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Abstract
We prove the hardness of weakly learning halfspaces in the presence of adversarial noise using
polynomial threshold functions (PTFs). In particular, we prove that for any constants d ∈ Z+ and
ε > 0, it is NP-hard to decide: given a set of {−1, 1}-labeled points in Rn whether (YES Case)
there exists a halfspace that classifies (1 − ε)-fraction of the points correctly, or (NO Case) any
degree-d PTF classifies at most (1/2 + ε)-fraction of the points correctly. This strengthens to all
constant degrees the previous NP-hardness of learning using degree-2 PTFs shown by Diakonikolas
et al. (2011). The latter result had remained the only progress over the works of Feldman et
al. (2006) and Guruswami et al. (2006) ruling out weakly proper learning adversarially noisy
halfspaces.
Keywords: Learning, Halfspaces, PTFs, Hardness

1. Introduction

Given a distribution D over {−1, 1}-labeled points in Rn, the accuracy of a classifier function
f : Rn → {−1, 1} is the probability that f(x) = ` for a random point-label pair (x, `) sampled
from D. A concept class C is said to be learnable by hypothesis class H if there is an efficient
procedure which, given access to samples from any distribution D consistent with some f ∈ C,
generates with high probability a classifier h ∈ H of accuracy approaching that of f for D. When
H can be taken as C itself, the latter is said to be properly learnable. The focus of this work is
one of the simplest and most well-studied concept classes: the halfspace which maps x ∈ Rn to
sign(〈v, x〉 − c) for some v ∈ Rn and c ∈ R. The study of halfspaces goes back several decades
to the development of various algorithms in artificial intelligence and machine learning such as the
Perceptron (Rosenblatt, 1962; Minsky and Papert, 1969) and SVM (Cortes and Vapnik, 1995). Since
then, halfspace-based classification has found applications in many other areas, such as computer
vision (Murphy, 1990) and data-mining (Rükert et al., 2004).

It is known that a halfspace can be properly learnt by using linear programming along with a
polynomial number of samples to compute a separating hyperplane (Blumer et al., 1989). In noisy
data however, it is not always possible to find a hyperplane separating the differently labeled points.
Indeed, in the presence of (adversarial) noise, i.e. the agnostic setting, proper learning of a halfspace
to optimal accuracy with no distributional assumptions was shown to be NP-hard by Johnson and
Preparata (1978). Subsequent results showed the hardness of approximating the accuracy of prop-
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erly learning a noisy halfspace to constant factors: 262
261 − ε by Amaldi and Kann (1998), 418

415 − ε by
Ben-David et al. (2003), and 85

84 − ε by Bshouty and Burroughs (2006). These results were consid-
erably strengthened independently by Feldman et al. (2009) and by Guruswami and Raghavendra
(2009)1 who proved hardness of even weakly proper learning a noisy halfspace, i.e. to an accuracy
beyond the random threshold of 1/2. This implies an optimal (2 − ε)-inapproximability in terms
of the learning accuracy. Building upon these works Feldman et al. (2012) showed that the same
hardness holds for learning noisy monomials (OR functions over the boolean hypercube) using
halfspaces.

At this point, it is natural to ask whether the halfspace learning problem remains hard if the
classifier is allowed to be from a larger class of functions, i.e., non-proper learning. In particular,
consider the class of degree-d polynomial threshold functions (PTF) which are given by mapping
x ∈ Rn to sign(P (x)) where P is a degree-d polynomial. They generalize halfspaces a.k.a. linear
threshold functions (LTFs) which are degree-1 PTFs and are very common hypotheses in machine
learning because they are output by kernelized models (e.g., perceptrons, SVM’s, kernel k-means,
kernel PCA, etc.) when instantiated with the polynomial kernel. From a complexity viewpoint,
PTFs were studied by Diakonikolas et al. (2011) who showed the hardness of weakly proper learn-
ing a noisy degree-d PTF for any constant d ∈ Z+, assuming Khot’s Unique Games Conjecture
(UGC) (Khot, 2002). On the other hand, proving the hardness of weakly learning noisy halfspaces
using degree-d PTFs has turned out to be quite challenging. Indeed, the only such result is by Di-
akonikolas et al. (2011) who showed the corresponding hardness of learning using a degree-2 PTF.
With no further progress till now, the situation remained unsatisfactory.

In this work, we significantly advance our understanding by proving the hardness of weakly
learning an ε-noisy halfspace by a degree-d PTF for any constant d ∈ Z+. Our main result is
formally stated as follows.

Theorem 1 (This work) For any constants δ > 0, and d ∈ Z+, it is NP-hard to decide whether a
given set of {−1, 1}-labeled points in Rn satisfies:

YES Case. There exists a halfspace that correctly classifies (1− δ)-fraction of the points, or
NO Case. Any degree-d PTF classifies at most (1/2 + δ)-fraction of the points correctly.

The NO case can be strengthened to rule out any function of constantly many degree-d PTFs.

To place our results in context, we note that algorithmic results for learning noisy halfspaces are
known under assumptions on the distribution of the noise or the pointset. In the presence of random
classification noise, Blum et al. (1998) gave an efficient learning algorithm approaching optimal ac-
curacy, which was improved by Cohen (1997) who showed that in this case the halfspace can in fact
be properly learnt. For certain well behaved distributions, Kalai et al. (2005) showed that halfspaces
can be learnt even in the presence of adversarial noise. Subsequent works by Klivans et al. (2009),
and Awasthi et al. (2017) improved the noise tolerance and introduced new algorithmic techniques.
Building upon them, Daniely (2015) recently obtained a PTAS for minimizing the hypothesis error
with respect to the uniform distribution over a sphere. Several of these learning algorithms use half-
spaces and low degree PTFs (or simple combinations thereof) as their hypotheses, and one could
conceivably apply their techniques to the setting without any distributional assumptions. Our work
provides evidence to the contrary.

1. The reduction of Guruswami and Raghavendra (2009) works even for the special case when the points are over the
boolean hypercube.
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1.1. Previous related work

Hypothesis-independent intractability results for learning for halfspaces are also known, but they
make average-case or cryptographic hardness assumptions which seem considerably stronger than
P 6=NP. Specifically, for exactly learning noisy halfspaces, such results have been shown in the
works of Feldman et al. (2009), Kalai et al. (2005), Klivans and Kothari (2014), and Daniely and
Shalev-Shwartz (2016). In a recent interesting work, Daniely (2016) rules out weakly learning
noisy halfspaces by efficient algorithms assuming the intractability of strongly refuting random K-
XOR formulas. In particular, their reduction ensures that random instances of K-XOR map to
random instances of learning halfspaces. Since the number of different hypotheses that an efficient
algorithm can output can be upper bounded as a function of its running time, by a union bound
argument, it follows that no hypothesis in the hypothesis class can give non-trivial guarantees under
the random distribution. The hardness is based on a non-standard average-case assumption that for
some particular clause density, the problem of distinguishing between nearly satisfiable K-XOR
formulas and uniformly random ones is computationally hard. As a complexity theoretic hardness
result, Theorem 1 has arguably broader consequences by showing that a polynomial time algorithm
for weakly learning noisy halfspaces using constant degree PTFs yields polynomial time algorithms
for all problems in NP, rather than only for refuting randomK-XOR formulas as implied by Daniely
(2016)’s result (though the latter is applicable to learning algorithms with unrestricted hypotheses).

On the other hand, Applebaum et al. (2008) have shown that hypothesis-independent hardness
results under standard complexity assumptions would imply a major leap in our current understand-
ing of complexity theory and are unlikely to be obtained for the time being. Therefore, any study
(such as ours) of the standard complexity-theoretic hardness of learning halfspaces would probably
need to constrain the hypothesis.

A natural generalization of the learning halfspaces problem is that of learning intersections of
two or more halfspaces. Observe that unlike the single halfspace, properly learning the intersection
of two halfspaces without noise does not in general admit a separating hyperplane based solution.
Indeed, this problem was shown to be NP-hard by Blum and Rivest (1993), later strengthened
by Alekhnovich et al. (2008) to rule out intersections of constantly many halfspaces as hypotheses.
The corresponding hardness of even weak learning was established by Khot and Saket (2011), while
Klivans and Sherstov (2009) proved under a cryptographic hardness assumption the intractability
of learning the intersection of nε halfspaces. Algorithms for learning intersections of constantly
many halfspaces have been given in the works of Blum and Kannan (1997) and Vempala (1997) for
the uniform distribution over the unit ball, Klivans et al. (2004) for the uniform distribution over
the boolean hypercube, and by Arriaga and Vempala (2006) and Klivans and Servedio (2008) for
instances with good margin, i.e. the points being well separated from the hyperplanes.

As was the case for learning a single noisy halfspace, there is no known NP-hardness for learning
intersections of two halfspaces using (intersections of) degree-d PTFs. This cannot, however, be
said of the finite field analog of learning halfspaces, i.e. the problem of learning noisy parities over
F[2]. While Håstad’s seminal work Håstad (2001) itself rules out weakly proper learning a noisy
parity over F[2], later work of Gopalan et al. (2010) showed the hardness of learning an ε-noisy
parity by a degree-d PTF to within (1 − 1/2d + ε)-accuracy – which, however, is not optimal for
d > 1. Shortly thereafter, Khot (2009) observed that Viola’s pseudo-random generator Viola (2009)
fooling degree-d PTFs can be combined with coding-theoretic inapproximability results to yield
optimal lower bounds for all constant degrees d. From the algorithmic perspective, one can learn an
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ε-noisy parity over the uniform distribution in 2O(n/ logn)-time as shown by Feldman et al. (2009)
and Blum et al. (2003). For general distributions, Kalai et al. (2008) gave a non-proper 2O(n/ logn)-
time algorithm achieving an accuracy close to optimal.

Several of the inapproximability results mentioned above, e.g. those of Guruswami and Raghaven-
dra (2009), Gopalan et al. (2010), Khot and Saket (2011), Feldman et al. (2012) and Diakonikolas
et al. (2011), follow the probabilistically checkable proof (PCP) test based approach for their hard-
ness reductions. While our result builds upon these methods, in the remainder of this section, we
give an overview of our techniques and describe the key enhancements which allow us to overcome
some of the technical limitations of previous hardness reductions.

1.2. Overview of Techniques

For hardness reductions, due to the uniform convergence results of Haussler (1992); Kearns et al.
(1994), it is sufficient to take the optimization version of the learning halfspaces problem which
consists of a set of coordinates and a finite set of labeled points, the latter replacing a random
distribution. A typical reduction (including ours) given a hard instance of a constraint satisfaction
problem (CSP) L over vertex set V and label set [k], defines C := V ×[k] to be the set of coordinates
over R. We let the formal variables Y(w,i) be associated with the coordinate (w, i) ∈ C. The
hypothesis H (the proof in PCP terminology) is defined over these variables. In our case, the proof
will be a degree-d PTF. The PCP test chooses randomly a small set of vertices S of L, and runs a
dictatorship test on S: it tests H on a set of labeled points PS ⊆ RC generated by the dictatorship
test. We desire the following two properties from the test:

• (completeness) if H “encodes” a good labeling for S, then it is a good classifier for PS ,

• (soundness) a good classifier H for PS can be “decoded” into a good labeling for S.

The soundness property is leveraged to show that if H classifies PS for a significant fraction of the
choices S, it can be used to define a good global labeling for L. The CSP of choice in the above
template is usually the Label Cover or the Unique Games problem. While the NP-hardness of Label
Cover is unconditional, its projective constraints seem to present technical roadblocks – also faced
by Diakonikolas et al. (2011) – in analyzing learnability by degree-d (d > 2) PTFs.

Our work overcomes these issues and gives a hardness reduction from Label Cover. The key
ingredient to incorporate the Label Cover projective constraints is a folding over an appropriate
subspace defined by them. This amounts to restricting the entire instance to the corresponding or-
thogonal subspace. Similar folding for analyzing linear forms has been used earlier in the works of
Khot and Saket (2011), Feldman et al. (2012), and Guruswami et al. (2016). We are able to extend
it over degree-d polynomials leveraging the linear-like structure decoded by an appropriate dictator-
ship test. This uses a smoothness property of the constraints (analogous to Khot and Saket (2011);
Feldman et al. (2012); Guruswami et al. (2016)) of the Label Cover instance which is combined
with the dictatorship test – along with folding – to yield the PCP test.

In the rest of this section, we informally describe our dictatorship test, the motivation behind its
design and the key ingredients involved in its analysis. To begin, we present a simple preliminary
dictatorship test P0 over Rk which works for linear thresholds. Of course, the NP-hardness of prop-
erly learning noisy halfspaces is already known (Feldman et al., 2009; Guruswami and Raghavendra,
2009), so this test does not yield anything new. Our purpose is illustrative and we include a sketch
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P0(Rk, η, ε) tests halfspace sign(f(Y )).

1. Sample b ∈ {−1, 1} uniformly at random.

2. Choose a random “noise” subset I ⊆ [k] by including each i independently with proba-
bility ε.

3. For i ∈ [k] \ I, set yi = bη,

4. For i ∈ I, sample yi i.i.d. at random from N(0, 1).

5. Accept iff sign(f(y)) = b.

Figure 1: Dictatorship Test P0

of the arguments of its analysis. Taking ε > 0 as a small constant and η > 0 a small parameter (to
be defined later), the description of P0 is given in Figure 1.

Observe that the linear threshold sign(Yi) for each i ∈ [k] correctly classifies (y, b) with proba-
bility (1− ε). In other words, every dictator corresponds to a good solution.

1.2.1. SOUNDNESS ANALYSIS OF P0

Suppose there exists a linear form f =
∑

i∈[k] f̂iYi (assuming for simplicity f has no constant term)
such that sign(f) passes P0 with probability 1/2+2ξ for some ξ = Ω(1). Using (by now) standard
analytical arguments, we show that there exists i∗ ∈ [k] such that

f̂2i∗ ≥ Ω(1) ·
∑
i∈[k]

f̂2i > 0. (1)

In other words, every good solution f can be decoded into a dictator.

It is not particularly challenging to obtain (1). However, we sketch a systematic proof which
shall be useful when analyzing a more complicated dictatorship test for PTFs.

Call a setting of I good if sign(f) passes the test conditioned on I with probability 1/2 + ξ.
By averaging, it is easy to see that PrI [I is good] ≥ ξ/2. Let us fix such a good I. Without
loss of generality, we may assume that I = {k∗ + 1, . . . , k} and further that k∗ ≥ k/2 by the
Chernoff bound. We now define {W1, . . . ,Wk∗} as a basis for {Yi | i ∈ [k∗]} where W1 :=
(1/k∗)

∑
i∈[k∗] Yi, such that {W1, . . . ,Wk∗} is an orthogonal transformation of {Yi | i ∈ [k∗]} of

the same 1/
√
k∗ norm. Thus, we may rewrite f as:

f =
∑

i∈[k]\[k∗]

f̃iYi +
∑
`∈[k∗]

f `W`. (2)

The variables in the first sum in the RHS of the above are all i.i.d. N(0, 1). Further, it can be seen
that under the test distribution, W1 = bη, and W` = 0 (` = 2, . . . , k∗). Therefore, we may assume
that,

f
2
1 > 0. (3)
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Since the sign of f must flip with that of b with probability Ω(ξ) = Ω(1), one can apply Carbery-
Wright’s Gaussian anti-concentration theorem to show that,∑

i∈[k]\[k∗]

f̃2i ≤ O(η2)f
2
1, (4)

since otherwise, contributions from the first sum of (2) will overwhelm the contribution of W1 to f .
Further, from the definition of {W`}k

∗
`=1, we obtain∑

i∈[k∗]

f̃2i =
1

k∗

∑
`∈[k∗]

f
2
` ≥ f

2
1/k
∗. (5)

Let us now revert to the notation with I = [k] \ [k∗]. Using (5) along with (4), and taking η =
o(ε3/

√
k) one can ensure that, ∑

i∈I
f̃2i ≤

ε

10

∑
i∈[k]

f̃2i , (6)

and from (3) we obtain ∑
i∈[k]

f̃2i > 0. (7)

Note that (6) holds for every good I which is at least ξ/2 fraction of the choices of I. Randomizing
over I, an application of the Chernoff-Hoeffding bound shows that (6) holds only with substantially
smaller probability unless there exists i∗ ∈ [k] such that:

f̃2i∗ ≥
ε3

8

∑
i∈[k]

f̃2i . (8)

The desired bound in (1) now easily follow from (7) and (8). The details are omitted.
The main idea of the above methodical analysis is a natural definition of the W variables using

which we isolate the sign-perturbation bη into a single variable W1! Gaussian anti-concentration
directly lower bounds the squared mass corresponding to W1. Moreover, when transforming back
to the squared mass of Yi (i ∈ [k] \ I), the presence of the heretofore ignored W` (` > 1) terms
can only increase this quantity, as shown in (5). Lastly, the the “decoding list size” does not depend
on the sign-perturbation parameter η which can be taken to be small enough to makes sure that this
size is a constant depending only on the noise parameter ε and the marginal acceptance probability
ξ of the test.

1.2.2. ENHANCING THE DICTATORSHIP TEST FOR DEGREE-d PTFS

Our goal is a reduction proving the hardness of weakly learning noisy halfspaces using degree-d
PTFs. One could hope to utilize the dictatorship test P0 itself for this purpose. Unfortunately, this
presents problems even for d = 5. To see this consider the degree-5 polynomial,

f(Y ) = Y 3
i∗

 ∑
i∈[k]\{i∗}

Y 2
i

 ,
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PCP Test P1(R[k]×[T ], η, ε) tests degree-d PTF sign(P (Y ))

1. Sample {δj | j ∈ [T ]} from the joint Gaussian distribution where the marginals are
N(0, 1), E[δjδj′ ] = −1/(T − 1) for all j 6= j′, and

∑T
j=1 δj = 0.

2. Sample b ∈ {−1, 1} uniformly at random.

3. Sample I ⊆ [k]× [T ] to be a random subset where each (i, j) ∈ [k]× [T ] is added to I
independently with probability ε.

4. For each (i, j) ∈ ([k]× [T ]) \ I, set yij = (
√

(T − 1)/T )δj + bη.

5. Independently for each (i, j) ∈ I, sample yij ∼ N(0, 1).

6. Accept iff sign(P (y)) = b.

Figure 2: Dictatorship Test P1

for some distinguished i∗ ∈ [k]. It is easy to see that sign(f) passes the test with probability close
to 1. However, the distinguished variable Yi∗ appears with a cubic power in f , whereas the folding
approach works well only when Yi∗ occurs as a linear factor of some sub-polynomial. This is due
to the inherently linear nature of the folding constraints. Consequently, when P0 is combined with
a Label Cover instance the analysis becomes infeasible.

Our approach to overcome this bottleneck is for the PCP to test several independently and ran-
domly chosen vertices. For this, the dictatorship test would be on the domain R[k]×[T ] where T is
chosen much larger than the degree d of the PTF to be tested. The space R[k]×[T ] is thought of as
real space spanned by T blocks of k dimensions each. In this case, if the test passes with probability
> 1/2, then there is a way to decode a good label to at least one out of the T blocks. A key step
in our analysis crucially leverages the choice of T to extract out a specific sub-polynomial which
is linear in the variables of one of the T blocks. This is done via an application of the following
lemma which is proved in Appendix F.

Lemma 2 Given a degree-d polynomial of the form (Y1+ · · ·+YT ) ·S(Y1, . . . , YT ), where T > 2d
and S is a degree-(d−1) polynomial, there exist at least T/2 indices j ∈ [T ] such that: for each such
j, the sum of squares of the coefficients corresponding to the terms (in the monomial representation)
linear in Yj is at least c times the sum of squares of coefficients of S, where c := c(T, d) > 0.

In Figure 2, we give a formal description of the Dictatorship test P1 employed by our reduction.
Its analysis builds upon that of P0 above, so we provide a short sketch. Let T = 10d and ε > 0 be
a constant, and η > 0 be parameter to be defined later. Consider the linear threshold given by,

sign

 T∑
j=1

Yijj

 ,

for any ij ∈ [k] (1 ≤ j ≤ T ). It is easy to see that this passes the test with probability at least
(1− εT ). Thus, choosing a dictator for each block yields a good solution for the test.
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For the soundness analysis, as in Section 1.2.1 we fix a good noise set I conditioned on which
the test accepts P with probability at least 1/2+ξ, and Pr[I is good ] ≥ ξ/2. Further, without loss of
generality, we assume that I = ∪Tj=1 ({kj + 1, . . . k} × {j}), where (by Chernoff bound) kj ≥ k/2
for 1 ≤ j ≤ T . For each j, {W1j , . . . ,Wkjj} is defined to be an orthogonal transformation of

{Y1j , . . . , Ykjj} of the same 1/
√
kj norm, where W1j = (1/kj)

∑kj
i=1 Yij . It is easy to see that

W1j = (
√

(T − 1)/T )δj + bη, while W`j = 0 under the test distribution for ` > 1.
Additionally, we also define {U1, . . . , UT } to be an orthonormal transformation of {W11, . . . ,W1T }

where U1 = (1/
√
T )
∑

j=1W1j . Again, it can observed that U1 = (
√
T )bη and U2, . . . , UT are

independent N(0, 1). Using this we write the polynomial P = P ′+Q0 +U1Q1, where P ′ consists
of all the terms which have any W`j , ` > 1 as a factor. Further, Q0 is independent of U1. Since
P ′ = 0 under the distribution we ignore it for now, noting that ‖Q1‖22 = E[Q2

1] > 0, since the test
accepts with probability> 1/2. The first step is to show, via Gaussian anti-concentration onQ0 and
Chebyshev’s inequality on Q1, that

‖Q0‖22 ≤ O(η2)‖Q1‖22. (9)

Let us write Q1 =
∑

H∈HH · Q1,H(U1, . . . , UT ), where the sum is over the set H of normal-
ized Hermite monomials2 over the independent N(0, 1) variables ∪Tj=1{Yij}ki=kj+1. Moreover, let

Q
(D)
1 =

∑
H∈HD

H ·Q1,H(U1, . . . , UT ) for 0 ≤ D ≤ d− 1 ≥ deg(Q1), where HD is the subset of
H of degree exactly D. Thus, ‖Q1‖22 =

∑
H∈H ‖Q1,H‖22. Writing Q1,H = Q1,H(W11, . . . ,W1T )

we also define ‖Q1,H‖2mon as sum of squares of the coefficients in the standard monomial basis M
of {W11, . . . ,W1T }. A straightforward calculation shows that:

‖Q1,H‖22 ≤ O(1)‖Q1,H‖2mon, (10)

where the constants depending on T and d are absorbed in the O(1) notation. On the other hand,
since Q0 is independent of U1, using similar definition of Q0,H , we can establish the reverse bound
for it:

‖Q0,H‖2mon ≤ O(1)‖Q0,H‖22. (11)

The rest of the arguments significantly build upon those in Section 1.2.1. We present a semi-
formal description, omitting much of the technical details. For reasons made clear later, we first
carefully select d∗ ∈ {0, . . . , d − 1} to be the largest D ∈ {0, . . . , d − 1} such that ‖Q(D)

1 ‖22 ≥
1
4ρ
D‖Q1‖22 for a small enough constant depending on k, T, d, and ε. It is easily observed that such

a d∗ must exist satisfying the properties: (i) ‖Q(d∗+1)
1 ‖22 ≤ 1

4ρ
d∗+1‖Q1‖22, and (ii) ‖Q(d∗)

1 ‖22 ≥
1
4ρ
d∗‖Q1‖22.

Now we focus our attention on U1Q
(d∗)
1 writing it as

U1Q
(d∗)
1 =

∑
H∈Hd∗

HU1Q1,H(W11, . . . ,W1T ) =
∑

H∈Hd∗

∑
M∈M

cH,MHM. (12)

Let H−j∗D ⊆ HD (resp. M−j∗ ⊆ M) be the subset of basis elements not containing any variable
from the j∗th block, i.e. {Yij∗}kj∗<i≤k (resp. W1j∗). Now with U1 = (1/

√
T )
∑

j=1W1j , we

2. By Hermite monomials, we mean elements of the polynomial Hermite basis over the corresponding variables.
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apply Lemma 2 to each U1Q1,H(W11, . . . ,W1T ) in the first expansion of (12). Using the fact that
each H has at most d variables along with our choice of T = 10d yields a j∗ ∈ [T ] such that∑

H∈H−j∗d∗

∑
M∈M−j∗

c2H,MW1j∗
≥ Ω(1)

( ∑
H∈Hd∗

∑
M∈M

c2H,M

)
(13)

≥ Ω(1)‖Q(d∗)
1 ‖22 ≥ Ω(1)ρd

∗‖Q1‖22 (14)

where the last two inequalities use (10) along with property (ii) above.
The next component of the analysis is to relate the bounds above with the coefficients of a

suitable sub-polynomial of P which is linear in the variables Yij∗ , 1 ≤ i ≤ kj∗ . For this, let us first
define Q̃ to be exactly the sub-polynomial of P which does not contain any term with Wij where
i 6= 1 and j 6= j∗. Rewriting the variables {Wij∗ | i ∈ [kj∗ ]} in terms of {Yij∗ | i ∈ [kj∗ ]}, we
consider the sub-polynomial Q̃lin (of Q̃) which is linear in the variables {Yij∗ | 1 ≤ i ≤ k}. Note

that
(
∪d−1D=0H−j∗D

)
◦M−j∗ ◦ {Yij∗}ki=1 is a basis in which Q̃lin can be written with coefficients

c̃H,M,i corresponding to the basis element HMYij∗ . Using the orthogonal transformation between

{Wij∗}i∈[kj∗ ] and {Yij∗}
kj∗
i=1 we obtain

∑
H∈H−j∗d∗

∑
M∈M−j∗

∑
i∈[kj∗ ]

c̃2H,M,i ≥
1

2kj∗

 ∑
H∈H−j∗d∗

∑
M∈M−j∗

c2H,MW1j∗

 , (15)

neglecting any contribution to the LHS of the above fromQ0 by our a small enough choice of η � ρ
along with (9) and (11). The loss of kj∗ factor in (15) is compensated by the dependence of ρ on k
as we shall see later. Combining (15) with (13)-(14) yields∑

H∈H−j∗d∗

∑
M∈M−j∗

∑
i∈[kj∗ ]

c̃2H,M,i ≥ Ω (1/kj∗) ρ
d∗‖Q1‖22. (16)

Consider now the sum ∑
H∈H−j∗d∗

∑
M∈M−j∗

∑
kj∗<i≤k

c̃2H,M,i.

Contribution to the above can be from Q0 or from U1Q
(d∗+1)
1 – the latter due to the presence of

Yij∗ (kj∗ < i ≤ k) which increases the degree of H ∈H−j∗d∗ to (d∗ + 1) in the representation of
Q1 over the basis H ◦M. Property (i) from our careful selection of d∗ is leveraged along with our
small enough choice of η in (9) along with (11) to yield∑

H∈H−j∗d∗

∑
M∈M−j∗

∑
kj∗<i≤k

c̃2H,M,i ≤ O(1)ρd
∗+1‖Q1‖22. (17)

Using a choice ρ� ε/k we can combine the above with (16) to obtain the following analog of (6):∑
H∈H−j∗d∗

∑
M∈M−j∗

∑
i∈Ij∗

c̃2H,M,i ≤
ε

10

∑
H∈H−j∗d∗

∑
M∈M−j∗

∑
i∈[k]

c̃2H,M,i, (18)

where Ij∗ := I ∩ ([k]× {j∗}). Of course, since ‖Q1‖2 > 0, we also obtain∑
H∈H−j∗d∗

∑
M∈M−j∗

∑
i∈[k]

c̃2H,M,i > 0. (19)

9
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The analysis above shows that for every good choice of I there exist (d∗, j∗) satisfying (18)-(19).
What remains is a probabilistic concentration argument. Since Pr [I is good] ≥ ξ/2, by averaging
we get that there exist (d∗, j∗) and a fixing of I \ Ij∗ such that with probability at least ξ/4Td
over the choice Ij∗ , (18)-(19) hold. Since each i is added to Ij∗ independently with probability
ε, an application of Chernoff-Hoeffding shows that the large deviation observed in (18) cannot
occur with probability ξ/4Td (which is significant) unless the squared mass on the LHS of (19) is
concentrated on a small number of i ∈ [k]. This yields the desired decoding completing our sketch
of the analysis. The formal proof appearing in this work – while following the approach given
above – employs additional notation and definitions for handling a few technicalities and ease of
presentation.

Combining P1 with Label Cover and Folding. We now describe how to combine our dictatorship
test with Label Cover instances. Consider an instance of SMOOTH LABEL COVER instance L =
L(G(V,E), k, L, {πe,u : [k] 7→ [L]}e∈E,u∈e) (see Section 2.1 for a formal definition). For every
vertex v ∈ V , we introduce a set of k variables Yv = {Y v

i : i ∈ [k]}. The output instance
of the reduction will take as input polynomials over variables Y = ∪v∈V Yv of degree at most
d. Then, the test P1 is executed on the T blocks of coordinates corresponding to T randomly
chosen vertices of V (as used in Guruswami et al. (2016)). The resulting instance is then folded,
i.e. the distribution on the point-label pairs is projected onto a subspace F orthogonal to the span
of all the linear constraints implied by the edges of the Label Cover. Formally, the subspace F is
constructed as follows. Consider an edge e = (u, v) ∈ E and let πe,u, πe,v : [k] 7→ [L] be the
corresponding projection functions. Then for every l ∈ [L], and for every monomial M disjoint
from {Y u

i : i ∈ (πe,u)−1(l)} ∪ {Y v
i : i ∈ (πe,v)

−1(l)}, we add the following linear homogeneous
constraint on the coefficients of polynomial:

Ce,l,M :
∑

i∈(πe,u)−1(l)

cQ,M ·Y u
i

=
∑

i∈(πe,v)−1(l)

cQ,M ·Y v
i

(20)

Let F be the linear subspace resulting from the above set of constraints. We say that a polyno-
mial Q is folded over F if the coefficients satisfy all of the above constraints. In particular, these
linear constraints ensure that any polynomial folded over F has equal mass sum in the coordinates
of the two pre-images of a label given by an edge’s projections.

Randomized Partial Decoding. Given a polynomial P ∈ R[Y] folded over F which passes
the test with probability at least 1

2 + ξ, we give a decoding algorithm which recovers a good la-
beling for L from P . Our decoding strategy will give us a randomized partial labeling, which
can then be extended to a full labeling by assigning arbitrary labels to unlabeled vertices. Infor-
mally, the decoding algorithm proceeds by randomly guessing the following: (i) a degree-index pair
(d∗, j∗) ∈ {0, 1, . . . , d − 1} × [T ], which is intended to satisfy (18)-(19) (ii) a set of noisy indices
I−j∗ (excluding the set of indices corresponding to j∗), which is intended to be a good set of noisy
indices (iii) a set of vertices V−j∗ = {vj |j ∈ [T ] \ {j∗}}, such that the polynomial restricted to
vertices V−j∗ along with a random choice of vertex vj∗ ∈ V (to be fixed later) passes the test with
probability at least 1

2 + ξ
2 .

From the soundness analysis it follows that all of the intended conditions for (i)-(iii) hold with
probability (including over the random choice of vj∗) at least ∆0 = ξ · 1

Td ·
ξ

8Td . Fixing the choices
in (i)-(iii), let V ′ ⊂ V be the set of vertices vj∗ = v for which the condition from (iii) holds. In
expectation over the choices in (i)-(iii) we have |V ′| ≥ ∆0|V | which we fix for now. Furthermore,

10
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our Chernoff-Hoeffding based argument mentioned earlier in this section shows that for all v ∈ V ′
there exists at least one label which contributes at least ε4-fraction of the LHS of (19). For all
v ∈ V ′, let Γ(v) ⊂ [k] denote the set of such labels, so that 1 ≤ |Γ(v)| ≤ 1/ε4. For each v ∈ V ′,
assign a label by sampling uniformly at random from Γ(v). The following observations imply that
this randomized partial labeling is indeed a good one.

1. The induced subgraph on V ′ contains a significant fraction (& ∆2
0/2) of edges, which follows

from the Expansion property of Smooth Label Cover.

2. Furthermore, using the smoothness property of SMOOTH LABEL COVER, it can be shown
that for all but a small fraction of the above edges (u, v), the projection functions πe,u, πe,v
are bijections, when restricted to the sets Γ(u),Γ(v) respectively. For every such edge (u, v)
we will show that πe,u(Γ(u)) ∩ πe,v(Γ(v)) 6= φ, which follows roughly using the following
argument. From the folding constraints we have∑

i∈(πe,u)−1(l)

c̃H,M,i,u =
∑

i∈(πe,v)−1(l)

c̃H,M,i,v. (21)

which as discussed before, are intended to balance the sum of coefficients corresponding to
the pre-images of any l ∈ [L]. In particular, if (πe,u)(Γ(u)) ∩ (πe,v)(Γ(v)) = φ, it follows
that for any l∗ ∈ πe,u(Γ(u)), we have l∗ /∈ πe,v(Γ(v)). Since πe,u restricted to the set Γ(u)
is a bijection, the LHS in the above equation (instantiated with l = l∗) has exactly one large
term, and other small terms, which overall leads to a large term. On the other hand, since
(πe,v)

−1(l∗) ∩ Γ(v) = φ, by a stronger application of the smoothness property it can be
deduced that all the terms in the RHS are small enough for it to be much smaller that the
LHS in magnitude, contradicting (21). Thus, this edge is satisfied with probability at least
1/(|Γ(u)||Γ(v)|) ' ε8.

Putting all of the above arguments together, it follows that in expectation over the choices (i)-(iii),
using the above partial labeling at least Ω(ε8∆2

0) = Ω(1)-fraction of edges will be satisfied.

1.3. Organization

Section 2 presents some preliminaries. Section 3 provides the hardness reduction (Theorem 5) from
Label Cover. Due to space contraints, the rest of the proof appears in the appendix. Appendix B
describes the hardness reduction of Theorem 5 in the form of a PCP test. Appendix B.1.1 gives the
constraints implied by folding extended to polynomials. In Appendix C, we show the soundness of
the reduction assuming a lemma (essentially restating (18)-(19)) about the structure of polynomials
passing the test. The rest of the paper is devoted to proving this lemma. In Appendix D, we apply
Gaussian anti-concentration to prove the analog of (9). In Appendix E, we prove the structural
lemma using Lemma 2 as a key ingredient. Lemma 2 is proved in Appendix F. Appendices G-I
provide some useful tools and proofs for our analysis.

2. Preliminaries

2.1. The SMOOTH LABEL COVER Problem

Definition 3 (Smooth Label Cover) A SMOOTH LABEL COVER instanceL(G(V,E), k, L, {πe,v}e∈E,v∈e)
consists of a regular connected graph with vertex set V and edge set E, along with projection maps

11
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πe,v : [k] → [L] for all e ∈ E, v ∈ e. The goal is to find an assignment σ : V → [k] such that
∀e = (u,w) ∈ E, πe,u(σ(u)) = πe,w(σ(w)). The optimum for a SMOOTH LABEL COVER instance
is the maximum fraction of edges satisfied by an assignment.

The following Theorem from Guruswami et al. (2016) states the hardness of SMOOTH LABEL

COVER problem:

Theorem 4 There exists a constant c0 > 0 such that for any constant integer parameters J,R ≥ 1,
it is NP-hard to distinguish between the following cases for a SMOOTH LABEL COVER instance
L(G(V,E), k, L, {πe,v}e∈E,v∈e) with parameters k = 7(J+1)R, L = 2R7JR.

• YES: There is a labeling that satisfies every edge.

• NO: Every labeling satisfies less than 2−c0R-fraction of edges.

Additionally, the instance L satisfies the following properties:

• Smoothness: For any v ∈ V , and labels i, j ∈ [k], i 6= j, Pre∼v[πe,v(i) = πe,v(j)] ≤ 1/J .
In particular, for a subset S ⊆ [k], Pre∼v [|πe,v(S)| = |S|] ≤ |S|2/(2J).

• The degree dL of the graph G is a constant dependent only on J and R.

• For any vertex v ∈ V , edge e ∈ E incident on vertex v, and j ∈ [L], we have
∣∣(πe,v)−1(j)∣∣ ≤

tL := 4R.

• Weak Expansion: For any V ′ ⊆ V , the number of edges induced in V ′ is at least δ2

2 |E|
where δ = |V ′|/|V |.

3. Hardness Reduction

The following reduction from SMOOTH LABEL COVER directly implies our main theorem.

Theorem 5 For any ξ > 0 and d ∈ Z+, there exists a choice of R and J in Theorem 4 and a
polynomial-time reduction from the corresponding SMOOTH LABEL COVER instance L to a set of
point-sign pairs Q ⊆ RN × {−1, 1} such that:

• YES Case. If L is a YES instance, then there exists a linear form L satisfying

Pr
(x,s)∈Q

[sign (L(x)) = s] ≥ 1− ξ.

• NO Case. If L is a NO instance, then for any degree-d polynomial P

Pr
(x,s)∈Q

[sign (P (x)) = s] ≤ 1

2
+ ξ.

The last sentence of Theorem 1 is justified in Appendix C.6.

12
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Appendix A. Appendix Preliminaries

A.1. Hermite Bases for Multivariate Polynomials

For integer d ≥ 0, the Hermite polynomials Hd(x) are degree-d univariate polynomials such that
EX∼N(0,1)[Hd(X)2] = 1 and EX∼N(0,1)[Hd(X)Hd′(X)] = 0 for any d 6= d′. For example,
H0(x) = 1, H1(x) = x, H2(x) = 1√

2
(x2 − 1), and H3(x) = 1√

6
(x3 − x).

For d ∈ Nn, we define Hd(x1, . . . , xn) =
∏
i∈[n]Hdi(xi). For D ≥ 0, let HD = {Hd :

d ∈ Nn,
∑

i∈[n] di ≤ D} denote the Hermite basis for degree-D polynomials. The following is
immediate.

Fact 6 The set HD forms an orthonormal basis for n-variate degree-D polynomials whose inputs
are drawn from N(0, 1)n. In particular, for any P : Rn → R of degree ≤ D, we can write:

P (x) =
∑

d∈Nn:
∑

i di≤D

f̂(d) ·Hd(x)

and moreover, ExP (x) = f̂(0) and Ex[P (x)2] =
∑

d f̂
2(d).
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A.2. Concentration and Anti-Concentration

The magnitude of polynomials in our analysis is controlled using the following standard bound.

Chebyshev’s Inequality. For any random variable X and t > 0, Pr [|X| > t] ≤ E[X2]
/
t2 .

The above is used in conjunction with Carbery and Wright (2001)’s powerful anti-concentration
bound for polynomials over independent Gaussian variables.

Theorem 7 (Carbery and Wright (2001)) Suppose P : R` → R is a degree-d polynomial over
independent N(0, 1) random variables. Then,

Pr [|P | ≤ ε‖P‖2] = O(dε1/d).

In addition, we also use following Chernoff-Hoeffding bound.

Theorem 8 (Chernoff-Hoeffding) LetX1, . . . , Xn be independent random variables, each bounded
as ai ≤ Xi ≤ bi with ∆i = bi − ai for i = 1, . . . , n. Then, for any t > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E[Xi]

∣∣∣∣∣ > t

]
≤ 2 · exp

(
− 2t2∑n

i=1 ∆2
i

)
.

Appendix B. Hardness Reduction contd.

B.1. The Basic PCP Test

We begin with a Basic PCP Test given an instance L(G(V,E), k, L, {πe,v}e∈E,v∈e) of SMOOTH

LABEL COVER. For each vertex v ∈ V , there is a set of variables {Y v
i }ki=1, and the set of all the

variables Y is a union over all vertices v ∈ V of these variable sets. The test is described by the
sampling procedure in Figure 3, and yields a distribution over point-sign pairs which is independent
of the constraints in L. It uses some additional parameters set as follows: T := 10d, ε := (ξ/32Td),

η :=
(

εξ
20kdT

)d63d
, where d is from the statement of Theorem 5.

B.1.1. FOLDING OVER CONSTRAINTS OF L

To ensure consistency across the edges of L, the points generated by the Basic PCP Test are folded
over a specific subspace. The points generated by the Basic PCP Test reside in the space RY . Now,
for a fixed e = (u,w) ∈ E and j ∈ [L], we define the vector hej ∈ RY as

hej(Y
v
i ) =


1 if v = u and i ∈ (πe,u)−1 (j),

−1 if v = w and i ∈ (πe,w)−1 (j),

0 otherwise.

(22)

Let H ⊆ RY be the subspace formed by the linear span of the vectors {hej}e∈E,j∈[L], and let F
be the orthogonal complement of H in RY , i.e. RY = H ⊕ F and H ⊥ F . For each point-sign
pair (y, b) generated by the Basic PCP Test, construct (y, b) where y is the projection of y onto the
subspace F , represented in some (fixed) orthogonal basis for F .
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The Basic PCP Test given instance L of SMOOTH LABEL COVER

1. For each j ∈ [T ], the test chooses T random vertices v1, v2, . . . , vT
u.a.r.∼ V . Let Yij :=

Y
vj
i .

2. Sample {δj | j ∈ [T ]} from the joint Gaussian distribution where the marginals are
N(0, 1), E[δjδj′ ] = −1/(T − 1) for all j 6= j′, and

∑T
j=1 δj = 0.

3. Sample b ∈ {−1, 1} uniformly at random.

4. Sample I ⊆ [k]× [T ] to be a random subset where each (i, j) ∈ [k]× [T ] is added to I
independently with probability ε.

5. For each (i, j) ∈ ([k]× [T ]) \ I, set Yij :=
√

(T − 1)/T · δj + bη.

6. Independently for each (i, j) ∈ I, sample Yij from N(0, 1).

7. Set the variables of all other vertices (except {vj | j ∈ [T ]}) to be 0. Let this setting of
the variables be the point y ∈ RY .

8. Output the point-sign pair (y, b).

Figure 3: Basic PCP Test

Conversely, for any vector z ∈ F , let z be its representation in RY . It is easy to see that such a
z satisfies: for every e = (u,w) ∈ E and j ∈ [L], 〈z,hej〉 = 0 which is equivalent to

Constraint Ce,j :
∑

i∈(πe,u)−1(j)

z(Y u
i ) =

∑
i∈(πe,w)−1(j)

z(Y w
i ). (23)

For our purpose we shall extend the above constraint to polynomials as well. Consider a polynomial
Q in RY . For any monomial M over the variables Y , let cQ,M be its coefficient in Q. Fix an edge
e = (u,w) and j ∈ [L], and a monomial M such that M does not contain any variable from the set
{Y u

i | i ∈ (πe,u)−1 (j)} ∪ {Y w
i | i ∈ (πe,w)−1 (j)}. For such a choice of e, j, and M we say that

Ce,j,M is a valid constraint where:

Constraint Ce,j,M :
∑

i∈(πe,u)−1(j)

cQ,M ·Y u
i

=
∑

i∈(πe,w)−1(j)

cQ,M ·Y w
i
. (24)

We have the following lemma.

Lemma 9 Let Q be a polynomial that resides in F , i.e. is represented in an orthogonal basis3 for
F , and let Q be its representation in RY . Then, Q satisfies all valid constraints Ce,j,M .

3. A polynomial Q being represented in an orthogonal basis for a subspace F means Q can be written as a polynomial
over the linear forms corresponding to an orthogonal basis for F .
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Proof Suppose for a contradiction Q does not satisfy a valid constraint Ce,j,M . Consider the vector
r where,

r(Y v
i ) =


cQ,M ·Y u

i
if v = u, i ∈ (πe,u)−1 (j)

cQ,M ·Y w
i

if v = w, i ∈ (πe,w)−1 (j)

0 otherwise.

Since Equation (24) is not satisfied, it is easy to see that 〈r,hej〉 6= 0, and thus r = r0 + r1 where
r0 ∈ F and r1 ∈ H. On the other hand, consider an orthogonal basis B for RY that is an extension
of {r1}, i.e. r1 is an element of B. P can now be represented as:

P ≡ r1[Y] · P1 + P0,

where P1 is a polynomial represented in B, P0 is represented in B \ {r1}, and r1[Y] is the Y-linear
form

∑
Y ∈Y r1(Y ) · Y . Note that P1 is not identically zero, in particular it contains the monomial

M . This implies that P cannot be represented over any basis for F , which is a contradiction.

Remark 10 Instead of monomials M , the constraints in (24) analogously hold for elements B of a
basis B for polynomials over any set of variables not containing {Y u

i | i ∈ (πe,u)−1 (j)}∪ {Y w
i |

i ∈ (πe,w)−1 (j)}.

B.2. The Final PCP Test

Given a degree-d polynomial P global over the space F , the test samples (y, b) from the Basic PCP
Test (as described in Figure 3), and constructs (y, b) as described in Appendix B.1.1. The test
accepts iff sign

(
P global(y)

)
= b.

Remark 11 The Basic PCP Test generates a distribution over RY × {−1, 1} using various inde-
pendently Gaussian random variables. Therefore, the support set of this distribution is not finite. In
Appendix C.6, using techniques from Diakonikolas et al. (2011), we discretize the Basic PCP Test.
Building upon the discretized Basic PCP Test, the Final PCP Test yields the desired finite subset Q
in polynomial time.

B.3. Completeness Analysis

Suppose there is a labeling σ : V → [k] which satisfies all the edges of L. Define L∗(Y) =∑
v∈V Y

v
σ(v) to be a linear form. Note that L∗(y) := 〈r∗,y〉 for some r∗ ∈ F , and so L∗ can be

represented in an orthogonal basis for F . Thus, for any point y ∈ RY , L∗(y) = L∗(y) where y is
the projection of y on to F as defined in Appendix B.1.1.

Now consider (y, b) generated by the Basic PCP Test. By a union bound over the randomness
of the test, with probability at least (1− εT ): (σ(vj), j) 6∈ I for each j ∈ [T ]. Given this, it is easy
to see that L∗(y) = b, and by the above reasoning L∗(y) = b. Thus, L∗ satisfies the Final PCP Test
with probability at least (1− εT ). Our choice of ε yields the desired accuracy.
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Appendix C. Soundness Analysis

Given the SMOOTH LABEL COVER instance L, suppose that there is a degree-d polynomial (over
F) P global such that the Final PCP Test accepts with probability 1/2 + ξ. Our goal in the rest of
this paper is to show that in this case there exists a labeling that satisfies at least 2−c0R-fraction of
the edges of L, for an appropriate choice of constants R and J in Theorem 4 and because of its NO
Case we would be done.

Let Pglobal be the representation of P global in RY , so that P global(y) = Pglobal(y) where y ∈ F
is a point generated by the Final PCP Test from a point y generated by the Basic PCP Test as given
in Appendix B.2. Therefore, Pglobal(y) = b with probability at least 1/2 + ξ over the pairs (y, b)
output by the Basic PCP Test. Using this, we focus on analyzing the structure of Pglobal.

To begin the analysis note that with probability at least 2ξ over the choices of the verifier other
than b, Pglobal flips its sign on flipping b. Call a choice of {vj | j ∈ [T ]} good if conditioned on this,
the same holds with probability at least ξ over the rest of the choices (other than b) of the verifier.
By averaging, with probability at least ξ, the verifier makes a good choice. We now fix such a good
choice {vj | j ∈ [T ]}.

For convenience, we shall use P to denote the restriction of Pglobal to Y := {Yij | i ∈ [k], j ∈
[T ]}. Let D be the distribution on (Y, b) generated by the steps of the verifier. Our analysis shall
first show that in terms of this basis P must have a certain structure which will then be used to
determine a good labeling for L.

C.1. Basis Transformations

For the purpose of the analysis, we shall rewrite the variables Y in different bases. Before we do
that, we shall isolate the noisy set I of the Basic PCP Test.

C.1.1. CHOICE OF SET I

The distributionD involves choosing the set I in which each (i, j) is added independently at random
with probability ε. Let us call a setting of I as nice if it satisfies:

1. For each j, |{i | (i, j) ∈ I}| ≤ k/2.

2. With probability ξ/2 over the rest of the choices of the verifier (except b), P flips its sign on
flipping b.

By our setting of ε and T , for a large enough value of k, and applying the Chernoff Bound, a union
bound and an averaging argument, we have:

Pr
D

[I is nice] ≥ ξ/4. (25)

Going forward, we shall fix a nice choice of I. By relabeling, we may assume that there exist
k/2 ≤ kj ≤ k for j ∈ [T ] such that

I =
T⋃
j=1

{(i, j) | i = kj + 1, . . . , k}. (26)

Based on this nice choice of I, we now define new bases for the Y variables. Let DI denote the
distribution of the variables after fixing a nice I.
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C.1.2. BASES W AND U

For each j ∈ [T ], we define (W1j ,W2j , . . . ,Wkjj) as a fixed orthogonal transformation of (Y1j , Y2j , . . . , Ykjj)
so that

W1j =
1

kj

kj∑
i=1

Yij , and Wij =
∑
`∈[kj ]

ci`Y`j for all i ∈ [2, kj ] (27)

where the vectors
{
ci = [ci1, ci2, . . . , cikj ]

T
}kj
i=2

satisfy

• For all i, i′ ∈ [kj ] \ {1} we have 〈ci, ci′〉 = 0

• Each vector ci satisfies ‖ci‖2 = 1/kj and ci ⊥ 1 where 1 is the all ones vector in Rkj .

We shall also define the vector c1 = 1
kj
· 1 where 1 ∈ Rkj is the the vector of all ones. The above

along with the distribution of {Yij | i = 1, . . . , kj}Tj=1 in DI directly implies the following.

Lemma 12 Under the distribution DI:

(i) W1j =
√

(T−1)/T · δj + bη

(ii) For i 6= 1, Wij = 0.

Let U1, . . . , UT be a fixed orthonormal transformation of (W11, . . . ,W1T ), where

U1 =
1√
T

T∑
j=1

W1j , and Ut =
∑
j∈[T ]

atjW1j for all t ∈ [2, T ] (28)

where vectors a2, . . . ,aT are orthonormal and each vector at = [at1, at2, . . . , atT ]T satisfies
∑

j∈T atj =
0 (i.e., they are orthogonal to the all ones vector).

Lemma 13 Under the distribution DI ,

(i) U1 = bη
√
T

(ii) For each 1 < t ≤ T , Ut ∼ N(0, 1) i.i.d.

Proof Lemma 12 along with the definition of U1 yields the first part. The second part follows from
an application of Lemma 39.

Before we proceed, we briefly summarize the variables and their distribution under DI .

• Noisy Indices For a fixed j ∈ [T ], [kj ] is the set of non-noisy i’s where kj ≥ k/2.

• The Y -variables . For each (i, j) ∈ [k]× [T ] \ I, Yij =
√

(T−1)/T · δj + bη. For (i, j) ∈ I,
Yij’s are independent N(0, 1) random variables.

• The W -variables For a fixed j, we define variables W1j , . . . ,Wkjj with W1j =
√

(T−1)/T ·
δj + bη and W2j , . . . ,Wkjj are 0.

• U -variables We define U1 = 1√
T

∑
j∈[T ]W1j which is bη

√
T and is independent of the

variables U2, . . . , UT where each Ut is i.i.d. N(0, 1) for t > 1.
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C.2. A Hybrid Basis Relative to j∗ and d∗

Recall that we have fixed a nice I. In this section, we define a basis for polynomials using a fixed
choice of j∗ ∈ [T ] and d∗ ∈ [d]. For convenience let [T−j∗ ] := [T ] \ {j∗}.

Definition 14 Let H−j∗ be the Hermite basis for all polynomials over the independent Gaussian
variables {Yij | i ∈ [k] \ [kj ], j ∈ [T−j∗ ]}. In particular, E[H2] = E[G2] = 1 and E[HG] = 0 for
each H,G ∈H−j∗ , H 6= G. Let H−j∗d∗ be the set of basis elements of H−j∗ of degree exactly d∗.

Definition 15 Let M−j∗ be the standard monomial basis for polynomials over the variables {W1j |
j ∈ [T−j∗ ]}. In particular, each element of M−j∗ is of the form

∏
j∈[T−j∗ ]

W
aj
1j for some non-

negative integers aj (j ∈ [T−j∗ ]).

Definition 16 Let B−j∗ := H−j∗ ◦M−j∗ be the combined basis for polynomials over the variables
of H−j∗ and M−j∗ , where each element B is of the form HM for some H ∈H−j∗ and M ∈M−j∗

and deg(B) = deg(H) + deg(M). For convenience we also define the subset B−j∗d∗ := H−j∗d∗ ◦
M−j∗ , i.e. each element of B−j∗d∗ is of the form HM where H ∈H−j∗d∗ and M ∈M−j∗ .

Lastly, let Sj∗ be the set of all multisets of Rj∗ = {(i, j∗) | i ∈ [k]}. For an element S ∈
Sj∗ , let S(i, j∗) denote the number of occurrences of (i, j∗) in S. Using this, we define YS :=∏

(i,j∗)∈Rj∗
Y
S(i,j∗)
ij∗ .

Writing the polynomial P in the basis given by products of B−j∗ , {Wij : j ∈ [T−j∗ ], i ∈
[kj ] \ {1}} and {Yij∗ : i ∈ [k]}, the polynomial P can be represented as:

P = Pomit +
∑
S∈Sj∗
B∈B−j∗

cS,BYSB, (29)

where cS,B are constants and4 Pomit is the sub-polynomial of P consisting of all monomials con-
taining a variable from {Wij : j ∈ [T−j∗ ], i ∈ [kj ] \ {1}}. Of course, since P is of degree at most
d, the only terms that occur in the above sum satisfy deg(B) + |S| ≤ d.

For a fixed 0 ≤ d∗ ≤ d−1 we will be interested in capturing the the mass of P linear in Yij∗ and
the subset B−j∗d∗ . Abusing notation to let c(i,j∗),B = c(S,B) where S = {(i, j∗)} is the singleton
multiset, define

ci,j∗,d∗ =

√ ∑
B∈B−j∗d∗

c2(i,j∗),B (30)

for each (i, j∗) ∈ Rj∗ and 0 ≤ d∗ ≤ d− 1.

C.3. Main Structural Lemma

We are now ready to describe the structure that P must exhibit in order to pass the Basic PCP test.
Let us first define a distinguished pair (j∗, d∗) for a fixed setting of I.

4. The reason for treating Pomit separately is that it vanishes under the distribution DI .
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Definition 17 A pair (j∗, d∗) ∈ [T ]× {0, . . . , d− 1} is said to be distinguished for I if,

∑
(i,j∗)∈I

c2i,j∗,d∗ ≤
ε4

4
·

 ∑
(i,j∗)∈([k]×{j∗})\I

c2i,j∗,d∗

 , (31)

and, ∑
(i,j∗)∈([k]×{j∗})\I

c2i,j∗,d∗ > 0. (32)

Here, ε is the noise parameter used in the PCP test.

The main lemma that we prove is the following.

Lemma 18 (Main Structural Lemma) For every nice choice of I, there exists j∗ ∈ [T ] and
d∗ ∈ {0, 1, . . . , d− 1} such that (j∗, d∗) is distinguished for I.

The proof of the above lemma is given in Appendix E building upon analysis in Appendix D. Both
Appendices D and E assume a setting of nice I.

Using (25) and a simple averaging, the above lemma implies that there exists (j∗, d∗) such that:

Pr
I

[(j∗, d∗) is distinguished for I] ≥ ξ

4Td
. (33)

C.4. Implications of the Structural Lemma

We now fix (j∗, d∗) satisfying (33). Let us consider the random choice of I as first picking I−j∗ :=
I ∩ ([k] × ([T ] \ {j∗})), and then picking Ij∗ := I ∩ ([k] × {j∗}). Note that the choice of Ij∗ is
independent of I−j∗ . Call a choice of I−j∗ as shared-heavy if,

Pr
Ij∗

[(j∗, d∗) is distinguished for Ij∗ ∪ I−j∗ ] ≥
ξ

8Td
. (34)

From (33) and an averaging argument we have:

Pr
I−j∗

[I−j∗ is shared-heavy] ≥ ξ

8Td
. (35)

Let us fix a shared-heavy I−j∗ . Note that with this fixing, the bases given in Appendix C.2 are
well defined, and in particular P can be represented as in (29). Since there is at least one choice of
Ij∗ such that (j∗, d∗) is distinguished for Ij∗ ∪ I−j∗ , using (32) this implies∑

i∈[k]

c2i,j∗,d∗ > 0. (36)

Further we have the following lemma. (This is where we are finally randomizing over Ij∗ .)

Lemma 19 There exists i∗ ∈ [k] such that,

c2i∗,j∗,d∗ ≥ ν2
∑
i∈[k]

c2i,j∗,d∗

 ,

for ν = ε2/2.
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Proof Assume that there is no such i∗ as in the lemma. Over the choice of Ij∗ , consider the
random variable

∑
(i,j∗)∈Ij∗ c

2
i,j∗,d∗ . The contribution from each i to this sum is independently 0

with probability (1− ε) and c2i,j∗,d∗ with probability ε. Thus,

EIj∗

 ∑
(i,j∗)∈Ij∗

c2i,j∗,d∗

 = ε

∑
i∈[k]

c2i,j∗,d∗

 .

Now,

Pr

 ∑
(i,j∗)∈I

c2i,j∗,d∗ ≤ (ε/2)

 ∑
(i,j∗)∈[k]×{j∗}\I

c2i,j∗,d∗


≤ Pr

 ∑
(i,j∗)∈Ij∗

c2i,j∗,d∗ ≤ (ε/2)

∑
i∈[k]

c2i,j∗,d∗


≤ Pr

∣∣∣∣∣∣
∑

(i,j∗)∈Ij∗

c2i,j∗,d∗ − E

 ∑
(i,j∗)∈Ij∗

c2i,j∗,d∗

∣∣∣∣∣∣ ≥ (ε/2)

∑
i∈[k]

c2i,j∗,d∗


1
≤ 2 · exp

−2(ε/2)2 ·
(∑

i∈[k] c
2
i,j∗,d∗

)2∑
i∈[k] c

4
i,j∗,d∗


≤ 2 · exp

− (ε2/2) ·
(∑

i∈[k] c
2
i,j∗,d∗

)2
maxi∈[k] c

2
i,j∗,d∗

∑
i∈[k] c

2
i,j∗,d∗

 ≤ 2 · exp
(
−ε2/2ν2

)
≤ ε,

for ν2 = ε4/4 ≤ ε2/(2 log(2/ε)). Here, step 1 follows from the Chernoff-Hoeffding inequality
(Theorem 8). Since our choice of ε < ξ/(8Td), this yields a contradiction to our choice of I−j∗ ,
(31), and (34).

C.5. Decoding a Labeling for L

In Figure 4 we define a randomized (partial) labeling σ for the vertices V of L. To analyze σ, we
first define the following random subsets of vertices and edges, where the randomness is over the
choices made in the above procedure of labeling.

Vertex subset V0 ⊆ V : Consists of all v ∈ V such that:

• Setting vj∗ = v, the choice of {vj | j ∈ [T ]} is good,

• The choice of (j∗, d∗) satisfies (33) and,

• The choice of I−j∗ is shared-heavy.
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Randomized Partial Labeling σ

1. Choose j∗ ∈ [T ] and d∗ ∈ {0, . . . , d− 1} independently and u.a.r.

2. Choose vj ∈ V independently and u.a.r. for each j ∈ [T ] \ {j∗}.

3. Choose the random subset I−j∗ of [k] × ([T ] \ {j∗}) by independently adding each
element with probability ε.

4. For each v ∈ V ,

5. Set vj∗ = v.

6. Letting P be the restriction of Pglobal to Y = {Yij | i ∈ [k], j ∈ [T ]}, define the
set:

Γ0(v) :=

i′ ∈ [k] | c2i′,j∗,d∗ >
ν2

4

∑
i∈[k]

c2i,j∗,d∗

 , (37)

where ν = ε2/4 (as in Lemma 19).

7. If Γ0(v) is non-empty, assign v a label chosen uniformly at random from Γ0(v).

Figure 4: Randomized Partial Labeling

Over the randomness of the labeling procedure and a random choice of v, the above happens with
probability at least:

∆0 := ξ · 1

Td
· ξ

8Td
. (38)

Thus,
E [|V0|] ≥ ∆0|V |.

Moreover, by the weak expansion property in Theorem 4,

E [|E(V0)|] ≥ E
[
( |V0|/|V |)2

]
· (|E|/2) ≥ (E [ |V0|/|V | ])2 · (|E|/2) ≥

(
∆2

0/2
)
|E|. (39)

Edge Set E′ ⊆ E(V0): Let us first define for each v ∈ V

Γ1(v) :=

i′ ∈ [k] | c2i′,j∗,d∗ >
ν2

100 · 42R

∑
i∈[k]

c2i,j∗,d∗

 , (40)

when vj∗ is set to v in Step 4a of Figure 4. Here, R is the parameter (to be set) from Theorem 4.
From (37) and (40), we have Γ0(v) ⊆ Γ1(v) along with

|Γ0(v)| ≤ 4/ν2, and |Γ1(v)| ≤ (100 · 42R)/ν2. (41)

The set E′ is defined as:

E′ :=
{
e = (u,w) ∈ E(V0) | |πe,u(Γ1(u))| = |Γ1(u)| and |πe,w(Γ1(w))| = |Γ1(w)|

}
. (42)
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Since the graphG of the instanceL is regular, using second bound in (41) along with the smoothness
property of Theorem 4, the fraction of edges e = (u,w) ∈ E that do not satisfy(

|πe,u(Γ1(u))| = |Γ1(u)| and |πe,w(Γ1(w))| = |Γ1(w)|
)

is at most,

∆1 :=

(
104 · 44R

ν4J

)
.

Thus,
E
[∣∣E′∣∣] ≥ (∆2

0/2−∆1

)
|E| . (43)

The following lemma gives the desired property of edges in E′.

Lemma 20 For every edge e = (u,w) ∈ E′,

πe,u (Γ0(u)) ∩ πe,w (Γ0(w)) 6= ∅. (44)

Proof Suppose for a contradiction that (44) does not hold for an edge e = (u,w) ∈ E′, i.e.

πe,u (Γ0(u)) ∩ πe,w (Γ0(w)) = ∅. (45)

Let us now define for v ∈ {u,w}, and i ∈ [k], vector Cv,i ∈ RB−j∗d∗ where for any B ∈B−j∗d∗

Cv,i(B) = c(i,j∗),B when vj∗ is set to v. (46)

Without loss of generality, we may assume that∑
i∈[k]

‖Cu,i‖22 ≥
∑
i∈[k]

‖Cw,i‖22 . (47)

Since u ∈ V0, (36) and Lemma 19 imply that there exists iu ∈ [k] such that

‖Cu,iu‖2 ≥ ν

∑
i∈[k]

‖Cu,i‖22

 1
2

> 0. (48)

This implies that iu ∈ Γ0(u). Now, let `∗ := πe,u(iu). Since P is a restriction of Pglobal which
is a representation of the folded polynomial P global, Lemma 9 along with Remark 10 (applied to
elements B of B−j∗d∗) implies ∑

i∈π−1
e,u(`∗)

Cu,i =
∑

i∈π−1
e,w(`∗)

Cw,i. (49)

On the other hand, since e ∈ E′, (42) along with our supposition (45) and the construction of
{Γr(v) | r ∈ {0, 1}, v ∈ {u,w}} implies that

• For all i ∈ π−1e,u(`∗) \ {iu}

‖Cu,i‖2 ≤
ν

10 · 4R

∑
i∈[k]

‖Cu,i‖22

 1
2

. (50)
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• For all i ∈ π−1e,w(`∗)

‖Cw,i‖2 ≤
ν

2

∑
i∈[k]

‖Cw,i‖22

 1
2

. (51)

• There exists at most one i′ ∈ [k] such that,

‖Cw,i‖2 >
ν

10 · 4R

∑
i∈[k]

‖Cw,i‖22

 1
2

. (52)

The above implications along with (49) and (47) yields

‖Cu,iu‖2 ≤
∑

i∈π−1
e,u(`

∗)
i 6=iu

‖Cu,i‖2 +
∑

i∈π−1
e,w(`∗)

‖Cw,i‖2

≤
ν
∣∣π−1e,u(`∗)

∣∣
10 · 4R

∑
i∈[k]

‖Cu,i‖22

 1
2

+

(
ν

2
+
ν
∣∣π−1e,w(`∗)

∣∣
10 · 4R

)∑
i∈[k]

‖Cw,i‖22

 1
2

≤ ν

10

∑
i∈[k]

‖Cu,i‖22

 1
2

+
(ν

2
+

ν

10

)∑
i∈[k]

‖Cw,i‖22

 1
2

≤ 7ν

10

∑
i∈[k]

‖Cu,i‖22

 1
2

, (53)

where we used the property (from Theorem 4) that
∣∣π−1e,u(`∗)

∣∣ , ∣∣π−1e,w(`∗)
∣∣ ≤ 4R. Clearly, (53) is a

contradiction to (48) which completes the proof of the lemma.

Note that the set E′ is determined by Step 3 of the randomized labeling procedure. Lemma 20
implies that in the subsequent steps of the procedure, each edge e = (u,w) ∈ E′ is satisfied with
probability at least

1

|Γ0(u)| |Γ0(w)|
≥ ν4

16
,

using the first bound in (41). The above along with (43) lower bounds the expected fraction of edges
σ satisfies by

∆2 :=
(
∆2

0/2−∆1

)(ν4
16

)
.

Choosing R to be large enough and J � 44R we can ensure that ∆2 > 2−c0R which yields a
contradiction to the soundness of Theorem 4, completing the NO case analysis.
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C.6. Loose Ends

Discretization of the Basic PCP Test Distribution. LetHN be the distribution of
(∑N

i=1Bi

)
/
√
N

where each Bi is an independent {−1, 1}-valued balanced Bernoulli random variable. The follow-
ing theorem was proved in Diakonikolas et al. (2011).

Theorem 21 Fix any constant D ≥ 1, and let f(x1, . . . , xm) be any degree-D polynomial over
Rm. Let (y, z) ∈ Rm × Rm be generated by sampling each (yi, zi) from (N(0, 1),HN ) where
N = m24D2

. Then,
Pr [sign(f(y)) 6= sign(f(z))] ≤ O(1/m).

In our Basic PCP Test distribution (for a fixed choice of the vertices of the SMOOTH LABEL

COVER instance) we have m = Θ(kT ) Gaussian random variables. Choosing D = d and N =
m24D2

, we can completely discretize the test distribution using exp((kT )O(d2)) points. Note that
this also incorporates the possible 2O(kT ) choices of the noise set I. From the above theorem, this
discretization results in an at most O(1/kT ) loss in the acceptance probability of the test. This
discretization is done for all possible choices by the test of the vertices of the instance.

Ruling out functions of constantly many degree-d PTFs. Analogous to the argument in Khot
and Saket (2011), consider any function h of K degree-d PTFs (over F) that passes the Final PCP
test with probability 1/2 + ξ. Let h be the function h with the PTFs represented over RY . By
averaging, h flips its sign with respect to flipping b for at least ξ fraction of the rest of the choices
made by the Basic PCP Test. Again by averaging, there must be a degree-d PTF sign

(
P ′global

)
satisfying the same for at least ξ/K fraction of the choices. The entire analysis can then be repeated
using P ′global.

Appendix D. Relative bounds for mass in P

Let Z denote the set of variables {Yij : j ∈ [T ], kj < i ≤ k}. As shown in Appendix C, the Z
variables are all i.i.d. N(0, 1) under the test distribution. We begin by expressing P as

P
(
Z, {Ui}i∈[T ], {Wij}i 6=1

)
= Pomit

(
Z, {Ui}i∈[T ], {Wij}i∈[2,kj ],j∈[T ]

)
+Q0(Z, U2, . . . , UT )

+U1Q1(Z, U1, . . . , UT ) (54)

where Pomit consists of all the terms that contain some {Wij | i ∈ [2, kj ], j ∈ [T ]} as a factor,
and Q0 is the part in the remaining polynomial independent of U1. From the nice setting of I, we
have that with probability at least ξ/2 over the rest of the choices of the verifier, P flips its sign
on flipping b. Since Pomit evaluates to zero under the test distribution and Q0 is independent of bη
by construction, we obtain that Q1 is not identically zero. For the time being, our analysis ignores
Pomit. Extending Definitions 14 and 15, let H be the Hermite basis over all the Z variables, and
M be the monomial basis over the variables {W1j : j ∈ [T ]}. Using these we define two norms to
quantify the relevant mass of polynomials. For convenience, let U denote the variables U1, . . . , UT ,
Ũ denote the set U \ {U1}, and W denote the set of variables W11, . . . ,W1T .

Definition 22 (‖ · ‖2-norm) Given a polynomial Q over the variables defined in the PCP test, de-
fine its ‖ · ‖2-norm as

‖Q‖2 =

√
Ex∼DI

[
|Q(x)|2

]
.
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Definition 23 (‖ · ‖mon,1, ‖ · ‖mon,2-norms) Given a polynomial Q(W) =
∑

WS∈M cSWS repre-
sented in the monomial basis M = {WS}, for any p ≥ 1 define its ‖ · ‖mon,p-norm as

‖Q‖mon,p =

 ∑
WS∈M

|cS |p
1/p

.

In particular, ‖ · ‖mon,1 is the absolute sum of the coefficients, and ‖ · ‖2mon,2 is the squared sum of
the coefficients in Q,

As pointed out above, Q1 is not identically zero and therefore by definition it satisfies.

‖Q1‖2 > 0 (55)

Our goal in this section is to prove the following lemma lower bounding ‖Q1‖2 relative to ‖Q0‖2.

Lemma 24 Using the definitions given above,

‖Q0‖2 ≤

(
8η
√
T

(ξ/4d)d
√
ξ

)
‖Q1‖2 (56)

Proof From Lemma 13, we know thatU1 = bη
√
T under the distributionDI . SinceQ1 is dependent

on U1, its distribution can be dependent on b. Let Q+
1 := Q1|b=1, and and Q−1 := Q1|b=−1. Thus,

‖Q1‖22 = Eb,Z,U
[
|Q1|2

]
=

1

2
EZ,U

[
|Q1|2

∣∣b = 1
]

+
1

2
EZ,U

[
|Q1|2

∣∣b = −1
]

=
1

2
‖Q+

1 ‖
2
2 +

1

2
‖Q−1 ‖

2
2. (57)

Using the above along with Chebyshev’s inequality (see Section A.2) we obtain for any a > 0

Pr
Z,Ũ

[∣∣Q+
1

∣∣ , ∣∣Q−1 ∣∣ ≤ a‖Q1‖2
]
≥ 1− Pr

[∣∣Q+
1

∣∣ ≥ a‖Q1‖2
]
− Pr

[∣∣Q−1 ∣∣ ≥ a‖Q1‖2
]

≥ 1−
(
‖Q+

1 ‖22 + ‖Q−1 ‖22
a2‖Q1‖22

)
= 1− 2/a2, (58)

where the last step follows from (57). On the other hand note that Q0 is a polynomial over standard
Gaussian variables and is independent of b. Applying the bound of Carbery-Wright (Theorem 7)
we obtain the following.

Pr
[
|Q0| ≤ (ξ/4d)d‖Q0‖2

]
≤ ξ

4
(59)

Setting a = 4/
√
ξ in (58) and using the above we obtain that with probability at least 1−ξ/4−ξ/8 =

1− 3ξ/8 over the choice of the variables Z and U2, . . . , UT

(η
√
T )|Q+

1 |, (η
√
T )|Q−1 | ≤ (4η

√
T/ξ)‖Q1‖2, and, |Q0| > (ξ/4d)d‖Q0‖2.

When η
√
T (|Q+

1 |+ |Q
−
1 |) < |Q0| then flipping b does not change the sign of P . Since the sign of

P must flip with b with probability at least ξ/2 over the choice of Z and U2, . . . , UT , the above is a
contradiction unless,

‖Q0‖2 ≤

(
8η
√
T

(ξ/4d)d
√
ξ

)
‖Q1‖2,

which completes the proof of the lemma.
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Appendix E. Proof of Main Structural Lemma 18

As in the previous section, we have U denote the variables U1, . . . , UT , Ũ denote the set U \ {U1},
and W denote the set of variables W11, . . . ,W1T . Similarly, we use Y = {Yij : i ∈ [k], j ∈ [T ]}
to denote the set of all the Y variables. We use Z to denote the set of variables {Yij : j ∈ [T ], kj <
i ≤ k}. The Z variables are all N(0, 1) under the test distribution. For a particular j∗ ∈ [T ],
let Zj∗ = Z ∩ {Yij∗ : i ∈ [k]}, and let Z−j∗ = Z \ Zj∗ . Also, for given j∗ ∈ [T ], define
Yj∗ = Y ∩ {Yij∗ : i ∈ [k]} and Y−j∗ = Y \Yj∗ . Finally, for given j∗ ∈ [T ], we define Wj∗ and
W−j∗ similarly.

Recall the definitions of the bases in Definitions 14, 15 and 16. Extending these as in the
previous section, letH be the Hermite basis for polynomials in the variables Z and M the monomial
basis for polynomials in the variables W. For any D ∈ [d], we also define HD to be the set of all
Hermite monomials of degree exactly D.

For convenience of measuring the monomial mass, we use Definition 23 to define two different
norms as follows:

Definition 25 (‖ · ‖B-Norm) For a polynomial L(Z,W) =
∑

H∈HH(Z) · LH(W), let

‖L(Z,W)‖2B =
∑
H∈H

‖LH(W)‖2mon,2 (60)

Definition 26 (‖ · ‖B−j∗,d∗,J -Norm) 5 Suppose j∗ ∈ [T ], d∗ ∈ [d−1] and J ⊆ [k] are given. Then,
for any polynomial M(Z−j∗ ,Yj∗ ,W−j∗) of the form

M(Z−j∗ ,Yj∗ ,W−j∗) =
∑

H∈H−j∗

∑
S∈Sj∗

H(Z−j∗) · YS ·MH,S(W−j∗),

we define:∥∥∥∥M(Z−j∗ ,Yj∗ ,W−j∗)

∥∥∥∥2
B−j∗,d∗,J

=
∑

H∈H−j∗,d∗

∑
i∈J
‖MH,{(i,j∗)}(W−j∗)‖2mon,2 (61)

Finally, for j∗ ∈ [T ], we shall find it convenient to define the sets Aj
∗

1 = {i : (i, j∗) ∈ I}, and
Aj
∗

0 = [k] \ Aj
∗

1 .

E.1. An intermediate Lemma

We start by writing the polynomial P in the variables Z, {Wij : j ∈ [T ], 1 < i ≤ kj},U:

P = Pomit + Prel = Pomit +Q0(Z,U \ {U1}) + U1 ·Q1(Z,U)

where Pomit contains all monomials depending on variables in {Wij : j ∈ [T ], 1 < i ≤ kj}.
Let Q0(Z,W) and Q1(Z,W) be Q0 and Q1 respectively after a change of variables from U to

W. For a = 0, 1, we writeQa(Z,W) in the H◦M basis: Qa(Z,W) =
∑

H∈HH(Z) ·Qa,H(W).
For a fixed d∗ ∈ {0} ∪ [d− 1], we let

Q(d∗)
a (Z,W) =

∑
H∈Hd∗

H(Z) ·Qa,H(W).

5. Note that although we call it so, ‖ · ‖B−j∗,d∗,J
is not an actual norm, as it may vanish even for non-zero polynomials.
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For a fixed j∗ ∈ [T ], we define Pomit,j∗ as the sub-polynomial of P containing all the monomials
containing at least one variable from {Wij : j 6= j∗, i 6= 1}, and let Prel,j∗ be the rest of the
polynomial.

We shall prove Lemma 18 using the following intermediate result:

Lemma 27 There exists choice of d∗ ∈ {0, 1, . . . , d − 1} and j∗ ∈ [T ] such that the following
properties hold simultaneously:

1. ‖Q0‖2B ≤ ρ2d‖Q1‖2B

2. ‖Q(d∗+1)
1 ‖2B ≤

1
4ρ
d∗+1‖Q1‖2B

3.
∥∥∥Q̃∥∥∥2

B
−j∗,d∗,Aj∗

0

≥ 1
8kT 2 (20dT )−4

d
ρd
∗‖Q1‖2B

where ρ = (20dkT 3/ε4)−6
d
(kT )−1 and Q̃(Z−j∗ ,Yj∗ ,W−j∗) is the polynomial obtained by rewrit-

ing the Wj∗ variables in Prel,j∗ in terms of the Yj∗ variables.

Using this, we give a proof of Lemma 18.
Proof [Proof of Lemma 18] Let d∗ and j∗ be as given in Lemma 27. Let Q̃(Z−j∗ ,Yj∗ ,W−j∗ , ) be
as in the Lemma 27. We can express Q̃ as :

Q̃(Z−j∗ ,W−j∗ ,Yj∗) =

d−1∑
D=0

∑
H∈H−j∗D

∑
S∈Sj∗

HYSQ̃H,S(W−j∗) (62)

where H−j∗D is the set of Hermite monomials which are of degree D and do not contain Zj∗

variables. By construction we have∑
(i,j∗)∈I

c2i,j∗,d∗ = ‖Q̃‖2B
−j∗,d∗,Aj∗

1

(63)

Consider a term that contributes to the RHS of (63) (as defined in 26). Since the additional
Yij∗ (for (i, j∗) ∈ I) variable adds to the degree of H , the corresponding term appears in the B-
representation of Prel as HM where the degree of H is of degree d∗ + 1. Therefore it must be a
part of Q(d∗+1)

0 or Q(d∗+1)
1 . Hence,

‖Q̃‖2B
−j∗,d∗,Aj∗

1

≤ ‖U1Q
(d∗+1)
1 ‖2B + ‖Q0‖2B

1
≤ T‖Q(d∗+1)

1 ‖2B + ρ2d‖Q1‖2B ≤ 2Tρd
∗+1‖Q1‖2B

(64)
where the upper bound on the first term in step 1 follows from

‖U1(W)Q
(d∗+1)
1 (W)‖2B =

∑
H∈Hd∗+1

‖U1(W)QH(W)‖2mon,2

≤
∑

H∈Hd∗+1

‖U1(W)‖2mon,1‖QH(W)‖2mon,2

(
Claim 42

)
= T‖Q(d∗+1)

1 ‖2B
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and the upper bound on the second term in step 1 follows from Lemma 27 (part 1). The last
inequality uses Part 2. of Lemma 27. On the other hand we have,∑

(i,j∗)∈([k]×{j∗})\I

c2i,j∗,d∗ = ‖Q̃‖2B
−j∗,d∗,Aj∗

0

(65)

From Lemma 27 (part 3) and the choice of ρ in Lemma 27 we have

‖Q̃‖2B
−j∗,d∗,Aj∗

0

≥ 1

8kT 2
(20dT )−4

d
ρd
∗‖Q1‖2B ≥

16T

ε4
ρd
∗+1‖Q1‖2B (66)

Combining (64),(65) and (66), we get an upper bound on LHS of (63) which gives us∑
(i,j∗)∈I

c2i,j∗,d∗ ≤
ε4

8

( ∑
(i,j∗)∈([k]×{j∗})\I

c2i,j∗,d∗

)
(67)

thus implying inequality (31). Furthermore, from (55), we know that ‖Q1‖22 > 0, which along with
Lemma 41(part 1) implies that ‖Q1‖2B > 0. Therefore, combining (66) and (65), we get that the
LHS of (65) is strictly positive, thus implying (32). Hence, the choice of (d∗, j∗) satisfy (31) and
(32).

E.2. Proof of Lemma 27

E.2.1. UPPER BOUNDING ‖Q0‖B IN TERMS ‖Q1‖B
In this section, we show that ‖Q0‖B is small compared terms ‖Q1‖B due to our choice of η.

Lemma 28 Let ρ be chosen as in Lemma 27. Then ‖Q0‖2B ≤ ρ2d‖Q1‖2B
Proof We express Q0 as

Q0(Z,W) =
∑
H∈H

HQ0,H(W)

where H ∈H are the Hermite monomials. Then by definition of ‖ · ‖2B we have,

‖Q0(Z,W)‖2B =
∑
H∈H

‖Q0,H(W)‖2mon,2

1
≤ (10dT )14d

∑
H∈H

‖Q0,H(Ũ)‖22

= (10dT )14d‖Q0(Ũ)‖22
2
≤ ρ4d

4
‖Q1‖22

where step 1 follows from Lemma 41 (part 2), and step 2 follows from Claim 24 and our choice of
η in Section 3. Furthermore, we can relate the ‖Q1‖22 to ‖Q1‖2B as follows

‖Q1‖2B =
∑
H∈H

‖Q1,H(W)‖2mon,2

1
≥ (20dT )−10d

∑
H

‖Q1,H(U)‖22 = (20dT )−10d‖Q1‖22

where step 1 follows from Lemma 41 (part 1). Combining the bounds, we get ‖Q0‖2B ≤ ρ2d‖Q1‖2B.
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E.2.2. FINDING A HEAVY d∗ ∈ {0, 1, . . . , d− 1}

We begin by finding a d∗ ∈ {0} ∪ [d− 1] such that Q1 restricted to Hermite monomials in Hd∗ has
large mass compared to those from Hd∗+1.

Lemma 29 There exists d∗ ∈ {0} ∪ [d− 1] such that

1. ‖Q(d∗+1)
1 ‖2B ≤

1
4ρ
d∗+1‖Q1‖2B

2. ‖Q(d∗)
1 ‖2B ≥

1
4ρ

d∗‖Q1‖2B

Proof We claim that there exists D ∈ {0} ∪ [d− 1] such that ‖Q(D)
1 ‖2B ≥

1
4ρ
D‖Q1‖2B. If not, then

for all D ∈ {0} ∪ [d− 1] we have ‖Q(D)
1 ‖2B < 1

4ρ
D‖Q1‖2B. Then,

‖Q1‖2B =
d−1∑
D=0

‖Q(D)‖2B ≤
d−1∑
D=0

ρD

4
‖Q1‖2B <

1

2
‖Q1‖2B

which is a contradiction.
Now we set d∗ to be the largest such D ∈ {0} ∪ [d − 1] such that ‖Q(D)

1 ‖2B ≥
1
4ρ

D‖Q1‖2B. If

d∗ < d− 1, then by construction we know that ‖Q(d∗+1)
1 ‖2B < 1

4ρ
d∗+1‖Q1‖2B. On the other hand if

d∗ = d− 1, then by construction Q(d∗+1)
1 is identically 0 (since Q1 is of degree at most d− 1) and

hence the claim is vacuously true.

E.2.3. LOCATING A GOOD j∗ ∈ [T ]

Let d∗ ∈ {0}∪ [d−1] be as in Lemma 29. Now, we shall find a good j∗ ∈ [T ] in the sub-polynomial
U1Q

(d∗)
1 which contains a sub-polynomial linear in W1j∗ with significant ‖ · ‖B-mass.

Lemma 30 Let the polynomial U1Q
(d∗)(Z,W) be expressed in the basis B as

U1Q
(d∗)(Z,W) =

∑
H∈Hd∗

∑
M∈M

cH,MHM

Then there exists j∗ ∈ [T ] such that∑
H∈H−j∗d∗

∑
M∈M−j∗

c2H,MW1j∗
≥ 1

T 2
(20dT )−4

d

( ∑
H∈Hd∗

∑
M∈M

c2H,M

)
(68)

Proof Consider the following representation of U1Q
(d∗)
1 :

U1Q
(d∗)
1 (Z,W) =

∑
H∈Hd∗

HU1Q1,H(W) (69)

Using the fact that U1 = (1/
√
T )
∑T

j=1W1j and T = 10d, the following lemma is directly implied
by Lemma 33.
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Lemma 31 Fix H ∈Hd∗ . Let U1Q1,H(W) (as defined in (69)) be expressed in the basis B as

U1Q1,H(W) =
∑
M∈M

cH,MM

Then there exists at least T/2 choices of j∗ ∈ [T ] such that∑
M∈M−j∗

c2H,MW1j∗
≥ 1

T
(20dT )−4

d
∑
M∈M

c2H,M (70)

For a fixed Hermite monomial H ∈ Hd∗ , we call a j∗ ∈ [T ] to be good for H if the following
conditions hold:

1. The Hermite monomial H does not contain Zj∗-variables.

2. The index j∗ satisfies (70) with respect to H

Now for a fixed Hermite monomial H ∈Hd∗ , out of T values of j, at most d− 1 can appear in H .
Furthermore, Lemma 31 guarantees that for at least T/2-values of j ∈ [T ], (70) is satisfied. Since
T = 10d, for each Hermite monomial H there exists at least some j∗(H) which is good for H .
Therefore by averaging over all H ∈Hd∗ , there exists j∗ ∈ [T ] such that∑
H∈H−j∗d∗

∑
M∈M−j∗

c2H,MW1j∗
≥ 1

T

∑
H∈H−d∗

∑
M∈M−j∗(H)

c2H,MW1j∗(H)
≥ 1

T 2
(20dT )−4

d

( ∑
H∈Hd∗

∑
M∈M

c2H,M

)

E.2.4. SUBSTITUTING Wj∗ WITH Yj∗ -VARIABLES

For the j∗ ∈ [T ] chosen in the previous section, Prel,j∗ can be rewritten by expanding Wj∗ in the
Yj∗-variables as Q̃(Z−j∗ ,Yj∗ ,W−j∗) which can be expressed in the basis B−j∗ as follows:

Q̃(Z−j∗ ,W−j∗ ,Yj∗) =
d−1∑
D=0

∑
H∈H−j∗D

∑
M∈M−j∗

∑
S∈Sj∗

c̃H,M,SHMYS (71)

where H−j∗D,M−j∗ and Sj∗ are as defined in Appendix C.2. Now we show that the squared sum
of coefficients in the above expression, restricted to factors to terms of the form HMYij∗ capture a
significant fraction of mass.

Claim 32 Let Q̃(Z−j∗ ,W−j∗ ,Yj∗) be as in (71). Then,

∑
H∈H−j∗d∗

∑
M∈M−j∗

∑
i∈[kj∗ ]

c̃2H,M,(ij∗) ≥
1

2kj∗

( ∑
H∈H−j∗d∗

∑
M∈M−j∗

c2H,MW1j∗

)
(72)
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Proof Consider the polynomial Plin defined as follows:

Plin(Z,W) =
∑

H∈H−j∗d∗

∑
M∈M−j∗

∑
i∈[kj∗ ]

αH,M,iHMWij∗ (73)

which is the sub-polynomial in P consisting of monomials containing exactly one Wj∗-variable.
Note that terms on the RHS of (73) for i > 1 are contained in Pomit.

Fix a HM ∈ H−j∗d∗ ◦M−j∗ and i ∈ [kj∗ ]. Under the linear transformation Wj∗ 7→ Yj∗ we
have

c̃H,M,(ij∗) =
∑
l∈[kj∗ ]

αH,M,lcl,i (74)

where the c1,l, . . . , cT,l are the lth coordinates of vectors c1, . . . , cT (as in Appendix C). Recall that
〈ci, ci′〉 = 0 for all i 6= i′. Therefore∑

i∈[kj∗ ]

c̃2H,M,Yij∗
=

∥∥∥ ∑
l∈[kj∗ ]

αH,M,lcl

∥∥∥2 (75)

=
∑
l∈[kj∗ ]

∥∥∥αH,M,lcl

∥∥∥2 (76)

≥ α2
H,M,1‖c1‖2 =

α2
H,M,1

kj∗
(77)

To finish the proof, we note that for i = 1 the RHS of (73) has contribution either from terms in
U1Q

(d∗)
1 or Q0. Summing over all pairs HM ∈B−j∗ and using the triangle inequality we obtain

√ ∑
H∈H−j∗d∗

∑
M∈M−j∗

α2
H,M,1 ≥

√ ∑
H∈H−j∗d∗

∑
M∈M−j∗

c2H,M,W1j∗
− ‖Q0‖B (78)

≥ 1√
2

√ ∑
H∈H−j∗d∗

∑
M∈M−j∗

c2H,M,W1j∗
(79)

where we upper bound ‖Q0‖B as follows:

‖Q0‖2B
1
≤ ρ2d‖Q1‖2B

2
≤ ρd‖Q(d∗)

1 ‖2B = ρd
∑

H∈Hd∗

∑
M∈M

c2H,M (80)

3
≤ 1

16

∑
H∈H−j∗d∗

∑
M∈M−j∗

c2H,M,W1j∗
(81)

where inequality 1 follows from Lemma 28, inequality 2 follows from Lemma 29 and the last
inequality follows from Lemma 30 and our choice of ρ.
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E.2.5. COMPLETING THE PROOF OF LEMMA 27

Part 1 follows from Lemma 28 and Part 2 follows directly from Lemma 29. For Part 3, observe that
the LHS of Part 3 (in Lemma 27) is equal to the LHS of (72), which can be lower bounded using
Claim 32, Lemma 30 and Lemma 29 as follows

1

2kj∗

( ∑
H∈H−j∗d∗

∑
M∈M−j∗

c2H,MW1j∗

)
≥ 1

2kj∗T 2
(20dT )−4

d

( ∑
H∈Hd∗

∑
M∈M

c2H,M

)
(82)

=
1

2T 2kj∗
(20dT )−4

d‖Q(d∗)
1 ‖2B (83)

≥ 1

8T 2kj∗
(20dT )−4

d
ρd
∗‖Q1‖2B (84)

which completes the proof.

Appendix F. A Linear Mass Bound for Low Degree Polynomials

In this section we study the structure of polynomials over the variable set {W1, . . . ,WT }. For
a polynomial P (W1, . . . ,WT ), dropping the subscript we use ‖P‖ to denote the `2-norm of the
coefficients of P in the monomial basis. Let U :=

∑T
j=1Wj . Define Q(W1, . . . ,WT ) = U ·

S(W1, . . . ,WT ), a polynomial of degree d+ 1. For any j ∈ [T ], write:

S(W1, . . . ,WT ) =

d∑
`=0

W `
j · Sj,`(W6=j) (85)

Q(W1, . . . ,WT ) =

d+1∑
`=1

W `
j ·Qj,`(W 6=j) (86)

where W 6=σ = {Wi}i/∈σ for any list σ of indices. The main result of this section is the following
lemma showing that for many j ∈ [T ], the Wj-linear sub-polynomial Qj,1 has significant mass:

Lemma 33 For polynomials S andQ as above, if T > 2d, there are at least T/2 choices of j ∈ [T ]

such that ‖Qj,1‖ ≥ (20dT )−3
d‖S‖.

The rest of this section is devoted to proving Lemma 33.

F.1. The Variable Removal Lemma

The key ingredient that is needed to prove this is the following lemma that will be iteratively applied
while reducing the number of variables and the degree at each iteration:

Lemma 34 (Variable Removal) Let d ≥ 1. For variables X,Y, Z, suppose there are polynomials
S1, S2 of degree d − 1, polynomials R1, R2 of degree d − 2, and error polynomials ∆X ,∆Y of
degree d satisfying:

(aX − Y − Z)S1(Y,Z) + ∆X(X,Y, Z) +X2R1(X,Y, Z)

= (aY −X − Z)S2(X,Z) + ∆Y (X,Y, Z) + Y 2R2(X,Y, Z). (87)
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Then,
S1(Y,Z) =

(
(a+ 1)Y − Z

)
C(Z) + Y 2A1(Y,Z) + ∆(Y,Z)

where ∆ is such that ‖∆‖ ≤ 20amax(‖∆X‖, ‖∆Y ‖). Furthermore, we have deg(C(Z)) ≤ d− 2,
deg(A1(Y,Z)) ≤ d− 3, and deg(∆(Y, Z)) ≤ d− 1.

Proof We write the polynomials S1 and S2 in the following way6:

S1(Y,Z) = Y 2 ·A1(Y,Z) + Y ·B1(Z) + Z · C1(Z) +D1

S2(X,Z) = X2 ·A2(X,Z) +X ·B2(Z) + Z · C2(Z) +D2

Note that C1(Z) and A1(Y, Z) can be of degree at most d− 2 and d− 3 respectively. Additionally,
we write the error polynomials as:

∆X = X ·∆X
X + Z ·∆X

Z + Z2 ·∆X
Z2(Z) + Y Z ·∆X

Y Z(Z) + ∆̃X(X,Y, Z)

∆Y = X ·∆Y
X + Z ·∆Y

Z + Z2 ·∆Y
Z2(Z) + Y Z ·∆Y

Y Z(Z) + ∆̃Y (X,Y, Z)

To be clear, the functions without any arguments, such as ∆X
X or ∆Y

Z , are constants. The above
decomposition is unique. Now we match coefficients in (87).

1. Matching terms of the form X0Y 0Z≥2, we get −C1(Z) + ∆X
Z2 = −C2(Z) + ∆Y

Z2 ⇒
C2(Z) = C1(Z) + ∆Y

Z2 −∆X
Z2

2. Matching terms of the form X1Y 0Z0, we get aD1 + ∆X
X = −D2 + ∆Y

X ⇒ D2 = −aD1 +
∆Y
X −∆X

X

3. Matching terms of the form X0Y 0Z1, we get −D1 + ∆X
Z = −D2 + ∆Y

Z . Substituting D2

from above:

−D1 = −D2 + ∆Y
Z −∆X

Z = aD1 − (∆Y
X −∆X

X) + (∆Y
Z −∆X

Z )

which on rearranging gives us D1 = − 1
a+1

[
∆Y
Z −∆X

Z −∆Y
X + ∆X

X

]
4. Matching X0Y 1Z≥1 we get −B1(Z) − C1(Z) + ∆X

Y Z = aC2(Z) + ∆Y
Y Z . Substituting

C2(Z) from above,

−B1(Z) = aC2(Z) + C1(Z) + ∆Y
Y Z −∆X

Y Z

= a
(
C1(Z) + ∆Y

Z2 −∆X
Z2

)
+ C1(Z) + ∆Y

Y Z −∆X
Y Z

= (a+ 1)C1(Z) + a
(
∆Y
Z2 −∆X

Z2

)
+ ∆Y

Y Z −∆X
Y Z

Finally by substituting B1(Z) and D1 in the expression for S1(Y, Z) and collecting the error terms,
we get

S1(Y,Z) = Y 2A1(Y, Z)− Y
[
(a+ 1)C1(Z) + a

(
∆Y
Z2 −∆X

Z2

)
+ ∆Y

Y Z −∆X
Y Z

]
+ ZC1(Z) +D1

6. If d ≤ 2, then some of the polynomials below are automatically 0.
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= Y 2A1(Y, Z)− C1(Z)
[
(a+ 1)Y − Z

]
− Y

[
a
(
∆Y
Z2 −∆X

Z2

)
+ ∆Y

Y Z −∆X
Y Z

]
− 1

a+ 1

[
∆Y
Z −∆X

Z −
(
∆Y
X −∆X

X

)]
= Y 2A1(Y,Z)− C1(Z)

[
(a+ 1)Y − Z

]
+ ∆(Y, Z)

We obtain the lemma settingC(Z) = −C1(Z) and ∆(Y,Z) = −Y
[
a
(
∆Y
Z2−∆X

Z2

)
+∆Y

Y Z−∆X
Y Z

]
.

The upper bound on ‖∆‖ follows by triangle inequality.

F.2. Proof of Lemma 33

Fix j ∈ [T ]. Comparing the coefficients of the sub-polynomial that are degree 1 in Wj in the
expansion of Q (see (86)) and US (see (85)), we get

Qj,1(W 6=j) = Sj,0 + Sj,1(W 6=j)
∑

W 6=j (88)

where
∑

W 6=σ is the sum of all variables in W6=σ for any list σ of indices. Denote Qj,1(W 6=j) as
∆

(1)
j .

The proof is by contradiction i.e., we assume that more than T/2 of the ∆
(1)
j polynomials have

small mass. We show first that there exist many j’s such that the sub-polynomial of S not divisible
by W 2

j retains significant mass. This is achieved using Lemma 35. Next, we apply Lemmas 34 and
35 as well as the degree bound on S to obtain a contradiction.

F.2.1. FINDING A NON-QUADRATIC SUB-POLYNOMIAL WITH SIGNIFICANT MASS

Lemma 35 Given a polynomial P on variables W1, . . . ,WT of degree d such that ‖P‖ = 1, let
P = W 2

j Pj(W1, . . . ,WT ) +Rj(W1, . . . ,WT ) for every j ∈ [T ] where Rj(·) is the sub-polynomial
which does not contain a W 2

j factor. Then, if T > d, there exists j ∈ [T ] such that ‖Rj‖ >
4−2

d‖P‖.

Proof Without loss of generality, assume ‖P‖ = 1 by rescaling. Suppose that for all j ∈ [d],
‖Rj‖ ≤ η := 4−2

d
. We show that this violates the degree bound on P using the following claim.

Claim 36 For every j ∈ [d], if polynomials Hj and Lj are defined such that P = W 2
1 · · ·W 2

j ·
Hj + Lj and Lj is not divisible by W 2

1 · · ·W 2
j , then ‖Lj‖ ≤ 4 · η1/2j−1

.

This claim proves the lemma because it shows ‖Ld‖ ≤ 4 · η1/2d−1
< 1/2, so ‖Hd‖ > 0 (since

they contribute disjoint monomials to P ), and therefore P contains a monomial of degree 2d, a
contradiction.

Proof [Proof of Claim 36] The proof is by induction on j. The base case j = 1 is clear, since
L1 = R1.

For the inductive step, suppose the claim is true for j − 1. Then, we have that W 2
j Pj + Rj =

P = W 2
1 · · ·W 2

j−1Hj−1 +Lj−1 with ‖Lj−1‖ ≤ 4η1/2
j−2

. Write Hj−1 = W 2
j H
′
j +L′j where L′j is

not divisible by W 2
j . Now, P = W 2

1 · · ·W 2
j H
′
j +W 2

1 · · ·W 2
j−1L

′
j + Lj−1.
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By looking at the terms divisible by W 2
j , we have that ‖W 2

j Pj‖ = ‖Pj‖ ≤ ‖H ′j‖ + ‖Lj−1‖.
Since ‖Pj‖ ≥ 1− η and ‖Lj−1‖ ≤ 4η1/2

j−2
, we get that ‖H ′j‖ ≥ 1− 8η1/2

j−2
.

Let Hj = H ′j and Lj = W 2
1 · · ·W 2

j−1L
′
j + Lj−1. Then,

‖Lj‖2 = 1− ‖Hj‖2 = 1− ‖H ′j‖2 ≤ 1− (1− 8η1/2
j−2

)2 ≤ 16η1/2
j−2

F.2.2. ITERATIVE EXPANSION OF S

We are now ready to prove Lemma 33. For contradiction, suppose that maxj∈[T/2] ‖∆
(1)
j ‖ ≤

Cmax := (20dT )−3
d
. By rescaling, we can assume ‖S‖ = 1. We expand the polynomial S it-

eratively using Lemma 34. At each step, we shall use Lemma 35 to find a Wj variable such that S
contains a sub-polynomial of significant mass which is not divisible by W 2

j .

As a first step, using (88) and the definition of ∆
(1)
1 , for every j ∈ [T/2], we can write:

S(W) =
(
Wj −

∑
W 6=j

)
· S(1)

j (W6=j) +W 2
j ·R

(1)
j (W) + ∆

(1)
j (W) (89)

where S(1)
i , R(1)

i and ∆
(1)
j are polynomials of degrees at most d − 1, d − 2 and d respectively and

‖∆(1)
j ‖ ≤ Cmax. Because T/2 > d, using Lemma 35 and re-indexing, we can assume that the

sub-polynomial of S not divisible by W 2
1 has `2-norm at least η := 4−2

d
.

Now, applying the variable reduction lemma (Lemma 34) for every j ∈ [2, T/2], with a =

1, X = W1, Y = Wj , and Z =
∑

W 6=1,j , we obtain that there exist polynomials S(2)
j , R(2)

j and

∆
(2)
j of degrees d− 2, d− 3 and d− 1 respectively such that

S
(1)
1 (W 6=1) =

(
2Wj −

∑
W 6=1,j

)
· S(2)

j (W 6=1,j) +W 2
j ·R

(2)
j (W6=1) + ∆

(2)
j (W 6=1)

and ‖∆(2)
j ‖ ≤ 20Cmax. Again, by Lemma 35 and re-indexing, we can ensure that the sub-

polynomial of S(1)
1 not divisible by W 2

2 has `2-norm at least η‖S(1)
1 ‖.

Applying the variable reduction lemma again with a = 2, we obtain polynomials S(3)
j , R

(3)
j and

∆
(3)
j of degrees d− 3, d− 4, and d− 2 respectively such that for any j ∈ [3, T/2]:

S
(2)
2 (W6=1,2) =

(
3Wj −

∑
W 6=1,2,j

)
· S(3)

j (W6=1,2,j) +W 2
j ·R

(3)
j (W6=1,2) + ∆

(3)
j (W6=1,2)

and ‖∆(3)
j ‖ ≤ 202 · 2 · Cmax. Continuing this way, we get that for every 1 ≤ ` < j ≤ T/2, there

exist polynomials S(`)
j , R

(`)
j and ∆

(`)
j of degrees d− `, d− `− 1, and d− `+ 1 such that:

S
(`−1)
`−1 (W 6=[`−1]) =

(
`Wj −

∑
W 6=[`−1]∪{j}

)
· S(`)

j (W6=[`−1]∪{j})

+W 2
j ·R

(`)
j (W 6=[`−1]) + ∆

(`)
j (W 6=[`−1]) (90)

and ‖∆(`)
j ‖ ≤ (20`)`−1Cmax. Here, S(0)

0 = S. Moreover, using Lemma 35, we can assume that the

sub-polynomial of S(`−1)
`−1 not divisible by W 2

` has `2-mass at least η‖S(`−1)
`−1 ‖.
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For ` = d, we obtain a linear polynomial S(d−1)
d−1 (W6=1,...,d−1) such that for every j ∈ [d, T/2],

there exists constant S(d)
j and linear polynomial ∆

(d)
j such that:

S
(d−1)
d−1 (W 6=1,...,d−1) =

(
dWj −

∑
W6=1,...,d−1,j

)
· S(d)

j + ∆
(d)
j (W 6=1,...,d−1)

Note that R(d)
j = 0 because S(d−1)

d−1 is not divisible by W 2
j being a linear polynomial.

Applying Lemma 34 one final time, we get that |S(d)
d | ≤ (40d)dCmax. On the other hand, we

have the following claim:

Claim 37 For any 0 ≤ ` ≤ T/2, ‖S(`)
` ‖ ≥

( η
T

)` − 2 (20`)`Cmax

T .

Proof The proof is by induction. For ` = 0, the claim is true because ‖S(0)
0 ‖ = ‖S‖ = 1. For the

induction, note that by our choice of the index ` above, the sub-polynomial of S(`−1)
`−1 not divisible

by W 2
` has `2-mass at least η‖S(`−1)

`−1 ‖. Moreover, from (90) and triangle inequality this mass is at
most

‖(`W` −
∑

W6=[`])S
(`)
` ‖+ ‖∆(`)

` ‖

So:

‖(`W` −
∑

W 6=[`])S
(`)
` ‖ ≥ η‖S

(`−1)
`−1 ‖ − ‖∆

(`)
` ‖

≥ η‖S(`−1)
`−1 ‖ − (20`)`−1Cmax

≥ η`/T `−1 − 2η(20`)`−1Cmax/T − (20`)`−1Cmax

≥ η`/T `−1 − 2(20`)`Cmax

The claim follows by observing ‖(`W` −
∑

W 6=[`])S
(`)
` ‖ ≤ T · ‖S

(`)
` ‖.

Therefore, |S(d)
d | ≥ (η/T )d − 2(20d)dCmax/T . But by our choice of η and Cmax, (η/T )d −

2(20d)dCmax/T > (40d)dCmax, since Cmax((40d)d + 2(20d)d/T ) < Cmax(80d)d < (1/4T )2
d

=
(η/T )d. This is a contradiction.

Appendix G. Useful Tools and Results

Fact 38 There exists a distribution of random variables g1, . . . , gR such that each gi is marginally
N(0, 1), E[gigj ] = −1/(R− 1) for all i 6= j, and

∑R
i=1 gi = 0.

Lemma 39 Let g = (g1 . . . gR)T where {gi}Ri=1 are as given in Fact 38, and suppose x =
(x1 . . . , xR)T, y = (y1 . . . yR)T ∈ RR are orthogonal unit vectors such that 〈1,x〉 = 0 and
〈1,y〉 = 0. Define, f := 〈x,g〉 and h := 〈y,g〉. Then, f and g are independent N(0, R/(R − 1))
random variables.

Proof We have,

E[f2] = E

( R∑
i=1

xigi

)2

39



HARDNESS OF LEARNING HALFSPACES USING PTFS

=
R∑
i=1

x2iE[g2i ] +
∑
i,j∈[R]
i 6=j

xixjE[gigj ]

=

R∑
i=1

x2i −
(

1

R− 1

) ∑
i,j∈[R]
i 6=j

xixj

=

(
1 +

1

R− 1

) R∑
i=1

x2i −
(

1

R− 1

)( R∑
i=1

xi

)2

=
R

R− 1
. (91)

The same holds for E[h2]. For the second part of the lemma observe that,

E[fh] =

R∑
i=1

xiyiE[g2i ] +
∑
j∈[R]
j 6=i

E[gigj ]xiyj



=

R∑
i=1

xiyi − ( 1

R− 1

) ∑
j∈[R]
j 6=i

xiyj


=

(
1 +

1

R− 1

)
〈x,y〉 −

(
1

R− 1

)
〈x,1〉〈y,1〉 = 0. (92)

Fact 40 (Fact 3.4 in Diakonikolas et al. (2011)) Let P : R` → R be a degree-d polynomial over
independent standard normal variables which has at least one coefficient of magnitude at least α.
Then, ‖P‖2 ≡

√
E[|P (x)|2] is at least α

dd(`+d
d )

.

Appendix H. Comparing monomial and `2-masses

In this section, we relate the monomial mass of the polynomials with their `2-mass under the distri-
bution D.

Lemma 41 Let Q(U1, . . . , UT ) be a polynomial of degree d ≥ 1. Let Q̃(W1,1, . . . ,W1,T ) be the
polynomial obtained from Q(U1, . . . , UT ) by the orthonormal transformation. With η and T = 10d
chosen as in Section 3, the following bounds hold:

1. ‖Q(U1, . . . , UT )‖2 ≤ (20dT )5d‖Q̃(W1,1, . . . ,W1,T )‖mon,2

2. IfQ depends only on variablesU2, . . . , UT then ‖Q̃(W1,1, . . . ,W1,T )‖mon,2 ≤ (10dT )7d‖Q(U2, . . . , UT )‖2
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Proof For ease of notation, we shall denote variables W11, . . . ,W1T by W1, . . . ,WT . Let ST,d be

the set of all multi-sets on [T ] of size at most d. Using the fact that
(
T
d

)
≤
(
Te
d

)d
≤ (eT )d we have

|ST,d| ≤ (10T )2d

Proof of Part 1.: For the first direction let Q(U1, . . . , UT ) =
∑

S∈ST,d
cSUS , where the monomial

US is defined as US =
∏
i∈S U

S(i)
i . Therefore,

‖Q‖22 = EDI

[( ∑
S∈ST,d

cSUS

)2]
(93)

≤ EDI

[( ∑
S∈ST,d

c2S

)( ∑
S∈ST,d

U2
S

)]
(94)

= ‖Q(U1, . . . , UT )‖2mon,2

(
EDI

[ ∑
S∈ST,d

U2
S

])
(95)

For the first term, we claim that

‖Q(U1, . . . , UT )‖mon,2 ≤ ‖Q(U1, . . . , UT )‖mon,1

≤ (10T )3d‖Q̃(W1, . . . ,WT )‖mon,1

≤ (10T )4d‖Q̃(W1, . . . ,WT )‖mon,2

where the first inequality follows the fact that `2-norm is upper bounded by the `1-norm, and the
third inequality follows from Cauchy-Schwarz and |ST,d| ≤ (10T )2d. The middle inequality can be
argued as follows. Consider US =

∏
i∈S U

S(i)
i . Then it can be expressed as in terms ofW1, . . . ,WT

as ∏
i∈S

( ∑
l∈[T ]

ai,lWl

)S(i)
By construction, the linear transformation {U1, . . . , UT } 7→ {W1, . . . ,WT } is orthonormal

(See Appendix C.1.2). Therefore each coefficient satisfies |ai,l| ≤ 1. Furthermore, there can be at
most T d distinct terms in the expansion of US . Therefore, the total contribution to the coefficient
of a fixed monomial from US can be at most |cS |T d. Repeating the argument across all S ∈ ST,d
completes the argument.

For upper bounding the expectation term in (95), fix a S ∈ ST,d. Then,

EDI
[
U2
S

]
= EDI

[∏
i∈S

U
2S(i)
i

]
=

∏
i∈S

EDI

[
U

2S(i)
i

] (
Since U1, . . . , UT are independent

)
≤

∏
i∈S\{1}

EDI

[
U

2S(i)
i

] (
Since η

√
T < 1

)
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1
≤

∏
i∈S\{1}

(2S(i))!

≤ (2|S|)!

where step 1 follows from the well known fact that for g ∼ N(0, 1), E[gk] ≤ k! for all k ∈ Z+.
Therefore, plugging in the upper bounds in (95) we get

‖Q(U1, . . . , UT )‖2mon,2

(
EDI

[ ∑
S∈ST,d

U2
S

])
≤ (10T )10d(2d)(2d)‖Q̃(W1, . . . ,WT )‖2mon,2

Proof of Part 2: For the second direction, we observe that

‖Q̃(W1, . . . ,WT )‖mon,2 ≤ ‖Q̃(W1, . . . ,WT )‖mon,1 (96)
1
≤ (10T )3d‖Q(U2, . . . , UT )‖mon,1 (97)
2
≤ (10dT )7d‖Q(U2, . . . , UT )‖2 (98)

where inequality 1 again can be argued similarly to the previous direction (using the fact that
{W1, . . . ,WT } 7→ {U1, . . . , UT } is again an orthonormal linear transformation).

For step 2, we writeQ(U2, . . . , UT ) in the monomial basis ofU i.e.,Q(U2, . . . , UT ) =
∑

S cSUS
and see that

∥∥∥∥∑
S

cSUS

∥∥∥∥
mon,1

=
∑

S∈ST−1,d

|cS |
1
≤

∑
S∈ST−1,d

(6Td)2d‖Q(U2, . . . , UT )‖2 ≤ (10dT )4d‖Q(U2, . . . , UT )‖2 (99)

with step 1 following from Fact 40, and the last inequality uses the upper bound on |ST,d|.

Appendix I. Comparison inequalities between Norms

Claim 42 Given polynomials P1(W), P2(W) over variables W = (W11, . . . ,W1T ), we have

‖P1(W)P2(W)‖mon,2 ≤ ‖P1(W)‖mon,1‖P2(W)‖mon,2.

Proof Let P1(W) =
∑

WS∈M cSWS . Then,

‖P1(W)P2(W)‖mon,2 =
∥∥∥ ∑
WS∈M

cSWSP2(W)
∥∥∥
mon,2

≤
∑

WS∈M
|cS |‖WSP2(W)‖mon,2

= ‖P1(W)‖mon,1‖P2(W)‖mon,2
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