018

A Lattice Representation of Independence Relations

Linda C. van der Gaag L.C.VANDERGAAG@UU.NL
Department of Information and Computing Sciences, Utrecht University, The Netherlands

Marco Baioletti MARCO.BAIOLETTI@UNIPG.IT
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Italy

Janneke H. Bolt J.H.BOLT@UU.NL

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Abstract
Independence relations in general include exponentially many statements of independence, that
is, exponential in terms of the number of variables involved. These relations are typically fully
characterised however, by a small set of such statements and an associated set of derivation rules.
While various computational problems on independence relations can be solved by manipulating
these smaller sets without the need to explicitly generate the full relation, existing algorithms are
still associated with often prohibitively high running times. In this paper, we introduce a lattice
representation for sets of independence statements, which provides further insights in the structural
properties of independence and thereby renders the algorithms for some well-known problems on
independence relations less demanding. By means of experimental results, in fact, we demonstrate
a substantial gain in efficiency of closure computation of semi-graphoid independence relations.

Keywords: Independence relations; Representation; Lattice-based partitioning; Combinatorial
complexity; Efficiency of closure computation.

1. Introduction

Probabilistic independence is the key to the scalability of probabilistic models, as is demonstrated
by the practicability of probabilistic graphical models encoding such independences. Probabilistic
independence therefore is a subject of intensive studies from both a mathematics and a computing-
science perspective (see for example Dawid (1979); Pearl (1988); Studený (2005)). Pearl and his
colleagues were among the first to formalise properties of probabilistic independence in a system
of axioms (Pearl, 1988). These axioms are now commonly taken as derivation rules for generating
new independences from a given set of independence statements. Any set of such statements that is
closed under finite application of these rules is called an independence relation.

Independence relations in general are exponentially large in the number of variables involved.
Representing them by enumeration of their element statements therefore is not feasible for practi-
cal purposes. These relations are typically fully characterised however, by a much smaller set of
statements, called a basis, and an associated set of derivation rules. Studený was the first to propose
a type of basis that allows various computational problems on independence relations to be solved
efficiently without the need to generate the full relation (Studený, 1997; Studený, 1998). He de-
signed an elegant algorithm for computing such a basis from a given starting set of independence
statements, which was later improved upon, first by Baioletti et al. (2009a) and then by Lopatatzidis
and van der Gaag (2017), to the current state-of-the-art algorithm for closure computation.

While Studený’s basis allows efficiently solving various problems on independence relations,
existing algorithms for finding such a basis are still highly demanding from a computational per-

487

VAN DER GAAG, BAIOLETTI AND BOLT

spective. In this paper, we introduce a lattice representation for sets of independence statements
which aims at reducing the running time of manipulating such sets through a partitioning approach.
Although the lattice representation accommodates any type of independence relation, we will focus
the discussion of its properties on aspects of closure computation of semi-graphoid independence
relations. We will show that the lattice representation supports the maintenance of a non-redundant
set of independence statements, which is one of the most demanding steps of closure computation,
by restricting redundancy checks to parts of the lattice; the representation further allows effective
selection of statements for application of the main operator involved in closure computation. Our
experimental results from closure computation with up to 50 variables demonstrate that the compu-
tational advantages thus obtained are substantial.

The paper is organised as follows. In Section 2, we review some basic notions from inde-
pendence relations and closure computation, and thereby introduce our notational conventions. In
Section 3, our lattice representation of sets of independence statements is introduced and some of its
properties are stated. Section 4 then details the computational advantages, for closure computation,
of the new representation. Section 5 describes our experiments and the results obtained. The paper
ends in Section 6 with our concluding observations and plans for further research.

2. Preliminaries

We briefly review semi-graphoid independence relations and their representation (Pearl, 1988; Stu-
dený, 1998). To this end, we consider a finite, non-empty set V of discrete random variables, with
|V | = n, n ≥ 2. A triplet over V is a statement of the form θ = 〈A,B |C〉, where A,B,C ⊆ V are
pairwise disjoint subsets with A,B 6= ∅; the symmetric transpose of θ, denoted as θT , is the triplet
〈B,A |C〉. In the sequel, we will use X =A ∪ B ∪ C to denote the set of all variables involved
in the triplets θ, θT . A triplet 〈A,B | C〉 is taken to state that the sets of variables A and B are
independent given the separating set C. Relative to a discrete joint probability distribution Pr over
V , the triplet thus states that Pr(A,B |C) = Pr(A |C) · Pr(B |C) for all value combinations of
A ∪B ∪ C. The set of all possible triplets over V is denoted by V (3).

A set of triplets constitutes a semi-graphoid independence relation if it satisfies the four proper-
ties stated in the following definition.

Definition 1 A semi-graphoid independence relation is a set of triplets J ⊆ V (3) which satisfies the
following properties:

G1: if 〈A,B | C〉 ∈ J , then 〈B,A | C〉 ∈ J (Symmetry)

G2: if 〈A,B | C〉 ∈ J , then 〈A,B′ | C〉 ∈ J for any non-empty subsetB′ ⊆ B (Decomposition)

G3: if 〈A,B1 ∪B2 | C〉 ∈ J with B1 ∩B2 = ∅, then 〈A,B1 | C ∪B2〉 ∈ J (Weak Union)

G4: if 〈A,B | C ∪D〉 ∈ J and 〈A,C | D〉 ∈ J , then 〈A,B ∪ C | D〉 ∈ J (Contraction)

The four properties stated above constitute an axiomatic system for the qualitative notion of in-
dependence (Pearl, 1988). This system is sound for the class of discrete probability distributions
(Dawid, 1979), but not complete; in fact, it has been shown that the probabilistic notion of indepen-
dence does not allow a finite axiomatisation (Studený, 1992).

The semi-graphoid properties of independence G1–G4 are now taken as derivation rules for
generating (possibly) new triplets from a given triplet set. Given such a set J ⊆ V (3) and a desig-
nated triplet θ ∈ V (3), we write J `∗ θ if the triplet θ can be derived from J by finite application

488

A LATTICE REPRESENTATION OF INDEPENDENCE RELATIONS

of the semi-graphoid rules. The (full) closure of a triplet set J , denoted as J , is the semi-graphoid
independence relation composed of J and all triplets θ that can be derived from it. Various compu-
tational problems on independence relations can be solved from a starting set J directly, using the
derivation rules, without the need to first generate its full closure. An example of such a problem is
the implication problem which asks, for a given starting set J and triplet θ, whether J `∗ θ.

The semi-graphoid rules G1–G3 define a derivational partial order among triplets. Studený
(1998) formalised this derivational order in the notion of dominance, which was later enhanced to
that of g-inclusion by Baioletti et al. (2009a). In the sequel, we will use the latter notion.

Definition 2 Let J ⊆ V (3) be a set of triplets and let θi = 〈Ai, Bi |Ci〉 ∈ J , withXi=Ai∪Bi∪Ci,
i=1, 2. Then, θ1 is g-included in θ2, denoted as θ1 v θ2, if the following conditions hold:

• C2 ⊆ C1 ⊆ X2; and,

• [A1 ⊆ A2 and B1 ⊆ B2] or [B1 ⊆ A2 and A1 ⊆ B2].

A triplet θ ∈J is g-maximal in J if it is not g-included in any triplet τ ∈ J with τ 6= θ, θT.

The conditions for g-inclusion capture all possible ways in which the triplet θ1 may be derived from
θ2 by means of the derivation rules G1–G3. We note that, if a triplet θ and its symmetric transpose
θT both are an element of a triplet set J , then g-maximality of θ in J implies g-maximality of θT in
J , and vice versa. In the sequel, a set of g-maximal triplets which includes at most one of each pair
of symmetric transposes, will be termed a non-redundant triplet set.

For application of the contraction rule G4, Studený (1998) formulated a dedicated operator
which in essence constructs from two triplets θ1, θ2, two triplets θ′1, θ

′
2 with θ′1 v θ1 and θ′2 v θ2,

to which G4 can be applied to yield a possibly new maximal triplet. This gc-operator is as follows.

Definition 3 Let V be as above. For all triplets θi = 〈Ai, Bi |Ci〉 ∈ V (3) with Xi = Ai ∪ Bi ∪
Ci, i = 1, 2, such that

• A1 ∩A2 6= ∅;

• C1 ⊆ X2 and C2 ⊆ X1; and

• (B2 \ C1) ∪ (B1 ∩X2) 6= ∅,

the gc-operator is defined through:

gc(θ1, θ2) = 〈A1 ∩A2, (B2 \ C1) ∪ (B1 ∩X2) | C1 ∪ (A1 ∩ C2)〉

For all triplet pairs θ1, θ2 for which the above conditions do not all hold, gc(θ1, θ2) is undefined.

Usually, when a triplet pair θ1, θ2 is selected for application of the gc-operator, not just gc(θ1, θ2)
but also gc(θT1 , θ2), gc(θ1, θ

T
2), gc(θT1 , θ

T
2) are established; in the sequel, we use GC (θ1, θ2) to

denote the set of all valid triplets resulting from this fourfold application of the operator. We note
that for any triplet pair θ1, θ2, the set GC (θ1, θ2)∪GC (θ2, θ1) may include up to eight valid triplets.

For representing a semi-graphoid independence relation, it suffices to find a tailored subset of
triplets, called a basis, that captures, jointly with the derivation rules, the same information as the
entire relation itself. Studený (1998) was the first to design an algorithm for generating, from a

489

VAN DER GAAG, BAIOLETTI AND BOLT

starting set of triplets, a tailored basis from which the implication problem allowed an efficient
solution. This basis was composed of maximal triplets, constructed iteratively from a given starting
set by applying the gc-operator and subsequently removing all g-included triplets. The algorithm
was later enhanced, first by Baioletti et al. (2009a) and then by Lopatatzidis and van der Gaag
(2017), to the state-of-the-art algorithm for closure computation.

3. A Lattice Representation of Triplet Sets

We introduce a lattice representation for arbitrary sets of triplets, and state some of its properties.

3.1 Partitioning a triplet set

We consider the power set of the set of variables V , and its representation in a lattice L. As usual,
each element of the lattice represents a subset of V and its links capture the ⊆-relation between
the sets; the element ∅ constitutes the meet of the lattice, and its join is the full set V . The lattice
element representing the set W ⊆ V will be denoted by L(W). We will further use L([W ;X]),
with W ⊆ X ⊆ V , to denote the sublattice of L with W for its meet and X for its join. We now
take this lattice L to represent a set J of triplets over V , by looking upon its elements as separating
sets. More specifically, a lattice element L(C) represents the subset of all triplets θ = 〈A,B |C 〉
from J having the same separating set C. Since the separating set of a triplet cannot include more
than n − 2 elements, the semantics of the lattice does not allow any triplets at its two upper levels.
In the sequel, we will use the term lattice therefore, to refer to a meet lattice with n− 1 levels.

Through the lattice representation, an arbitrary triplet set J is partitioned into disjoint subsets
associated with the elements of the lattice L. The following lemma provides an upper bound on the
cardinality of the triplet set represented by a single lattice element.

Lemma 4 Let L be the lattice for the variable set V as described above. Then, for each subset
C ⊆ V with |C | = n − m, n ≥ m ≥ 2, the lattice element L(C) represents a set of at most
3m − 2m+1 + 1 different triplets.

Proof The lattice element L(C) represents only triplets of the form θj = 〈Aj , Bj |C〉 with at least
2 and at most m variables in Aj ∪Bj jointly. For any fixed selection of i ≥ 2 variables from among
the m variables in V \C, there exist S(i, 2) = 2i−1− 1 partitions into two subsets, with S(i, 2) the
associated Stirling partition number. Each of these partitions defines an unordered pair of variable
sets, and therefore has associated two symmetric triplets in which the two sets are ordered. As there
are
(
m
i

)
ways to choose exactly i variables from among a set ofm, there are at most 2·

(
m
i

)
·(2i−1−1)

triplets θj with |Aj ∪ Bj | = i. By summing over all possible values i = 2, . . . ,m, the number of
different triplets represented by the lattice element L(C) is found to be at most

2 ·
m∑
i=2

(
m

i

)
· (2i−1 − 1) = 3m − 2m+1 + 1

as stated in the lemma.

In the proof above, we used the Stirling partition number to indicate the number of possible parti-
tions of a fixed selection of i variables into two non-empty subsets, where each such partition gives
rise to two symmetric triplets. The number stated in the lemma thereby is an upper bound on the

490

A LATTICE REPRESENTATION OF INDEPENDENCE RELATIONS

overall number of triplets that can be represented by a lattice element. In fact, this upper bound
can be attained only if all corresponding symmetric and g-included triplets are also included in
the representation. When manipulating independence relations however, typically a non-redundant
triplet set is maintained, without any g-included or symmetric triplets, as such triplets do not carry
any additional information. The number of triplets of the largest possible non-redundant triplet set
represented by a lattice element is considerably smaller than the number stated above. We will
presently conjecture an upper bound on the cardinality of this largest possible set. To support our
conjecture, we present two lemmas, in which we will consider the sets J i

C , for a lattice element
L(C), including all possible triplets with exactly i variables in their first two arguments jointly, yet
without symmetric transposes; we note that such a set includes

(
m
i

)
· (2i−1 − 1) triplets. Our first

lemma now states that, for any fixed number i, the set J i
C is a non-redundant triplet set.

Lemma 5 Let V be as before and let C ⊆ V with |C| = n−m, n ≥ m ≥ 2. Let J i
C ,i = 2, . . . ,m,

be as described above. Then, for all i = 2, . . . ,m, J i
C is a non-redundant triplet set.

Proof For any ordered pair of different triplets θ1, θ2 chosen from the set J i
C for some i, we have

to show that θ1 6v θ2. Since by the construction of J i
C we have that |A1 ∪ B1| = |A2 ∪ B2|, we

find for all θ1, θ2 with |A1| 6= |A2| that the conditions A1 ⊆ A2 and B1 ⊆ B2 cannot both hold;
for all θ1, θ2 with |A1| = |A2| and, hence, |B1| = |B2|, moreover, we find that if A1 = A2 then
B1 6= B2, and vice versa, from which we equally have that the conditions A1 ⊆ A2 and B1 ⊆ B2

cannot both hold. As similar observations hold with θT1 , we thus find that θ1 6v θ2 for all ordered
pairs θ1, θ2 ∈ J i

C . We conclude that J i
C is a non-redundant triplet set.

From Lemma 5 we have that each set J i
C , i = 2, . . . ,m, is a non-redundant triplet set. The following

lemma now indicates the number k which maximises cardinality among these sets J i
C .

Lemma 6 Let V be as before and let C ⊆ V with |C| = n−m, n ≥ m > 3. Let J i
C , i = 2, . . . ,m,

be as above. Then, for k =
⌊
2
3m+ 2

3

⌋
, we have that |Jk

C | ≥ |J i
C | for all i = 2, . . . ,m.

Proof For the cardinalities of any two consecutive triplet sets J i
C and J i+1

C , we have that

|J i+1
C | =

(
m− i
i+ 1

· 2i − 1

2i−1 − 1

)
· |J i

C |

that is, the two sets differ in size by the factor fm(i) =
(
m−i
i+1 ·

2i−1
2i−1−1

)
, i = 2, . . . ,m − 1. For

any number of variables m > 3, the function fm(i) decreases monotonically in i. To gain further
insight in fm(i), we observe that

m− i
i+ 1

· 2i − 1

2i−1 − 1
> 2 · m− i

i+ 1

for i = 2, . . . ,m − 1. As the term 2 · m−ii+1 attains the value 1 at im = 2
3m −

1
3 , we conclude, by

its property of monotonic decrease, that the function fm(i) attains the value 1 at some real number
ι̂m > im. By some algebraic manipulation, we further find that

im < ι̂m < im +
1

3
·
(

m− im
2im−1 − 1

)
< im + 1

491

VAN DER GAAG, BAIOLETTI AND BOLT

for all m > 3. The smallest integer k larger than ι̂m now maximises cardinality among the sets J i
C .

To establish k, we distinguish between three forms of the number m. For an m of the form m = 3x
with x ≥ 2 an integer, we find, with dime = bim + 1c = 2

3m, that fm(bim + 1c) < 1; for an m of
the form m = 3x+ 1 with x ≥ 1 an integer, we equally find, with dime = bim + 1c = 2

3m+ 1
3 , that

fm(bim + 1c) < 1. For these two forms, we thus have that dime = bim + 1c is the smallest integer
larger than ι̂m. For an m of the form m = 3x+ 2 with x ≥ 1 an integer, we find that im + 1 itself
is an integer and, hence, that im + 1 = bim + 1c is the smallest integer larger than ι̂m. We conclude
that k = bim + 1c =

⌊
2
3m+ 2

3

⌋
maximises cardinality among the sets J i

C for i = 2, . . . ,m.

Lemmas 5 and 6 jointly show that the largest possible non-redundant triplet set among the sets
J i
C is the set Jk

C with k =
⌊
2
3m+ 2

3

⌋
. Now suppose that there exists a non-redundant triplet set

of larger cardinality than this set Jk
C , that can be represented by the lattice element L(C). It is

readily shown that each triplet from the set Jk+1
C ∪ . . .∪ Jm

C g-includes at least one triplet from Jk
C ;

similarly, each triplet from the set J2
C∪ . . .∪J

k−1
C is g-included in at least one triplet from Jk

C . From
these observations, we conclude that we cannot construct such a larger triplet set by simply adding
triplets to Jk

C . Although this conclusion does not guarantee that no larger set exists, we cautiously
conjecture that it is not possible to construct a non-redundant triplet set of larger cardinality than
|Jk

C | for representation at the lattice element L(C) and, hence, that
(
m
k

)
· (2k−1− 1) is a tight upper

bound on the size of any non-redundant triplet set represented at this element.

3.2 Dynamically maintaining the triplet set representation

For deriving new triplets from a given triplet set upon closure computation, the gc-operator is ap-
plied to pairs of triplets from this set. If application of the operator to a triplet pair θ1, θ2 yields a
valid triplet, the result θ = gc(θ1, θ2) is included in the overall triplet set and, hence, is inserted in
the set’s representation. The lattice element at which θ is inserted, is determined to a large extent by
the elements from which θ1, θ2 were taken. We distinguish between two situations:

• We consider two lattice elements L(C1),L(C2) with C1 ⊆ C2:

– if valid, θ = gc(θ1, θ2), with θ1 ∈ L(C1), θ2 ∈ L(C2), is inserted in a lattice element
in the sublattice L([C1;C2]);

– if valid, θ = gc(τ1, τ2), with τ1 ∈ L(C2), τ2 ∈ L(C1), is inserted in L(C2).

The two cases are illustrated in Figure 1(a). In the case where θ1, θ2 are both taken from the
same lattice element, then, if valid, the result gc(θ1, θ2) is inserted in this element.

• We consider two lattice elements L(C1), L(C2) with C1 \ C2 6= ∅, C2 \ C1 6= ∅:

– if valid, θ = gc(θ1, θ2), with θ1 ∈ L(C1), θ2 ∈ L(C2), is inserted in an element in the
sublattice L([C1;C1 ∪ C2]).

– if valid, θ = gc(τ1, τ2), with τ1 ∈ L(C2), τ2 ∈ L(C1), is inserted in L([C2;C1 ∪ C2]).

These two cases are illustrated in Figure 1(b).

The dynamics of the triplet-set representation occasioned by the gc-operator, reveal that newly
derived triplets cannot be inserted arbitrarily high (low) in the lattice; in fact, the level at which a
new triplet is inserted is indirectly constrained by the highest (lowest) level of non-empty elements.

492

A LATTICE REPRESENTATION OF INDEPENDENCE RELATIONS

τ1

C2

C1

τ2

θ2

θ1 C1

C1 C2

θ1

C2
θ2

τ1τ2

(a) (b)

Figure 1: The dynamics of inserting a valid result from applying the gc-operator, to a pair of triplets
taken from elements on a direct path from the meet to the join of the lattice (a), and to a
pair of triplets from lattice elements for which no such path exists (b), respectively.

4. Computational Advantages for Closure Computation

The lattice representation for sets of triplets introduced above, brings computational advantages for
various problems on independence relations. In this section, we discuss some of these advantages
for closure computation of a semi-graphoid independence relation.

4.1 Selecting triplets for application of the GC -operator

At the core of the state-of-the-art algorithm for closure computation for semi-graphoid indepen-
dence relations, lies application of the GC -operator to all suitable pairs of triplets in the triplet set
at hand. Given some triplet θ, selecting appropriately paired triplets θ′ in essence involves checking
all other triplets in this set. When the set is maintained as a simple list therefore, selecting all suit-
able pairs takes quadratic time in the number of triplets involved. Experimental results have shown
that, particularly in intermediate iterations of the algorithm, the latter number can be several orders
of magnitude larger than the size of the final basis (see for example (Baioletti et al., 2009b)).

We now address selecting suitable pairs of triplets for application of the GC -operator in the
lattice representation of a triplet set.

Lemma 7 Let L be the lattice for the variable set V as before. Let J ⊆ V (3) be a set of triplets
partitioned over L, and let θ = 〈A,B |C〉 ∈ J with X = A ∪B ∪C. Then, GC (θ, θi) = ∅ for all
triplets θi ∈ L(Ci) with Ci \X 6= ∅.

Proof The property stated in the lemma follows immediately from the condition Ci ⊆ X for appli-
cation of the gc-operator to yield a valid triplet.

From Lemma 7 we have, given a triplet θ, that searching for appropriately paired triplets for ap-
plication of the GC -operator can be restricted to the sublattice L([∅;X]). The following lemma
shows that the search in this sublattice can be even further restricted.

Lemma 8 Let L, V and J be as above, and let θ = 〈A,B |C〉 ∈ J . Then,

• for all triplets θi ∈ L(Ci) with A ⊆ Ci, gc(θ, θi) and gc(θ, θTi) are undefined;

• for all triplets θi ∈ L(Ci) with B ⊆ Ci, gc(θT , θi) and gc(θT , θTi) are undefined;

• for all triplets θi ∈ L(Ci) with A ∪B ⊆ Ci, GC (θ, θi) = ∅.

493

VAN DER GAAG, BAIOLETTI AND BOLT

QR

PQR PRTPRSPQTPQS PST

PQ PTPSPR QS

RQP

θ=<{R},{S}|{T}>

RSTQSTQRTQRS

STRTRSQT

Ø

S T

Figure 2: A lattice over five variables, illustrating the effects of Lemmas 7 and 8 on the selection of
triplets for application of the GC -operator.

Proof The first property stated in the lemma follows from the condition A ∩ Ai 6= ∅ for gc(θ, θi)
to be valid and the observation that A ⊆ Ci and Ai ∩ Ci = ∅ cause this condition to fail. Similar
arguments hold for the other properties stated in the lemma.

We illustrate the effects of the two lemmas above on the selection of appropriately paired triplets by
means of a small example.

Example 1 We consider the variable set {P,Q,R, S, T} and the triplet θ = 〈{R}, {S} | {T}〉.
The lattice associated with the variable set is shown in Figure 2. When looking for triplets θi which
are appropriately paired with θ for application of the GC -operator, we have from Lemma 7 that the
search can be restricted to the sublattice L([∅; {R,S, T}]). The part of the lattice where appropriate
triplets θi cannot reside by this lemma, is greyed out in the figure. From Lemma 8, we now further
have that the lattice elements L(Ci) with {R,S} ⊆ Ci also cannot contain any suitable triplets;
these elements are indicated in dark grey in the figure. Searching for appropriately paired triplets
θi therefore is restricted to just six lattice elements, out of the 26 elements of the lattice at large.
From Lemma 8, we further have that, for the remaining lattice elements L(Ci) with either R ∈ Ci

or S ∈ Ci, two of the four possible applications of the gc-operator cannot yield a valid triplet; the
lattice elements for which this property holds, are shown in light grey. All in all, the search for
appropriately paired triplets θi for θ is effectively restricted to two lattice elements in full and to half
of the applications of the gc-operator for four lattice elements. �

4.2 Checking for g-inclusion

The basic algorithm for closure computation of a semi-graphoid independence relation in essence is
an iterative procedure in which each iteration involves applying the GC -operator to all appropriate
triplet pairs and subsequently removing all g-included triplets. Checking for g-inclusion is a compu-
tationally demanding step of the algorithm. When maintaining a simple list of triplets for example,

494

A LATTICE REPRESENTATION OF INDEPENDENCE RELATIONS

1: while J is changed do
2: J ′ ← J
3: for all θ ∈ J ′ do
4: for all τ ∈ CANDIDATES(θ, J ′) do
5: for all σ ∈ GC (θ, τ) do
6: ADD(J, σ)
7: end for
8: end for
9: end for

10: end while
Algorithm 1: An outline of the LFC algorithm.

the check for g-inclusion takes quadratic time in the number of triplets stored, per iteration. We now
address checking for g-inclusion in the lattice representation of a triplet set.

Lemma 9 Let L be the lattice for the variable set V as before. Let J ⊆ V (3) be a set of triplets
partitioned over L. Then, a triplet θ ∈ L(C) can be g-included only in triplets θ′ ∈ L([∅;C]) and
can only g-include triplets θ′′ ∈ L([C;X]).

Proof The property stated in the lemma follows immediately from Definition 2.

From the lemma we have that, for checking g-inclusion of a triplet θ ∈ L(C), it needs to be
compared only against triplets in the sublattice with L(C) for its join; for checking g-inclusion of
other triplets by θ, it needs to be compared against triplets in the sublattice with L(C) for its meet
and L(X) for its join. Since the notion of g-inclusion is transitive moreover, when maintaining
a non-redundant triplet set, a new triplet can either be g-included in an existing triplet or itself g-
include an existing triplet, but not both. We note that, despite these insights, even with the lattice
representation, the number of triplet comparisons to be performed for checking g-inclusion remains
to be quadratic in the worst case. In practice however, the runtime complexity will be smaller as
each triplet is compared against only a subset of the overall triplet set.

5. Experiments and Results

To investigate the practical advantages of our lattice representation, we conducted various exper-
iments in which we compared two implementations of the state-of-the-art closure algorithm for
semi-graphoid independence relations: an implementation using a straightforward representation of
triplet sets, as described in (Baioletti et al., 2009a), and an implementation using the lattice rep-
resentation. We will refer to these implementations as the FC algorithm and the LFC algorithm,
respectively. Algorithm 1 provides an outline of the LFC algorithm. The procedure CANDIDATES

selects, given a triplet θ, all appropriately paired triplets τ from the current triplet set, for com-
bination with θ through the GC -operator; this procedure extends the analogous procedure of the
FC algorithm by incorporating the results from Section 4.1. After applying the GC -operator to a
selected pair, the procedure ADD updates the lattice representation of the triplet set by inserting the
resulting triplet σ, if valid, as described in Section 4.2, and then removing all g-included triplets.

For our experiments, we implemented an instance generator taking four parameters: the number
of variables n, the number of starting triplets t, and two probabilities p and q with 2p+ q < 1. In a

495

VAN DER GAAG, BAIOLETTI AND BOLT

Table 1: Experimental results for the running times and the numbers of performed g-inclusion
checks of the LFC and FC algorithms respectively, for instances with p = 0.2, q = 0.3.

Instance LFC FC Summary (in %)
n t S1 T̄1 Ḡ1 S2 T̄2 Ḡ2 T̄1/T̄2 Ḡ1/Ḡ2

10 15 100 0.70 2267844.16 100 0.93 12204371.29 75.27 18.58
10 20 100 6.33 59742221.01 100 17.55 273741473.83 36.05 21.82
10 30 100 64.75 647100875.69 95 130.22 1897918808.48 49.72 34.10
10 50 99 237.36 2536240465.56 88 232.14 3356908842.64 102.25 75.55
20 30 99 1.63 2260410.09 98 3.16 49708165.60 51.64 4.55
20 40 95 8.03 36681653.78 91 37.22 629251618.65 21.57 5.83
20 60 38 13.16 60062590.63 35 78.28 1271880674.23 16.81 4.72
30 45 100 0.02 8370.20 100 0.03 248389.35 76.22 3.37
30 60 100 5.43 9882952.02 100 11.67 155335545.76 46.58 6.36
30 90 100 1.32 6097019.38 100 12.77 220879562.48 10.36 2.76
30 150 94 17.74 30758827.24 90 83.71 1338505451.08 21.19 2.30
40 60 100 0.01 2616.00 100 0.02 114748.28 40.36 2.28
40 80 100 0.01 1773.40 100 0.03 130964.09 28.23 1.35
40 120 100 0.03 41345.80 100 0.14 1510101.61 21.85 2.74
40 200 100 0.21 426506.96 100 1.12 14126751.07 18.53 3.02
50 75 100 0.00 98.87 100 0.01 12806.44 8.34 0.77
50 100 100 0.00 279.38 100 0.02 35329.40 9.28 0.79
50 150 100 0.01 705.65 100 0.05 118060.48 11.59 0.60
50 250 100 0.02 4709.39 100 0.16 639703.24 11.29 0.74

triplet θ = 〈A,B |C〉 generated for an instance, each variable Vi occurs in the setAwith probability
p, inB with probability p, and in the separating setC with probability q; with probability 1−2p−q,
it does not appear in θ. We used the two probability parameters to compare the performances of
the two algorithms on both simple and harder instances. The experiments were conducted with
n = 10, 20, 30, 40, 50 variables and sets of t = b1.5nc, 2n, 3n, 5n triplets; for each value of n and
associated value of t, we generated 100 triplet sets. We chose to set p = 0.2 and q = 0.3, to generate
triplets in which the separating set C on average is larger in size than the sets A and B; by doing
so, we feel that the generated triplets more closely match those found in applications. In order to
complete the experiments in a reasonable amount of time, we set a time limit of 1200 seconds: if
for a generated instance a basis was not returned within this time limit, its computation was halted.

Our first set of experiments were performed to gain insight in the extent to which the lattice
representation helps reduce the computational burden of closure computation. To this end, we com-
pared the running times and the numbers of g-inclusion checks performed by the two algorithms.
Our results are summarised in Table 1. The columns S1, T̄1 and Ḡ1 in the table report the number
of instances on which computations were completed within the time limit, the average execution
time in seconds, and the average number of g-inclusion checks performed by the LFC algorithm,
respectively; the columns S2, T̄2, and Ḡ2 report similar statistics for the FC algorithm. The columns
T̄1/T̄2 and Ḡ1/Ḡ2 report the percentage ratios of T̄1 and T̄2, and of Ḡ1 and Ḡ2, respectively.

496

A LATTICE REPRESENTATION OF INDEPENDENCE RELATIONS

Table 2: The dynamics of the lattice during a run of the LFC algorithm, with n = 10, t = 30.

i |J | GC generated H̄ max H |L| min size avg size max size
1 130 192 3.58 6 45 1 2.89 17
2 348 4453 3.36 7 67 1 5.19 59
3 640 45784 3.06 6 72 1 8.89 155
4 855 225462 2.86 6 48 1 17.81 200
5 1088 520074 2.87 6 31 1 35.10 216
6 1199 729152 2.82 6 24 1 49.96 257
7 1148 727846 2.78 4 19 1 60.42 245
8 1172 333787 2.81 4 18 1 65.11 233

Table 1 shows that the LFC algorithm was faster than the FC algorithm with each parameter
combination n, t, except n = 10, t = 50. With this particular parameter combination, the triplets
were often concentrated in a single lattice element, which effectively forestalled the advantages from
the lattice representation. The (small) increase in running time may be attributed to the overhead
of maintenance of the lattice representation and/or to implementational differences of the two algo-
rithms with respect to code optimisation. Averaged over all instances solved by both algorithms,
the LFC algorithm proved 3.3 times faster than the FC algorithm. The associated percentage ratios
range from LFC taking some 8% of the running time of FC (with n = 50, t = 75), to LFC taking
around 76% of FC’s running time (with n = 30,m = 45). We note that, for each value of n, as t
increases, the average running times of both algorithms increase. The running times do not exactly
increase with n, however. All instances with n ≥ 30 were easy to solve for both algorithms, while
the hardest instances were those with n = 10, t = 50 and those with n = 20; the instance with the
parameter combination n = 20, t = 100 was even excluded from the table as both algorithms were
able to solve just a single instance within the time limit. Table 1 further shows that the LFC algo-
rithm performed fewer g-inclusion checks than the FC algorithm with each parameter combination
n, t. Averaged over all instances solved by both algorithms, the LFC algorithm in fact performed
just 26% of the number of g-inclusion checks performed by FC.

A second experiment was conducted to illustrate the dynamics of the lattice during closure
computation for a semi-graphoid independence relation. Table 2 reports some characteristics of the
lattice, from a single run of the LFC algorithm on a representative instance with n = 10, t = 30.
The column indicated by i states the iteration number; |J | reports the size of the (non-redundant)
triplet set J with which the iteration started and GC generated states the number of triplets generated
by the GC -operator during the iteration; the columns H̄ and max H state the average and maximum
height of the non-empty part of the lattice; the four final columns report the number of non-empty
lattice elements and their minimum, average and maximum sizes, respectively. The table shows
that the size of the triplet set J and the number of generated triplets per iteration initially increase
considerably, to more or less decrease towards the end of the computation. The maximum and
average heights of the lattice’s non-empty part tend to somewhat decrease per iteration, while the
number of non-empty lattice elements strongly decreases after an initial increase. The average and
maximum numbers of triplets per lattice element further increase substantially per iteration, with
the maximum number decreasing at the end of the computation. These findings indicate that triplets
tend to become concentrated in the lower part of the lattice as the closure computation progresses.

497

VAN DER GAAG, BAIOLETTI AND BOLT

6. Concluding observations

Despite important advances in the past decades, manipulating independence relations still is com-
putationally challenging, not just for the worst instances. Through a lattice representation of sets
of independence statements, we reduced the running times involved in closure computation in prac-
tice. We showed that our representation supports maintaining a non-redundant set of independence
statements by allowing redundancy checks to be restricted to parts of the lattice and that the rep-
resentation further provides effective selection of statements for application of the main operator
involved. Through experimental results, the computational advantages of using the lattice represen-
tation were demonstrated to be substantial.

Having studied the advantages of our lattice representation for semi-graphoid independence
relations, we are now extending our investigations to other types of independence relation, among
which are the graphoid relations. We are also expanding our experimental studies, focusing on the
relation between the parameters involved and the hardness of instances. Since our study of the
lattice representation uncovered some structural regularities of independence, we plan to further
investigate these regularities from a foundational perspective, with the ultimate goal of arriving at
algorithms for manipulating independence relations with improved properties of scalability.

References

M. Baioletti, G. Busanello, and B. Vantaggi. Conditional independence structure and its closure:
inferential rules and algorithms. International Journal of Approximate Reasoning, 50:1097–1114,
2009a.

M. Baioletti, G. Busanello, and B. Vantaggi. Closure of independencies under graphoid properties:
some experimental results. In International Symposium on Imprecise Probability: Theories and
Applications, pages 11–19, Durham, 2009b.

A. Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical Society
B, 41:1–31, 1979.

S. Lopatatzidis and L. C. van der Gaag. Concise representations and construction algorithms for
semi-graphoid independency models. International Journal of Approximate Reasoning, 80:377–
392, 2017.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

M. Studený. Conditional independence relations have no finite complete characterization. In Infor-
mation Theory, Statistical Decision Functions and Random Processes, pages 377–396, Kluwer,
Dordrecht, 1992.

M. Studený. Semigraphoids and structures of probabilistic conditional independence. Annals of
Mathematics and Artificial Intelligence, 21:71–98, 1997.

M. Studený. Complexity of structural models. In Proceedings of the Joint Session of the 6th Prague
Conference on Asymptotic Statistics and the 13th Prague Conference on Information Theory,
Statistical Decision Functions and Random Processes, pages 521–528, Prague, 1998.

M. Studený. Probabilistic Conditional Independence Structures. Springer Verlag, London, 2005.

498

	Introduction
	Preliminaries
	A Lattice Representation of Triplet Sets
	Partitioning a triplet set
	Dynamically maintaining the triplet set representation

	Computational Advantages for Closure Computation
	Selecting triplets for application of the GC-operator
	Checking for g-inclusion

	Experiments and Results
	Concluding observations

