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Abstract
We develop an extension of recent analytic methods for obtaining time-space tradeoff lower bounds
for problems of learning from uniformly random labelled examples. With our methods we can
obtain bounds for learning concept classes of finite functions from random evaluations even when
the sample space of random inputs can be significantly smaller than the concept class of functions
and the function values can be from an arbitrary finite set.

At the core of our results, we reduce the time-space complexity of learning from random eval-
uations to the question of how much the corresponding evaluation matrix amplifies the 2-norms of
“almost uniform” probability distributions. To analyze the latter, we formulate it as a semidefinite
program, and we analyze its dual. In order to handle function values from arbitrary finite sets, we
apply this norm amplification analysis to complex matrices.

As applications that follow from our new techniques, we show that any algorithm that learns
n-variate polynomial functions of degree at most d over F2 with success at least 2−O(n) from
evaluations on randomly chosen inputs either requires space Ω(nm/d) or 2Ω(n/d) time where m =
(n/d)Θ(d) is the dimension of the space of such polynomials. These bounds are asymptotically
optimal for polynomials of arbitrary constant degree since they match the tradeoffs achieved by
natural learning algorithms for the problems. We extend these results to learning polynomials of
degree at most d over any odd prime field Fp where we show that Ω((mn/d) log p) space or time
pΩ(n/d) is required.

To derive our bounds for learning polynomials over finite fields, we show that an analysis of the
dual of the corresponding semidefinite program follows from an understanding of the distribution
of the bias of all degree d polynomials with respect to uniformly random inputs.
Keywords: Memory-bounded learning. Lower bounds.

1. Introduction

In supervised learning from labelled examples, the question of the sample complexity required
to obtain good generalization has been of considerable interest and research. However, another
important parameter is how much information from these samples needs to be kept in memory in
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order to learn successfully. There has been a line of work improving the memory efficiency of
learning algorithms, and the question of the limits of such improvement has begun to be tackled
relatively recently. Shamir (2014) and Steinhardt et al. (2016) both obtained constraints on the
space required for certain learning problems and in the latter paper, the authors asked whether one
could obtain strong tradeoffs for learning from random samples that yields a superlinear threshold
for the space required for efficient learning. Raz (2016) showed that even given exact information, if
the space of a learning algorithm is bounded by a sufficiently small quadratic function of the number
of input bits, then the problem of online of learning parity functions given exact answers on random
samples requires an exponential number of samples even to learn parity functions approximately.

More precisely, we consider problems of online learning from uniform random samples, in
which an unknown concept x is chosen uniformly from a set X of (multivalued) concepts and a
learner is given a stream of samples (a(1), b(1), (a(2), b(2)), · · · where each a(t) is chosen uniformly
at random from A and b(t) = L(a(t), x) for labelling function L which maps each pair (a, x) to
the outcome (or label) of the value of concept x ∈ X when given a ∈ A. The learner’s goal
is either that of identification “find x” or prediction “predict L(a, x) for randomly chosen a with
significant advantage over random guessing.” In the case of learning parities, X = A = {0, 1}n and
L(a, x) = a · x (mod 2). With high probability n + 1 uniformly random samples suffice to span
{0, 1}n and one can learn parities using Gaussian elimination with (n+ 1)2 space. Alternatively, an
algorithm with only O(n) space can wait for a specific basis of vectors a to appear (for example the
standard basis) and store the resulting values; however, this takes Ω(2n) time. Raz (2016) showed
that either Ω(n2) space or 2Ω(n) time is essential: even if the space is bounded by n2/25, 2Ω(n)

queries are required to learn x correctly with any probability that is 2−o(n). In follow-on work, Kol
et al. (2017) showed that the same lower bound applies even if the input x is sparse.

We can view x as a linear function over F2, and, from this perspective, parity learning identifies
a linear function from evaluations over uniformly random inputs. A natural generalization asks if
a similar lower bound exists when we learn higher degree polynomials with bounded space. As a
motivating example, consider homogeneous quadratic functions over F2. Let m = (n+1

2 ) and X =

{0, 1}m, which we identify with the space of homogeneous quadratic polynomials in F2[z1, . . . , zn]

or, equivalently, the space of upper triangular Boolean matrices. This learning algorithm has A =

{0, 1}n and X = {0, 1}m, and the learning function L(a, x) = x(a) = ∑i6j xijaiaj mod 2, or
equivalently L(a, x) = aTxa when x is viewed as an upper triangular matrix.

Given a ∈ {0, 1}n and x ∈ {0, 1}m, we can view evaluating x(a) as computing aaT · x mod 2
where we interpret aaT as an element of {0, 1}m. For O(m) randomly chosen a ∈ {0, 1}n, the
vectors aaT almost surely span {0, 1}m and hence we can store m samples of the form (a, b) and
apply Gaussian elimination to determine x. This time, we only need n + 1 bits to store each sample
for a total space bound of O(nm). An alternative algorithm using O(m) space and time 2O(n)

would be to look for a specific basis such as the basis consisting of the upper triangular parts of
{eieT

i | 1 6 i 6 n} ∪ {(ei + ej)(ei + ej)
T | 1 6 i < j 6 n}. Previous lower bounds for learning

do not apply to this problem1 because |A| � |X|. Our results imply that this tradeoff between
Ω(nm) space or 2Ω(n) time is inherently required to learn x with probability 2−o(n) or predict its
output with at least 2−o(n) advantage.

1. Note that in Kol et al. (2017) the lower bound applies in a dual case when the unknown x is sparse, and hence
|X| � |A|.
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The techniques in Raz (2016) and Kol et al. (2017) were based on fairly ad-hoc simulations of
the original space-bounded learning algorithm by a restricted form of linear branching program for
which one can measure progress at learning x using the dimension of the consistent subspace. More
recent papers, by Moshkovitz and Moshkovitz (2017) using graph mixing properties and by Raz
(2017) using an analytic approach, considered more general tests and used a measure of progress
based on 2-norms. While the method of Moshkovitz and Moshkovitz (2017) was not strong enough
to reproduce the bound in Raz (2016) for the case of parity learning, the methods of Raz (2017) and
the later improvement (Moshkovitz and Moshkovitz, 2018) of Moshkovitz and Moshkovitz (2017)
reproduced the parity learning bound and more.

In particular, Raz (2017) defined a ±1 matrix M that is indexed by A × X. It is natural to
see M(a, x) as (−1)L(a,x) for a labelling function L that has labels in {0, 1}. The lower bound is
governed by the (expectation) matrix norm of M, which is a function of the largest singular value
of M, and the progress is analyzed by bounding the impact of applying the matrix to probability
distributions with small expectation 2-norm. This method works if |A| > |X| - i.e., the sample
space of inputs is at least as large as the concept class - but it fails completely if |A| � |X|, which
is precisely the situation for learning quadratic functions. Indeed, none of the prior approaches
works in this case.

In our work we extend the analytic approach to capture general discrete problems of learning
from uniform random samples in which (1) the sample space of inputs can be much smaller than
the concept class and (2) members of the concept class can have values from an arbitrary finite
set, which we identify with {0, 1, . . . , r} for convenience. Our extensions come from two different
directions.

We define a property of matrices M that allows us to refine the notion of the largest singular
value and extend the method of Raz (2017) to the cases that |A| � |X|. This property, which we
call the norm amplification curve of the matrix on the positive orthant, analyzes more precisely how
‖M · p‖2 grows as a function of ‖p‖2 for probability vectors p on X. The key reason that this is
not simply governed by the singular values is that the interior of the positive orthant can contain at
most one singular vector. We give a simple condition on the 2-norm amplification curve of M that
is sufficient to ensure that there is a time-space tradeoff showing that any learning algorithm for M
with success probability at least 2−εn for some ε > 0 either requires space Ω(mn) or time 2Ω(n).

For any fixed learning problem given by a matrix M, the natural way to express the amplification
curve at any particular value of ‖p‖2 yields an optimization problem given by a quadratic program
with constraints on ‖p‖2

2, ‖p‖1 and p > 0, and with objective function ‖Mp‖2
2 = 〈MT M, ppT〉

that seems difficult to solve. Instead, we relax the quadratic program to a semi-definite program
where we replace ppT by a positive semidefinite matrix U with the analogous constraints. We can
then obtain an upper bound on the amplification curve by moving to the SDP dual and evaluating
the dual objective at a particular Laplacian determined by the properties of MT M.

In order to handle concepts that are more than binary-valued2, we move to matrices whose
entries are complex r-th roots of unity. Indeed, a single matrix M does not suffice for r > 3 and we
instead work with a family of complex matrices M(1), . . . , M(r−1), each associated with a different

2. The formalization of Moshkovitz and Moshkovitz (2017, 2018) does include the case of multivalued outcomes,
though they do not apply it to any examples and their mixing condition does not hold in the case of small input
sample spaces
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root of unity. We use the natural generalization of the norm amplification curve to complex matrices
and also generalize the semi-definite relaxation method to bound these curves using (M(j))∗M(j)

instead of MT M. We then show how the overall analytic approach can be carried through with a
modest number of changes from the binary-valued case.

Our lower bound shows that if the 2-norm amplification curve for M has (or, in the case of
r-valued labels, matrices M(1), . . . , M(r−1) have) the required property, then to achieve learning
success probability for M of at least |A|−ε for some ε > 0, either space Ω(log |A| · logr |X|) or
time |A|Ω(1) is required. This matches the natural upper bounds asymptotically over a wide range
of learning problems.

As applications, we focus on problems of learning polynomials of varying degrees over finite
fields. For matrices M associated with polynomials over F2, the property of the matrices MT M
required to bound the amplication curves for M correspond to properties of the weight distribution
of Reed-Muller codes over F2. For quadratic polynomials, this weight distribution is known exactly.
In the case of higher degree polynomials, bounds on the weight distribution of such codes, or more
precisely on the bounds on the bias of random degree d polynomials over F2 of Ben-Eliezer et al.
(2012) are sufficient to let us show that learning polynomials of degree at most d over Fn

2 from
random inputs with probability 2−Ω(n/d) either requires space Ω(nm/d) or time 2Ω(n/d).

We also analyze learning problems for the case of prime fields Fp for p odd using our multival-
ued techniques involving complex matrices. For Fp, even the cases of linear and affine polynomials
are new. We relate the norm amplification curves of the associated matrices to bounds on the bias
of random degree d polynomials over Fp. We also give a precise analysis of the bias of the set
of quadratic polynomials over Fn

p to derive tight time-space tradeoff lower bounds for learning
them. For larger degrees we apply bounds on the bias that we recently proved in a companion
paper (Beame et al., 2018b).

Related work: Independently and contemporaneously with our preliminary version (Beame et al.,
2017), Garg et al. (2017) proved closely related results to ours for the case of binary labels. The fun-
damental techniques are similarly grounded in the approach of Raz (2017). At the very high-level,
they prove very similar structural properties of the matrix M, namely, they show that it is an “L2

two-source extractor” which can be seen to be equivalent to bounding our norm amplification curve
for learning matrices. More precisely, their “almost orthogonality property” essentially corresponds
to upper bounding Wκ(M∗M) for some threshold κ (see Definition 9 and Lemma 10). However,
since we use duality explicitly, our proof seems more amenable to extensions, particularly, when
we have more structure in the learning matrix M. Subsequently, Garg et al. (2018) were also able
to allow multivalued labels by extending the extractor approach to permit correlations between the
sample inputs and the concept. Our full paper appears as Beame et al. (2018a).

2. Branching programs for learning

In order to be able to solve the learning problem given concept class X, sample space of inputs A
and labelling function L on A×X exactly we require that the learning function L have the property
that for all x 6= x′ ∈ X there exists an a ∈ A such that L(a, x) 6= L(a, x′). Note that the set
{0, 1, . . . , r− 1} of labels allows us to model any learning situation in which r different labels are
possible.
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Following Raz (2016), the time and space of a learner are modelled simultaneously by ex-
pressing the learner’s computation as a layered branching program: a finite rooted directed acyclic
multigraph with every non-sink node having outdegree r|A|, with one outedge for each (a, b) with
a ∈ A and b ∈ {0, 1, . . . , r− 1} that leads to a node in the next layer. Each sink node v is labelled
by some x′ ∈ X which is the learner’s guess of the value of the concept x. (In the case of prediction
we allow the sink label to be an arbitrary function from A to {0, 1, . . . , r − 1} denoting the best
prediction of the algorithm for each a ∈ A.)

The space S used by the learning branching program is the log2 of the maximum number of
nodes in any layer and the time T is the length of the longest path from the root to a sink.

The samples given to the learner (a(1), b(1)), (a(2), b(2)), . . . based on uniformly randomly cho-
sen a(1), a(2), . . . ∈ A and a concept x ∈ X determines a (randomly chosen) computation path in
the branching program. When we consider computation paths we include the concept x in their
description. The (expected) success probability of the learner is the probability for a uniformly ran-
dom concept x ∈ X that a random computation path given concept x reaches a sink node v with
label x′ = x (or with sufficiently good predictions on randomly chosen a ∈ A).

Progress towards identification Following Moshkovitz and Moshkovitz (2017) and Raz (2017)
we measure progress towards identifying x ∈ X using the “expectation 2-norm” over the uniform
distribution: For any set S, and f : S→ R, define ‖ f ‖2 =

(
Es∈RS f 2(s)

)1/2
= (∑s∈S f 2(s)/|S|)1/2.

Define ∆X to be the space of probability distributions on X. Consider the two extremes for the ex-
pectation 2-norm of elements of ∆X: If P is the uniform distribution on X, then ‖P‖2 = |X|−1.
This distribution represents the learner’s knowledge of the concept x at the start of the branching
program. On the other hand if P is point distribution on any x′, then ‖P‖2 = |X|−1/2.

For each node v in the branching program, there is an induced probability distribution on X,
P′x|v which represents the distribution on X conditioned on the fact that the computation path passes
through v. It represents the learner’s knowledge of x at the time that the computation path has
reached v. Intuitively, the learner has made significant progress towards identifying the concept x if
‖P′x|v‖2 is much larger than |X|−1, say ‖P′x|v‖2 > |X|δ/2 · |X|−1 = |X|−(1−δ/2).

The general idea will be to argue that for any fixed node v in the branching program that is
at a layer t that is |A|o(1), the probability over a randomly chosen computation path that v is the
first node on the path for which the learner has made significant progress is |X|−Ω(logr |A|). Since
by assumption of correctness the learner makes significant progress with at least |X|−ε probability,
there must be at least |X|Ω(logr |A|) such nodes and hence the space must be Ω(log |X| logr |A|).

Given that we want to consider the first vertex on a computation path at which significant
progress has been made, it is natural to truncate a computation path at v if significant progress
has been already been made at v (and then one should not count any path through v towards the
progress at some subsequent node w). Following Raz (2017), for technical reasons we will also
truncate the computation path in other circumstances: if the concept x has too high probability at
v, or if the next edge is labelled by a pair (a, b) for which the value on input a of random concepts
whose computation path reaches v is significantly biased away from the uniform distribution on
{0, 1 . . . , r− 1}.

Like Raz (2017), we use an analytic approach to understanding the progress and the bias. In Raz
(2017), only binary feedback is possible and progress is analyzed in terms of the matrix properties
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of a learning matrix M given by M(a, x) = (−1)L(a,x), which is viewed as the learning problem
specification. This form is particularly convenient since it allows one to represent the predictability
of outcomes under a distribution P on X in terms of a matrix vector product. That is, (M · P)(a) =
Ex∼P[(−1)L(a,x)] is the expected bias of a concept distributed according to P on input a.

It would be natural to try to extend this analytic approach for r > 2 by replacing (−1)L(a,x)

by ωL(a,x) where ω = e2πi/r is a primitive r-th root of unity. However, for r > 3, simply having
Ex∈RX[ω

f (x)] small does not imply that f is close to uniformly distributed on {0, 1, . . . , r − 1}.
Nonetheless, by setting gk = Prx∈RX[ f (x) = k] we can apply the following proposition, which
is a standard method using exponential sums, to show that bounding |Ex∈RX[ω

j· f (x)]| for all j ∈
{1, . . . , r− 1} is sufficient to show that f is close to uniformly distributed.

Proposition 1 Suppose that ∑r−1
k=0 gk = 1 and define g(z) = ∑r−1

k=0 gkzk. If |g(ω j)| < ε for all
j ∈ {1, . . . , r− 1} then for all k ∈ {0, 1, . . . , r− 1}, |gk − 1

r | 6 ε.

Therefore, instead of the single ± matrix M given by M(a, x) = (−1)L(a,x), we will analyze
the learning problem given by L using r − 1 different3 complex matrices M(j) ∈ CA×X for j ∈
{1, . . . , r − 1} given by M(j)(a, x) = ω j·L(a,x). We now define the probability distributions and
truncation process for computation paths inductively as follows:

Definition 2 We define probability distributions Px|v ∈ ∆X and the (δ, α, γ)-truncation of the
computation paths inductively as follows:

• If v is the root, then Px|v is the uniform distribution on X.

• (Significant Progress) If ‖Px|v‖2 > |X|−(1−δ/2) then truncate all computation paths at v. We
call vertex v significant in this case.

• (High Probability) Truncate the computation paths at v for all concepts x′ for whichPx|v(x′) >
|X|−α. Let High(v) be the set of such concepts.

• (High Bias) Truncate any computation path at v if it follows an outedge e of v with label (a, b)
for which |(M(j) · Px|v)(a)| > |A|−γ for some j ∈ {1, . . . , r− 1}. That is, we truncate the
paths at v if the label outcome for the next sample for a ∈ A is too predictable given the
knowledge that the path was not truncated previously and arrived at v.

• If v is not the root then define Px|v to be the conditional probability distribution on x over all
computation paths that have not previously been truncated and arrive at v.

For an edge e = (v, w) of the branching program, we also define a probability distribution Px|e ∈
∆X, which is the conditional probability distribution on X induced by the truncated computation
paths that pass through edge e.

With this definition, it is no longer immediate from the assumption of correctness that the trun-
cated path reaches a significant node with at least |A|−ε probability. However, we will see that a
single assumption about the matrices M(j) will be sufficient to prove both that this holds and that
the probability is |X|− logr |A| that the path reaches any specific node v at which significant progress
has been made.

3. In Proposition 1 one can observe that |g(ω j)| = |g(ωr−j)| so d(r− 1)/2ematrices suffice, but we find it convenient
to argue using all r− 1 matrices; however, this does imply that a single matrix suffices when r = 3.
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3. Norm amplification by matrices on the positive orthant

By definition, for P ∈ ∆X, and M ∈ CA×X, ‖M · P‖2
2 = Ea∈R A[|(M · P)(a)|2]. Observe that for

P = Px|v and M = M(j) for j ∈ {1, . . . , r− 1}, the values |(M(j) ·Px|v)(a)| are the quantities that
we test to determine whether an edge labelled a is a high bias edge that causes the truncation of the
computation path. Therefore ‖M(j) · Px|v‖2

2 is the expected square of this bias value for uniformly
random inputs at v.

If we have not learned the concept x, we would not expect to be able to predict its value on a
random input; moreover, since any path that would follow a high bias input is truncated, it is essen-
tial to argue that ‖M(j) · Px|v‖2 remains small at any node v where there has not been significant
progress.

In Raz (2017) there is a single ±1 matrix M and ‖M · Px|v‖2 is bounded using the matrix
norm ‖M‖2 given by ‖M‖2 = sup f :X→R

f 6=0
‖M · f ‖2/‖ f ‖2, where the numerator is an expectation

2-norm over A and the denominator is an expectation 2-norm over X. Thus ‖M‖2 =
√
|X|/|A| ·

σmax(M), where σmax(M) is the largest singular value of M and
√
|X|/|A| is a normalization

factor.
In the case of the matrix M associated with parity learning, |A| = |X| = 2n and all the singular

values are equal to
√
|X| so ‖M‖2 =

√
|X| = 2n/2. With this bound, if v is not a node of

significant progress then ‖Px|v‖2 6 2−(1−δ/2)n and hence ‖M · Px|v‖2 6 2−(1−δ)n/2 which is
1/|A|(1−δ)/2 and hence small.

However, even in the case of learning quadratic functions over F2, the largest singular value of
the matrix M is still

√
|X| (the uniform distribution on X is a singular vector) and so ‖M‖2 =

|X|/
√
|A|. But in that case, when ‖Px|v‖2 is |X|−(1−δ/2) we conclude that ‖M‖2 · ‖Px|v‖2 is at

most |X|δ/2/
√
|A| which is much larger than 1 and hence a useless bound on ‖M · Px|v‖2.

Indeed, the same kind of problem occurs in using the method of Raz (2017) for any learning
problem for which |A| is |X|o(1): If v is a child of the root of the branching program at which the
more likely outcome b of a single randomly chosen input a ∈ A is remembered, then ‖Px|v‖2 6√

2/|X|. However, in this case |(M · Px|v)(a)| = 1 and so ‖(M · Px|v)‖2 > |A|−1/2. It follows
that ‖M‖2 > |X|/(2|A|)1/2 and when |A| is |X|o(1) the derived upper bound on ‖M · Px|v′‖2 at
nodes v′ where ‖Px|v′‖2 > 1/|X|1−δ/2 will be larger than 1 and therefore useless.

We need a more precise way to bound ‖M · P‖2 as a function of ‖P‖2 than using the single
number ‖M‖2. To do this we will need to use the fact that P ∈ ∆X – it has a fixed `1 norm and
(more importantly) it is non-negative and therefore lies in the positive orthant.

Definition 3 For M ∈ CA×X the 2-norm amplification curve of M, τM : [0, 1]→ R is given by

τM(δ) = sup
P∈∆X

‖P‖261/|X|1−δ/2

log|A|(‖M · P‖2).

In other words, whenever ‖P‖2 is at most |X|−(1−δ/2), ‖M · P‖2 is at most |A|τM(δ). To prove
our lower bounds we will bound the norm amplification curves τM(j) for all j ∈ {1, . . . , r− 1}.
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4. Theorems

Our general lower bound for learning problems over arbitrary finite label sets is given by following
theorem.

Theorem 4 There are constants c1, c2, c3 > 0 such that the follow holds. Let L : A × X →
{0, 1, . . . , r− 1} be a labelling function and for j = 1, · · · , r− 1 define the matix M(j) ∈ CA×X by
M(j)(a, x) = ω j·L(a,x) where ω = e2πi/r and assume4 that |A| 6 |X|. Suppose that for 0 < δ′ < 1
we have τM(j)(δ′) 6 −γ′ < 0 for all j ∈ {1, · · · , r − 1}. Then, for ε > c1 min(δ′, γ′) > 0,
β > c2 min(δ′, γ′) > 0, and η > c3 δ′ γ′ > 0, any algorithm that solves the learning problem
for L with success probability at least |A|−ε or advantage > |A|−ε/2 either requires space at least
η log2 |A| logr |X| or time at least |A|β.

Applications to learning polynomials There are many potential applications of the above the-
orem but for this paper we focus learning polynomials from their evaluations over finite fields of
various sizes. The bounds are derived using the semidefinite programming approach given in Sec-
tion 6 together with analyses for polynomials given in the full paper (Beame et al., 2018a).

Learning polynomials over F2 We first consider the case of polynomials over F2 which yield
a binary labelling set. In this case ω = −1 and there is only one matrix M whose entries are
M(a, x) = (−1)L(a,x) as in Raz (2017).

The case of linear functions over F2 is just the parity learning problem. For learning higher
degree polynomials over F2 we obtain the following bounds on the norm amplification curves of
their associated matrices:

Theorem 5 The following properties hold:
(a) For all δ ∈ [0, 1], the matrix M for learning quadratic functions over Fn

2 satisfies
τM(δ) 6 −(1−δ)

8 + 5+δ
8n .

(b) For any ζ > 0, there are constants δ, γ with 0 < δ < 1/2 and γ > 0 such that for d 6 (1− ζ)n
the matrix M for learning functions of degree 6 d over Fn

2 satisfies τM(δ) 6 −γ/d.

The case for quadratic polynomials over F2 follows from properties of the weight distribution of
Reed-Muller codes RM(n, 2) shown by Sloane and Berlekamp (1970) and McEliece (1967). The
case for higher degree polynomials over F2 follows from tail bounds on the bias of F2 polynomials
given by Ben-Eliezer et al. (2012).

Using these bounds together with Theorem 4 yields the following:

Theorem 6 There are constants ε, ζ > 0 such that the following hold:
(a) Let m = (n+1

2 ) for positive integer n. Any algorithm for learning quadratic functions over Fn
2

that succeeds with probability at least 2−εn requires space Ω(nm) or time 2Ω(n).
(b) Let n > 0 and d > 0 be integers such that d 6 (1− ζ) · n and let m = ∑d

i=0 (
n
i ). Any algorithm

for learning polynomial functions of degree at most d over Fn
2 that succeeds with probability at least

2−εn/d requires space Ω(nm/d) or time 2Ω(n/d).

4. We could write the statement of the theorem to apply to all A and X by replacing each occurrence of |A| in the lower
bounds with min(|A|, |X|). When |A| > |X| and r = 2, we can use ‖M‖2 to bound τM(δ′) which yields the bound
given in Raz (2017)
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These bounds are tight for constant d since they match the resources used by the natural learn-
ing algorithms described in the introduction up to constant factors in the space bound and in the
exponent of the time bound.

Learning polynomials over Fp for odd prime p. The following theorem bounds the norm am-
plification curves for polynomials of various degrees over odd prime fields.

Theorem 7 Let p be an odd prime. For all δ ∈ (0, 1) and for all j ∈ F∗p,
(a) the matrices M(j) for learning linear functions over Fn

p satisfy τM(j)(δ) 6 − 1−δ
2 ,

(b) the matrices M(j) for learning affine functions over Fn
p satisfy τM(j)(δ) 6 − 1−δ

2 + δ
2n ,

(c) the matrices M(j) for learning quadratic functions over Fn
p satisfy τM(j)(δ) 6

−(1−δ)
4 + 2

n , and
(d) for any 0 < ζ < 1/2, there are δ, γ with 0 < δ < 1/2 and γ > 0 such that for d 6 ζn, the
matrices M(j) for learning functions of degree 6 d over Fn

p satisfy τM(j)(δ) 6 −γ/d.

Parts (a) and (b) of this theorem are immediate from matrix norm bounds. The proof of part (c)
involves a tight structural characterization of quadratic polynomials over Fp and is in the full paper.
The proof of part (d) for d > 3 uses tail bounds on the bias of polynomials of degree at most d over
Fp recently proved by the authors in a companion paper (Beame et al., 2018b).

Using the above bounds on the norm amplification curves together with Theorem 4 we immedi-
ately obtain the time-space tradeoff lower bounds in following theorem.

Theorem 8 Let p be an odd prime. There is an ε > 0 such that the following hold:
(a) Any algorithm for learning linear or affine functions over Fn

p from their evaluations that succeeds
with probability at least p−εn requires time pΩ(n) or space Ω(n2 log p).
(b) Let m = (n+2

2 ). Any algorithm for learning quadratic functions over Fn
p that succeeds with

probability at least p−εn requires space Ω(nm log p) or time pΩ(n).
(c) There are constants ζ, ε > 0 such that for 3 6 d 6 (1− ζ) · n and for m equal to the number of
monomials of degree at most d over Fn

p, any algorithm for learning polynomial functions of degree
at most d over Fn

p that succeeds with probability at least p−εn/d requires space Ω(log p · nm/d)
or time pΩ(n/d).

5. Lower Bound for Learning Finite Functions from Samples

The full proof of Theorem 4 is given in the full paper. We sketch the main ideas here. For the
0 < δ′ < 1 given in the theorem we define the significance threshold parameter δ = δ′/6, the bias
threshold to |A|−γ for γ = minj(−τM(j)(δ′)/2) > 0, and consider any branching program B of
length < |A|β and success probability at least |A|−β/2 for β = min(δ, γ)/8. We prove that there
must be at least |X|Ω(δγ logr |A|) = |A|Ω(δγ logr |X|) significant nodes in B. We do so by proving that
(1) truncated paths reach significant vertices with probability at least |A|−O(β) but
(2) for any particular significant vertex s in B, the probability that a random truncated computation
path taken by a random concept x ends at s with probability |X|−Ω(δγ logr |A|).

The proof of (1) is easy and relies on the fact that prior to reaching a significant vertex, ‖Px|v‖2 <

|X|−(1−δ)/2 and τM(j)(δ) 6 −2γ < 0, so ‖M(j) · Px|v‖2 is small and hence the bias for a random
input a is overwhelming likely to be smaller than |A|−γ.

9
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(2) follows according to a delicate progress argument where we measure the progress towards s
at a vertex v (or by following an edge e) as

ρ(v) =
〈Px|v,Px|s〉
〈Px|s,Px|s〉

, respectively ρ(e) =
〈Px|e,Px|s〉
〈Px|s,Px|s〉

. (1)

Clearly ρ(s) = 1 and we can show that the start vertex v0 of B has ρ(v0) 6 |X|−δ. We denote
the set of vertices of B in the t-th layer by Vt. We overload this notation by identifying it with
a probability distribution that gives each vertex v ∈ Vt the probability that the random truncated
computation path reaches v in layer t or ⊥ if it never reaches the t-th layer. The progress at layer t
is then measured as

Φt = Ev∼Vt [(ρ(v))
γ logr |A|] (2)

where we extend ρ to define ρ(⊥) = 0. By definition Φ0 = |X|−δγ logr |A|. Since any path that
reaches (and therefore ends at) s will contribute ρ value 1, we obtain the probability bound by
showing that a high moment of ρ for random v ∼ Vt grows slowly with t and so is still extremely
small. More precisely, for every t with 1 6 t 6 |A|β − 1, we show

Φt 6 Φt−1 · (1 + |A|−2β) + |X|−γ logr |A|, (3)

which yields the claimed lower bound. The argument requires an intermediate notion of progress
in transferring from vertices to edges and back to vertices. If Et is the set of edges from Vt−1

to Vt (together with its overloaded probability distribution), we can define an analogous potential
Φ′t = Ee∼Et [(ρ(e))

γ logr |A|]. Merging edges into vertices loses information and we easily obtain
Φt 6 Φ′t and it remains to measure the growth from vertices Φt to edges Φ′t+1, which of course is
where new information is learned. This follows from the key progress lemma which shows that for
v ∈ Vt−1,

∑
e∈Γout(v)

Pr[e|v] · 〈Px|e,Px|s〉γ logr |A| 6 (1 + |A|−2β) · 〈Px|v,Px|s〉γ logr |A| + |X|−γ logr |A|. (4)

The second term in the sum covers the case when 〈Px|e,Px|s〉 shows correlation worse than the uni-
form distribution, which could be improved dramatically in trivial ways and it is the (1 + |A|−2β)

multiplicative factor bound that is the important case. In this case, we show that up to a factor biased
by a small amount away from 1, if edge e is associated with test a then 〈Px|e,Px|s〉 is essentially
a factor (1 + ∑r−1

j=1 |(M(j) · P f )(a)|) larger than 〈Px|v,Px|s〉 where P f is a distribution that (essen-
tially) gives points x′ probability mass given by their proportional contribution of Px|v(x′)Px|s(x′)
to 〈Px|v,Px|s〉. One can show that ‖P f ‖2 itself is small relative to ‖Px|s‖2, which can’t yet be too
large since s is barely significant, and so again we use the fact that the norm amplification τM(j)(δ)

is small and deduce that ‖M(j) · P f ‖2 is tiny, which implies that each |(M(j) · P f )(a)| is almost
surely tiny. Plugging these in to the formula for the increase in the expected correlation overall all
edges e ∈ Γout(v) and analyzing the expectation of its higher power yields (4) and hence the bound
on Φ′t+1 and therefore Theorem 4.
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6. An SDP Relaxation for Norm Amplification on the Positive Orthant

For a matrix M ∈ CA×X, τM(δ) = sup
P∈∆X

‖P‖261/|X|1−δ/2

log|A|(‖M · P‖2).

That is, τM(δ) = 1
2 log|A|OPTM,δ where OPTM,δ is the optimum of the following quadratic pro-

gram:
Maximize ‖M · P‖2

2 = 〈M · P, M · P〉,
subject to: ∑

i∈X
Pi = 1,

∑
i∈X

P2
i 6 |X|δ−1,

Pi > 0 for all i ∈ X.

(5)

Instead of attempting to solve (5), presumably a difficult quadratic program, we consider the fol-
lowing semidefinite program (SDP):

Maximize 〈M∗M, U〉 · |X|2/|A|
subject to:

[V] U � 0,

[w] ∑
i,j∈X

Uij = 1,

[z] ∑
i∈X

Uii 6 |X|δ−1,

Uij ∈ R, Uij > 0 for all i, j ∈ X.

(6)

Recall that M∗ is the conjugate transpose of M. Note that for any P ∈ ∆X achieving the optimum
value of (5) the positive semidefinite matrix U = P · PT has the same value in (6) (where the
|X|2/|A| factor accounts for the difference in scaling factors based on the dimensions for the two
expectation inner products), and hence (6) is an SDP relaxation of (5).

But this is not a standard SDP, since M is over C and M∗M might contain complex en-
tries. In order to apply techniques on real matrices, we define N : X × X → R as N(x, x′) =

Re(M∗M(x, x′)), that is, N is the real part of M∗M. Then we obtain a (real) definite program that
is identical to (6), except that M∗M is replaced by N and the condition Uij ∈ R is superfluous. The
key observation is that (6) and this real program (not shown) have the same optimal value. This is
because for any U ∈ RX×X,
|X|2〈M∗M, U〉 = ∑

i,j
(M∗M)ij ·Uij = ∑

ij
Re((M∗M)ij) ·Uij + i ·∑

x,x′
Im((M∗M)ij) ·Uij

Since M∗M is a Hermitian matrix, we have (M∗M)ij = (M∗M)ji. But U is real symmetric, so we
have ∑i,j Im((M∗M)ij) ·Uij = 0, namely

|X|2〈M∗M, U〉 = ∑
i,j

Re((M∗M)ij) ·Uij = |X|2〈N, U〉

and we only need to consider the real parts.
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In order to upper bound the value of (6), we consider the dual program to this real SDP which
can be written as:

Minimize w + z · |X|δ · |X|−1

subject to: V � 0,

zI + wJ > V + N/|A|,
z > 0.

(7)

where I is the identity matrix and J is the all 1’s matrix over X× X.
Any dual solution of (7) yields an upper bound on the optimum of (6) and hence OPTM,δ and

τM(δ). To simplify the complexity of analysis we restrict ourselves to considering semidefinite
matrices V that are suitably chosen Laplacian matrices. For any set S in X × X and any α : S →
R+ the Laplacian matrix associated with S and α is defined by L(S,α) := ∑(i,j)∈S α(i, j)Lij where
Lij = (ei − ej)(ei − ej)

T for the standard basis {ei}i∈X . Intuitively, in the dual SDP (7), by adding
matrix V = LS,α for suitable S and α depending on M we can shift weight from the off-diagonal
entries of N to the diagonal where they can be covered by the z + w entries on the diagonal rather
than being covered by the w values in the off-diagonal entries. This will be advantageous for us since
the objective function has much smaller coefficient for z which helps cover the diagonal entries than
coefficient for w, which is all that covers the off-diagonal entries.

Definition 9 Suppose that N ∈ RX×X is a symmetric matrix. For κ ∈ R+, define
Wκ(N) = max

i∈X
∑

j∈X: Ni,j>κ

(Ni,j − κ).

The following lemma is the basis for our bounds on τM(δ).

Lemma 10 Let κ ∈ R+. Then OPTM,δ 6 (κ + Wκ(N) · |X|δ−1)/|A|.

Proof For each off-diagonal entry of N with N(i, j) > κ, include matrix Lij with coefficient
(N(i, j) − κ)/|A| in the sum for the Laplacian V. By construction, the matrix V + N/|A| has
off-diagonal entries at most κ/|A| and diagonal entries at most (κ +Wκ(N))/|A|. The solution to
(7) with w = κ/|A| and z = Wκ(N)/|A| is therefore feasible, which yields the bound as required.

It may not be easy to bound Wκ(N) directly, since the real part of M∗M may not have good
structure. Fortunately, we have the following measure:

Definition 11 Let M ∈ CA×X be a complex matrix. For κ ∈ R+, define
W̃κ(M) = max

i∈X
∑

j∈X: |(M∗M)i,j|>κ

(|(M∗M)i,j| − κ).

Proposition 12 Let κ ∈ R+. Then Wκ(N) 6 W̃κ(M)

Proof Whenever Ni,j > κ, we have |(M∗M)i,j| > Ni,j > κ. Moreover, this gives |(M∗M)i,j| −
κ > Ni,j − κ. Then the statement follows the two definitions.

For specific matrices M, we obtain the required bounds on τM(δ) < 0 for some 0 < δ < 1 by
showing that we can set κ = |A|γ for some γ < 1 and obtain that Wκ(N) or W̃κ(M) is at most
κ · |X|γ′ for some γ′ < 1.
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