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Abstract

A first line of attack in exploratory data analysis is data visualization, i.e., generating a 2-
dimensional representation of data that makes clusters of similar points visually identifiable. Stan-
dard Johnson-Lindenstrauss dimensionality reduction does not produce data visualizations. The
t-SNE heuristic of van der Maaten and Hinton, which is based on non-convex optimization, has
become the de facto standard for visualization in a wide range of applications.

This work gives a formal framework for the problem of data visualization — finding a 2-
dimensional embedding of clusterable data that correctly separates individual clusters to make them
visually identifiable. We then give a rigorous analysis of the performance of t-SNE under a natu-
ral, deterministic condition on the “ground-truth” clusters (similar to conditions assumed in earlier
analyses of clustering) in the underlying data. These are the first provable guarantees on t-SNE for
constructing good data visualizations.

We show that our deterministic condition is satisfied by considerably general probabilistic gen-
erative models for clusterable data such as mixtures of well-separated log-concave distributions.
Finally, we give theoretical evidence that t-SNE provably succeeds in partially recovering cluster
structure even when the above deterministic condition is not met.
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1. Introduction

Many scientific applications, especially those involving exploratory data analysis, rely on visually
identifying high-level qualitative structures in the data, such as clusters or groups of similar points.
This is not easy since the data of interest is usually high-dimensional and it is unclear how to capture
the qualitative cluster structure in a 2-dimensional visualization. For example, linear dimensionality
reduction techniques (e.g., data oblivious Johnson-Lindenstrauss (JL) embedding or data-dependent
embedding using PCA) are incapable of reducing dimension down to 2 in any meaningful way (see
Figure 1) - they merge distinct clusters into a uniform-looking sea of points.

In 2008, van der Maaten and Hinton (2008) introduced a nonlinear algorithm, #-Distributed
Stochastic Neighbor Embedding or t-SNE (an improvement over the earlier SNE algorithm of Hin-
ton and Roweis (2002)) for this task, which has become the de facto standard (see Figure 1(c)) for
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Figure 1: 2D embeddings of a mixture of 10 Gaussians with pairwise center separation 0.5 xradius via: (a)
random projection (JL), (b) projection to the subspace of top 2 singular vectors (PCA), (c) t-SNE.

visualizing high-dimensional datasets with diverse applications such as computer security (Gashi
et al., 2009), music analysis (Hamel and Eck, 2010), cancer biology (Abdelmoula et al., 2016) and
bioinformatics (Wallach and Lilien, 2009).

At a high level, t-SNE (like SNE) chooses two similarity measures between pairs of points
- one for the high dimensional data and one for the 2-dimensional embedding. It then attempts
to construct a 2-dimensional embedding that minimizes the KL divergence between the vector of
similarities between pairs of points in the original dataset and the similarities between pairs of
points in the embedding. This is a non-convex optimization problem and t-SNE employs gradient
descent with random initialization (along with other tricks such as early exaggeration) to compute
a reasonable solution to it. See the full version of this paper for details.

Of course, non-convex optimization drives much of today’s progress in machine learning and
data science, and thus poses a rich set of theoretical questions. Researchers have managed to rig-
orously analyze non-convex optimization algorithms in a host of settings (Dasgupta, 1999; Arora
etal., 2012, 2014; Bhojanapalli et al., 2016; Ge et al., 2015a; Sun et al., 2017; Ge et al., 2017, 2016;
Park et al., 2017). These analyses usually involve making clean assumptions about the structure of
data, usually with a generative model. The goal of the current paper is to rigorously analyze t-SNE
in a similar vein.

At the outset such a project runs into definitional issues about what a good visualization of
clustering is. Many such issues are inherited from well-known issues in formalizing the goals of
clustering (Kleinberg, 2002). In theoretical studies of clustering, such issues were sidestepped by
going with a standard clustering formalization and assuming that data come with an (unknown)
ground-truth clustering (for instance, mixtures of Gaussians, k-means, etc.). We make similar as-
sumptions and assume that our goal is to produce a 2-dimensional embedding such that the points
in the same clusters are noticeably closer together compared with points in different clusters. Un-
der some of these standard models we show that t-SNE provably succeeds in computing a good
visualization.

We emphasize that the focus of this paper is on formalizing the notion of visualization and
providing a theoretical analysis of t-SNE. We do not advocate for t-SNE over other visualization
methods.

We now begin by describing our formalization of the visualization problem followed by de-
scribing our results that give the first provable guarantees on t-SNE for computing visualization of
clusterable data.
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Formalizing Visualization. We assume that we are given a collection of points X = {z1,x2,...,z,} C
R and that there exists a “ground-truth” clustering described by a partition Cy, Ca, . . . , C, of [n] into
k clusters.

A visualization is described by a 2-dimensional embedding ) = {y1,y2,...,yn} C R2 of X,
where each x; € X is mapped to the corresponding y; € ). Intuitively, a cluster C; in the original
data is visualized if the corresponding points in the 2-dimensional embedding ) are well-separated
from all the rest. The following definition formalizes this idea.

Definition 1.1 (Visible cluster) Let Y be a 2-dimensional embedding of a dataset X with ground-
truth clustering Cy, . . .,Ck. Given € > 0, a cluster Cy in X is said to be (1 — €)-visible in Y if there
exist P, Perr C [n] such that:

1 |(7D\C€) U (CE\P” <e- |C£|’ |7)err’ < en, and

2. foreveryi,i' € Pandj € [n]\ (P U Per),

yi — Y| < %Hyi =yl

In such a case, we say that P (1 — €)-visualizes C; in ).

It is now easy to define when ) is a good visualization - we ask that every cluster C, in the
dataset X is visualized in Y.

Definition 1.2 (Visualization) Let ) be a 2-dimensional embedding of a dataset X with ground-
truth clustering Cy, . . ., Ci. Given € > 0, we say that ) is a (1 — €)-visualization of X if there exists
a partition P1, Pa, . .., Pk, Perr of [n] such that:

(i) Foreachi € [k], P; (1 — €)-visualizes C; in Y, and
(ii) |Perr| < en.

In particular, when € = 0, we say that ) is a full visualization of X.

Remark Note that this formalization of visualization should be considered a first cut, since ulti-
mately human psychology must come into play. For instance, humans may reasonably visualize two
parallel lines as two clusters, but these violate our definition.

A natural question is whether clustering inferred from a visualization is unique. Our definition
above does not guarantee this. Indeed, this is inherently impossible and relates to the ambiguity
in the definition of clustering: for example, it can be impossible to determine whether a given set
of points should be viewed as one cluster or two different smaller clusters. See Figure 2 for an
example.

It is, however, not hard to establish that under an additional assumption that the size (number
of points) of any cluster is smaller than twice the size of any other, full visualization as defined in
Definition 1.2 uniquely determines a clustering.

In order to study fine-grained behaviors of t-SNE, we also define a weaker variant of visualiza-
tion where at least one cluster is visualized.

Definition 1.3 (Partial visualization) Given € > 0, we say that ) is a (1 — €)-partial visualization
of X if there exists a subset P C [n] such that P (1 — €)-visualizes C; for some { € [k].



ARORA HU KOTHARI

Figure 2: If we knew that there are 3 clusters in the original data, the blue and red outlines denote equally
valid guesses for the underlying clustering based on the above visualization.

1.1. Our Results

Our main result identifies a simple deterministic condition on the clusterable data under which t-
SNE provably succeeds in computing a full visualization.

Definition 1.4 (Well-separated, spherical data) Let X = {z1,x9,...,2,} C R? be clusterable
data with C1,Ca, . . ., Cy, defining the individual clusters such that for each { € [k], |Co| > 0.1(n/E).
We say that X is ~y-spherical and ~y-well-separated if for some by, ba, ..., by > 0, we have:

1. ~y-Spherical: Forany { € [k] andi,j € Cy (i # j), we have ||z; — z;]|* > b and for any

1+’
i € Cy we have H] € Co\ {i} : ||zi — 2% < bg}‘ > 0.51|Cy.

2. y-Well-separated: For any (,{' € [k] ({ # ('), i € C;and j € Cp we have ||x; — z;]|* >
(1 + ~vlogn) max{bs, by }.

The first condition asks for the distances between points in the same cluster (“intra-cluster dis-
tances”) to be concentrated around a single value (with ~ controlling the “amount” of concentra-
tion). The second condition requires that the distances between two points from different clusters
should be somewhat larger than the intra-cluster distances for each of the two clusters involved. In
addition, we require that none of the clusters has too few points. Such assumptions are satisfied
by well-studied probabilistic generative models for clusterable data such as mixture of Gaussians
and more generally, mixture of log-concave distributions, and have been used in previous work
(Dasgupta, 1999; Arora and Kannan, 2005) studying “distance-based” clustering algorithms.

For spherical and well-separated data, our main theorem below shows that t-SNE with early
exaggeration succeeds in finding a full visualization.

Theorem 1.5 (Informal) Let X = {z1,7,...,7,} C R? be vy-spherical and y-well-separated
clusterable data with C1,Ca, . .. ,Cy defining the individual clusters. Then, t-SNE with early exag-
geration on input X outputs a full visualization of X with high probability.

Proof Technique. At a high level, t-SNE starts with a randomly initialized embedding and makes
iterative gradient updates to it. The analysis thus demands understanding the effect of this update
rule to the embedding of the high-dimensional points as a function of whether they lie in the same
cluster or not. In a recent work, Linderman and Steinerberger (2017) established a “shrinkage”
result for this update rule - they showed that points in the same cluster move towards each other
under some mild conditions, that is, the embedding of any cluster “shrinks” as the iterations proceed.
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This result, however, is insufficient to establish that t-SNE succeeds in finding a full visualization
as it does not rule out multiple clusters merging into each other.

We resort to a more fine-grained analysis built on the one by Linderman and Steinerberger
(2017) and obtain an update rule for the centroids of the embeddings of all underlying clusters. This
allows us to track the changes to the positions of the centroids and show that the distance between
distinct centroids remains lower-bounded whenever the data is y-spherical and ~-well-separated.
Combined with the shrinkage result for points in the same cluster, this implies that t-SNE outputs a
full visualization of the data.

Our analysis implicitly relies on the update rule in t-SNE closely mimicking those appearing in
the well-studied noisy power method (with non-random noise). We make this connection explicit
and show that the behavior of t-SNE (with early exaggeration) on y-spherical and well-separated
data can in fact be closely approximated by power method run on a natural matrix of pairwise
similarities.

Application to Visualizing Mixture Models. Mixture of Gaussians and more generally, mixture
of log-concave distributions, are well-studied probabilistic generative models for clusterable data.
As an immediate application of our main theorem above, we show that t-SNE produces a full vi-
sualization for data generated according to such models. Before describing the result, we quickly
recall the definition of mixture of log-concave distributions.

A distribution D with density function f on R is said to be log-concave if log(f) is a concave
function. D is said to be isotropic if its covariance is I. Many natural distributions including
Gaussian distributions and the uniform distribution on any convex set are log-concave.

A mixture of k£ log-concave distributions is described by k positive mixing weights w1, wa, . . . , W
(Zlgzl wy = 1) and k log-concave distributions Dy, ... Dy in R?. To sample a point from this
model, we pick cluster ¢ with probability w, and draw x from D;.

Theorem 1.5 immediately implies that t-SNE constructs a full visualization for data generated
from a mixture of isotropic Gaussians or log-concave distributions with well-separated means. For
isotropic Gaussians, the required pairwise separation between means is Q(dl/ 4). For more general
isotropic log-concave distributions, we require that the means be separated by Q(d5/ 12,

Observe that the radius of samples from an isotropic log-concave distribution is ~ d'/? - thus,
t-SNE succeeds in constructing 2D visualizations for clustering models far below the separation at
which the clusters are non-overlapping. This is in stark contrast to standard linear dimensionality
reduction techniques such as the Johnson-Lindenstrauss embedding that require mean separation of
Q(dl/ 2) to construct 2D visualizations that correctly separate 99% of points.

Corollary 1.6 (Informal) Let X = {x1,...,z,} C R? be i.i.d. samples from an equal-weighted
mixture of k isotropic Gaussians in R? with every pair of distinct means separated by Q(dl/ 4.
Then, with high probability t-SNE with early exaggeration on input X outputs a full visualization
of X. Moreover, the same result holds for mixture of isotropic log-concave distributions with every
pair of distinct means separated by Q(d°/12).

Remark Our result actually holds for a larger subclass of mixtures of non-isotropic log-concave
distributions that may not be equal-weighted. See the full version of this paper for details. Mixture
of log-concave distributions is among the weakest assumptions under which clustering algorithms
with provable guarantees have been designed (Arora and Kannan, 2005; Vempala and Wang, 2004).
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We show that the t-SNE heuristic can visualize clusters under assumptions similar to the more
sophisticated methods in previous theoretical work.

Finally, we show that even when the conditions in Definition 1.4 are not met, t-SNE can still
provably visualize at least one cluster in the original data in some cases. As an example, using a
more fine-grained analysis, we show that t-SNE computes a partial visualization for data obtained
from a mixture of two concentric (thus, no mean separation at all!) spherical Gaussians with vari-
ances differing by a constant factor.

Theorem 1.7 (Informal) Let X be generated from an equal-weighted mixture of two Gaussians
N(0,0%) and N'(0,03) such that 1.5 < o9/a1 < 10. Then t-SNE with early exaggeration on input
X outputs a (1 — d=D))-partial visualization of X where Cy is (1 — d=D) )-yisible.

1.2. Related Work

This paper continues the line of work focused on analyzing gradient descent and related heuristics
for non-convex optimization problems, examples of which we have discussed before. Theoretically
analyzing t-SNE, in particular, was recently considered in a work of Linderman and Steinerberger
(2017) who showed that running t-SNE with early exaggeration causes points from the same cluster
to move towards each other (i.e., embedding of any cluster shrinks). As discussed before, however,
this does not imply that t-SNE ends up with a visualization as all the clusters could potentially
collapse into each other. Another work by Shaham and Steinerberger (2017) derived a theoretical
property of SNE, but their result is only nontrivial when the number of clusters is significantly larger
than the number of points per cluster, which is an unrealistic assumption.

Mixture models are natural average-case generative models for clusterable data which have been
studied as benchmarks for analyzing various clustering algorithms and have a long history of theo-
retical work. By now, a sequence of results (Dasgupta et al., 2007, 2006; Arora and Kannan, 2005;
Vempala and Wang, 2004; Achlioptas and McSherry, 2005; Kannan et al., 2005; Vempala, 2007;
Hsu and Kakade, 2013; Ge et al., 2015b; Kalai et al., 2012; Belkin and Sinha, 2010; Kalai et al.,
2010; Kothari and Steinhardt, 2017; Hopkins and Li, 2017; Diakonikolas et al., 2017) have identified
efficient algorithms for clustering data from such models under various natural assumptions.
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