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Abstract

We study the value of switching actions in the Prediction From Experts (PFE) problem
and Adversarial Multi-Armed Bandits (MAB) problem. First, we revisit the well-studied
and practically motivated setting of PFE with switching costs. Many algorithms are known
to achieve the minimax optimal order of O(

√
T log n) in expectation for both regret and

number of switches, where T is the number of iterations and n the number of actions.
However, no high probability guarantees are known. Our main technical contribution is
the first algorithms which with high probability achieve this optimal order for both regret
and number of switches. This settles an open problem of (Devroye et al., 2015), directly
implies the first high probability guarantees for several problems of interest, and is efficiently
adaptable to the related problem of online combinatorial optimization with limited switching.

Next, to investigate the value of switching actions at a more granular level, we introduce
the setting of switching budgets, in which the algorithm is limited to S ≤ T switches between
actions. This entails a limited number of free switches, in contrast to the unlimited number
of expensive switches allowed in the switching cost setting. Using the above result and
several reductions, we unify previous work and completely characterize the complexity
of this switching budget setting up to small polylogarithmic factors: for both the PFE
and MAB problems, for all switching budgets S ≤ T , and for both expectation and high
probability guarantees. For PFE, we show that the optimal rate is of order Θ̃(

√
T log n)

for S = Ω(
√
T log n), and min(Θ̃(T logn

S ), T ) for S = O(
√
T log n). Interestingly, the bandit

setting does not exhibit such a phase transition; instead we show the minimax rate decays

steadily as min(Θ̃(T
√
n√
S

), T ) for all ranges of S ≤ T . These results recover and generalize

the known minimax rates for the (arbitrary) switching cost setting.

1. Introduction

Two classical problems in online learning are the Prediction From Experts (PFE) problem
(Cesa-Bianchi et al., 1997; Cesa-Bianchi and Lugosi, 2006) and the Adversarial Multi-Armed
Bandit (MAB) problem (Auer et al., 2002; Bubeck et al., 2012). These problems have received
substantial attention due to their ability to model a variety of problems in machine learning,
sequential decision making, online combinatorial optimization, online linear optimization,
mathematical finance, and many more.

PFE and MAB are T -iteration repeated games between an algorithm (often called player
or forecaster) and an adversary (often called nature). In each iteration t ∈ {1, . . . , T}, the
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algorithm selects an action it out of n possible actions, while the adversary simultaneously
chooses a loss function over the actions `t : {1, . . . , n} → [0, 1]. The algorithm then suffers
the loss `t(it) for its action. The goal of the algorithm is to minimize its cumulative loss∑T

t=1 `t(it) over the course of the game. Since the losses are at the adversary’s disposal,
one measures the cumulative loss of the algorithm against a more meaningful baseline: the
cumulative loss of the best action in hindsight. The algorithm’s regret is defined as the
difference between these two quantities:

Regret :=

T∑
t=1

`t(it)− min
i∗∈[n]

T∑
t=1

`t(i
∗)

The PFE and MAB problems differ in the feedback that the algorithm receives. In PFE,
the algorithm is given full-information feedback : after the tth iteration it can observe the
entire loss function `t. However in MAB, the algorithm is only granted bandit feedback : after
the tth iteration, it can only observe the loss `t(it) of the action it it played.

Switching as a resource. Note that in the setup of PFE and MAB above, the algorithm
can play a different action in each time step. In many applications, switching between
different actions too often is undesirable. This motivates the idea of switching as a resource.
This notion has attracted significant research interest in the past few years. The popular
way to formalize this idea is the c-switching-cost setting, in which the algorithm incurs an
additional loss of c ≥ 1 each time it switches actions in consecutive iterations. We introduce
the S-switching-budget setting, in which the algorithm can switch at most S ∈ {1, . . . , T}
times in the T iterations. In words, the switching-cost setting corresponds to expensive
but unlimited switches; whereas the switching-budget setting corresponds to free but limited
switches. In this setting it can be shown that we cannot be competitive with respect to
an adaptive adversary, and thus we focus on the oblivious adversary model, where the loss
functions cannot depend on the algorithm’s choices.

1.1. Previous work

Previous work on Prediction from Experts (details in Figure 1). In the classical
(unconstrained) setting, the minimax regret Θ(

√
T log n) is well understood (Littlestone

and Warmuth, 1994; Freund and Schapire, 1997; Cesa-Bianchi et al., 1997). Moreover, this
optimal regret rate is also achievable with high probability (Cesa-Bianchi and Lugosi, 2006).

The minimax rate is also well-understood in the c-switching cost setting. Recall that
here the objective is “switching-cost-regret”, which is defined as Regret + c · (# switches).
The minimax rate for expected switching-cost-regret is Θ(

√
cT log n) for PFE (Kalai and

Vempala, 2005; Geulen et al., 2010; Devroye et al., 2015). In particular, these results give
algorithms which achieve the optimal minimax order in expectation for both regret and
number of switches. However, no high-probability guarantees are known for switching-cost
PFE ; this is raised as an open question by (Devroye et al., 2015).

For the S-switching-budget setting, even less is known. The best lower bound seems
to be the unconstrained regret lower bound of Ω(

√
T log n). An upper bound of O( T√

S
)

follows from the Lazy Label Efficient Forecaster (Cesa-Bianchi et al., 2005). Existing
minimax-optimal switching-cost algorithms such as Follow the Perturbed Leader (Kalai and
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Vempala, 2005), Shrinking Dartboard (Geulen et al., 2010), and Prediction by Random
Walk Perturbation (Devroye et al., 2015) do not apply to the switching-budget setting (even
in expectation), since the number of times they switch is only bounded in expectation.

Previous work on Multi-Armed Bandits (details in Figure 2). In the uncon-
strained setting, the minimax rate Θ(

√
Tn) is well understood (Auer et al., 2002; Audibert

and Bubeck, 2010) and is achieveable with high probability (Audibert and Bubeck, 2010;
Bubeck et al., 2012). For the c-switching cost setting, the minimax rate is known (up to a
logarithmic factor in T ) to be Θ̃(c1/3T 2/3n1/3) for MAB (Arora et al., 2012; Dekel et al.,
2014).

For the S-switching budget setting, a simple mini-batching reduction gives algorithms
achieving the minimax rate in expectation and with high probability. Dekel et al. (2014)
prove a lower bound of Ω̃( T√

S
) via a reduction to the switching-cost setting. However, this

reduction does not get the correct dependence on the number of actions n and also loses
track of polylogarithmic factors.

Table 1: Upper and lower bounds on the complexity of PFE in the different switching
settings. Our new bounds are bolded.

LB on E[Regret] UB on E[Regret] High prob. UB

Unconstrained switching
√
T log n

√
T log n

√
T log n

δ

c switching cost
√
cT log n

√
cT log n

√
cT log n log 1

δ

√
cT log n log 1

δ

√
cT log n log 1

δ

S = Ω(
√
T log n) switching budget

√
T log n

√
T log n log T
√
T log n log T
√
T log n log T

√
T log n log 1

δ

√
T log n log 1

δ

√
T log n log 1

δ

S = O(
√
T log n) switching budget T logn

S
T logn
S

T logn
S

T logn
S log TT logn
S log TT logn
S log T T logn

S log 1
δ

T logn
S log 1

δ
T logn
S log 1

δ

Table 2: Upper and lower bounds on the complexity of MAB in the different switching
settings. Our new bounds are bolded.

LB on E[Regret] UB on E[Regret] High prob. UB

Unconstrained switching
√
Tn

√
Tn

√
Tn

log n
δ√

logn

c switching cost c1/3T 2/3n1/3

log T c1/3T 2/3n1/3 c1/3T 2/3n1/3 log
2/3 n

δ

log1/3 n

S switching budget T
√
n√

S log3/2 T

T
√
n√

S log3/2 T

T
√
n√

S log3/2 T

T
√
n√
S

T
√
n√
S

log n
δ√

logn

1.2. Our contributions

We present the first algorithms for switching-cost PFE that achieve the minimax optimal
rate O(

√
cT log n) with high probability. In fact, our results are more general: we give a

framework to formulaically convert algorithms that work in expectation and fall under the
Follow-the-Perturbed-Leader algorithmic umbrella, into algorithms that work with high
probability. We also show how this framework extends to online combinatorial optimization,
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(a) Switching-budget PFE. (b) Switching-budget MAB.

Figure 1: Complexity landscape of online learning over a finite action set with limited
switching. Axes are plotted in log-log scale. Polylogarithmic factors in T are
hidden for simplicity.

i.e. online linear optimization over a combinatorial polytope, where offline optimization can
be done efficiently.

We also investigate the switching budget setting for the PFE and MAB problems. The
above result and standard reductions allow us to completely characterize the complexity
of this switching budget setting up to small polylogarithmic factors: for both the PFE
and MAB problems, for all switching budgets S ≤ T , and for both expectation and high
probability guarantees. For PFE, we show the optimal rate is of order Θ̃(

√
T log n) for

S = Ω(
√
T log n), and min(Θ̃(T logn

S ), T ) for S = O(
√
T log n). Interestingly, the bandit

setting does not exhibit such a phase transition; instead we show the minimax rate decays

steadily as min(Θ̃(T
√
n√
S

), T ) for all ranges of S ≤ T .
.

2. Acknowledgements.

We are indebted to Elad Hazan for numerous fruitful discussions and for suggesting the
switching-budget setting to us. We also thank Yoram Singer, Tomer Koren, David Martins,
Vianney Perchet, and Jonathan Weed for helpful discussions.

Part of this work was done while JA was visiting the Simons Institute for the Theory
of Computing, which was partially supported by the DIMACS/Simons Collaboration on
Bridging Continuous and Discrete Optimization through NSF grant #CCF-1740425. JA is
also supported by NSF Graduate Research Fellowship 1122374.

References

Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive
adversary: from regret to policy regret. ICML, 2012.

4



Online learning over a finite action set with limited switching
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