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Abstract
Semidefinite programs (SDP) are important in learning and combinatorial optimization with numer-
ous applications. In pursuit of low-rank solutions and low complexity algorithms, we consider the
Burer–Monteiro factorization approach for solving SDPs. For a large class of SDPs, upon random
perturbation of the cost matrix, with high probability, we show that all approximate second-order
stationary points are approximate global optima for the penalty formulation of appropriately rank-
constrained SDPs, as long as the number of constraints scales sub-quadratically with the desired
rank. Our result is based on a simple penalty function formulation of the rank-constrained SDP
along with a smoothed analysis to avoid worst-case cost matrices. We particularize our results to
two applications, namely, Max-Cut and matrix completion.

1. Introduction

Semidefinite programs (SDP) are an important class of optimization problems (Vandenberghe and
Boyd, 1996), and are critical to several learning-related tasks, including clustering (Shi and Malik,
2000; Abbe, 2017), matrix completion and regression (Recht et al., 2010; Candès and Recht, 2009),
kernel learning (Lanckriet et al., 2004), and sum-of-squares relaxations (Barak et al., 2015).

However, solving SDPs in practice is a challenging task. Consider the following canonical SDP:

minimize
X∈Rn×n

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, · · · ,m, and X � 0, (1)

where C,A1, . . . , Am ∈ Rn×n are symmetric matrices, 〈A,B〉 = Tr
(
ATB

)
, and X is positive

semidefinite. Such problems are convex and can be solved in polynomial time using classical iterative
algorithms such as ellipsoid and interior-point methods (Nesterov et al., 1994). However, these
algorithms have super-linear complexity (in input size) and tend to scale poorly in practice. As such,
they are not well suited for typical learning tasks where both m and n can be fairly large. The two
key challenges for these algorithms are: (a) a search space of high dimension on the order of n2; and
(b) the need to maintain positive semidefiniteness of the variable matrix X throughout the iterations.
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In response to these challenges, Burer and Monteiro (2003, 2005) suggested solving (1) by
constraining the search space to matrices of rank at most k, using a parameterization of the form
X = UUT where U ∈ Rn×k. This reduces the number of variables from O(n2) to O(nk), and
mechanically enforces positive semidefiniteness:

minimize
U∈Rn×k

〈
C,UUT

〉
subject to

〈
Ai, UU

T
〉

= bi, i = 1, · · · ,m. (2)

This is equivalent to (1) with the additional constraint rank(X) ≤ k. This rank constraint is
fairly natural, as several SDPs of interest are themselves relaxations of rank-constrained problems.
Moreover, Barvinok (1995); Pataki (1998) showed that for every feasible compact SDP, there exists
a rank O(

√
m) solution that is also globally optimal. While this ensures that the global optimum of

the factored SDP problem (with k = Ω(
√
m)) maps to a global optimum of the original SDP, it is

not immediately clear how to solve the factorized problem.
In fact, the factorized problem is a non-convex quadratically constrained quadratic program which

in general can be NP-hard. The challenge in solving the problem arises due to the non-convexity as
well as due to constraints. In this work, we consider a simple penalty method approach that replaces
the constraints with a quadratic penalty in the objective function. In settings where it is not easy to
project onto the constraint set (as in problem (1)), it is natural for optimization algorithms to resort to
penalty formulations. This is the strategy of popular methods including the interior point, augmented
Lagrangian and primal-dual methods. As a first step we consider the simplest such formulation,
namely the quadratic penalty method.

The proposed penalty formulation is given by:

minimize
X�0

Fµ(X) = 〈C,X〉+ µ
m∑
i=1

(〈Ai, X〉 − bi)2 , (3)

where µ is generally a large positive constant. Notice that this is a convex problem. Intuitively, for
increasingly large µ, solutions of (3) converge to solutions of (1).

Combining that formulation with the Burer–Monteiro factorization we get:

minimize
U∈Rn×k

Lµ(U) =
〈
C,UUT

〉
+ µ

m∑
i=1

(
〈
Ai, UU

T
〉
− bi)2. (4)

The cost function Lµ is non-convex, and generic optimization algorithms can only guarantee compu-
tation of an approximate second-order stationary point (SOSP) (Cartis et al., 2012; Ge et al., 2015).
That is, such algorithms converge to a point U where the gradient of Lµ is small and the Hessian of
Lµ is almost positive semidefinite. Such approximate SOSPs need not be close to optimal in general.

As a first contribution, we construct an explicit SDP where a suboptimal SOSP exists even for k
as large as n− 1. However, we show that such bad SDPs have measure zero among all SDPs when k
is large enough. Specifically, we show that if the cost matrix has a small amount of randomness and
k(k+1)

2 > m, then, almost surely, any SOSP of Lµ is a global optimum. That is, when k = Ω(
√
m),

for almost all cost matrices C, an SOSP of (4) corresponds to a global optimum. We would like to
stress here that for certain non-compact SDPs existence of an SOSP itself is not guaranteed. However,
as shown in Section 5, SOSPs exist for several important classes of SDPs.
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We next address the question of approximate optimality for approximate SOSPs, as optimization
algorithms can only recover approximate SOSPs in polynomial time. Since there is a measure zero
set of SDPs with bad SOSPs, there can be a non-zero (but likely small) measure set of SDPs with
bad approximate SOSPs. We use smoothed analysis to avoid these bad SDPs, by perturbing the
objective matrix. We show that for k = Ω̃(

√
m) and with high probability upon an appropriately

scaled perturbation, any approximate SOSP of Lµ with a perturbed objective and bounded residues
is approximately optimal for the perturbed and penalized objective (3). We further discuss settings
under which all SOSPs of the penalized problem have bounded norm (and hence bounded residues).

1.1. Main results

The main contributions of this work as follows.

• We propose a simple penalty version of the factored SDP (2) and show that, for almost all
cost matrices C, any exact SOSP of the rank-constrained formulation (4) is a global optimum
for rank Ω(

√
m)—see Corollary 4. This result removes the smooth manifold requirement

of (Boumal et al., 2016), though it applies to (3), not (1).

• We show that there indeed exists a compact, feasible SDP with a worst-case C for which
the penalized, factorized problem admits a suboptimal SOSP (see Theorem 5), even for rank
almost as big as the dimension.

• We show that by perturbing the objective function slightly and by performing a smoothed
analysis on the resulting problem, we can guarantee with high probability that every approxi-
mate SOSP of the perturbed problem is an approximate global optimum of the perturbed and
penalized SDP. Hence, we can use standard techniques (Cartis et al., 2012; Ge et al., 2015) to
find approximate SOSPs and bound the optimality gap—see Theorem 13.

In summary, we show that for a class of SDPs with bounded solutions, we can find a low-rank
solution that is close to global optimality for the penalized objective. Note that finding the smallest
rank matrix satisfying a set of linear equations is NP hard (Natarajan, 1995). Our results show how
increasing the number of parameters (rank) makes the optimization of this non-convex problem
easier. While the extreme case setting k = n makes the constraint trivial, our results show optimality
for a non-trivial rank (Ω̃(

√
m)), and it is an interesting question to understand this trade-off in more

detail. We believe that the factorization technique can be leveraged to design faster SDP solvers, and
any looseness in the current bounds is an artifact of our proof, which hopefully can be tightened in
future works.

1.2. Prior work

Fast solvers for SDPs have garnered interest in the optimization and in the theoretical computer
science communities for a long time. Most of the existing results for SDP solvers can be categorized
into direct (convex) methods and factorization methods.

Convex methods: Classical techniques such as interior point methods (Nesterov and Nemirovski,
1989, 1988; Alizadeh, 1995) and cutting plane methods (Anstreicher, 2000; Krishnan and Mitchell,
2003) enjoy geometric convergence, but their computational complexity per iteration is high. As a
result, it is hard to scale these methods to SDPs with a large number of variables.
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With the goal of speeding up the computation, many works have considered: i) a specific and
important class of SDPs, namely, SDPs with a trace constraint (Tr (X) = 1), and ii) methods with
sub-linear convergence. For these SDPs, Arora et al. (2005) proposed a multiplicative weights
method which provides faster techniques for some graph problems, with running time depending on
O( 1

ε2
) and the width of the problem. Hazan (2008) proposed a Frank–Wolfe-type algorithm with a

complexity of Õ( Z
ε3.5

) where Z is the sparsity of C and the Ai’s. Garber and Hazan (2016); Garber
(2016) proposed faster methods that either remove the dependence on Z (sub-linear time), or improve
the dependence on ε. While these methods improve the per iteration complexity, they still need
significant memory as the rank of solutions for these methods is not bounded, and scales at least at
the rate of O(1ε ). An exception to this is the work by Yurtsever et al. (2017), which uses sketching
techniques in combination with conditional gradient method to maintain a low rank representation.
However this method is guaranteed to find a low rank optimum only if the conditional gradient
method converges to a low rank solution.

Factorization methods: Burer and Monteiro (2003, 2005) proposed a different approach to speed up
computations, namely by searching for solutions with smaller rank. Even though all feasible compact
SDPs have at least one solution of rank O(

√
m) (Barvinok, 1995; Pataki, 1998), it is not an easy task

to optimize directly on the rank-constrained space because of non-convexity. However, Burer and
Monteiro (2003, 2005) showed that any rank-deficient local minimum is optimal for the SDP. Journée
et al. (2010) extended this result to any rank-deficient SOSP under restrictive conditions on the SDP.
However, these results cannot guarantee that SOSPs are rank deficient, or at least that rank-deficient
SOSPs can be computed efficiently (or even exist). Boumal et al. (2016, 2018b) address this issue by
showing that for a particular class of SDPs satisfying some regularity conditions, and for almost all
cost matrices C, any SOSP of the rank-constrained problem with k = Ω(

√
m) is a global optimum.

Later, Mei et al. (2017) showed that for SDPs with elliptic constraints (similar to the Max-Cut SDP),
any rank-k SOSP gives a (1 − 1

k−1) approximation to the optimum value. Both these results are
specific to particular classes of SDPs and do not extend to general problems.

In a related setup, Keshavan et al. (2010); Jain et al. (2013) have showed that rank-constrained
matrix completion problems can be solved using smart initialization strategies followed by local
search methods. Following this, many works have identified interesting statistical conditions under
which certain rank-constrained matrix problems have no spurious local minima (Sun et al., 2016;
Bandeira et al., 2016; Ge et al., 2016; Bhojanapalli et al., 2016b; Park et al., 2017; Ge et al., 2017;
Zhu et al., 2017; Ge and Ma, 2017). These results are again for specific problems and do not extend
to general SDPs.

In contrast, our result holds for a large class of SDPs in penalty form, without strong assumptions
on the constraint matrices Ai and for a large class of cost matrices C. We avoid degenerate SDPs
with spurious local minima by perturbing the problem and then using a smoothed analysis, which is
one of the main contribution of the work.

After the initial preprint of this work became available, we learned about work by Du and Lee
(2018), who in a parallel have shown optimality of exact SOSPs using similar techniques as we used
in Section 2, but for single hidden layer neural networks with quadratic activations.
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Notation

For a smooth function f(X), we refer to first-order stationary pointsX as FOSPs. Such points satisfy
∇f(X) = 0 (zero gradient). We refer to second-order stationary points at SOSPs. Such points
are FOSPs and furthermore satisfy ∇2f(X) � 0, i.e., the Hessian is positive semidefinite. The set
of symmetric matrices of size n is Sn×n. σi() and λi() denote the ith singular- and eigenvalues
respectively, in decreasing order.

2. Exact second-order points typically are optimal

In this section, we study the second-order stationary points of our penalty formulation (4) and show
that for “typical” cost matrices C, exact SOSPs are optimal for (4) as long as k = Ω(

√
m).

Our result is based on a simple but powerful argument that has appeared in various forms before,
notably in (Burer and Monteiro, 2005). The argument claims that any rank-deficient local optimum
of (4) (which is really a parameterized version of (3) with a rank constraint) should map to a local
optimum of (3) as the constraint rank(X) ≤ k is not active. Since (3) is convex, every local optimum
is a global optimum, hence a rank-deficient local optimum of (4) maps to a global optimum of (3).
Interestingly, the result holds even if U is just an SOSP rather than a local optimum, something that
is readily apparent from the proofs in (Journée et al., 2010), albeit in a restricted setting.

Lemma 1 Let f(X) be a convex, twice continuously differentiable function ofX ∈ Sn×n. Consider
the convex problem

minimize
X�0

f(X). (5)

Now consider the rank-constrained factorized version of the problem:

minimize
U∈Rn×k

g(U) = f(UUT ). (6)

If U is an SOSP of (6) with rank(U) < k, then U is a global minimum of (6) and UUT is a global
minimum of (5). (Notice that such a point may not exist in general.)

See Appendix D for a detailed proof.
Thus, (column) rank-deficient SOSPs of (4) are globally optimal and map to global optima of (3).

A direct corollary states that non-convexity is benign if k = n+ 1.

Corollary 2 Given an SDP in penalized and factorized form (4) with k > n, deterministically, any
SOSP U is a global optimum, and UUT is a global optimum for (3).

Yet, the main goal is to make a statement for small k, so as to reduce the dimensionality of the search
space. Unfortunately, in general, SOSPs of non-convex cost functions need not have rank less than k
for arbitrary k.

However, the following lemma asserts that, for almost all cost matrices C, provided k grows like√
m, all FOSPs (a fortiori, all SOSPs) are rank deficient. Our proof is the same as that of (Boumal

et al., 2016, Lemma 9) but the main statement as well as the cost function and conditions on
constraints are stated more generally. In particular, unlike the statement in that reference, we do not
require that the feasible set of (2) form a smooth manifold.
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Lemma 3 Choose k such that k(k+1)
2 > m. For almost all C ∈ Sn×n, any FOSP U ∈ Rn×k of (4)

(if one exists) satisfies rank(U) < k.

See Appendix D for a detailed proof.
These two lemmas lead to an important corollary regarding the factorization approach.

Corollary 4 Given an SDP in penalized and factorized form (4) with k such that k(k+1)
2 > m, for

almost any cost matrix C, deterministically, any SOSP U is a global optimum, and UUT is a global
optimum for (3).

To ensure existence of such solutions, it is necessary to include additional conditions (for example,
on the constraints of the SDP.) From (Pataki, 1998; Barvinok, 1995), it is known that SDPs with
non-empty, compact search spaces can have a unique solution of rank up to the maximal k such that
k(k+1)

2 ≤ m. This indicates that, in general, the condition on k cannot be improved.
These observations lead to the following two natural questions:

1. This result holds only for “typical” C. Is this an artifact of our proof technique, or is it
necessary to exclude a zero-measure set of cost matrices C?

2. This result holds only for exact SOSPs, which in general are hard to compute. Numerical
methods tend to provide approximate SOSPs only. Can we extend the results to approximate
SOSPs as well?

The next section answers the first question in the affirmative: there do exist “bad” matrices C for
some SDPs, so that any result of the type of Corollary 4 must exclude at least some SDPs. To address
the second question, we resort to smoothed analysis, that is, for large classes of SDPs in penalty form,
upon perturbing the cost matrix randomly, we show that, with high probability, approximate SOSPs
are also good enough to obtain approximately globally optimal solutions of the perturbed problem.

3. Exact second-order points sometimes are suboptimal

Below, we construct an SDP which confirms that it is indeed necessary (in full generality) to exclude
some SDPs in Corollary 4, even if k is allowed to grow large.

Pick n ≥ 3 and set ε =
√

6
n−1 . Consider the following m = n+ 1 constraint matrices in Sn×n:

Ai = eien
> + enei

>, i = 1, · · · , n− 1,

An = ε

[
In−1 0

0 1

]
, and An+1 = ε

[
2In−1 0

0 1

]
,

where ei ∈ Rn is the ith standard basis vector (the ith column of In). In words, for i = 1, . . . , n− 1,
each Ai has only two non-zero entries—both equal to one—located in row i of the last column and
symmetrically in column i of the last row.

Pair these matrices with the right-hand side vector b ∈ Rm defined by

b1 = · · · = bn−1 = 0, and bn = bn+1 = ε
5(n− 1)

3
.
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Finally, set the cost matrix C to be zero. (A distinct advantage of picking C = 0 is that it makes
the choice of µ > 0 irrelevant in defining (4).) These prescriptions fully define the SDP (1) and its
associated factorized and penalized problem (4), which we can write here as:

minimize
U∈Rn×k

L(U) =
1

2

n+1∑
i=1

(〈
Ai, UU

T
〉
− bi

)2
. (7)

Theorem 5 The SDP defined above admits a global optimum of rank 1. Furthermore, for k = n−1,

Ū ,

[
In−1

0

]
is a suboptimal SOSP of (7).

See Appendix E for a detailed proof of the theorem.

4. Approximate second-order points: smoothed analysis

Recall that Corollary 4 shows that exact SOSPs of (4) are optimal for almost all cost matrices C.
However, obtaining exact SOSPs is challenging in practice. Standard optimization algorithms such
as the trust-region method and the cubic regularization method (Nesterov and Polyak, 2006; Cartis
et al., 2012), when run for finitely many iterations, converge to an approximate SOSP only, as defined
below. All proofs for this section are in Appendix F.

Definition 6 (ε-FOSP) We call U an ε-FOSP of a function f(U) if:

‖∇f(U)‖F ≤ ε.

Definition 7 ((ε, γ)-SOSP) We call U an (ε, γ)-SOSP of a function f(U) if:

‖∇f(U)‖F ≤ ε and λmin(∇2f(U)) ≥ −γ
√
ε.

As an extension to Lemma 1—which states rank-deficient exact SOSPs are optimal—we now show
that approximate SOSPs which are also approximately rank deficient are indeed approximately
optimal. To this end, we define the linear operator A : Sn×n → Rm with A(X)i = 〈Ai, X〉. We use
the following notion of norm for A:

‖A‖ , max
Y ∈Sn×n,‖Y ‖F≤1

‖A(Y )‖2, ‖A‖ = ‖A∗‖ , max
y∈Rm,‖y‖2≤1

‖A∗(y)‖F . (8)

Furthermore, we define the residue at a point U to be the vector of constraint violations:

r = r(U) = r(UUT ) , A(UUT )− b. (9)

Lemma 8 Let U ∈ Rn×k be an (ε, γ)-SOSP of (4) such that σ2k(U) ≤ γ
√
ε

8µ‖A‖2 . Then,

λmin(C + 2µA∗(r)) ≥ −γ
√
ε.

Furthermore, if a global optimum X̃ for (3) exists, then the optimality gap obeys:

Fµ(UUT )− Fµ(X̃) ≤ γ
√
εTr(X̃) +

1

2
ε‖U‖F .

(Once again, we stress that U and X̃ as prescribed may not exist in general.)
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To reach a statement about approximate optimality of approximate SOSPs, it remains to show that
approximate FOSPs are approximately rank deficient. Such a result would constitute a generalization
of Lemma 3. In that lemma, we had to exclude a pathological set of “bad” matrices C. Hence, here
too, we expect to encounter difficulties with some C’s.

For this reason, we resort to a smoothed analysis. That is: on the off-chance that the cost matrix
C is “bad”, we perturb it with a random Gaussian matrix. We further assume that (a) k is large
enough, and (b) approximate FOSPs have bounded residues r. That residues are indeed bounded is
established under special conditions in later subsections.

Theorem 9 Draw a random matrix G with Gij ∼ N (0, σ2G) i.i.d. for i ≤ j and G = GT . Let
U ∈ Rn×k be an ε-FOSP of (4) with perturbed cost matrix C +G. Assume there exists a constant
B which only depends on the problem parameters A,b, C and µ such that:

1. With probability at least 1− δ on the choice of G, all ε-FOSPs of the perturbed problem have
bounded residue: ‖r‖2 ≤ B, and

2. k ≥ 3

[
log( nδ′ ) +

√
rank(A) log

(
1 +

8µB‖A‖√c0n
σG

)]
for some δ′ ∈ (0, 1), where c0 is a

universal constant.

Then, with probability at least 1− δ − δ′,

σk(U) ≤ 2ε

σG

√
c0n

k
.

Crucially, notice that rank(A) ≤ m, so (up to log factors) k is required to grow like
√
m, as desired.

4.1. Compact SDPs

To leverage Lemma 8 and Theorem 9, we must control the residues at approximate FOSPs of (4).
This is delicate in general. In this part, we make the following assumption.

Assumption 10 The search space C = {X � 0 : A(X) = b} of the SDP (1) is non-empty and
compact, where A : Sn×n → Rm is the linear operator defined by A(X)i = 〈Ai, X〉.

When this is the case, standard results from (Barvinok, 1995; Pataki, 1998) guarantee the existence
of a global optimum of rank r where r(r+1)

2 ≤ m for the SDP (1)—always. It is reasonable to expect
such low-rank solutions might also exist for the penalized problem (3), and that one should be able
to compute these by solving the factorized problem (4)—at least, generically. This section is about
making these expectations precise in the soft case, where one only computes approximate SOSPs.

A technical necessity in our proofs is to show that FOSPs of (4) have bounded norm. To do this,
we need a technical modification of (4). Specifically, consider the following geometric fact.

Proposition 11 For a given SDP (1), assume C is non-empty. Then, C is compact if and only if there
exists a positive definite matrix A0 and a nonnegative real b0 such that 〈A0, X〉 = b0 for all X ∈ C.
Furthermore, unless C = {0}, b0 > 0.
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Thus, under Assumption 10, we can rewrite (1) with an explicit redundant constraint involving
A0 � 0:

minimize
X∈Sn×n

〈C,X〉

subject to 〈A0, X〉 = b0,

〈Ai, X〉 = bi, i = 1, · · · ,m, and X � 0. (10)

Accordingly, we define Ã : Sn×n → Rm+1 and b̃ ∈ Rm+1 such that Ã(X)i = 〈Ai, X〉 for
i = 0, . . . ,m, and C = {X � 0 : Ã(X) = b̃}. With the extended residue definition

r̃ = r̃(U) = r̃(UUT ) , Ã(UUT )− b̃, (11)

the associated penalty formulations are:

minimize
X�0

F̃µ(X) = 〈C,X〉+ µ‖r̃(X)‖22, (12)

minimize
U∈Rn×k

L̃µ(U) =
〈
C,UUT

〉
+ µ‖r̃(U)‖22. (13)

We note that, in full generality, finding (A0, b0) as in Proposition 11 may be as hard as solving an
SDP, but in practical applications (A0, b0) may be easy to determine. In particular, SDPs with a trace
constraint satisfy this with A0 = In. For example, for the Max-Cut SDP, feasible matrices have
constant trace n, so that A0 = In and b0 = n are suitable.

For this modified formulation, approximate FOSPs have bounded norm and bounded residues.

Lemma 12 Consider problem (13) with A0 � 0 and b0 ≥ 0. For any U ,

‖r‖2 ≤ ‖A‖‖U‖2F + ‖b‖2, and ‖r̃‖2 ≤ ‖Ã‖‖U‖2F + ‖b̃‖2.

If U is an ε-FOSP and b0 > 0, then

‖U‖2F ≤ max

{(
ε

2µb0λmax(A0)

)2

,
1

λmin(A0)2

(
‖C‖2

2µ
+

3

2
b0λmax(A0)

)
+

‖b‖2
2λmin(A0)

}
.

We are now ready to state the main result by connecting Lemma 8 and Theorem 9 via Lemma 12.

Let B0 , ‖Ã‖max

{(
1

4µb0λmax(A0)

)2
, 1
λmin(A0)2

(
‖C‖2+3σG

√
n

2µ + 3
2b0λmax(A0)

)
+ ‖b‖2

2λmin(A0)

}
+

‖b̃‖2.1

Theorem 13 (Global optimality.) Let X̃ be a global optimum of (12). Let δ ∈ (0, 1) and c0 be a
universal constant. Draw a random matrix G with Gij ∼ N (0, σ2G) i.i.d. for i ≤ j and G = GT .
Let U ∈ Rn×k be an (ε, γ)-SOSP of (13) with perturbed cost matrix C +G and:

ε ≤
(

γk2σ2G
32c0nµ‖A‖2

)2/3

and k ≥ 3

log
(n
δ

)
+

√√√√rank(A) log

(
1 +

8µB0‖Ã‖
√
c0n

σG

) .
Then, with probability at least 1−O(δ) the optimality gap obeys:

F̃µ(UUT )− F̃µ(X̃) ≤ γ
√
εTr(X̃) +

1

2
ε‖U‖F . (14)

1. We pick σG first and then B0, k and ε.
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This result shows that for compact SDPs (10), for k = Ω̃(
√
m), with high probability upon the

perturbation, all approximate SOSPs of the perturbed factorized problem are approximately optimal.
Notice that the result requires ε smaller than σG, which is limiting but unavoidable as there can

be SDPs with bad approximate SOSPs. Hence, if we perturb by only a small amount (small σG),
then we need to find highly accurate SOSPs to avoid these bad approximate SOSPs. Another way to
look at the result is to see σG as a tentative distance from bad SDPs. Hence, for SDPs far away from
these bad problems (higher σG), even high ε solutions are approximately (ε-) optimal.

Setting µ : From equation (14), to get residues of magnitude less than some ε (approximate

feasibility) at an approximate SOSP U , we need µ to be O
(
|〈C,UUT 〉−〈C,X̃〉|+γ√εTr(X̃)+ 1

2
ε‖U‖F

ε

)
.

Using penalty formulations such as ALM can help us in getting similar approximate feasiblity for
much smaller values of µ. For general penalty problems we refer to Proposition 2.4 of (Bertsekas,
2014) which gives the relationship between the value of µ and the feasibility of a solution.

4.2. SDPs with positive definite cost

We now consider a second class of SDPs: ones where the cost matrix C is positive definite. The
feasible set of these SDPs need not be compact. However, FOSPs for these SDPs are bounded, hence
we will be able to show similar results as in Section 4.1. Consider the penalty formulation of the
perturbed problem,

minimize
U∈Rn×k

L̂µ(U) =
〈
C +G,UUT

〉
+ µ

m∑
i=1

(〈
Ai, UU

T
〉
− bi

)2
, (15)

where G is a symmetric random matrix with Gij
i.i.d.∼ N (0, σ2G) for i ≤ j. Let F̂µ(UUT ) = L̂µ(U).

To prove an optimality result for this problem, we first show a residue bound for any ε-FOSP of
L̂µ(U).

Lemma 14 Consider (15) with a positive definite cost matrix C. Let σG ≤ λmin(C)

6
√
n log(n/δ)

. Then, with

probability at least 1− δ, at any ε-FOSP U of (15), the residue obeys:

‖r‖2 = ‖A(UUT )− b‖2 ≤ ‖A‖max

{(
2ε

λmin(C)

)2

,
2µ

λmin(C)
‖b‖22

}
+ ‖b‖2.

Using this, we get the following result from Lemma 8 and Theorem 9 along same lines as that of
Theorem 13. Let

B0 , ‖A‖max

{(
1

λmin(C)

)2

,
2µ

λmin(C)
‖b‖22

}
+ ‖b‖2.

Theorem 15 (Global optimality.) Let δ ∈ (0, 1) and c0 be a universal constant. Given an SDP (1)
with positive definite objective matrix C, let X̃ be a global optimum of the perturbed problem (15),
and let σG ≤ λmin(C)

4
√
n log(n/δ)

. Let U be an (ε, γ)-SOSP of the perturbed problem (15) with:

ε ≤
(

γk2σ2G
32c0nµ‖A‖2

)2/3

and k ≥ 3

[
log
(n
δ

)
+

√
rank(A) log

(
1 +

8µB0‖A‖
√
c0n

σG

)]
.

10
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Then, with probability at least 1−O(δ),

F̂µ(UUT )− F̂µ(X̃) ≤ γ
√
εTr(X̃) +

1

2
ε‖U‖F .

This result shows that even though the feasible set of SDP is not compact, as long as the objective
is positive definite, all approximate SOSPs of the perturbed objective are approximately optimal
(with high probability upon the perturbation). Without the positive definite condition, SDPs can have
unbounded solutions (see Section 2.4 of Gärtner and Matousek (2012)). We also require a bound on
the magnitude of the perturbation (σG), as otherwise the objective (C +G) can be indefinite with
(too) high probability, which may result in unbounded solutions.

5. Applications

We present applications of our results to two SDPs: Max-Cut (deferred to Section A) and matrix
completion, both of which are important problems in the learning domain and have been studied
extensively. Interest has grown to develop efficient solvers for these SDPs (Arora and Kale, 2007;
Mei et al., 2017; Hardt, 2013; Bandeira et al., 2016).

This work differs from previous efforts in at least two ways. First, we aim to demonstrate that
Burer–Monteiro-style approaches, which are often used in practice, can indeed lead to provably
efficient algorithms for general SDPs. We believe that building upon this work, it should be possible
to improve the time-complexity guarantees of such factorization-based algorithms. Second, we note
that several problems formulated as SDPs in fact necessitate low-rank solutions, for example because
of memory concerns (as is the case in matrix completion), and factorization approaches provide a
natural means to control rank.

5.1. Matrix Completion

In this section we specialize our results for the matrix completion problem Candès and Recht (2009).
The goal of a matrix completion problem is to find a low-rank matrix M using only a small number
of its entries, with applications in recommender systems. To ensure that the computed matrix is
low-rank and generalizes well, one typically imposes nuclear-norm regularization which leads to the
following SDP:

min Tr (W1) + Tr (W2)

s. t. Xij = Mij , (i, j) ∈ S[
W1 X
XT W2

]
� 0

≡ min 〈I, Z〉

s. t.
1

2

〈
ei+ne

T
j+n + ej+ne

T
i+n, Z

〉
= Mij , (i, j) ∈ S

Z � 0.

Here S is the set of observed indices of M and Z ,

[
W1 X
XT W2

]
. Let

L̂µ(U) =
〈
I +G,UUT

〉
+ µ

m∑
i=1

(
1

2

〈
ei+ne

T
j+n + ej+ne

T
i+n, UU

T
〉
−Mij

)2

(16)

be the corresponding penalty objective. Let F̂µ(UUT ) = L̂µ(U). The objective is positive definite
with λ1(C) = λn(C) = 1. Also, since A is a sub-sampling operator, ‖A‖ ≤ 1. Finally, for

11
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ε2 ≤ µ
2

√∑
(i,j)∈SM

2
ij , the residues are bounded by:

‖A‖max

{(
2ε

λn(C)

)2

,
2µ

λn(C)
‖b‖22

}
+ ‖b‖2 ≤ max 3µ

√ ∑
(i,j)∈S

M2
ij .

Applying Theorem 15 for this setting gives the following corollary.

Corollary 16 There exists an absolute numerical constant c2 such that the following holds. With
probability greater than 1 − δ, every (ε, γ)-SOSP U of the perturbed matrix completion problem
L̂µ(U) (16) with:

σG ≤
1

4
√
n log(n/δ)

, ε ≤ 1

c2

(
γ |S|σ2G
nµ

)2/3

, and k = Ω̃


√√√√√|S| log

µ2√n
√∑

(i,j)∈SM
2
ij

σG


 ,

satisfies F̂µ(UUT )− F̂µ(X∗) ≤ γ
√
εTr (X∗) + 1

2ε‖U‖F , where X∗ is a global optimum of F̂µ(X).

This result shows that for the matrix completion problem withm observations, for rank Ω̃(
√
m), with

high probability upon perturbation, any approximate local minimum of the factorized and penalized
problem is an approximate global minimum.

Most of the existing results on matrix completion either require strong distribution assumptions
on S and incoherence assumptions on M to recover a low-rank solution (Candès and Recht, 2009;
Jain et al., 2013). The standard nuclear norm minimization algorithms are not guaranteed to converge
to low-rank solutions without these assumptions, which implies that the entire matrix would need
to be stored for prediction which is infeasible in practice. Similarly, generalization error bounds
(Foygel and Srebro, 2011) as well as differential privacy guarantees depend on recovery of a low-rank
solution.

Our result guarantees finding a solution of rank Ω̃(
√
m) without any statistical assumptions on

the sampling or the matrix, unlike existing results (Ge et al., 2016), though it involves a random
perturbation. The tradeoff is our results does not guarantee finding a lower (potentially a constant)
rank solution, even if one exists for a given problem.

6. Conclusions and perspectives

In this paper we considered the Burer–Monteiro factorization to solve SDPs (2) in the penalty form
which allows us to find solutions of rank at most k without doing any eigen-decomposition. We
established that with a small perturbation to the objective C, with high probability, all approximate
local minima are approximately globally optimal for the SDP, provided k = Ω̃(

√
m) (which is the

right order though constants and dependence on other parameters could certainly be improved). This
is achieved through smoothed analysis, which we believe is an appropriate tool to deal with the
pathological cases exhibited in Section 3. A natural direction of improvement for the present work is
to tackle the more complex ALM formulations, which is expected to help in satisfying constraints
more accurately.

Finally, we studied the applicability of our results to two applications: Max-Cut (in the appendix)
and matrix completion. While these particularizations do not always improve over the specialized
solvers for these problems, we believe that the work done here in studying low-rank parameterization
of SDPs will be a helpful step towards building up to faster methods.
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Appendix A. Max-Cut

In this section we present our results for the Max-Cut problem which finds applications in clustering
related problems. In a seminal paper, Goemans and Williamson (1995) defined the following SDP to
solve the Max-Cut problem: minX∈Rn×n 〈C,X〉 , s.t. Xii = 1 ∀ 1 ≤ i ≤ n,X � 0, where n is the
number of vertices in the given graph and C is its adjacency matrix. Since the constraint set also
satisfies Tr (X) = n, we consider the following penalized, non-convex version of the problem.

L̂µ(U) ,
〈
C +G,UU>

〉
+ µ

((〈
I, UU>

〉
− n

)2
+

n∑
i=1

(〈
eiei
>, UU>

〉
− 1
)2)

, (17)

where G is a random symmetric Gaussian matrix. Let F̂µ(UUT ) = L̂µ(U). After some simplifying
computations, we have the following corollary of Theorem 13.

Corollary 17 There exists an absolute numerical constant c1 such that the following holds. With
probability greater than 1− δ, every (ε, γ)-SOSP U of the perturbed Max-Cut problem L̂µ(U) (17)
with:

ε ≤ 1

c1

(
γσ2G
µn

)2/3

, and k = Ω̃

(√
n log

(
µ2
√
n

σG

))
,

satisfies F̂µ(UUT )− F̂µ(X∗) ≤ γ
√
εTr (X∗) + 1

2ε ‖U‖F , where X∗ is a global optimum of F̂µ(X).

The above result states that for the penalized version of the perturbed Max-Cut SDP, the Burer–
Monteiro approach finds an approximate global optimum as soon as the factorization rank k = Ω̃(

√
n)

(with high probability). Existing results for Max-Cut using this approach either only handle exact
SOSPs (Boumal et al., 2016), or require k = n + 1 (Boumal et al., 2018a), or require k that is
dependent on 1

ε (Mei et al., 2017). Moreover, complexity per iteration scales only linearly with the
number of edges in the graph.

Appendix B. Gradient Descent

In previous sections we have seen that for the perturbed penalty objective (15), under some technical
conditions on the SDP, with high probability upon appropriate choice of the parameters, every
approximate SOSP is approximately optimal. Second-order methods such as cubic regularization
and trust regions (Nesterov and Polyak, 2006; Cartis et al., 2012) converge to an approximate SOSP
in polynomial time. While gradient descent with random initialization can take exponential time
to converge to an SOSP (Du et al., 2017), a recent line of work starting with Ge et al. (2015) has
established that perturbed gradient descent (PGD)2 converges to an SOSP as efficiently as second-
order methods in the worst case, with high probability. In particular we have the following almost
dimension free convergence rate for PGD from (Jin et al., 2017a).

2. This is vanilla gradient descent but with additional random noise added to the updates when the gradient magnitude
becomes smaller than a threshold.
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Theorem 18 (Theorem 3 of Jin et al. (2017a)) Let f be l-smooth (that is, its gradient is l-Lipschitz)
and have a ρ-Lipschitz Hessian. There exists an absolute constant cmax such that, for any δ ∈ (0, 1),
ε ≤ l2

ρ , ∆f ≥ f(X0) − f∗, and constant c ≤ cmax, PGD(X0, l, ρ, ε, c, δ,∆f ) applied to the cost
function f outputs a (ρ2, ε) SOSP with probability at least 1− δ in

O

(
(f(X0)− f∗)l

ε2
log4

(
nkl∆f

ε2δ

))
iterations.

The above theorem requires the function f to be smooth and Hessian-Lipschitz. The next lemma
states that the perturbed penalty objective (15) satisfies these requirements—proof in Appendix G.

Lemma 19 In the region {U ∈ Rn×k : ‖U‖F ≤ τ} for some τ > 0, the cost function L̂µ(U)
in (15) is l-smooth and its Hessian is ρ-Lipschitz with:

• l ≤ 2‖C +G‖2 + 4µ‖A‖‖b‖2 + 12µτ2‖A‖2, and

• ρ ≤ 16µτ‖A‖2.

Here, ‖A‖ is as defined in (8). Notice furthermore that, with high probability, ‖G‖2 ≤ 3σG
√
n. In

that event, ‖C +G‖2 ≤ ‖C‖2 + 3σG
√
n.

Combining this lemma with the above theorem shows that the perturbed gradient method
converges to an (ε, ρ2) SOSP in Õ( 1

ε2
) steps (ignoring all other problem parameters). This can be

improved to Õ( 1
ε1.75

) using a variant of Nesterov’s accelerated gradient descent (Jin et al., 2017b).
Moreover, if the objective function is (restricted) strongly convex in the vicinity of the local minimum,
then we can further improve the rates to poly log

(
1
ε

)
(Jin et al., 2017a). This property is satisfied

for problems where A meets either restricted isometry conditions or when A pertains to a uniform
sampling of incoherent matrices (Agarwal et al., 2010; Negahban and Wainwright, 2012; Sun and
Luo, 2014). See (Bhojanapalli et al., 2016a) for more discussions on restricted strong convexity close
to the global optimum.

The complexity of the algorithm is given by Gradient-Computation-Time× Number of iterations.
Computing the gradient in each iteration requiresO

(
Zk + nk2 +mnk

)
arithmetic operations where

Z is the number of non-zeros in C and the constraint matrices. For dense problems this becomes
O
(
mn2k

)
. However, most practical problems tend to have a certain degree of sparsity in the

constraint matrices so that the computational complexity of such a method can be significantly
smaller than the worst-case bound.

Appendix C. Proof of Lemma 21: lower-bound for smallest singular values

First we state a special case of Corollary 1.17 from (Nguyen, 2017). Let NI(X), denote the number
of eigenvalues of X in the interval I .

Corollary 20 Let M ′ be a deterministic symmetric matrix in Sn×n. Let G′ be a random symmetric
matrix with entries G′ij drawn i.i.d. from N (0, 1) for i ≥ j (in particular, independent of M ′.) Then,
for given 0 < γ < 1, there exists a constant c = c(γ) such that for any ε > 0 and k ≥ 1, with I
being the interval, [− εk√

n
, εk√

n
],

Pr
[
NI(M

′ +G′) ≥ k
]
≤ nk

(
cε√
2π

)(1−γ)k2/2
.
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We can use the above corollary to prove Lemma 21.
Proof In our case, entries of G have variance σ2G. Thus, set G = σGG

′, and set M̄ = σGM
′. From

Corollary 20, we get

NσGI(M̄ +G) = NI(M
′ +G′) < k

with probability at least 1−nk
(

cε√
2π

)(1−γ)k2/2
. In this event, σn−(k−1)(M̄ +G) ≥ εk√

n
σG. Choose

γ = 1
2 , and ε = 1

2c . Substituting this we get with probability at least 1−exp
(
−k2

8 log(8π) + k log(n)
)

that
σn−(k−1)(M̄ +G) ≥ k

2c
√
n
σG.

Hence,
∑k

i=1 σn−(i−1)
(
M̄ +G

)2 ≥ σn−(k−1)
(
M̄ +G

)2 ≥ k2

c0n
σ2G, for some absolute constant

c0 = 4c2.

Appendix D. Proofs for Section 2

Proof [Proof of Lemma 1] Necessary and sufficient optimality conditions for (5) are: ∇f(X) � 0
and ∇f(X)X = 0. Let U be an SOSP for (6) with rank(U) < k and define X = UUT . Then,
∇g(U) = 2∇f(UUT )U = 0 and ∇2g(U) � 0. The first statement readily shows that ∇f(X)X =
0. The Hessians of f and g are related by:

1

2
∇2g(U)[U̇ ] = ∇f(UUT )U̇ +∇2f(UUT )[UU̇T + U̇UT ]U.

Since rank(U) < k, there exists a vector z ∈ Rk such that Uz = 0 and ‖z‖2 = 1. For any x ∈ Rn,
set U̇ = xzT so that UU̇T + U̇UT = 0. Using second-order stationarity of U , we find:

0 ≤ 1

2

〈
U̇ ,∇2g(U)[U̇ ]

〉
=
〈
xzT ,∇f(UUT )xzT

〉
= xT∇f(UUT )x.

This holds for all x ∈ Rn, hence ∇f(UUT ) � 0 and X = UUT is optimal for (5). Since (5) is a
relaxation of (6), it follows that U is optimal for (6).

Proof [Proof of Lemma 3] Let U be any FOSP of (4) and consider the linear operator A : Sn×n →
Rm defined by A(X)i = 〈Ai, X〉. By first-order stationarity, we have:

∇Lµ(U) = 2
(
C + 2µA∗(A(UUT )− b)

)
U = 0.

Hence, the nullity of C + 2µA∗(A(UUT )− b) (the dimension of its kernel) satisfies:

rank(U) ≤ null(C + 2µA∗(A(UUT )− b)) ≤ max
y∈Rm

null(C +A∗(y)). (18)

The maximum over y is indeed attained since the function null takes integer values in 0, . . . , n. Say
the maximum evaluates to `. Then, for some y, M , C +A∗(y) has nullity `. Hence,

C = M −A∗(y) ∈ N` + imA∗,
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whereN` is the manifold of symmetric matrices of size n and nullity `, imA∗ is the range of A∗ and
the plus is a set-sum. More generally, assuming the maximum in (18) is p or more, then

C ∈Mp ,
⋃

`=p,...,n

N` + imA∗.

The manifold N` has dimension n(n+1)
2 − `(`+1)

2 (Helmke and Shayman, 1995, Prop. 2.1(i)), while
imA∗ has dimension at most m. Hence,

dimMp ≤ m+ max
`=p,...,n

dimN` = m+
n(n+ 1)

2
− p(p+ 1)

2
.

Since C is in Sn×n and dimSn×n = n(n+1)
2 , almost no C lives inMp if dimMp < dimSn×n,

which is the case if p(p+1)
2 > m. Stated differently: rank(U) ≤ p, and for almost all C ∈ Sn×n,

p(p+1)
2 ≤ m. To conclude, require that k is strictly larger than any p which satisfies p(p+1)

2 ≤ m.

Appendix E. Proofs for Section 3

Proof [Proof of Theorem 5] We first show that the SDP admits exactly one feasible point. Indeed, let
X � 0 be feasible for the SDP. Then, constraints n and n+ 1 imply 〈An+1 −An, X〉 = 0. That is,
the trace of the principal submatrix of size n− 1 of X is zero. Since this submatrix is also positive
semidefinite, it is zero. Constraints 1 to n− 1 further show that all entries but Xnn are zero. Finally,
constraints n and n+ 1 force Xnn = 5(n−1)

3 . This X has rank 1 and is necessarily optimal.
We now show that the proposed Ū is suboptimal for L. To this end, build Ũ ∈ Rn×k with the last

row having squared 2-norm equal to 5(n−1)
3 , and all other rows are zero. Clearly, Ũ ŨT is feasible for

the SDP, so that L(Ũ) = 0: this is optimal. On the other hand, L(Ū) = 5
18(n− 1)2ε2 > L(Ũ).

Finally, we check stationarity of Ū . Let A : Sn×n → Rm be the linear operator such that
A(X)i = 〈Ai, X〉, and define the residue function r(U) = A(UUT )− b. The cost function and its
derivatives take the following forms:

L(U) =
1

2
‖r(U)‖22,

∇L(U) = 2A∗(r(U))U,

∇2L(U)[U̇ ] = 2A∗(r(U))U̇ + 2A∗(A(UU̇T + U̇UT ))U.

Simple computations show that A(Ū ŪT ) = (0, . . . , 0, (n− 1)ε, 2(n− 1)ε)T , so that A∗(r(Ū)) =
−n−1

3 ε2 · eneTn : only the bottom-right entry is non-zero. Consequently, ∇L(Ū) = 0: Ū is an FOSP
To show second-order stationarity, we must also show that ∇2L(Ū) is positive semidefinite. That is,
we must show the inequalities:

0 ≤
〈
U̇ ,∇2L(U)[U̇ ]

〉
= 2

〈
U̇ U̇T ,A∗(r(U))

〉
+
∥∥∥A(UU̇T + U̇UT )

∥∥∥2
2

for all U̇ ∈ Rn×k. Let

U̇ =

— u̇T1 —
...

— u̇Tn —

 , with u̇1, . . . , u̇n ∈ Rk arbitrary.
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Then, A(Ū U̇T + U̇ ŪT ) = (2u̇Tn , q1, q2)
T for some values q1, q2, so that:〈

U̇ ,∇2L(Ū)[U̇ ]
〉

= −2
n− 1

3
ε2‖u̇n‖22 + 4‖u̇n‖22 + q21 + q22 ≥

(
4− 2

n− 1

3
ε2
)
‖u̇n‖22.

Under our condition on ε, this is indeed always nonnegative: Ū is an SOSP.

Appendix F. Proofs for Section 4

Proof [Proof of Lemma 8] The gradient and Hessian of Lµ (4), with r , r(U) = A(UUT )− b, are:

∇Lµ(U) = 2 (C + 2µA∗(r))U, (19)

∇2Lµ(U)[U̇ ] = 2 (C + 2µA∗(r)) U̇ + 4µA∗(A(U̇UT + UU̇T ))U. (20)

Since U is an (ε, γ)-SOSP, it holds for all U̇ ∈ Rn×k with ‖U̇‖F = 1 that:

−γ
√
ε

2
≤ 1

2

〈
U̇ ,∇2Lµ(U)[U̇ ]

〉
=
〈
C + 2µA∗(r), U̇ U̇T

〉
+ µ

∥∥∥A(U̇UT + UU̇T )
∥∥∥2
2
. (21)

We now construct specific U̇ ’s to exploit the fact that U is almost rank deficient. Let z ∈ Rk be a
right singular vector of U such that ‖Uz‖2 = σk(U) (that is, z is associated to the least singular
value of U and ‖z‖2 = 1.) For any x ∈ Rn with ‖x‖2 = 1, introduce U̇ = xzT in (21):

−γ
√
ε

2
≤ xT (C + 2µA∗(r))x+ µ

∥∥∥A(U̇UT + UU̇T )
∥∥∥2
2
.

The last term is easily controlled:∥∥∥A(U̇UT + UU̇T )
∥∥∥
2
≤ 2‖A‖‖UU̇T ‖F = 2‖A‖‖UzxT ‖F ≤ 2‖A‖‖Uz‖2‖x‖2 = 2‖A‖σk(U).

Let x be an eigenvector of C + 2µA∗(r) associated to its least eigenvalue and combine the last two
statements together with the assumption on σk(U) to find:

λmin(C + 2µA∗(r)) ≥ −γ
√
ε

2
− 4µ‖A‖2σ2k(U) ≥ −γ

√
ε. (22)

This inequality is key to bound the optimality gap. For this part, we rely on the fact that Lµ(U) =
Fµ(UUT ) and Fµ is convex on Sn×n (3). Specifically, let X̃ be a global optimum for Fµ (assuming
it exists), and set X = UUT . Then, ∇Fµ(X) = C + 2µA∗(r),∇Lµ(U) = 2∇Fµ(X)U and:

Fµ(X̃)− Fµ(X) ≥
〈
∇Fµ(X), X̃ −X

〉
=
〈
C + 2µA∗(r), X̃

〉
− 1

2
〈∇Lµ(U), U〉

≥ −γ
√
εTr(X̃)− 1

2
ε‖U‖F .

In the last step, we used (22) as well as approximate first-order stationarity .

Proof [Proof of Proposition 11] One direction is elementary: if there exists A0 � 0 and b0 ≥ 0 such
that 〈A0, X〉 = b0 for all X ∈ C, then,

∀X ∈ C, Tr (X) = 〈In, X〉 ≤ λmin(A0)
−1 〈A0, X〉 = λmin(A0)

−1b0.
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Thus, the trace of X � 0 is bounded, and it follows that C is compact. Furthermore: if b0 = 0, then
C = {0}; and if b0 > 0, then 0 /∈ C.

To prove the other direction, assume C is non-empty and compact. If C = {0}, let A0 = In, b0 =
0. Now assume C 6= {0}. The SDP comes in a primal-dual pair:

min
X∈Sn×n

〈C,X〉 s.t. A(X) = b, X � 0, (P)

max
y∈Rm

〈b, y〉 s.t. C � A∗(y). (D)

It is well known that if (D) is infeasible, then (P) is unbounded or infeasible (Wolkowicz, 1981,
Thm. 4.1(a)). Since we assume C is non-empty, this simplifies to: if (D) is infeasible, then (P) is
unbounded. The contrapositive states: if (P) is bounded, then (D) is feasible. By our compactness
assumption on C, we know that (P) is bounded for all C ∈ Sn×n. Thus, (D) is feasible for any C. In
particular, take C = −In: there exists −y ∈ Rm such that A0 , A∗(y) � In. Furthermore,

∀X ∈ C, 〈A0, X〉 = 〈A∗(y), X〉 = 〈y,A(X)〉 = 〈y, b〉 , b0.

Since there exists X 6= 0 in C, it follows that b0 > 0.

Proof [Proof of Theorem 9] Using (19), U is an ε-FOSP of the perturbed problem if and only if
‖(M +G)U‖F ≤ ε

2 , where M = C + 2µA∗(r). Let U = PΣQT be a thin SVD of U (P is n× k
with orthonormal columns; Q is k × k orthogonal). Then,

‖(M +G)U‖F = ‖(M +G)PΣ‖F
≥ σk(U)‖(M +G)P‖F

≥ σk(U)

√√√√ k∑
i=1

σn−(i−1)(M +G)2.

Hence, we control the smallest singular value of U in terms of ε and the k smallest singular values of
M +G:

σk(U) ≤ ε

2
√∑k

i=1 σn−(i−1)(M +G)2
. (23)

The next lemma helps lower-bound the denominator—it follows from Theorem 1.16 and Corollary
1.17 in (Nguyen, 2017); see proof in Appendix C.

Lemma 21 Let M̄ be a fixed symmetric matrix of size n. Let G be a symmetric Gaussian matrix of
size n, independent of M̄ , with diagonal and upper-triangular entries sampled independently from
N (0, σ2G). There exists an absolute constant c0 such that:

Pr

[
k∑
i=1

σn−(i−1)
(
M̄ +G

)2
<

k2

c0n
σ2G

]
≤ exp

(
−k

2

8
log(8π) + k log(n)

)
.

We cannot use Lemma 21 directly, as in our case M is not statistically independent of G. Indeed, M
depends on U through the residue r = r(U) and U is an ε-FOSP: a feature that depends on G. To
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resolve this, we cover the set of possible M ’s with a net, under the assumption that r is bounded.
Lemma 21 provides a bound for each M̄ in this net. This can be extended to hold for all M̄ ’s in the
net simultaneously via a union bound. By taking a sufficiently dense net, we can then infer that M is
necessarily close to one of these M̄ ’s, and conclude.

Let E be the event (on G) that ‖r‖2 ≤ B for all ε-FOSPs of the perturbed problem. Conditioned
on E , we have

‖M − C‖F = 2µ‖A∗(r)‖F ≤ 2µB‖A‖,

where ‖A‖ is defined in (8). As a result, M lies in a ball of center C and radius 2µB‖A‖ in
an affine subspace of dimension rank(A). A unit-ball in Frobenius norm in d dimensions ad-
mits an ε-net of (1 + 2/ε)d points (Vershynin, 2016, Cor. 4.2.13). Thus, we can pick a net with(

1 + 4µB‖A‖
σG

√
4c0n
k2

)rank(A)
points in such a way that, independently of r, there exists a point M̄ in

the net satisfying:

‖M̄ −M‖F ≤

√
k2

4c0n
σG =

k

2
√
c0n

σG. (24)

Let T : Sn×n → Rk be defined by Tq(A) = (σn−q+1(A), . . . , σn(A))T , that is: T extracts the q
smallest singular values of A, in order. Then,

‖M̄ −M‖F = ‖(M̄ +G)− (M +G)‖F
≥ ‖Tn(M̄ +G)− Tn(M +G)‖2
≥ ‖Tk(M̄ +G)− Tk(M +G)‖2
≥ ‖Tk(M̄ +G)‖2 − ‖Tk(M +G)‖2,

where the first inequality follows from (Bhatia, 2013, Ex. IV.3.5). Hence,√√√√ k∑
i=1

σn−(i−1)(M +G)2 ≥

√√√√ k∑
i=1

σn−(i−1)(M̄ +G)2 − ‖M̄ −M‖F . (25)

Now, taking a union bound for E and for Lemma 21 over each M̄ in the net, we get (24) and√√√√ k∑
i=1

σn−(i−1)
(
M̄ +G

)2 ≥ k
√
c0n

σG (26)

with probability at least

1− exp

(
−k

2

8
log(8π) + k log(n) + rank(A) · log

(
1 +

4µB‖A‖
σG

√
4c0n

k2

))
− δ.

Inside the log, we can safely replace k with 1, as this only hurts the probability. Then, the result
holds with probability at least

1− exp

(
−k

2

8
log(8π) + k log(n) + rank(A) · log

(
1 +

8µB‖A‖
σG

√
c0n

))
− δ.
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We aim to pick k so as to ensure

exp

(
−k

2

8
log(8π) + k log(n) + rank(A) · log

(
1 +

8µB‖A‖
σG

√
c0n

))
≤ δ′.

This is a quadratic condition of the form

−ak2 + bk + c ≤ log(δ′)

for some a, b > 0, c ≥ 0. Since k is positive we get, k ≥ b+
√
a(c+log(1/δ′))

a , which is satisfied for,

k ≥ 3

[
log
(n
δ′

)
+

√
rank(A) log

(
1 +

8µB‖A‖√c0n
σG

)]
.

Combining (23), (24), (25) and (26), we find:

σk(U) ≤ ε

σG

2
√
c0n

k

with probability at least 1− δ − δ′.

Proof [Proof of Lemma 12] If U = 0, the bounds clearly hold: assume U 6= 0 in what follows.
Using∇L̃µ(U) = 2(C + 2µÃ∗(r̃))U , the definition of ε-FOSP reads:

ε

2
≥
∥∥∥(C + 2µÃ∗(r̃)

)
U
∥∥∥
F
.

Combining this with ‖A‖F ≥ 1
‖B‖F 〈A,B〉 for B 6= 0 (Cauchy–Schwarz) gives:

ε

2
≥ 1

‖U‖F

〈(
C + 2µÃ∗(r̃)

)
U,U

〉
.

This can be further developed as:

ε‖U‖F
2

≥
〈
C + 2µÃ∗(r̃), UUT

〉
=
〈
C,UUT

〉
+ 2µ

〈
r̃, Ã(UUT )

〉
=
〈
C,UUT

〉
+ 2µ

〈
Ã(UUT )− b̃, Ã(UUT )

〉
. (27)

At this point, we separate the constraint (A0, b0) from the rest, using the usual definition for (A,b)
which capture constraints 1, . . . ,m:

ε‖U‖F
2

≥
〈
C,UUT

〉
+ 2µ

(〈
A(UUT )− b,A(UUT )

〉
+
(〈
A0, UU

T
〉
− b0

) 〈
A0, UU

T
〉)

≥
〈
C,UUT

〉
+ 2µ

(
‖A(UUT )‖22 − ‖b‖2‖A(UUT )‖2 +

(〈
A0, UU

T
〉
− b0

) 〈
A0, UU

T
〉)
.

Let y = ‖A(UUT )‖2. Then the above inequality holds when

y2 − ‖b‖2y +
1

2µ

(〈
C,UUT

〉
− ε‖U‖F

2

)
+
(〈
A0, UU

T
〉
− b0

) 〈
A0, UU

T
〉
≤ 0.
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For this to happen we need the above quadratic to have real roots. This requires:

1

4
‖b‖22 ≥

1

2µ

(〈
C,UUT

〉
− ε‖U‖F

2

)
+ (
〈
A0, UU

T
〉
− b0)

〈
A0, UU

T
〉

≥ 1

2µ

(
−‖CU‖F ‖U‖F −

ε‖U‖F
2

)
+ λmin(A0)

2‖U‖4F − b0λmax(A0)‖U‖2F

≥ λmin(A0)
2‖U‖4F −

‖C‖2
2µ
‖U‖2F − b0λmax(A0)‖U‖2F −

ε

4µ
‖U‖F ,

where we used that for any two matrices A and B, it holds that ‖AB‖F ≤ ‖A‖2‖B‖F . Focus on the
last two terms of the last inequality. We distinguish two cases. Either

b0λmax(A0)‖U‖2F +
ε

4µ
‖U‖F ≥

3

2
b0λmax(A0)‖U‖2F ,

in which case ‖U‖F ≤ ε
2µb0λmax(A0)

(assuming b0 > 0). Or the opposite holds, and:

1

4
‖b‖22 ≥ λmin(A0)

2‖U‖4F −
(
‖C‖2

2µ
+

3

2
b0λmax(A0)

)
‖U‖2F .

This is a quadratic inequality in y = ‖U‖2F of the form ay2 − by − c ≤ 0 with coefficients a > 0

and b, c ≥ 0. Such a quadratic always has at least one real root, so that y ≤ b+
√
b2+4ac
2a . Furthermore,

√
b2 + 4ac ≤

√
b2 + (

√
4ac)2 + 2b

√
4ac = b+

√
4ac. Hence, y ≤ b

a +
√

c
a , which means:

‖U‖2F ≤
1

λmin(A0)2

(
‖C‖2

2µ
+

3

2
b0λmax(A0)

)
+

‖b‖2
2λmin(A0)

.

Accounting for the two distinguished cases, we find:

‖U‖2F ≤ max

{(
ε

2µb0λmax(A0)

)2

,
1

λmin(A0)2

(
‖C‖2

2µ
+

3

2
b0λmax(A0)

)
+

‖b‖2
2λmin(A0)

}
.

We now bound the residues (generically) in terms of ‖U‖F , using submultiplicativity for
‖UUT ‖F ≤ ‖U‖2F and the definition of ‖A‖ (8):

‖r‖2 = ‖A(UUT )− b‖2 ≤ ‖A‖‖UUT ‖F + ‖b‖2 ≤ ‖A‖‖U‖2F + ‖b‖2.

Evidently, the same bound holds for Ã, b̃, r̃.

Proof [Proof of Theorem 13]
By Lemma 12, for a problem perturbed with G, the residues of all ε-FOSPs, ‖r̃‖2, are bounded

as:

‖Ã‖max

{(
ε

2µb0λmax(A0)

)2

,
1

λmin(A0)2

(
‖C +G‖2

2µ
+

3

2
b0λmax(A0)

)
+

‖b‖2
2λmin(A0)

}
+ ‖b̃‖2
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With probability at least 1− δ, ‖C+G‖2 ≤ ‖C‖2 + 3σG

(√
n+

√
2 log(1/δ)

)
. Hence, Theorem 9

applies with this δ and

B = ‖Ã‖max

{(
ε

2µb0λmax(A0)

)2

,
1

λmin(A0)2

(
‖C‖2 + 3σG

√
n

2µ
+

3

2
b0λmax(A0)

)
+

‖b‖2
2λmin(A0)

}
+ ‖b̃‖2.

Hence, with k as prescribed in that theorem for a given δ′ = δ ∈ (0, 1), with probability at least
1− 2δ, it holds that

σk(U) ≤ 2ε

σG

√
c0n

k

for any ε-FOSP. Lemma 8 requires σ2k(U) ≤ γ
√
ε

8µ‖A‖2 . Hence, we choose: ε ≤
(

γk2σ2
G

32c0nµ‖A‖2

)2/3
, and

with probability at least 1− 2δ hypothesis of Lemma 8 is satisfied. Let X̃ be a global optimum for
F̃µ, then the optimality gap obeys:

F̃µ(UUT )− F̃µ(X̃) ≤ γ
√
εTr(X̃) +

1

2
ε‖U‖F .

F.1. Proof of section 4.2

Proof [Proof of Lemma 14] With probability at least 1 − δ, σ1(G) ≤ 3σG
√
n. In that event, for

σG ≤ λn(C)

6
√
n log(n/δ)

, we have C +G � λn(C)
2 I .

U is an ε-FOSP of (15) implies ‖2(C +G+ 2µA∗(r))U‖F ≤ ε.
ε

2
≥ ‖(C +G+ 2µA∗(r))U‖F

≥ 1

‖U‖F
〈
C +G+ 2µA∗(r), UUT

〉
.

Hence,

ε‖U‖F
2

≥
〈
C +G,UUT

〉
+ 2µ

〈
A∗(r), UUT

〉
≥ λn(C)

2
‖U‖2F + 2µ

〈
r,A(UUT )

〉
≥ λn(C)

2
‖U‖2F + 2µ(‖A(UUT )‖22 − ‖b‖2‖A(UUT )‖2).

The above inequality is a quadratic in y = ‖A(UUT )‖2: y2−y‖b‖2+ 1
2µ

(
λn(C)

2 ‖U‖2F −
ε‖U‖F

2

)
≤

0. If ε‖U‖F2 ≥ λn(C)
4 ‖U‖2F , then ‖U‖F ≤ 2ε

λn(C) . Else, for the above inequality to hold we need the
quadratic to have real roots.

‖b‖22 ≥ 4 · 1 · 1

2µ

(
λn(C)

2
‖U‖2F −

ε‖U‖F
2

)
≥ 2

µ

λn(C)

4
‖U‖2F .
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The last inequality follows from ε‖U‖F
2 ≤ λn(C)

4 ‖U‖2F . Hence, ‖U‖2F ≤ max

{(
2ε

λn(C)

)2
, 2µ
λn(C)‖b‖

2
2

}
.

Hence,

‖r‖2 = ‖A(UUT )− b‖2 ≤ ‖A(UUT )‖2 + ‖b‖2 ≤ ‖A‖‖UUT ‖F + ‖b‖2

≤ ‖A‖max

{(
2ε

λn(C)

)2

,
2µ

λn(C)
‖b‖22

}
+ ‖b‖2.

Appendix G. Proofs for Section B

Proof [Proof of Lemma 19.] We start by showing that the gradient is l-Lipschitz continuous. The
gradient is given by:

∇L̂µ(U) = [2(C +G) + 4µA∗(r)]U,

where r = r(U) = A(UUT )−b. Hence, forU1, U2 ∈ Rn×k, with notation r1 = r(U1), r2 = r(U2),∥∥∥∇L̂µ(U1)−∇L̂µ(U2)
∥∥∥
F
≤ ‖2(C +G)(U1 − U2)‖F + 4µ ‖A∗(r1)U1 −A∗(r2)U2‖F
≤ 2‖C +G‖2‖U1 − U2‖F + 4µ ‖A∗(r1)(U1 − U2)‖F

+ 4µ ‖A∗(r1 − r2)U2‖F
≤ (2‖C +G‖2 + 4µ ‖A∗(r1)‖2) ‖U1 − U2‖F

+ 4µ ‖A∗(r1 − r2)U2‖F .

This further simplifies using the norm of A (8): ‖A∗(r1)‖2 ≤ ‖A‖‖r1‖2 and ‖r1‖2 ≤ ‖A‖‖U1‖2F +
‖b‖2, so that if ‖U1‖F ≤ τ :

‖A∗(r1)‖2 ≤ (τ2‖A‖+ ‖b‖2)‖A‖.

Similarly, using ‖U2‖F ≤ τ as well:

‖A∗(r1 − r2)U2‖F ≤ ‖A
∗(A(U1U

T
1 − U2U

T
2 ))‖2‖U2‖F

≤ τ‖A‖2‖U1U
T
1 − U2U

T
2 ‖F

= τ‖A‖2‖U1U
T
1 − U1U

T
2 + U1U

T
2 − U2U

T
2 ‖F

≤ τ‖A‖2
(
‖U1(U1 − U2)

T ‖F + ‖(U1 − U2)U
T
2 ‖F

)
≤ 2τ2‖A‖2‖U1 − U2‖F . (28)

Combining, we find∥∥∥∇L̂µ(U1)−∇L̂µ(U2)
∥∥∥
F
≤
(
2‖C +G‖2 + 4µ‖A‖(τ2‖A‖+ ‖b‖2)

)
‖U1 − U2‖F

+ 8µτ2‖A‖2‖U1 − U2‖F ,

which establishes the Lipschitz constant for∇L̂µ.
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We now show that the Hessian is ρ-Lipschitz continuous in operator norm, that is, we must show
that for any U1 and U2 with norms bounded by τ ,

max
‖U̇‖F≤1

〈
∇2L̂µ(U1)[U̇ ]−∇2L̂µ(U2)[U̇ ], U̇

〉
≤ ρ‖U1 − U2‖F .

Recall from (21) that〈
∇2L̂µ(U)[U̇ ], U̇

〉
= 2

〈
C +G+ 2µA∗(r), U̇ U̇T

〉
+ 2µ‖A(UU̇T + U̇UT )‖22.

Hence,〈
∇2L̂µ(U1)[U̇ ], U̇

〉
−
〈
∇2L̂µ(U2)[U̇ ], U̇

〉
= 4µ

〈
A∗(r1 − r2), U̇ U̇

T
〉

+ 2µ
(
‖A(U1U̇

T + U̇UT1 )‖22 − ‖A(U2U̇
T + U̇UT2 )‖22

)
.

On one hand, following the same reasoning as in (28), we have〈
A∗(r1 − r2), U̇ U̇

T
〉
≤ ‖A∗(r1 − r2)‖F ‖U̇ U̇T ‖F

≤ 2τ‖A‖2‖U1 − U2‖F ‖U̇‖2F .

On the other hand, using that for any two vectors u, v we have

‖u‖22 − ‖v‖22 = 〈u+ v, u− v〉 ≤ ‖u+ v‖2‖u− v‖2 ≤ (‖u‖2 + ‖v‖2)‖u− v‖2,

we can find:

‖A(U1U̇
T + U̇UT1 )‖22 − ‖A(U2U̇

T + U̇UT2 )‖22 ≤ 4τ‖A‖2‖U1 − U2‖F ‖U̇‖2F .

For this, we used ‖A(UU̇T + U̇UT )‖2 ≤ ‖A‖‖UU̇T + U̇UT ‖F ≤ τ‖A‖‖U̇‖F when ‖U‖F ≤ τ
and

‖A(U1U̇
T + U̇UT1 − U2U̇

T − U̇UT2 )‖2 ≤ ‖A‖
(
‖(U1 − U2)U̇

T ‖F + ‖U̇(U1 − U2)
T ‖F

)
≤ 2‖A‖‖U̇‖F ‖U1 − U2‖F .

Overall, this shows ρ = 16µτ‖A‖2 is an appropriate Lipschitz constant.
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