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Abstract
Despite their popularity, naive Bayesian classifiers are not well suited for real-world applications
involving extreme probability features. As will be demonstrated in this paper, methods used to
forestall the inclusion of zero probability parameters in naive classifiers have quite counterintuitive
effects. An elegant, principled solution for handling extreme probability events is available how-
ever, from coherent conditional probability theory. We will show how this theory can be integrated
in standard naive Bayesian classifiers, and then present a computational framework that retains the
classifiers’ efficiency in the presence of a limited number of extreme probability features.
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1. Introduction

Nowadays a multitude of methods and associated software are available for learning probabilistic
models from data. Among these are methods for constructing Bayesian network classifiers (Fried-
man et al., 1997). These models include a designated variable of interest, called the class variable,
and multiple feature variables, each of which is related directly to this class variable. Especially
naive Bayesian classifiers (Duda and Hart, 1973) have become quite popular, as is evidenced by
their use for a large range of applications, such as spam filtering, remote-sensing classification,
and medical risk prediction. This popularity is readily explained by their ease of construction and
use. Despite their strong underlying assumptions of independence moreover, these naive Bayesian
classifiers tend to outperform more complex models (Domingos and Pazzani, 1997).

Naive Bayesian classifiers are proving less suited for real-world applications in which quite
rare features play an important role, such as the medical diagnosis of serious disease with rare
(pathognomonic) findings. When for such an application the classifier’s parameter probabilities are
learned from data, the estimate obtained for the rare feature at hand will most likely be zero. If the
feature is not a logical impossibility, generally some smoothing method is employed to forestall the
inclusion of zero probability parameters in the model (see for example Flach (2012)); the thereby
established parameter value is dependent of the number of data instances available and, hence, is
more or less arbitrary. If the classifier’s parameter probabilities would be elicited from domain
experts, also a rather arbitrary parameter value would be found for the rare feature, as experts are
known to be quite uncomfortable and, in fact, rather unreliable in assessing very small probabilities.

The small parameter values included in a naive Bayesian classifier to forestall zero probability
parameters, have various unwanted effects. From advances in sensitivity analysis of Bayesian net-
works for example, it is well known that inaccuracies in small parameter probabilities can strongly
influence output probabilities of interest (Chan and Darwiche, 2002). Since the small parameter val-
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ues included in a naive Bayesian classifier as a result of smoothing may easily be incorrect by one
or more orders of magnitude, such inaccuracies can in fact change classification results. Absence of
a rare feature may further have a changing effect on the output when taken into account explicitly,
while the feature’s absence essentially is uninformative and would not be expected to be influential.

Where common practices with developing naive Bayesian classifiers result in the inclusion of
arbitrary small values to forestall zero probability parameters, coherent conditional probability the-
ory, developed by Coletti and Scozzafava (2002) based on the pioneering ideas of de de Finetti
(1972), offers a more principled approach to handling zero probability features in naive Bayesian
classifiers. This theory allows the computation of probabilities conditioned on zero probability
events by building on a representation of conditional probability as a sequence of unconditional
probability distributions where each subsequent distribution zooms in on the zero probabilities from
the previous one while maintaining coherence throughout the sequence.

In this paper, we will show how coherent conditional probability theory can be integrated with
standard naive Bayesian classifiers, to arrive at classifiers that are able to handle zero probability fea-
tures in a principled way. We will demonstrate that these classifiers do not have the unwanted effects
of commonly-used smoothing approaches. We will further illustrate that by exploiting coherence
theory, the resulting classifiers may not always return a point class probability for a case at hand;
in fact, the probabilistic information represented by the classifier may be found to accommodate
multiple probability distributions, thereby causing it to return a probability interval. As straightfor-
ward application of coherence theory is exponential in the number of variables of a classifier, and
hence rapidly becomes computationally infeasible in practice, we will also propose a computational
scheme for naive Bayesian classifiers with extreme probability features which retains the inferential
efficiency of standard naive classifiers in the presence of a limited number of such features.

The paper is organised as follows. In Section 2, we provide some preliminaries on naive
Bayesian classifiers and on coherent conditional probability theory. Section 3 provides some ex-
amples to demonstrate the unwanted effects of commonly-used approaches to handling zero prob-
ability features in naive Bayesian classifiers. In Section 4 the use of coherence theory within naive
Bayesian classifiers in general is detailed, and in Section 5 our computational scheme is proposed.
The paper ends with our concluding observations and plans for further research.

2. Preliminaries

We provide some preliminaries on naive Bayesian classifiers and on coherent conditional probability
theory, and thereby introduce our notational conventions.

2.1 Naive Bayesian classifiers

Naive Bayesian classifiers are Bayesian networks that are tailored to solving problems where cases
described by features are to be assigned one of several distinct classes (Duda and Hart, 1973; Fried-
man et al., 1997). To this end, a naive Bayesian classifier discerns a class variable C and a set F
of feature variables Fi, i = 1, . . . , n, n ≥ 1. For ease of exposition, we assume all variables to be
binary. The value Fi = true will be denoted by fi, while f̄i indicates Fi = false; we will use f∗i
to indicate either value. A value combination f for (a subset of) F will be called an (input) case;
the case is complete if it includes a value for each variable in F. A case with an associated class is
called an instance. A naive Bayesian classifier takes the topology of a directed tree, with the class
variable C for its unique root and with each feature variable Fi having C for its only parent. This
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tree captures dependence of the class variable on each feature variable separately, and models the
independence Fi⊥⊥Fj | C for any two feature variables Fi, Fj , i 6= j, given the class variable.

To supplement its independence structure, a naive Bayesian classifier specifies a probability dis-
tribution Pr(C) over its class variable and conditional distributions Pr(Fi | C) over the separate
feature variables Fi; the specified probabilities are the classifier’s parameters. Through its inde-
pendence structure and associated parameter distributions, a naive Bayesian classifier represents a
unique probability distribution Pr(F, C), which factorises according to

Pr(F, C) = Pr(C) ·
n∏

i=1

Pr(Fi | C)

and from which essentially any probability over the variables involved can be computed. Classifiers
are mostly used however, for establishing distributions Pr(C | f) over the class variable, given
input cases f . Associated with the classifier is a decision rule for assigning a class to an input
case (Domingos and Pazzani, 1997; Friedman et al., 1997), based on the computed distribution and
the application’s utility considerations. A commonly used rule for this purpose takes a probability
threshold δ, and assigns the class c to a case f if Pr(c | f) ≥ δ; otherwise the class c̄ is returned.

Naive Bayesian classifiers are most often learned from data. Since their independence structure
is fixed, their construction amounts to estimating the required parameter probabilities. The estimates
are typically obtained as proportions over (sub-)sets of instances from the available dataset. Datasets
being finite, estimates equal to zero are likely to be found for rare features. When such a feature
is known not to be a logical impossibility, Laplace correction or another smoothing method is
employed to forestall the inclusion of a zero probability parameter in the classifier at hand (Flach,
2012; Witten et al., 2005); the value thus included is dependent of the size of the available dataset.

2.2 Zero probabilities in a coherent setting

Upon reviewing coherent conditional probability theory, we re-phrase its basic concepts in terms
of our context of random variables and probability distributions over these variables; for further
introduction, we refer to Coletti and Scozzafava (2002).

We consider the Boolean algebra V spanned by a set V of (binary) variables; in this algebra,
universal truth is indicated by >, and logical impossibility by ⊥; we use V0 = V \ {⊥} to denote
the algebra without the impossibility. The value combinations of the variables V spanning V , are
termed the algebra’s atoms. A probability distribution Pr(·) over V now is a function on the algebra
V that is uniquely defined by the probabilities of its atoms; these probabilities are termed the con-
stituent probabilities of the distribution Pr (van der Gaag, 1990). In our context of naive Bayesian
classifiers, the primary Boolean sentences of interest are disjunctions of atoms, that is, value com-
binations for (sub)sets of variables; the probability of such a sentence is expressed as the sum of the
constituent probabilities of its composing atoms.

Following de de Finetti (1972), we assume conditional probability over V to be a function
Pr(· | ·) on V × V0 and look upon the conditioning part as a hypothesis which is allowed to have
zero probability. The basic idea of coherent conditional probability theory now is to represent
conditional probability as a sequence of unconditional probability distributions where each subse-
quent distribution zooms in on the zero probabilities from the previous one, maintaining coherence
throughout the sequence. Any conditional probability Pr(· | ·) over V thus has associated a unique,
linearly ordered class P = [P0, . . . , Pk] of unconditional probability distributions over V, called
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its complete agreeing class; the index i of a distribution Pi in P will be termed the level of the
representation of Pr(· | ·). For a given conditional probability Pr(· | ·), its agreeing class is obtained
by setting

• P0(·) = Pr(· |H0
0 ), with the Boolean sentence H0

0 = >;

• for each successive level i, Pi(·) = Pr(· |H i
0), with H i

0 =
∨
H∈Hi−1

0 ,Pi−1(H)=0H , that is, with

H i
0 being the disjunction of all Boolean sentences of zero probability at the previous level;

with the iterative construction halting when Hk+1
0 = ⊥. For each Boolean sentence H ∈ V0, there

now is a minimum index i ∈ {0, . . . , k} such that Pi(H) > 0; the associated level is called the zero
layer of H with repect to P . For every conditional probability Pr(E |H) with E ∈ V, H ∈ V0, and
i the index of the zero layer of H , we have that

Pr(E |H) =
Pi(E,H)

Pi(H)

Equivalent with the representation of conditional probability by a complete agreeing class of
distributions P is the representation by a sequence S of compatible systems of linear equations
(Coletti and Scozzafava, 2002). The first system S0 of the sequence has all constituent probabilities
xj of the joint distribution Pr(·) over the variables V for its unknowns; these constituents are now
denoted as x0j , with the superscript indicating the system’s level in the sequence. Each subsequent
system Si in the sequence includes for its unknowns just the constituent probabilities xij which have
xi−1j = 0 at the previous level i − 1. The constituent probabilities xij are called the supporting
constituents for level i; the set of all constituent probabilities at level i will be denoted as Xi. The
system of equations Si for level i in the sequence now is constructed as follows:

Si =



∑
xi
j∈Xi

aij · xij = p ·
∑

xi
j∈Xi

bij · xij , for all available p = Pr(E | H)

∑
xi
j∈Xi

xij = 1

xij ≥ 0, for all xij ∈ Xi

where
∑

xi
j∈Xi aij · xij expresses the joint probability Pr(E,H) in its constituent probabilities by

means of appropriate indicator coefficients aij , and
∑

xi
j∈Xi bij · xij similarly encodes Pr(H); the

numerical value p of the probability Pr(E | H) is taken from the available probabilistic information.
The representation of conditional probability by a sequence of systems of equations is the op-

erational tool used in coherence theory for checking if probabilistic information, specified either on
the whole space V × V0 or on a proper subspace, is coherent and for extending the information to
yet unconsidered probabilities of interest.

3. Motivating Examples

Despite their popularity, naive Bayesian classifiers are ill suited for real-world problems involv-
ing rare features. By means of two examples, we show that common methods for handling zero-
probability features in such classifiers have unwanted effects. The examples further illustrate the
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advantages of modelling these features in the principled setting of coherence theory.

Example 1. We consider a classification problem in which a rare feature is of importance; this
feature occurs with (almost) zero probability, yet if it occurs the class for the case at hand is known
to certainty. We model the problem by a standard naive Bayesian classifier, with the class variable
A and the two feature variables B,C; the value b of B represents the rare feature and is assumed
to occur only with a. For its parameters, the classifier includes the probability Pr(a) = 0.8 for the
class variable A, and the conditional probabilities Pr(c | a) = 0.4,Pr(c | ā) = 0.2 for the variable
C. It further includes the zero probability Pr(b | ā) = 0 to express the logical impossibility of b
given ā. To capture the information that b is rare yet not impossible to occur, the small probability
Pr(b | a) = 0.001 is assigned to the event of b given a. The decision rule associated with the
classifier uses the probability threshold δ = 0.75 for assigning the class a.

From the constructed classifier, the conditional probability of a given any feature combination
involving b is found to be equal to one, as a consequence of the logical impossibility of b given
ā. Now, for the case b̄c̄ not involving the impossibility, the probability Pr(a | b̄c̄) = 0.7498 is
computed. With the classifier’s decision rule therefore, the class ā is assigned to the case. For the
(incomplete) case with just the feature c̄, the probability Pr(a | c̄) = 0.7500 would be found and the
class a would be returned. Explicitly adding the feature b̄ to the case would thus change the output,
even though the feature in essence is uninformative. We note that this counterintuitive effect would
occur, also if we reduced the parameter Pr(b | a) by several orders of magnitude in size.

We reconsider the classification problem in the setting of coherent conditional probability, and
model b given a as a zero probability event. For this purpose, the parameter Pr(b | a) = 0 is
included in the classifier; all other parameter probabilities are as above. We note that in view of
the semantics of standard naive Bayesian classifiers, the information Pr(b | a) = Pr(b | ā) would
indicate independence of B of the class variable A. In the setting of coherence theory however,
the feature variable B is not independent of the variable A as, informally speaking, the two zeroes
involved have different strengths. For computing probabilities of interest from the thus constructed
classifier, its parameters are first expressed in terms of the following constituent probabilities:

x01 = Pr(abc) x03 = Pr(abc̄) x05 = Pr(ab̄c̄)
x02 = Pr(ab̄c) x04 = Pr(āb̄c) x06 = Pr(āb̄c̄)

As the atoms ābc and ābc̄ describe logical impossibilities, they are not considered explicitly. The
parameter information from the classifier now gives rise to the system S0 of equations for level zero
of the sequence of compatible systems:

S0 =



x01 + x02 + x03 + x05 = 0.8 · (x01 + x02 + x03 + x04 + x05 + x06) [Pr(a | >) = 0.8]

x01 + x03 = 0 · (x01 + x02 + x03 + x05) [Pr(b | a) = 0]

x01 + x02 = 0.4 · (x01 + x02 + x03 + x05) [Pr(c | a) = 0.4]

x04 = 0.2 · (x04 + x06) [Pr(c | ā) = 0.2]

x01 + x02 + x03 + x04 + x05 + x06 = 1 [Pr(>) = 1]

x0i ≥ 0, i = 1, . . . , 6
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This system has the following unique solution:

x01 = 0 x03 = 0 x05 = 0.48
x02 = 0.32 x04 = 0.04 x06 = 0.16

We find that the conditional probability Pr(a | b̄c̄) can be established at this level and compute it
to be Pr(a | b̄c̄) = x05/(x

0
5 + x06) = 0.7500; we note that at this level we would also establish that

Pr(a | c̄) = 0.7500. The case b̄c̄ thus is assigned the class a, as is the incomplete case c̄. We con-
clude that in the setting of coherence theory, conditioning on the uninformative value b̄ no longer
has the counterintuitive effect seen with the standard naive Bayesian classifier. �

Where the above example illustrates the counterintuitive effect of more or less arbitrary small param-
eter values in a standard naive classifier upon taking the complement of a zero-probability feature
into consideration, our next example demonstrates that such arbitrary small values can further have
quite strong effects on an established output probability.

Example 2. We consider the same problem as in Example 1, yet now assume that the conditional
events of b given a and of b given ā both are rare yet not logically impossible. To express the
information that b is highly unlikely to occur, both in the presence of A and in its absence, in
a standard naive Bayesian classifier very small values are assigned to the probabilities involved.
Included in our classifier now are Pr(b |a) = 0.001, Pr(b | ā) = 0.0001, expressing that, although
in both cases quite rare, b is an order of magnitude more likely to be found with a than with ā. For
the variables A, C, the classifier includes the same parameter probabilities as before. The decision
rule associated with the classifier uses the probability threshold δ = 0.90 for assigning the class a.

From the constructed classifier, the probability of a given the feature combination bc̄ is com-
puted to be Pr(a | bc̄) = 0.9677; with the classifier’s decision rule, the class a is assigned to the
case. Now, if the probabilities of the two events of b given a and b given ā differed, not by a factor
ten, but by a factor two instead, that is, if Pr(b | ā) = 0.0005 instead of Pr(b | ā) = 0.0001,
then the probability of a given bc̄ would have been found to be Pr(a | bc̄) = 0.8571 and the class
ā would be assigned to the case. Changes in the small parameter values included in a classifier
to forestall zero probability parameters, can thus have considerable impact on the returned output.
If the difference between the probabilities of b given a and b given ā could not have been quanti-
fied and equally small parameter values would have been included for both events, in essence an
independency of A and B would have been introduced, in which case we would have found that
Pr(a | bc̄) = Pr(a | b̄c̄) = 0.75, regardless of the value included for Pr(b | a) = Pr(b | ā).

We now reconsider the classification problem in the setting of coherence theory, and model b
given a and b given ā as zero probability events by setting Pr(b | a) = Pr(b | ā) = 0; all other
parameters of our classifier are as above. For computing probabilities of interest, the classifier’s
parameter information is first expressed in terms of the following constituent probabilities:

x01 = Pr(abc) x03 = Pr(ab̄c) x05 = Pr(āb̄c) x07 = Pr(ab̄c̄)
x02 = Pr(ābc) x04 = Pr(abc̄) x06 = Pr(ābc̄) x08 = Pr(āb̄c̄)
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The parameter information now gives rise to the system S0 for level zero of the sequence of systems:

S0 =



x01 + x04 = 0 · (x01 + x03 + x04 + x07) [Pr(b | a) = 0]

x02 + x06 = 0 · (x02 + x05 + x06 + x08) [Pr(b | ā) = 0]

x01 + x03 + x04 + x07 = 0.8 · (x01 + x02 + x03 + x04 + x05 + x06 + x07 + x08) [Pr(a | >) = 0.8]

x01 + x03 = 0.4 · (x01 + x03 + x04 + x07) [Pr(c | a) = 0.4]

x02 + x05 = 0.2 · (x02 + x05 + x06 + x08) [Pr(c | ā) = 0.2]

x01 + x02 + x03 + x04 + x05 + x06 + x07 + x08 = 1 [Pr(>) = 1]

x0i ≥ 0, i = 1, . . . , 8

and has the following unique solution:

x01 = 0 x03 = 0.32 x05 = 0.04 x07 = 0.48
x02 = 0 x04 = 0 x06 = 0 x08 = 0.16

Since from the computed solution the probability of interest Pr(a | bc̄) = x04/(x
0
4 + x06) cannot

be established, level one of the sequence of systems is considered. This level pertains to the zero
constituent probabilities x0i from level zero, which will be renamed, for all i involved, to x1i to
indicate the new level. As will be elaborated upon in Section 4, at level one we have to also include
the information that the feature variables B and C are independent given the class variable A; we
note that this information was entailed before by the equations of the system S0, and therefore did
not need to be considered explicitly at level zero. The following system of equations S1 now results:

S1 =


x11 = 0.4 · (x11 + x14) [Pr(c | ab) = 0.4]

x12 = 0.2 · (x12 + x16) [Pr(c | āb) = 0.2]

x11 + x12 + x14 + x16 = 1 [Pr(>) = 1]

x1i ≥ 0, i = 1, 2, 4, 6

in which we encoded the standard notion of conditional independence used in naive Bayesian clas-
sifiers. The system S1 has a convex polytope of solutions, with the following extreme points:

(x11 = x14 = 0, x12 = 0.2, x16 = 0.8) (x12 = x16 = 0, x11 = 0.4, x14 = 0.6)

From this polytope, we find for the probability of interest that Pr(a | bc̄) = x14/(x
1
4 + x16) ∈ [0, 1].

The vacuousness of this conditional probability conveys the information that, without any further
knowledge of the comparative relation between the two zero probabilities Pr(b | a), Pr(b | ā),
nothing more concrete can be concluded about the probability of interest. �

4. Exploiting Coherent Conditional Probability Theory in Naive Bayesian Classifiers

Having illustrated the advantages of modelling extreme probability features through coherent con-
ditional probability theory, we now extend beyond the simple examples with two feature variables
only and describe in Section 4.1 how the theory is applied in naive Bayesian classifiers in general.
In Section 4.2 we will illustrate how the framework of coherent conditional probability allows the
incorporation of additional information about the extreme probabilities in a classifier.
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4.1 Expressing classifier information in linear equations

The first step of framing a naive Bayesian classifier in the context of coherent conditional proba-
bility is to express the classifier’s embedded probabilistic information in terms of the constituent
probabilities over the variables involved. This information is composed of:

• the parameter distribution Pr(C) over the class variable C, and the parameter distributions
Pr(Fi |C) over the feature variables Fi, i = 1, . . . , n, given the class variable;

• the conditional independence Fi⊥⊥Fj | C for all pairs of feature variables Fi, Fj , i, j =
1, . . . , n, i 6= j, given the class variable C.

For the system of equations S0 at level zero of the sequence of compatible systems, the class prob-
abilities Pr(c∗) of the classifier are expressed in two linear equations of the following form:

2n+1∑
i=1

a0i · x0i = p∗ · (
2n+1∑
i=1

b0i · x0i )

where the term
∑2n+1

i=1 a0i · x0i expresses the parameter Pr(c∗) in its constituent probabilities x0i by
means of appropriate indicator coefficients a0i ∈ {0, 1}, i = 1, . . . , 2n+1, and the term

∑2n+1

i=1 b0i ·x0i
encodes the probability of the universal truth by means of the indicator coefficients b0i ∈ {0, 1},
i = 1, . . . , 2n+1; we note that the coefficients b0i are equal to 1, with the exception of the coefficients
pertaining to atoms involving a logical impossibility. The numerical values p∗ = Pr(c∗) for the
two classes c and c̄ are taken from the classifier’s specification. The four conditional probabilities
Pr(f∗j | c∗) for a feature variable Fj are encoded similarly, yielding linear equations of the form:

2n+1∑
i=1

a0i · x0i = p∗∗ · (
2n+1∑
i=1

b0i · x0i )

where
∑2n+1

i=1 a0i · x0i now expresses the joint probability Pr(f∗j , c
∗) in its constituent probabilities

and
∑2n+1

i=1 b0i ·x0i encodes Pr(c∗); the numerical values p∗∗ of the four probabilities Pr(f∗j | c∗) are
again taken from the classifier’s specification.

As for any Bayesian network in general, the parameter distributions per variable of a naive
Bayesian classifier are algebraically independent, in the sense that any such distribution can be nu-
merically specified independently of all other distributions. This property guarantees that the linear
equations expressing a classifier’s parameter probabilities are jointly coherent and, hence, allow at
least one solution. In general, these equations allow multiple solutions for the constituent proba-
bilities involved, since for a unique solution to be guaranteed, information about the conditional
probabilities Pr(Fi, Fj | C) for any two feature variables Fi, Fj , i 6= j, for example, is lacking. We
recall however, that in the simple examples of the previous section, the systems S0 at level zero all
had unique solutions, even though they were built from just parameter probabilities. This unique-
ness originated from the only pair of feature variables involving zero probabilities, which effectively
served to numerically enforce standard conditional independence of these two variables given C.
The independences expressed by the tree structure of the classifiers therefore were entailed by the
linear equations derived from the parameter probabilities and the encoded information thus exactly
matched the probability distributions of the classifiers under study.
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The independence information of a naive Bayesian classifier in general takes the form of a set
of conditional independences Fi⊥⊥Fj |C for all pairs of feature variables Fi, Fj , i, j = 1, . . . , n,
i 6= j, given the class variable C. This information is expressed in terms of constituent probabilities
in equations of the following form for the system S0 at level zero of the sequence of systems:

2n+1∑
i=1

a 0
i · x0i = p∗∗ · (

2n+1∑
i=1

b0i · x0i )

with p∗∗ = Pr(f∗j | c∗,h), for each feature variable Fj and all value combinations h for all subsets

of feature variables H ⊆ F \ {Fj}, j = 1, . . . , n; in the above equation, the term
∑2n+1

i=1 a 0
i · x0i

expresses the probability Pr(f∗j , c
∗,h) in its constituents by means of appropriate indicator coeffi-

cients a 0
i , and

∑2n+1

i=1 b0i · x0i similarly encodes the probability Pr(c∗,h). For each possible value
combination h, the numerical values p∗∗ for the four probabilities Pr(f∗j |c∗,h) are taken as the nu-
merical values of Pr(f∗j |c∗) from the classifier. We note that the thus resulting system of equations
explicitly expresses all independences represented by the tree structure of the classifier, regardless
of whether they are already entailed by the parameter information and of whether they are actu-
ally needed for establishing a probability of interest; upon practical application, therefore, not all
constructed equations may need to be included in all levels of the sequence of compatible systems.
We further note that, while conditional independence in coherence theory not necessarily satisfies
the property of symmetry (Vantaggi, 2001), our explicit encoding of the tree structure of a naive
Bayesian classifier enforces the standard symmetric notion of conditional independence to hold.

With the encoding of the probabilistic information of a naive Bayesian classifier as described
above, the resulting system of equations S0 at level zero of the sequence of compatible systems S
is guaranteed to be coherent and to have a unique solution. The latter property derives from the
observation that the unknowns x0i are the constituent probabilities of the distribution defined by the
classifier with its independence structure. Since any system Si at a deeper level i > 0 is constructed
to be compatible with the system at level i− 1, coherence is guaranteed throughout S .

4.2 Including additional information about extreme probabilities

Upon computing conditional probabilities over the class variable of a naive Bayesian classifier for
cases involving zero probability features, the solution space of agreeing distributions may be too
large to warrant an informative decision. The setting of coherence theory now readily allows the
inclusion of additional information to further constrain this solution space; such information may
be available from domain experts or from literature. We illustrate the basic idea by means of an
example, and refer to (Capotorti, 2005) for a more in-depth discussion of the types of information
that can be dealt with in the setting of coherent conditional probability in general.

Example 3. We consider again the problem from Example 2 in Section 3, in the setting of coherence
theory. We suppose that we know, for example from literature, that in case the zero probability
feature b is observed, the presence of A is at least as likely as its absence, that is, we know that
Pr(a | b) ≥ Pr(ā | b). To incorporate this additional information, the linear equation

x01 + x04 ≥ x02 + x06

is inserted into the system of equations S0 at level zero of the sequence of compatible systems. The
thus extended system S0

+ is still coherent and its unique solution of constituent probabilities is the
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same as that of the original system. Because the extra equation pertains to probabilities conditioned
on a zero probability event, it is inherited by the system S1

+ at level one:

S1
+ =



x11 + x14 ≥ x12 + x16 [Pr(a | b) ≥ Pr(ā | b)]

x11 = 0.4 · (x11 + x14) [Pr(c | ab) = 0.4]

x12 = 0.2 · (x12 + x16) [Pr(c | āb) = 0.2]

x11 + x12 + x14 + x16 = 1 [Pr(>) = 1]

x1i ≥ 0, i = 1, 2, 4, 6

With the extra information, S1
+ has a polytope of solutions with the following extreme points:

(x11 = 1, x12 = x14 = x16 = 0) (x11 = x12 = 0.5, x14 = x16 = 0)
(x14 = 1, x11 = x12 = x16 = 0) (x11 = x16 = 0.5, x12 = x14 = 0)

(x12 = x14 = 0.5, x11 = x16 = 0)
(x14 = x16 = 0.5, x11 = x12 = 0)

from which the probability Pr(a | b) is found to lie within the interval [0.5, 1]. If the decision rule
associated with the classifier would use a probability threshold δ smaller than 0.5 for assigning
the class a therefore, the case b would be readily classified as belonging to a. The probability
Pr(a |bc̄) is still found to be vacuous, however, as the two features b and c̄ reside on different levels
of unexpectedness and, hence, cannot be compared given the available information. �

5. Practicable Coherent Inference

Straightforward application of coherence theory for handling zero probability features in naive
Bayesian classifiers, would involve the constituent probabilities of the joint distribution over a clas-
sifier’s variables. As the number of constituent probabilities typically is exponential in the number
of variables involved, classification would rapidly become infeasible, even with the recent MIP
approach of Cozman and di Ianni (2015). Building upon the notion of locally strong coherence,
introduced by Capotorti and Vantaggi (2002), we now propose a simple computational scheme for
practicable coherent inference in naive Bayesian classifiers with zero probability features.

We consider a naive Bayesian classifier with the class variable C and the set F of feature vari-
ables, as before. We indicate by F0 the subset of variables modelling zero probability features, and
use Fn = F \ F0 to denote the remaining set of (standard) feature variables. For a given complete
case f , we further partition the set F0 into the two subsets Fr

0(f), including the variables from F0

with rare values in f , and Fe
0(f), including the remaining variables from F0. The case f is now

written as f = fn f
r
0 f

e
0 , that is, as composed of three subcases with value combinations for the sets

Fn, Fr
0(f) and Fe

0(f), respectively. Our computational scheme for coherent probabilistic inference
with the classifier given a complete case f now involves the following two rules:

1. If Fr
0(f) = ∅, then the probability distribution Pr(C | f) of interest is computed using

standard probabilistic inference.

2. If Fr
0(f) 6= ∅, then the conditional probability distribution Pr(C | f) of interest is computed

by means of the operational tool of coherence theory, from the level in the sequence of sys-
tems where the subcase f r0 resides; for this purpose, the appropriate system of equations is
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constructed in terms of atoms in which the context fn f e0 is fixed and only the class values and
the values of the feature variables from Fe

0(f) differ between atoms.

We note that, by the semantics of a feature being rare, the first rule will apply to the majority of
cases offered to the classifier; for all these cases therefore, the computations involved are linear
in the classifier’s number of variables. The second rule assumes locally strong coherence of the
distribution defined by the classifier with respect to the context of non-rare features of a case. This
assumption allows the computations involved to be local to the appropriate level in the sequence of
systems, by fixing this context of non-rare features; all previous levels of the sequence can then be
neglected. By building upon the assumption of locally strong coherence, therefore, the computations
involved are exponential only in the number of rare features involved in a case at hand.

6. Concluding Observations

Despite their general popularity, naive Bayesian classifiers are not well suited for real-world appli-
cations involving extreme probability features. In this paper, we have demonstrated, by means of
simple examples, some unwanted effects of the commonly used approaches to handling zero prob-
ability features. These effects are the strong influence on output probabilities of the more or less
arbitrary small values used to forestall the inclusion of zero probability parameters in a classifier
on the one hand, and the counterintuitive consequences of taking absence of a zero probability fea-
ture into consideration on the other hand. We have shown that the theory of coherent conditional
probability offers a principled approach to handling extreme probability features in naive Bayesian
classifiers and is not associated with these unwanted effects. For practicable application of this
theory, we have further proposed a computational scheme for naive Bayesian classifiers with zero
probability parameters, which retains the inferential efficiency of standard classifiers for input cases
with a limited number of extreme probability features.

While standard naive Bayesian classifiers always establish a single output probability per class
for an input case, the examples throughout the current paper have illustrated that the naive Bayesian
classifier building upon coherence theory for handling zero probability features, does not. Upon
computing conditional probabilities of interest, the classifier may find that the available probabilis-
tic information does not suffice for establishing a single output probability for a case at hand and
then returns an interval probability. By employing coherence theory therefore, the naive Bayesian
classifier with zero probability features introduces in a natural way the notion of imprecision. From
the field of imprecise probability, related approaches to classification have originated, among which
is the naive credal classifier initiated by Zaffalon (2002). In our further investigations, we will study
the similarities and complementarities of this credal classifier and the approach proposed in the
current paper. We will further investigate the effects of relinquishing the assumption of symmet-
ric conditional independence for zero probability features and adopting the notion of conditional
independence from coherence theory (Vantaggi, 2001). Last but not least, we plan to study the
practicability of our approach in real-world applications and thereby to also further investigate the
strengths of different types of additional knowledge about the extreme probability features involved.
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