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Abstract
Modern stochastic optimization methods often rely on uniform sampling which is agnostic to the
underlying characteristics of the data. This might degrade the convergence by yielding estimates
that suffer from a high variance. A possible remedy is to employ non-uniform importance sampling
techniques, which take the structure of the dataset into account. In this work, we investigate a
recently proposed setting which poses variance reduction as an online optimization problem with
bandit feedback. We devise a novel and efficient algorithm for this setting that finds a sequence of
importance sampling distributions competitive with the best fixed distribution in hindsight, the first
result of this kind. While we present our method for sampling data points, it naturally extends to
selecting coordinates or even blocks of thereof. Empirical validations underline the benefits of our
method in several settings.
Keywords: importance sampling, variance reduction, bandit feedback, empirical risk minimization

1. Introduction

Empirical risk minimization (ERM) is among the most important paradigms in machine learning,
and is often the strategy of choice due to its generality and statistical efficiency. In ERM, we draw
a set of samples D = {x1, . . . , xn} ⊂ X from the underlying data distribution, and we aim to find
a solution w ∈ W that minimizes the empirical risk,

min
w∈W

L(w) :=
1

n

n∑
i=1

`(xi, w), (1)

where ` : X ×W → R is a given loss function, andW ⊆ Rd is usually a compact domain.
In this work we are interested in sequential procedures for minimizing the ERM objective, and

relate to such methods as ERM solvers. More concretely, we focus on the regime where the number
of samples n is very large, and it is therefore desirable to employ ERM solvers that only require
few passes over the dataset. There exists a rich arsenal of such efficient solvers which have been
investigated throughout the years, with the canonical example from this category being Stochastic
Gradient Descent (SGD).

Typically, such methods require an unbiased estimate of the loss function at each round, which
is usually generated by sampling a few points uniformly at random from the dataset. However, by
employing uniform sampling, these methods are insensitive to the intrinsic structure of the data. In
case of SGD, for example, some data points might produce large gradients, but they are nevertheless
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assigned the same probability of being sampled as any other point. This ignorance often results in
high-variance estimates, which is likely to degrade the performance.

The above issue can be mended by employing non-uniform importance sampling. And indeed,
we have recently witnessed several techniques to do so: Zhao and Zhang (2015) and similarly
Needell et al. (2014), suggest using prior knowledge on the gradients of each data point in order to
devise predefined importance sampling distributions. Stich et al. (2017) devise adaptive sampling
techniques guided by a robust optimization approach. These are only a few examples of a larger
body of work (Bouchard et al., 2015; Alain et al., 2015; Csiba and Richtárik, 2016).

Interestingly, the recent works of Namkoong et al. (2017) and Salehi et al. (2017) formulate
the task of devising importance sampling distributions as an online learning problem with bandit
feedback. In this context, they think of the algorithm, which adaptively chooses the distribution, as
a player that competes against the ERM solver. The goal of the player is to minimize the cumulative
variance of the resulting (gradient) estimates. Curiously, both methods rely on some form of the
“linearization trick”1 to resort to the analysis of the EXP3 (Auer et al., 2002).

On the other hand, the theoretical guarantees of the above methods are somewhat limited.
Strictly speaking, none of them provides regret guarantees with respect to the best fixed distri-
bution in hindsight: Namkoong et al. (2017) only compete with the best distribution among a subset
of the simplex (around the uniform distribution). Conversely, Salehi et al. (2017) compete against a
solution which might perform worse than the best in hindsight up to a multiplicative factor of 3.

In this work, we adopt the above mentioned online learning formulation, and design novel im-
portance sampling techniques. Our adaptive sampling procedure is simple and efficient, and in
contrast to previous work, we are able to provide regret guarantees with respect to the best fixed
point among the simplex. As our contribution, we

• motivate theoretically why regret minimization is meaningful in this setting,

• propose a novel bandit algorithm for variance reduction ensuring regret of Õ(n1/3T 2/3),

• empirically validate our method, and provide an efficient implementation2.

On the technical side, we do not rely on a “linearization trick” but rather directly employ a scheme
based on the classical Follow-the-Regularized-Leader approach. Our analysis entails several techni-
cal challenges, most notably handling unbounded cost functions while only receiving partial (bandit)
feedback. Our design and analysis draws inspiration from the seminal works of Auer et al. (2002)
and Abernethy et al. (2008). Although we present our method for choosing data points, it naturally
applies to choosing coordinates in coordinate descent or even blocks of thereof (Allen-Zhu et al.,
2016; Perekrestenko et al., 2017; Nesterov, 2012; Necoara et al., 2011). More broadly, the proposed
algorithm can be incorporated in any sequential algorithm that relies on an unbiased estimation
of the loss. A prominent application of our method is variance reduction for SGD, which can be
achieved by considering gradient norms as losses, i.e., replacing `(w, xi) ↔ ‖∇`(w, xi)‖. With
this modification, our method is minimizing the cumulative variance of the gradients throughout the
optimization process.

The paper is organized as follows. In Section 2, we formalize the online learning setup of
variance reduction, and motivate why regret is a suitable performance measure. As the first step of

1. By “linearization trick” we mean that these methods update according to a first order approximation of the costs
rather than the costs themselves.

2. The source code is available at https://github.com/zalanborsos/online-variance-reduction
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our analysis, we investigate the full information setting in Section 3, which serves as a mean for
studying the bandit setting in Section 4. Finally, we validate our method empirically, and provide
the detailed discussion of the results in Appendix F.

2. Motivation and Problem Definition

Typical sequential solvers for ERM usually require a fresh unbiased estimate L̃t of the loss Lt at
each round, which is obtained by repeatedly sampling from the dataset. The template of Figure 1
captures a rich family of such solvers such as SGD, SAGA (Defazio et al., 2014), SVRG (Johnson
and Zhang, 2013), and online k-Means (Bottou and Bengio, 1995).

Sequential Optimization Procedure for ERM

Input: Dataset D = {x1, . . . , xn}
Initialize: w1 ∈ W
for t = 1, . . . , T do

Draw samples from D using pt ∈ ∆ to generate L̃t(·), an unbiased estimate for L(·).
Update solution: wt+1 ← A(wt, L̃t(·)).

end for

Figure 1: Template of a sequential procedure for minimizing the ERM objective. At each round, we
devise a fresh unbiased estimate L̃t(·) of the empirical loss, then we update the solution based on
the previous solution wt and L̃t(·).

A natural way to devise the unbiased estimates L̃t is to sample it ∈ {1, . . . , n} uniformly at
random and return L̃t(w) = `(xit , w). Indeed, uniform sampling is the common practice when ap-
plying SGD, SAGA, SVRG and online k-Means. Nevertheless, any distribution p in the probability
simplex ∆ induces an unbiased estimate. Concretely, sampling an index i ∼ p induces the estimate

L̃(w) :=
1

n · p(i)
· `(xi, w) (2)

and it is immediate to show that Exi∼p[L̃(w)] = L(w). This work is concerned with efficient ways
of choosing a “good” sequence of sampling distributions {p1(·), . . . , pT (·)}.

It is well known that the performance of typical solvers (e.g. SGD/SAGA/SVRG) improves as
the variance of the estimates L̃t(wt) is becoming smaller. Thus, a natural criterion for measuring
the performance of a sampling distribution p is the variance of the induced estimate

Varp(L̃(w)) =
1

n2

n∑
i=1

`2(xi, w)

p(i)
− L2(w).

Denoting `t(i) := `(xi, wt) and noting that the second term is independent of p, we may now
cast the task of sequentially choosing the sampling distributions as the online optimization problem
shown in Figure 2. In the above protocol, we treat the sequential solver as an adversary that chooses
a sequence of loss vectors {`t}t∈[T ] ⊂ Rn, where t ∈ [T ] denotes t ∈ {1, . . . , T}. Each loss
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Online Variance Reduction Protocol

Input: Dataset D = {x1, . . . , xn}
for t = 1, . . . , T do

Player chooses pt ∈ ∆.
Adversary chooses `t ∈ Rn, which induces a cost function ft(p) :=

∑n
i=1

`2t (i)
p(i) .

Player draws a sample It ∼ pt.
Player incurs a cost 1

n2 ft(pt), and receives `t(It) as (bandit) feedback.
end for

Figure 2: Online variance reduction protocol with bandit feedback

vector is a function of wt, the solution chosen by the solver in the corresponding round (note that
we abstract out this dependence of `t in wt). The cost3 1

n2 ft(pt) that the player incurs at round t is
the second moment of the loss estimate, which is induced by the distribution chosen by the player
at round t.

Next, we define the regret, which is our performance measure for the player,

RegretT =
1

n2

(
T∑
t=1

ft(pt)−min
p∈∆

T∑
t=1

ft(p)

)
.

Our goal is to devise a no-regret algorithm such that limT→∞ RegretT /T = 0, which in turn guar-
antees that we recover asymptotically the best fixed sampling distribution. In the bandit feedback
setting, the player aims to minimize its expected regret E [RegretT ], where the expectation is taken
with respect to the randomized choices of the player and the adversary. Note that we allow the
choices of the adversary to depend on the past choices of the player.

There are few noteworthy comments regarding the above setup. First, it is immediate to verify
that the cost functions f1, . . . , fT are convex in ∆, therefore this is an online convex optimization
problem. Secondly, the cost functions are unbounded in ∆, which poses a challenge in ensuring
no-regret. Finally, notice that the player receives a bandit feedback, i.e., he is allowed to inspect
the losses only at the coordinate It chosen at time t. To the best of our knowledge, this is the first
natural setting where, as we will show, it is possible to provide no regret guarantees despite bandit
feedback and unbounded costs.

Throughout this work, we assume that the losses are bounded, l2t (i) ≤ L for all i ∈ [n] and
t ∈ [T ]. Note that our analysis may be extended to the case where the bounds are instance-
dependent, i.e., l2t (i) ≤ Li for all i ∈ [n] and t ∈ [T ]. In practice, it can be beneficial to take
into account the different Li’s, as we demonstrate in our experiments.

2.1. Is Regret a Meaningful Performance Measure?

Let us focus on the family of ERM solvers depicted in Figure 1. As discussed above, devising
loss estimates such that L̃t(wt) has low variance is beneficial for such solvers — in case of SGD,
this is due to strong connection between the cumulative variance of gradients and the quality of

3. We use the term “cost function” to refer to f in order to distinguish it from the loss `.
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optimization that we discuss in more detail in Appendix A. Translating this observation into the
online variance reduction setting suggests a natural performance measure: rather than competing
with the best fixed distribution in hindsight, we would like to compete against the sequence of best
distributions per-round

{
p∗t ← arg min

∑n
i=1 `

2
t (i)/p(i)

}
t∈[T ]

. This optimal sequence ensures zero
variance in every round, and is therefore the ideal baseline to compete against. This also raises the
question whether regret guarantees, which compare against the best fixed distribution in hindsight,
are at all meaningful in this context. Note that regret minimization is meaningful in stochastic
optimization, when we assume that the losses are generated i.i.d. from some fixed distribution
(Cesa-Bianchi et al., 2004). Yet, this certainly does not apply in our case since losses are non-
stationary and non-oblivious.

Unfortunately, ensuring guarantees compared to the sequence of best distributions per-round
seems generally hard. However, as we show next, regret is still a meaningful measure for sequential
ERM solvers. Concretely, recall that our ultimate goal is to minimize the ERM objective. Thus,
we are only interested in ERM solvers that actually converge to a (hopefully good) solution for the
ERM problem. More formally, let us define `∗(i) as follows,

`∗(i) := lim
t→∞

`t(i),

where we recall that `t(i) := `(xi, wt), and assume the above limit to exist for every i ∈ [n]. We
will also denote L∗ := 1

n

∑n
i=1 `∗(i). Moreover, let us assume that the asymptotic solution is better

on average than any of the sequential solutions in the following sense,

1

T

T∑
t=1

L(wt) ≥ L∗ , ∀T ≥ 1

where L(wt) := 1
n

∑n
i=1 `(xi, wt). This assumption naturally holds when the ERM solver con-

verges to the optimal solution for the problem, which applies for SGD in the convex case. The next
lemma shows that under these mild assumptions, competing against the best fixed distribution in
hindsight is not far from competing against the ideal baseline.

Lemma 1 Consider the online variance reduction setting, and for any i ∈ [n] denote
VT (i) =

∑T
t=1(`t(i) − `∗(i))2. Assuming that the losses, lt(i), are non-negative for all i ∈ [n],

t ∈ [T ], the following holds for any T ≥ 1,

1

n2
min
p∈∆

T∑
t=1

ft(p) ≤
1

n2

T∑
t=1

min
p∈∆

ft(p) + 2
√
TL∗ ·

1

n

n∑
i=1

√
VT (i) +

(
1

n

n∑
i=1

√
VT (i)

)2

.

Thus, the above lemma connects the convergence rate of the ERM solver to the benefit that we get
by regret minimization. It shows that the benefit is larger if the ERM solver converges faster. As
an example, let us assume that |`t(i)− `∗(i)| ≤ O(1/

√
t), which loosely speaking holds for SGD.

This assumption implies VT (i) ≤ O(log(T )), hence by Lemma 1 the regret guarantees translate
into guarantees with respect to the ideal baseline, with an additional cost of Õ(

√
T ).

3. Full Information Setting

In this section, we analyze variance reduction with full-information feedback. We henceforth con-
sider the same setting as in Fig. 2, with the difference that in each round the player receives as a

5



ONLINE VARIANCE REDUCTION FOR STOCHASTIC OPTIMIZATION

feedback the loss vector at all points (lt(1), lt(2), . . . , lt(n)) instead of only lt(It). We introduce a
new algorithm based on the FTRL approach, and establish an O(

√
T ) regret bound for our method

in Theorem 3. While this setup in itself has little practical relevance, it later serves as a mean for
investigating the bandit setting.

Follow-the-Regularized-Leader (FTRL) is a powerful approach to online learning problems.
According to FTRL, in each round, one selects a point that minimizes the cost functions over
past rounds plus a regularization term, i.e., pt ← arg minp∈∆

∑t−1
τ=1 fτ (p) + R(p). The regu-

larizer R usually assures that the choices do not change abruptly over the rounds. We choose
R(p) = γ

∑n
i=1

1
p(i) which allows to write FTRL as

pt ← arg min
p∈∆

t−1∑
τ=1

fτ (p) + γ
n∑
i=1

1

p(i)
. (3)

The regularizer R(p) = γ
∑n

i=1 1/p(i) is a natural candidate in our setting, since it has the same
structural form as the cost functions. It also prevents FTRL from assigning vanishing probability
mass to any component, thus ensuring that the incurred costs never explode. Moreover,R assures a
closed form solution to the FTRL as the following lemma shows.

Lemma 2 Denote l21:t(i) :=
∑t

τ=1 `
2
τ (i). The solution to Eq. (3) is given by pt(i) ∝

√
`21:t−1(i) + γ.

Proof sketch Recalling ft(p) =
∑n

i=1
`2t (i)
p(i) , allows to write the FTRL objective as follows,

t−1∑
τ=1

fτ (p) + γ
n∑
i=1

1/p(i) =
n∑
i=1

(`21:t−1(i) + γ)/p(i) .

It is immediate to validate that the offered solution satisfies the first order optimality conditions in
∆. Global optimality follows since the FTRL objective is convex in the simplex.

We are interested in the regret incurred by our method. The following theorem shows that,
despite the non-standard form of the cost functions, we can obtain O(

√
T ) regret.

Theorem 3 Setting γ = L, the regret of the FTRL scheme proposed in Equation (3) is:

RegretT ≤
27
√
L

n

(
n∑
i=1

√
`21:T (i)

)
+ 44L.

Furthermore, since `2t (i) ≤ L we have RegretT ≤ 27L
√
T + 44L.

Before presenting the proof, we briefly describe it. Trying to apply the classical FTRL regret
bounds, we encounter a difficulty, namely that the regularizer in Equation (3) can be unbounded.
To overcome this issue, we first consider competing with the optimal distribution on a restricted
simplex where R(·) is bounded. Then we investigate the cost of considering the restricted simplex
instead of the full simplex.
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Along the lines described above, consider the simplex ∆ and the restricted simplex
∆′ = {p ∈ ∆| p(i) ≥ pmin, ∀i ∈ [n]} where pmin ≤ 1/n is to be defined later. We can now
decompose the regret as follows,

n2 · RegretT =
T∑
t=1

ft(pt)− min
p∈∆′

T∑
t=1

ft(p)︸ ︷︷ ︸
(A)

+ min
p∈∆′

T∑
t=1

ft(p)−min
p∈∆

T∑
t=1

ft(p)︸ ︷︷ ︸
(B)

. (4)

We continue by separately bounding the above terms. To bound (A), we will use standard tools
which relate the regret to the stability of the FTRL decision sequence (FTL-BTL lemma). Term (B)
is bounded by a direct calculation of the minimal values in ∆ and ∆′. The following lemma bounds
term (A).

Lemma 4 Setting γ = L, we have:

T∑
t=1

ft(pt)− min
p∈∆′

T∑
t=1

ft(p) ≤ 22n
√
L ·

(
n∑
i=1

√
`21:T (i)

)
+ 22n2L+

nL

pmin
.

Proof sketch of Lemma 4 The regret of FTRL may be related to the stability of the online
decision sequence as shown in the following lemma due to Kalai and Vempala (2005) (proof can
also be found in Hazan (2011) or in Shalev-Shwartz et al. (2012)):

Lemma 5 Let K be a convex set and R : K 7→ R be a regularizer. Given a sequence of cost
functions {ft}t∈[T ] defined over K, then setting pt = arg minp∈∆

∑t−1
τ=1 fτ (p) +R(p) ensures,

T∑
t=1

ft(pt)−
T∑
t=1

ft(p) ≤
T∑
t=1

(ft(pt)− ft(pt+1)) + (R(p)−R(p1)), ∀p ∈ K

Notice that R(p) = L
∑n

i=1 1/p(i) is non-negative and bounded by nL/pmin over ∆′. Thus,
applying the above lemma implies that ∀ p ∈ ∆′,

T∑
t=1

ft(pt)−
T∑
t=1

ft(p) ≤
T∑
t=1

(ft(pt)− ft(pt+1))+
nL

pmin
≤

T∑
t=1

n∑
i=1

`2t (i)

(
1

pt(i)
− 1

pt+1(i)

)
+
nL

pmin
.

Using the closed form solution for the pt’s (see Lemma. 2) enables us to upper bound the last term
as follows,

T∑
t=1

n∑
i=1

`2t (i)

(
1

pt(i)
− 1

pt+1(i)

)
≤ 22n

√
L

n∑
i=1

√
`21:T (i) + L . (5)

Combining the above with
√
a+ b ≤

√
a+
√
b completes the proof.

The next lemma bounds term (B).

Lemma 6

min
p∈∆′

T∑
t=1

ft(p)−min
p∈∆

T∑
t=1

ft(p) ≤ 6n · pmin ·

(
n∑
i=1

√
`21:T (i)

)2
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Proof sketch of Lemma 6 Using first order optimality conditions we are able show that the minimal

value of the
∑T

t=1 ft(p) over ∆ is exactly
(∑n

i=1

√
`21:t(i)

)2
. Similar analysis allows to extract a

closed form solution to the best in hindsight over ∆′. This in turn enables to upper bound the

minimal value over ∆′ by
(∑n

i=1

√
`21:t(i)

)2
/ (1− n · pmin)2. Combining these bounds together

with pmin ≤ 1/2n we are able to prove the lemma.

Proof of Theorem 3 Combining Lemma 4 and 6, we have after dividing by n2,

RegretT ≤
22
√
L

n
·

(
n∑
i=1

√
`21:T (i)

)
+ 22L+

L

n · pmin
+

6 · pmin

n
·

(
n∑
i=1

√
`21:T (i)

)2

Since the choice of pmin is arbitrary and is relevant only for the theoretical analysis, we can set it to

pmin = min
{

1/(2n),
√
L/
(√

6
∑n

i=1

√
`21:T (i)

)}
that yields the final result.

4. The Bandit Setting

In this section, we investigate the bandit setting (see Figure 2) which is of great practical appeal
as we described in Section 2. Our method for the bandit setting is depicted in Algorithm 3, and it
ensures a bound of Õ(n1/3T 2/3) on the expected regret (see Theorem 8). Importantly, this bound
holds even for non-oblivious adversaries. The design and analysis of our method builds on some of
the ideas that appeared in the seminal work of Auer et al. (2002).

Algorithm 3 is using the bandit feedback in order to design an unbiased estimate of the true
loss (`t(1), . . . , `t(n)) in each round. These estimates are then used instead of the true losses by
the full information FTRL algorithm that was analyzed in the previous section. We do not directly
play according to the FTRL predictions but rather mix them with a uniform distribution. Mixing is
necessary in order to ensure that the loss estimates are bounded, which is a crucial condition used
in the analysis. Next we elaborate on our method and its analysis.

Algorithm 3 samples an arm It ∼ p̃t at every round, and receives a bandit feedback `t(It). This
may be used in order to construct an estimate of the true (squared) loss as follows,

˜̀2
t (i) :=

`2t (i)

p̃t(i)
· 1It=i ,

and it is immediate to validate that the above is unbiased in the following sense,

E[˜̀2
t (i)|p̃t, `t] = `2t (i), ∀i ∈ [n].

Analogously to the previous section it is natural to define modified cost functions as

f̃t(p) =
n∑
i=1

˜̀2
t (i)/p(i) .

Clearly, f̃t is an unbiased estimate of the true cost, E[f̃t(p)|p̃t, `t] = ft(p). From now on we omit the
conditioning on p̃t, `t for notational brevity. Having devised an unbiased estimate, we could return

8
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Variance Reducer Bandit (VRB)

Input: θ, L, n
Initialize w(i) = 0 for all i ∈ [n].
for t = 1, . . . , T do
pt(i) ∝

√
w(i) + L · n/θ

p̃t(i) = (1− θ) · pt(i) + θ/n, for all i ∈ [n]
Draw It ∼ p̃t and play It.
Receive feedback lt(It), and update w(It)← w(It) + l2t (It)/p̃t(It).

end for

Figure 3: Variance Reducer Bandit

to the full information analysis of FTRL with the modified losses. However, this poses a difficulty,
since the modified losses can possibly be unbounded. We remedy this by mixing the FTRL output,
pt, with a uniform distribution. Mixing encourages exploration, and in turn gives a handle on the
possibly unbounded modified losses. Let θ ∈ [0, 1], and define,

p̃t(i) = (1− θ) · pt(i) + θ/n.

Since p̃t(i) ≥ θ/n, we have ˜̀2
t (i) ≤ nL/θ. We summarize the resulting method4 in Figure 3.

We start with analyzing the pseudo-regret of our algorithm, where we compare the cost incurred
by the algorithm to the cost incurred by the optimal distribution in expectation. The pseudo-regret
is defined below,

1

n2
min
p∈∆

E

[
T∑
t=1

ft(p̃t)−
T∑
t=1

ft(p)

]
, (6)

where the expectation is taken with respect to both the player’s choices and the loss realizations. The
pseudo-regret is only a lower bound for the expected regret, with an equality when the adversary is
oblivious, i.e., does not take the past choices of the player into account.

Theorem 7 Let θ = (n/T )1/3. Assuming T ≥ n, the algorithm in Figure 3 ensures the following
bound:

1

n2
min
p∈∆

E

[
T∑
t=1

ft(p̃t)−
T∑
t=1

ft(p)

]
≤ 74Ln

1
3T

2
3 .

Proof sketch of Theorem 7 Using the unbiasedness of the modified costs we have

min
p∈∆

E

[
T∑
t=1

ft(p̃t)−
T∑
t=1

ft(p)

]
= min

p∈∆
E

[
T∑
t=1

f̃t(p̃t)−
T∑
t=1

f̃t(p)

]
.

4. The sampling and update in the presented form have a complexity of O(n). There is a standard way to improve this
issue based on segment trees that gives O(logn) for sampling and update. A detailed description of this idea can be
found in section A.4. of Salehi et al. (2017)
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We can decompose 1
n2 minp∈∆ E

[∑T
t=1 f̃t(p̃t)−

∑T
t=1 f̃t(p)

]
into the following terms:

1

n2
E

[
T∑
t=1

f̃t(p̃t)−
T∑
t=1

f̃t(pt)

]
︸ ︷︷ ︸

(A)

+
1

n2
min
p∈∆

E

[
T∑
t=1

f̃t(pt)−
T∑
t=1

f̃t(p)

]
︸ ︷︷ ︸

(B)

where (A) is the cost we incur by mixing, and (B) is upper bounded by the regret of playing FTRL
with the modified losses. Now we inspect each term separately.

An upper bound of θLT on (A) results from the simple observation that 1/p̃t(i)−1/pt(i) ≤ nθ.
For bounding (B), notice that pt is performing FTRL over the modified cost sequence. Combining
this together the bound ˜̀2

t (i) ≤ nL/θ allows us to apply Theorem 3 and get,

1

n2

(
T∑
t=1

f̃t(pt)−min
p∈∆

T∑
t=1

f̃t(p)

)
≤ 27

√
L

nθ

(
n∑
i=1

√
˜̀2
1:T (i)

)
+

44nL

θ
. (7)

Due to Jensen’s inequality we have E
[∑n

i=1

√
˜̀2
1:T (i)

]
≤
∑n

i=1

√
E
[
˜̀2
1:T (i)

]
=
∑n

i=1

√
`21:T (i).

Finally, we get an upper bound on the pseudo-regret which we can optimize in terms of θ:

1

n2
min
p∈∆

E

[
T∑
t=1

ft(p̃t)−
T∑
t=1

ft(p)

]
≤ θLT + 27

√
L

nθ

(
n∑
i=1

√
`21:T (i)

)
+

44nL

θ
.

Using the bound
∑n

i=1

√
`21:T (i) ≤ n

√
LT and the assumption T ≥ n, we set θ = (n/T )1/3 to

get the result. Note that θ is dependent on knowing T in advance. If we do not assume that this
is possible, we can use the “doubling trick” starting from T = n, and incur an additional constant
multiplier in the regret.

Ultimately, we are interested in the expected regret, where the adversary is allowed to make
decisions by taking into account the player’s past choices, i.e., to be non-oblivious. We present the
main result of this paper, which establishes a Õ(n1/3T 2/3) regret bound, where the Õ notation hides
the logarithmic factors.

Theorem 8 Assuming T ≥ n, the following holds for the expected regret:

1

n2
E

[
T∑
t=1

ft(p̃t)−min
p∈∆

T∑
t=1

ft(p)

]
≤ Õ

(
Ln

1
3T

2
3

)
.

Proof sketch of Theorem 8 Using the unbiasedness of the modified costs allows to decompose the
regret as follows,

n2E [RegretT ] = E

[
T∑
t=1

f̃t(p̃t)−min
p∈∆

T∑
t=1

f̃t(p)

]
+ E

[
min
p∈∆

T∑
t=1

f̃t(p)−min
p∈∆

T∑
t=1

ft(p)

]

≤ n2O(Ln1/3T 2/3) + E


(

n∑
i=1

√
˜̀2
1:T (i)

)2

−

(
n∑
i=1

√
`21:T (i)

)2

︸ ︷︷ ︸
(A)

 , (8)

10
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where the last line uses Equation (7) together with Jensen’s inequality (similarly to the proof of
Theorem 7). We have also used the closed form solution for the minimal values of

∑
t ft(p) and∑

t f̃t(p) over the simplex.
Our approach to bounding the remaining term is to establish high probability bound for (A).

In order to do so we shall bound the following differences ˜̀2
1:T (i) − `21:T (i). This can be done by

applying the appropriate concentration results described below.

Bounding ˜̀2
1:T (i) − `21:T (i). Fix i ∈ [n] and define Zt,i := ˜̀2

t (i) − `2t (i). Recalling that
E[˜̀2

t (i)|p̃t, `t] = `2t (i), we have that {Zt,i}t∈[T ] is a martingale difference sequence with respect
to the filtration {Ft}t∈[T ] associated with the history of the strategy. This allows us to apply a ver-
sion of Freedman’s inequality (Freedman, 1975), which bounds the sum of differences with respect
to their cumulative conditional variance. Loosely speaking, Freedman’s inequality implies that w.p.
≥ 1− δ,

˜̀2
1:T (i)− `21:T (i) ≤ Õ


√√√√ T∑

t=1

Var(Zt,i|Ft−1)

 .

Importantly, the sum of conditional variances can be related to the regret. Indeed let p∗ be the best
distribution in hindsight, i.e., p∗ = arg min

∑T
t=1 ft(p), and define

n2RegretT (i) =
T∑
t=1

`2t (i)

p̃t(i)
−

T∑
t=1

`2t (i)

p∗(i)

Then the following can be shown,

T∑
t=1

Var(Zt,i|Ft−1) = Õ
(
n2L · RegretT (i) +

`21:T (i)

p∗(i)

)
.

To simplify the proof sketch, ignore the second term. Plugging this back into Freedman’s inequality
we get,

˜̀2
1:T (i)− `21:T (i) ≤ Õ

(√
n2L · RegretT (i)

)
. (9)

Final bound. Combining the above with the definition of (A) one can to show that w.p. ≥ 1− δ,

(A) ≤ Õ

(
n
√
LT

n∑
i=1

(
n2L · RegretT (i)

) 1
4

)
.

Since (A) is bounded by poly(n, T ), we can take a small enough δ = 1/poly(n, T ) such that,

E [(A)] ≤ Õ

(
n3/2L3/4T 1/2 · E

[
n∑
i=1

(RegretT (i))1/4

])

≤ Õ

(
n3/2L3/4T 1/2 ·

n∑
i=1

(E [RegretT (i)])1/4

)
≤ Õ

(
n9/4L3/4T 1/2 · (E [RegretT ])1/4

)
11
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where the second line uses Jensen’s inequality with respect to the concave function h(u) = u1/4,
and the last line uses

∑n
i=1 RegretT (i) = RegretT together with

∑n
i=1 x

1/4
i ≤ n3/4 (

∑n
i=1 xi)

1/4,

which is also a consequence of Jensen’s inequality since 1
n

∑n
i=1 x

1/4
i ≤

(
1
n

∑n
i=1

)1/4. Plugging
the above bound back into Eq. (8) we are able to establish the proof. The full proof is deferred to
Appendix E. Note that in the full proof we do not explicitly relate the conditional variances to the
regret, but this is rather more implicit in the analysis.

Experiments. We also validate our method empirically on the tasks of classifying images with
logistic regression and mini-batch k-Means. A detailed description of the experiments can be found
in Appendix F. In both cases we observe that our method (VRB) produces significant gains com-
pared to uniform sampling and compares favorably to other variance reduction methods of similar
nature (Salehi et al., 2017; Namkoong et al., 2017).
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Figure 4: Mean Average Precision scores
achieved on the test part of VOC 2007.
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Figure 5: k-Means test loss evolution on the
CSN dataset.

5. Conclusion and Future Work

We presented a novel importance sampling technique for variance reduction in an online learning
formulation. First, we motivated why regret is a sensible measure of performance in this setting.
Despite the bandit feedback and the unbounded costs, we provided an expected regret guarantee of
Õ(n1/3T 2/3), where our reference is the best fixed sampling distribution in hindsight. We confirmed
the theoretical findings with empirical validation.

Among the many possible future directions stands the question of the tightness of the expected
regret bound of the algorithm. Another naturally arising idea is the theoretical analysis of the method
when employed in conjunction with advanced stochastic solvers such as SVRG and SAGA.
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Appendix A. Cumulative Variance of the Gradients and Quality of Optimization

The relationship between cumulative second moment of the gradients and quality of optimization
has been demonstrated in several works. Since the difference between the second moment and the
variance is independent of the sampling distribution pt, the guarantees of our method also translate
to guarantees with respect to the cumulative second moments of the gradient estimates. Here we
provide two concrete references.

For the following, assume that we would like to minimize a convex objective,

min
w∈W

F (w) := Ez∼D[f(w; z)]

and we assume that we are able to draw i.i.d. samples from the unknown distribution D. Thus,
given a point w ∈ W we are able to design an unbiased estimate for ∇F (w) by sampling z ∼ D
and taking g := ∇f(w; z) (clearly, E [g|w] = ∇F (w)). Now assume a gradient-based update rule,
i.e.,

wt+1 = ΠW(wt − ηtgt), where E [gt|wt] = ∇F (wt) (10)

and ΠW(u) := arg minw∈W ‖u − w‖. Next we show that for two very popular gradient based-
methods — AdaGrad and SGD for strongly-convex functions, the performance is directly related
to the cumulative second moment of the gradient estimates,

∑T
t=1 E‖gt‖2. The latter is exactly the

objective of our online variance reduction method.

The AdaGrad algorithm employs the same rule as in Eq. (10) using ηt = D/
√

2
∑t

τ=1 ‖gt‖2.
The next theorem substantiates its guarantees.

Theorem 9 (Duchi et al. (2011)) Assume that the diameter ofW is bounded by D. Then:

E

[
F

(
1

T

T∑
t=1

wt

)]
− min
w∈W

F (w) ≤ 2D

T

√√√√ T∑
t=1

E‖gt‖2

The SGD algorithm for µ-strongly-convex objectives employs the same rule as in Eq. (10) using
ηt = 2

µt . The next theorem substantiates its guarantees.

Theorem 10 (Salehi et al. (2017)) Assume that F is µ-strongly convex, then:

E

[
F

(
2

T (T + 1)

T∑
t=1

t · wt

)]
− min
w∈W

F (w) ≤ 2

µT (T + 1)

T∑
t=1

E‖gt‖2
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Appendix B. Proof of Lemma 1

Proof Denote `21:t(i) =
∑t

τ=1 `
2
τ (i). Next, we bound the cumulative loss per point i ∈ [n],

`21:T (i) =
T∑
t=1

`2t (i) =
T∑
t=1

(`∗(i) + (`t(i)− `∗(i)))2

≤ T · `2∗(i) + 2`∗(i)
T∑
t=1

|`t(i)− `∗(i)|+
T∑
t=1

(`t(i)− `∗(i))2

≤ T · `2∗(i) + 2`∗(i)
√
T · VT (i) + VT (i)

= T

(
`∗(i) +

√
VT (i)

T

)2

(11)

where the second line uses `∗(i) ≥ 0 and the third line uses the definition of VT (i) together with the
inequality ‖u‖1 ≤

√
T‖u‖2, ∀u ∈ RT .

We require the following lemma:

Lemma 11 Let a1, . . . , an ≥ 0. Then the following holds,

min
p∈∆

n∑
i=1

ai
p(i)

=

(
n∑
i=1

√
ai

)2

.

The proof of the lemma is analogous to the proof of Lemma 2, which is given in the next section.
Notice that according to this lemma and using the non-negativity of losses we have,

1

n2
min
p∈∆

n∑
i=1

`2t (i)

p(i)
=

(
1

n

n∑
i=1

`t(i)

)2

:= L2(wt) . (12)

We are now ready to bound the value of best fixed point in hindsight,

min
p

1

n2

T∑
t=1

n∑
i=1

`2t (i)

p(i)
= min

p

1

n2

n∑
i=1

`21:T (i)

p(i)

=
1

n2

(
n∑
i=1

√
`21:t(i)

)2

= T

(
1

n

n∑
i=1

`∗(i) +
1

n

n∑
i=1

√
VT (i)

T

)2

= T · L2
∗ + 2

√
TL∗ ·

1

n

n∑
i=1

√
VT (i) +

(
1

n

n∑
i=1

√
VT (i)

)2

,

where in the second line we use Lemma 11, and the third line uses Eq. (11).
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We are now left to prove that T · L2
∗ ≤

∑T
t=1

1
n2 minp∈∆

∑n
i=1 `

2
t (i)/p(i). Indeed,

L2
∗ ≤

(
1

T

T∑
t=1

L(wt)

)2

≤ 1

T

T∑
t=1

L2(wt)

=
1

T

T∑
t=1

1

n2
min
p∈∆

n∑
i=1

`2t (i)/p(i) .

where the first line uses the asuumption about the average optimality of L∗, the second line uses
Jensen’s inequality, and the last line uses Eq. (12). This concludes the proof.

Appendix C. Proofs for the Full Information Setting

C.1. Proof of Lemma 2

Proof We formulate the Lagrangian of the optimization problem in Equation (3):

minimize
p

n∑
i=1

`21:t−1(i)

p(i)
+ γ

n∑
i=1

1

p(i)

subject to
n∑
i=1

p(i) = 1

p(i) ≥ 0, i = 1, . . . , n

and get:

L(p, λ) =

n∑
i=1

`21:t−1(i)

p(i)
+ γ

n∑
i=1

1

p(i)
+ α ·

(
n∑
i=1

p(i)− 1

)
−

n∑
i=1

βi · p(i)

From setting ∂L(p,λ)
∂p(i) = 0 we have:

p(i) =

√
`21:t−1(i) + γ
√
α− βi

(13)

Note that setting p(i) = 0 implies an objective value of infinity due to the regularizer. Thus, at the
optimum p(i) > 0, ∀i ∈ [n]; which in turn implies that βi = 0, ∀i ∈ [n] (due to complementary

slackness). Combining this with
∑n

i=1 p(i) = 1, we get
√
α =

∑n
i=1

√
`21:t−1(i) + γ which gives:

p(i) =

√
`21:t−1(i) + γ∑n

j=1

√
`21:t−1(j) + γ

(14)

Since the minimization problem is convex for p ∈ ∆, we obtained a global minimum.
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C.2. Proof of Lemma 4

Proof The regret of FTRL may be related to the stability of the online decision sequence as shown
in the following lemma due to Kalai and Vempala (2005) (proof can be found in Hazan (2011) or in
Shalev-Shwartz et al. (2012)):

Lemma 12 Let K be a convex set and R : K 7→ R be a regularizer. Given a sequence of cost
functions {ft}t∈[T ] defined over K, then setting pt = arg minp∈∆

∑t−1
τ=1 fτ (p) +R(p) ensures

T∑
t=1

ft(pt)−
T∑
t=1

ft(p) ≤
T∑
t=1

(ft(pt)− ft(pt+1)) + (R(p)−R(p1)), ∀p ∈ K.

Notice that our regularizer R(p) = L
∑n

i=1 1/p(i) is non-negative and bounded by nL/pmin over
∆′. Thus, applying the above lemma to the FTRL rule of Eq. (3) implies that ∀p ∈ ∆′,

T∑
t=1

ft(pt)−
T∑
t=1

ft(p) ≤
T∑
t=1

(ft(pt)− ft(pt+1)) +
nL

pmin
. (15)

We are left to bound the remaining term. Let us first recall the closed from solution for the pt’s as
stated in Lemma 2,

pt(i) =

√
`21:t−1(i) + L

ct
,

where ct =
∑n

i=1

√
`21:t−1(i) + L is the normalization factor. Noticing that {ct}t∈[T ] is a non-

decreasing sequence we, are now ready to bound the remaining term,

T∑
t=1

(ft(pt)− ft(pt+1)) =
T∑
t=1

n∑
i=1

`2t (i) ·

 ct√
`21:t−1(i) + L

− ct+1√
`21:t(i) + L


≤

T∑
t=1

n∑
i=1

`2t (i) ·

 ct√
`21:t−1(i) + L

− ct√
`21:t(i) + L


=

T∑
t=1

n∑
i=1

`2t (i) · ct√
`21:t(i) + L

·

(√
1 +

`2t (i)

`21:t−1(i) + L
− 1

)

≤ cT
2

T∑
t=1

n∑
i=1

`4t (i)√
`21:t(i) + L ·

(
`21:t−1(i) + L

)
where in the first inequality we used the fact that ct ≤ ct+1 and in the last inequality we relied on
the fact that

√
1 + x ≤ 1 + x

2 for all x ≥ 0. Furthermore, we observe that
√
`21:t(i) + L ≥

√
`21:t(i)

and `21:t−1(i) + L ≥ `21:t(i) in order to get:

T∑
t=1

(ft(pt)− ft(pt+1)) ≤ cT
2
·
T∑
t=1

n∑
i=1

`4t (i)(
`21:t(i)

)3/2 =
√
L · cT

2
·
n∑
i=1

T∑
t=1

`4t (i)
L2(

`21:t(i)
L

)3/2

For a fixed index i, denote at := `t(i)/
√
L and note that at ∈ [0, 1], ∀t ∈ [T ]. The innermost sum

can be therefore written as
∑T

t=1
a4t

(a21:t)
3/2 , which is upper bounded by 44 as stated in lemma below.
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Lemma 13 For any sequence of numbers a1, . . . , aT ∈ [0, 1] the following holds:

T∑
t=1

a4
t

(a2
1:t)

3/2
≤ 44 .

The proof of the lemma is provided in section C.3. As a consequence,

T∑
t=1

(ft(pt)− ft(pt+1)) ≤
√
L · cT

2
·
n∑
i=1

T∑
t=1

`4t (i)
L2(

`21:t(i)
L

)3/2

≤ 22n
√
L ·

n∑
i=1

√
`21:T−1(i) + L , (16)

where we have used the expression for cT .
We get our final result once we plug Equation (16) into Equation (15) and observe that√
`21:T−1(i) + L ≤

√
`21:T (i) +

√
L.

C.3. Proof of Lemma 13

Proof Without loss of generality assume that a1 > 0 (otherwise we can always start the analysis
from the first t such that at > 0). Let us define the following index sets,

Pk = {t ∈ [T ] : 4k−1a2
1 < a2

1:t ≤ 4ka2
1}, ∀k ∈ {1, 2, . . . dlog2(1/a1)e}

Qk = {t ∈ [T ] : k < a2
1:t ≤ k + 1}, ∀k ∈ {1, 2, . . . }

The definitions of Pk implies,

∑
t∈Pk

a4
t ≤

∑
t∈Pk

a2
t

2

≤ 42ka4
1 (17)

The definition of Qk implies,

∑
t∈Qk

a4
t ≤

∑
t∈Qk

a2
t

2

≤ 22 = 4 (18)

where the second inequality uses
∑

t∈Qk
a2
t ≤ 2 which follows from the fact that if a set Qk is

non-empty then so is Qk−1 (since at ∈ [0, 1]), and thus,

∑
t∈Qk

a2
t =

Tk∑
t=1

a2
t −

Tk−1∑
t=1

a2
t

≤ (k + 1)− (k − 1)

= 2 .
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where we have defined Tk := max{t ∈ [T ] : t ∈ Qk}.
Using the definitions of Pk and Qk together with Equations (17), (18), we get,

T∑
t=1

a4
t

(a2
1:t)

3/2
≤ a1 +

dlog2(1/a1)e∑
k=1

∑
t∈Pk

a4
t

(a2
1:t)

3/2
+
∞∑
k=1

∑
t∈Qk

a4
t

(a2
1:t)

3/2

≤ a1 +

dlog2(1/a1)e∑
k=1

∑
t∈Pk

a4
t

43(k−1)/2a3
1

+

∞∑
k=1

∑
t∈Qk

a4
t

k3/2

≤ a1 +

dlog2(1/a1)e∑
k=1

42ka4
1

43(k−1)/2a3
1

+

∞∑
k=1

4

k3/2

≤ a1 ·

1 +

dlog2(1/a1)e∑
k=1

42k

43(k−1)/2

+

∞∑
k=1

4

k3/2

≤ a1 ·
dlog2(1/a1)e∑

k=0

2k+3 + 4 ·
∞∑
k=1

1

k3/2

≤ 16a1 · 2dlog2(1/a1)e + 4 + 4 ·
∞∑
k=2

1

k3/2

≤ 36 + 4 ·
∞∑
k=2

1

k3/2

≤ 36 + 4 ·
∫ ∞
x=1

1

x3/2
dx

≤ 44

which concludes the proof.

C.4. Proof of Lemma 6

Proof We first look at the loss of the best distribution in hindsight:

minimize
p

T∑
t=1

n∑
i=1

`2t (i)

p(i)

subject to
n∑
i=1

p(i) = 1

p(i) ≥ 0, i = 1, . . . , n.

Analogous reasoning to the proof of Lemma 2 we get p(i) ∝
√
`21:T (i) and as a consequence, the

loss of the best distribution in hindsight over the unrestricted simplex is:

min
p∈∆

T∑
t=1

n∑
i=1

`2t (i)

p(i)
=

(
n∑
i=1

√
`21:T (i)

)2

(19)
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The next step is to solve the optimization problem over the restricted simplex ∆′:

minimize
p

T∑
t=1

n∑
i=1

`2t (i)

p(i)

subject to
n∑
i=1

p(i) = 1

p(i) ≥ pmin, i = 1, . . . , n.

We start our proof similarly to the proof of Proposition 5 of Namkoong et al. (2017). First, we
formulate the Lagrangian:

L(p, λ, θ) =

n∑
i=1

`21:T (i)

p(i)
+ α ·

(
n∑
i=1

p(i)− 1

)
−

n∑
i=1

βi · (p(i)− pmin) (20)

Setting ∂L
∂p(i) = 0 and using complementary slackness we get:

p(i) =

√
`21:T (i)
√
α− βi

=

{√
`21:T (i)√
α

if
√
`21:T (i) >

√
α · pmin

pmin else
(21)

Next we determine the value of α. Denoting I = {i |
√
`21:T (i) >

√
α · pmin}, and using∑n

i=1 p(i) = 1 implies,

n∑
i=1

p(i) =
∑
i∈I

p(i) +
∑
i∈IC

p(i) =
1√
α

∑
i∈I

√
`21:T (i) + (n− |I|) · pmin = 1

From this we get,

√
α =

∑
i∈I

√
`21:T (i)

1− (n− |I|) · pmin
. (22)
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Now we can plug this into the original problem to get the optimal value:

n∑
i=1

`21:T (i)

p(i)
=
∑
i∈I

`21:T (i)

p(i)
+
∑
i∈IC

`21:T (i)

p(i)

=
√
α ·

(∑
i∈I

√
`21:T (i)

)
+

1

pmin

∑
i∈IC

`21:T (i) . Eq. 21, def. of p(i)

= α · (1− (n− |I|) · pmin) +
1

pmin

∑
i∈IC

`21:T (i) . Eq. 22, replacing
∑
i∈I

√
`21:T (i)

≤ α · (1− (n− |I|) · pmin) + α · pmin · (n− |I|) . Eq. 21, `21:T (i) ≤ αp2
min,∀i ∈ IC

= α

=

(∑
i∈I

√
`21:T (i)

)2

(1− (n− |I|)pmin)2 . Eq. 22

≤

(∑
i∈I

√
`21:T (i)

)2

(1− n · pmin)2

≤

(∑n
i=1

√
`21:T (i)

)2

(1− n · pmin)2

Combining this result with Equation (19) we obtain,

min
p∈∆′

n∑
i=1

`21:T (i)

p(i)
−min

p∈∆

n∑
i=1

`21:T (i)

p(i)
≤
(

1

(1− n · pmin)2 − 1

)
·

(
n∑
i=1

√
`21:T (i)

)2

Using the fact that 1
(1−x)2

− 1 ≤ 6x for x ∈ [0, 1/2], with which we are assuming that pmin ≤
1/(2n), we finally get the claim of the lemma. Note that in the sections following this lemma, all
choices of pmin respect pmin ≤ 1/(2n).

Appendix D. Proofs for the Pseudo-Regret

D.1. Proofs of Theorem 7

Proof What remains from the proof sketch is to bound the term (A), which we do here. Due to
the mixing we always have p̃t(i) ≥ θ/n for all t ∈ [T ], i ∈ [n]. Moreover pt(i) ≥ 1/n implies
p̃t(i) ≥ 1/n. Next we upper bound 1/p̃t(i) − 1/pt(i). If pt(i) ≤ 1/n, then the difference is
negative, otherwise,

1

p̃t(i)
− 1

pt(i)
= θ ·

pt(i)− 1
n

p̃t(i)pt(i)
< θ · pt(i)

p̃t(i)pt(i)
=

θ

p̃t(i)
≤ nθ.
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As an immediate consequence we obtain a bound on (A),

n2 · (A) : = E

[
T∑
t=1

f̃t(p̃t)−
T∑
t=1

f̃t(pt)

]

= E

[
T∑
t=1

n∑
i=1

˜̀2
t (i)

(
1

p̃t(i)
− 1

pt(i)

)]

≤ nθ · E

[
n∑
i=1

˜̀2
1:T (i)

]
≤ n2θLT ,

where we used `2t (i) ≤ L. The rest of the proof is completed in the proof sketch.

Appendix E. Proofs for the Expected Regret

Throughout the proofs we assume n ≤ T .

E.1. Proof of Theorem 8

Proof Using the unbiasedness of the modified costs allows to decompose the regret as follows,

n2E [RegretT ] = E

[
T∑
t=1

ft(p̃t)−min
p∈∆

T∑
t=1

ft(p)

]

= E

[
T∑
t=1

f̃t(p̃t)−min
p∈∆

T∑
t=1

f̃t(p)

]
+ E

[
min
p∈∆

T∑
t=1

f̃t(p)−min
p∈∆

T∑
t=1

ft(p)

]

≤ n2O(Ln1/3T 2/3) + E


(

n∑
i=1

√
˜̀2
1:T (i)

)2

−

(
n∑
i=1

√
`21:T (i)

)2

︸ ︷︷ ︸
(A)

 , (23)

where the last line uses Equation (7) together with Jensen’s inequality (similarly to the proof of
Theorem 7). We have also used the closed form solution for the minimal values of the cumulative
true/modified costs, i.e,

min
p∈∆

T∑
t=1

ft(p) =

(
n∑
i=1

√
`21:T (i)

)2

and min
p∈∆

T∑
t=1

f̃t(p) =

(
n∑
i=1

√
˜̀2
1:T (i)

)2

,

the above is established in the proof of Lemma 6.
Thus, in order to establish the theorem, we bound the expectation of (A). The high level idea of

the proof is to show that for any small enough δ ∈ [0, 1] then w.p. ≥ 1− δ the term (A) is bounded
by n2O(n1/3T 2/3 log(nT/δ)). Then, by showing that (A) is bounded almost surely, we are able to
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choose a small enough δ such that E [(A)] = n2Õ(Ln1/3T 2/3). Let us first establish a trivial bound
on (A),

(A) ≤

(
n∑
i=1

√
˜̀2
1:T (i)

)2

≤

 n∑
i=1

√
`21:T (i)

θ/n

2

= Ln8/3T 4/3 ,

where we used `21:T (i) ≤ LT , and θ = (n/T )1/3. Thus, choosing 1/δ ≥ Ln8/3T 4/3 ensures that
δ · (A) ≤ 1 with probability 1. It now remains to establish a high probability bound for (A). To
do so, we shall bound the differences ˜̀2

1:t(i) − `21:t(i) using a version of Freedman’s concentration
inequality (Freedman, 1975). Later, this will enable us to bound (A). Next we proceed according
to these two steps.

Step 1: bounding ˜̀2
1:t(i)− `21:t(i).

Fix i ∈ [n] and define the following sequence {Zt,i := ˜̀2
t (i) − `2t (i)}t∈[T ]. Recalling that

E[˜̀2
t (i)|p̃t, `t] = `2t (i), we have that {Zt,i}t∈[T ] is a martingale difference sequence with respect to

the filtration {Ft}t∈[T ] associated with the history of the strategy. Also notice that due to the mixing
|Zt,i| ≤ 2|˜̀2

t (i)| ≤ 2nL/θ. We may bound the conditional variance of the Zt,i as follows,

Var(Zt,i|Ft−1) = E

[(
`2t (i)

p̃t(i)
1It=i − `2t (i)

)2

|Ft−1

]

= E
[
`4t (i)

p̃2
t (i)

1It=i − 2
`4t (i)

p̃t(i)
1It=i + `4t (i)|Ft−1

]
=
`4t (i)

p̃t(i)
− `4t (i)

≤ L`
2
t (i)

p̃t(i)
(24)

The above characterization of the sequence {Zt,i}t∈[T ] allows us to apply Freedman’s concentration
inequality that we state below,

Lemma 14 (Freedman’s Inequality (Freedman, 1975; Kakade and Tewari, 2009)) Suppose
{Zt}t∈[T ] is a martingale difference sequence with respect to a filtration {Ft}t∈[T ], such that

|Zt| ≤ b. Define, VartZt = Var (Zt|Ft−1) and let σ =
√∑T

t=1 VartZt be the sum of conditional
variances of Zt’s. Then for any δ ≤ 1/e and T ≥ 3 we have,

P

(
T∑
t=1

Zt ≥ max
{

2σ, 3b
√

log(1/δ)
}√

log(1/δ)

)
≤ 4δ log(T )

Since Z1,i, . . . , ZT,i is a martingale difference sequence with |Zt,i| ≤ 2nL/θ, we can applying
the two-sided extension of Lemma 14 to this sequence. Combined with union bound over all
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i ∈ [n], t ∈ [T ] we have that ∀i ∈ [n], t ∈ [T ], then w.p.≥ 1− 8nTδ log(T ),

|˜̀2
1:t(i)− `21:t(i)| =

∣∣∣∣∣
t∑

τ=1

Zτ,i

∣∣∣∣∣
≤ max

2

√√√√ t∑
τ=1

Var(Zτ,i|Fτ−1),
6nL

θ

√
log(1/δ)

√log(1/δ)

≤ max

{
2σi,

6nL

θ

√
log(1/δ)

}√
log(1/δ). (25)

where we have defined σi :=
√∑T

t=1 Var(Zt,i|Ft−1). Notice that the last line above uses the

fact that ∀t ∈ [T ] :
∑t

τ=1 Var(Zτ,i|Fτ−1) ≤ σ2
i , which holds since the conditional variance is

non-negative.
A few remarks are in place before we go on with the proof:

1. Define B to be the event that the bound stated in Equation (25) holds. Note that
P (B) ≥ 1 − 8nTδ log(T ). From this point on, all of the statements in the proof are con-
ditioned on the event B.

2. For ease of notation we shall ignore the log(1/δ) terms appearing in Equation (25). Note that
these only affect the final guarantees by a factor of O(log(nT )) for the choice of
δ = 1/poly(n, T ).

3. We denote Mi := max{2σi, 6nL/θ}. Ignoring log(1/δ) factors, Equation (25) can be now
restated as follows, ∀i ∈ [n], t ∈ [T ] w.p.≥ 1− 8nTδ log(T ),

|˜̀2
1:t(i)− `21:t(i)| ≤Mi (26)

We are now ready to go on with the proof. Notice that combining Equations (26) and (24)
provides us with a bound on |˜̀2

1:t(i)− `21:t(i)| which depends on the p̃t’s. The next lemma provides
us with a cleaner bound which gets rid of this dependence. The proof of is provided in Section E.2.

Lemma 15 Conditioning on the event B, the following bound holds,

Mi ≤ 10n
2
3LT

1
3 + 4

√
L
(
`21:T (i)

) 1
4

(
n∑
i=1

√
`21:T (i)

) 1
2

, (27)

and also

Mi ≤ 14n
1
2LT

1
2 . (28)

Step 2: bounding (A). First, we formulate a helper lemma, with its proof provided in Section
E.3.

Lemma 16 Let x, a > 0 then
√
x+ a−

√
x ≤ min{

√
a, a/

√
x}.
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Equation (26) enables us to bound (A) as follows,

(A) =

(
n∑
i=1

√
˜̀2
1:T (i)

)2

−

(
n∑
i=1

√
`21:T (i)

)2

=

(
n∑
i=1

√
`21:T (i) + (˜̀2

1:T (i)− `21:T (i))

)2

−

(
n∑
i=1

√
`21:T (i)

)2

≤

(
n∑
i=1

√
`21:T (i) +Mi

)2

−

(
n∑
i=1

√
`21:T (i)

)2

=

(
n∑
i=1

√
`21:T (i) +Mi +

n∑
i=1

√
`21:T (i)

)
·

(
n∑
i=1

√
`21:T (i) +Mi −

n∑
i=1

√
`21:T (i)

)

≤ 2
n∑
i=1

√
`21:T (i) +Mi ·

(
n∑
i=1

√
`21:T (i) +Mi −

n∑
i=1

√
`21:T (i)

)

≤ 2
n∑
i=1

√
`21:T (i) ·

n∑
i=1

min

√Mi,
Mi√
`21:T (i)

+ 2
n∑
i=1

√
Mi ·

n∑
i=1

min

√Mi,
Mi√
`21:T (i)


≤ 2

n∑
i=1

√
`21:T (i) ·

n∑
i=1

min

√Mi,
Mi√
`21:T (i)

︸ ︷︷ ︸
(∗)

+ 2

(
n∑
i=1

√
Mi

)2

︸ ︷︷ ︸
(∗∗)

, (29)

where the second-to-last line uses
√
a+ b ≤

√
a+
√
b, together with Lemma 16.

Let us start with bounding (∗∗),(
n∑
i=1

√
Mi

)2

≤ n2 max
i
Mi ≤ 14Ln2+ 1

2T
1
2

≤ 14Ln2+ 1
3T

2
3 (30)

where we have used the second part of Lemma 15; the second line uses T ≥ n leading to
(nT )1/2 ≤ n1/3T 2/3.

The last step of the proof is to bound (∗). From Lemma 15, we have the immediate corollary
that,

Mi ≤ max

16n
2
3LT

1
3 , 16

√
L
(
`21:T (i)

) 1
4

(
n∑
i=1

√
`21:T (i)

) 1
2

 . (31)

Denote i∗ = arg maxi∈[n] min

{√
Mi,

Mi√
`21:T (i)

}
. We divide the remainder of the proof into two

cases depending on the argument returned by max of Eq. (31) for the index i∗. If the max returns
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the first argument for i∗, i.e. Mi∗ = 16n
2
3LT

1
3 , then

(∗) =
n∑
i=1

√
`21:T (i) ·

n∑
i=1

min

√Mi,
Mi√
`21:T (i)


≤

n∑
i=1

√
`21:T (i) · nmin

√Mi∗ ,
Mi∗√
`21:T (i∗)


= n

n∑
i=1

√
`21:T (i) ·

√
Mi∗

≤ n2
√
LT ·

√
16n2/3T 1/3

≤ 4n2+ 1
3LT

2
3 . (32)

In the other case, we have Mi∗ = 16
√
L
(
`21:T (i∗)

) 1
4

(∑n
i=1

√
`21:T (i∗)

) 1
2
. We will need the fol-

lowing lemma, with its proof given Section E.4:

Lemma 17 Fix w > 0; Let x ∈ [0, w] and a, b : R+ → R+ functions of x, then

max
x∈[0,w]

min
{
a(x) · x1/8, b(x) · x−1/4

}
≤ max

x∈[0,w]
a(x)2/3b(x)1/3.

Now we can upper bound (∗),

(∗) =

n∑
i=1

√
`21:T (i) ·

n∑
i=1

min

√Mi,
Mi√
`21:T (i)


≤ n

n∑
i=1

√
`21:T (i) ·min

√Mi∗ ,
Mi∗√
`21:T (i∗)


≤ n2L

1
2T

1
2 ·min

√Mi∗ ,
Mi∗√
`21:T (i∗)


= n2L

1
2T

1
2 ·min

4L
1
4
(
`21:T (i∗)

) 1
8

(
n∑
i=1

√
`21:T (i∗)

) 1
4

,
16
√
L
(∑n

i=1

√
`21:T (i∗)

) 1
2

(
`21:T (i∗)

) 1
4


(�)
≤ n2L

1
2T

1
2 · 16L

1
2n

1
3T

1
6

≤ 16n2+ 1
3LT

2
3 , (33)

where for (�) we used Lemma 17 with x = `21:T (i∗), a(x) = 4L
1
4

(∑n
i=1

√
`21:T (i∗)

) 1
4
,

b(x) = 16
√
L
(∑n

i=1

√
`21:T (i∗)

) 1
2
, and therefore maxx a(x)2/3b(x)1/3 ≤ 16L1/2n1/3T 1/6. Com-

bining Equation (29) together with Equations (30),(32), and (33), we may establish the final bound
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for (A), conditioned on the event B:

(A) ≤ 64n2+ 1
3LT

2
3 (34)

Concluding: Combining Equation (23) with (34) and taking an sufficiently small δ = 1/poly(n,T)
we have proven the theorem.

E.2. Proof of Lemma 15

Proof Recalling that Mi = max{2σi, 6nL/θ}, it is natural to divide the proof into two cases
depending on the value of Mi. Since θ = (n/T )1/3, it is immediate to show that the lemma holds
for the case where 2σi ≤ 6nL/θ, since in this case Mi = 6nL/θ = 6Ln2/3T 1/3. The rest of the
proof regards the other case where 2σi > 6nL/θ, and therefore Mi = 2σi.

Step (1): Decomposing M2
i .

1

4L
M2
i =

1

L
σ2
i

≤
T∑
t=1

`2t (i)

p̃t(i)

=
∑

t:`21:t(i)≤2Mi

`2t (i)

p̃t(i)
+

∑
t:`21:t(i)≥2Mi

`2t (i)

(
1

p̃t(i)
− 1

pt(i)

)
+

∑
t:`21:t(i)≥2Mi

`2t (i)

pt(i)

≤ n

θ
·

∑
t:`21:t(i)≤2Mi

`2t (i) + nθ`21:T (i) +
∑

t:`21:t(i)≥2Mi

`2t (i)

pt(i)

≤ 2nMi

θ
+ nθLT +

∑
t:`21:t(i)≥2Mi

`2t (i)

pt(i)︸ ︷︷ ︸
(?)

, (35)

where in the second line we use the definition of σi together with the bound of Eq. (24), implying
σ2
i ≤ L

∑T
t=1 `

2
t (i)/p̃t(i); in the fourth line we use p̃t(i) ≥ θ

n (due to mixing), and we also use
1

p̃t(i)
− 1

pt(i)
≤ nθ (see proof of Theorem 7). The last line uses `21:T (i) ≤ LT . Next we bound the

last term, (?).
Step (2): Bounding (?). We shall first bound 1/pt(i) and later use this in order to bound (?).

Notice that the following hold ∀t ∈ [T ] such that `21:t(i) ≥ 2Mi,

˜̀2
1:t(i) ≥ `21:t(i)−Mi ≥

1

2
`21:t(i) (36)

˜̀2
1:t(i) ≤ `21:t(i) +Mi ≤

3

2
`21:t(i), ∀i ∈ [n] (37)

where we have used |˜̀2
1:t(i)− `21:t(i)| ≤Mi (see Eq (26)), which follows since we condition on the

event B. Combining the above with the definition of pt (see Lemma 2) and denoting L′ := Ln/θ,

29



ONLINE VARIANCE REDUCTION FOR STOCHASTIC OPTIMIZATION

yields,

1

pt(i)
=

∑n
i=1

√
˜̀2
1:t−1(i) + L′√

˜̀2
1:t−1(i) + L′

≤
∑n

i=1

√
˜̀2
1:t(i) + L′√

˜̀2
1:t(i)

≤
√

2

∑n
i=1

√
3
2`

2
1:t(i) + L′√

`21:t(i)

≤ 2

∑n
i=1

√
`21:T (i)√

`21:t(i)

where in the second line we use ˜̀2
t (i) ≤ L′, in the third we employ Equations (36), (37); and the

fourth follows by noticing L′ = Ln/θ ≤Mi ≤ `21:t(i)/2, and also `21:t(i) ≤ `21:T (i), ∀t ∈ [T ].
Using the above inequality we may now bound (?),

(?) =
∑

t:`21:t(i)≥2Mi

`2t (i)

pt(i)

≤ 2

(
n∑
i=1

√
`21:T (i)

) ∑
t:`21:t(i)≥2Mi

`2t (i)√
`21:t(i)

≤ 2

(
n∑
i=1

√
`21:T (i)

)
T∑
t=1

`2t (i)√
`21:t(i)

≤ 4

(
n∑
i=1

√
`21:T (i)

)√
`21:T (i) (38)

where the last inequality uses the following lemma from (McMahan and Streeter, 2010):

Lemma 18 (McMahan and Streeter, 2010) For any non-negative numbers a1, . . . , aT the following
holds:

T∑
t=1

at√∑t
τ=1 aτ

≤ 2

√√√√ T∑
t=1

at

Step (3): Final bound. Plugging the bound of Equation (38) back into Equation (35) implies,

1

4L
M2
i ≤

2nMi

θ
+ nθLT + 4

√
`21:T (i)

(
n∑
i=1

√
`21:T (i)

)
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Denote a = 1/(4L), b = 2n/θ, c1 = nθLT, c2 = 4
√
`21:T (i)

(∑n
i=1

√
`21:T (i)

)
. Then, the above

inequality can be reformulated as:

aM2
i − bMi − c1 − c2 ≤ 0.

Due to the quadratic formula, the largest Mi that satisfies the inequality above is
Mi =

(
b+

√
b2 + 4a(c1 + c2)

)
/(2a). We can get an upper bound on Mi by using√

b2 + 4a(c1 + c2) ≤ b+ 2
√
ac1 + 2

√
ac2 to finally get that

Mi ≤
8nL

θ
+ 2n

1
2Lθ

1
2T

1
2 + 4

√
L
(
`21:T (i)

) 1
4

(
n∑
i=1

√
`21:T (i)

) 1
2

.

Using θ = (n/T )1/3 we have proven the first claim of the lemma. For the second claim, we use the
upper bound `21:T (i) ≤ LT and note that n

2
3T

1
3 ≤ n

1
2T

1
2 (since T ≥ n).

E.3. Proof of Lemma 16

Proof
(
√
x+ a−

√
x)2 = 2x+ a− 2

√
x2 + xa ≤ a

which proves that
√
x+ a −

√
x ≤
√
a. On the other hand, we have that

√
x+ a −

√
x ≤ a/

√
x,

which can be easily seen by rearranging it as
√
x+ a ≤ a/

√
x+
√
x and taking the square of both

side. Combining these two facts we get the results.

E.4. Proof of Lemma 17

Proof Define F (x) := min
{
a(x) · x1/8, b(x) · x−1/4

}
. Note that in order to establish the lemma it

is sufficient to show that the following holds for any x ≥ 0,

F (x) ≤ a(x)2/3b(x)1/3 .

To do so, fix x ≥ 0 and divide into two cases.
Case 1: If a(x) · x1/8 ≤ b(x) · x−1/4 then x ≤ (b(x)/a(x))8/3 implying that F (x) = a(x) ·

x1/8 ≤ a(x)2/3b(x)1/3.
Case 2: If a(x) · x1/8 ≥ b(x) · x−1/4 then x ≥ (b(x)/a(x))8/3 implying that F (x) = b(x) ·

x−1/4 ≤ a(x)2/3b(x)1/3.
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Appendix F. Experiments

F.1. Image Classification

Training a binary classifier with imbalanced data is a challenging task in machine learning. Prac-
tices for dealing with imbalance include optimizing class weight hyperparameters, hard negative
mining (Shrivastava et al., 2016) and synthetic minority oversampling (Chawla et al., 2002). With-
out accounting for imbalance, the minority samples are often misclassified in early stages of the
iterative training procedures, resulting in high loss and high gradient norms associated with these
points. Importance sampling schemes for reducing the variance of the gradient norms will sample
these instances more often at the early phases, offering a way of tackling imbalance.

For verifying this intuition, we perform the image classification experiment of Bouchard et al.
(2015). We train one-vs-all logistic regression Pascal VOC 2007 dataset Everingham et al. (2010)
with image features extracted from the last layer of the VGG16 (Simonyan and Zisserman, 2015)
pretrained on Imagenet. We measure the average precision by reporting its mean over the 20 classes
of the test data. The optimization is performed with AdaGrad (Duchi et al., 2011), where learning
rate is initialized to 0.1. The losses received by the bandit methods are the norms of the logistic loss
gradient. We compare our method, Variance Reducer Bandit (VRB), to:

• uniform sampling for SGD,

• Adaptive Weighted SGD (AW) (Bouchard et al., 2015) — variance reduction by sampling
from a chosen distribution whose parameters are optimized alternatingly with the model pa-
rameters,

• MABS (Salehi et al., 2017) — bandit algorithm for variance reduction that relies on EXP3
through employing modifies losses.
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Figure 6: Mean Average Precisions on the test
part of VOC 2007.
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Figure 7: The effect of different hyperparame-
ters on VRB.

The hyperparameters of the methods are chosen based on cross-validation on the validation por-
tion of the dataset. The results can be seen in Figure 6, where the shaded areas represent confidence
95% intervals over 10 runs. The best performing method is AW, but its disadvantage compared
to the bandit algorithms is that it requires choosing a family of sampling distributions, which usu-
ally incorporates prior knowledge, and calculating the derivative of the log-density. VRB and AW
both outperform uniform subsampling with respect to the training time. VRB performs similarly
to AW at convergence, and speeds up training 10 times compared to uniform sampling, by attain-
ing a certain score level 10 times faster. We have also experimented with the variance reduction
method of Namkoong et al. (2017), but it did not outperform uniform sampling significantly. Since
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cross-validation is costly, in Figure 7 we show the effect of the hyperparameters of our method.
More specifically, we compare the performance of VRB with misspecified regularizer L = 1 to the
best L = 108 chosen by cross-validation, and we compensate by using higher mixing coefficient
θ = 0.4. The fact that only the early-stage performance is affected is a sign of method’s robustness
against regularizer misspecification.

We also measure the regret incurred both by the full information and VRB samplers, and show
the results in Figure 8. For a fair comparison, we choose an oblivious adversary that generates the
loss sequences by performing the same optimization process as described above on a subset of 1000
data points from VOC 2007, with uniform sampling. For VRB, we report the average regret over
10 runs.
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Figure 8: Regret incurred by the full info and VRB.

F.2. k-Means

In this experiment, we show that in some applications it is beneficial to work with per-sample upper
bound estimates Li instead of a single global bound. As an illustrative example, we choose mini-
batch k-Means clustering (Sculley, 2010). This is a slight deviation from the presented theory, since
we sample multiple points for the batch and update the sampler only once, upon observing the loss
for the batch.

In the case of k-Means, the parameters consist of the coordinates of the k centers
Q = {q1, q2, . . . , qk}. As the cost function for a point xi ∈ {x1, x2, . . . , xn} is the squared
Euclidean distance to the closest center, the loss received by VRB is the norm of the gradient
minq∈Q 2 · ||xi − q||2. This lends itself to a natural estimation of Li: choose a point u randomly
from the dataset and define Li = 4 · ||xi − u||22. For this experiment, we set θ = 0.5.

We solve mini-batch k-Means for k = 100 and batch size b = 100 with uniform sampling
and VRB. The initial centers are chosen with k-Means++ (Arthur and Vassilvitskii, 2007) from a
random subsample of 1000 points from the training data and they are shared between the methods.
We generate 10 different sets of initial centers and run both algorithms 10 times on each set of
centers, with different random seeds for the samplers. We train the algorithm on 80% of the data,
and measure the cost of the 20% test portion for the following datasets:

• CSN (Faulkner et al., 2011) — cellphone accelerometer with 80,000 observations and 17
features,
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• KDD (KDD Cup 2004) — data set used for Protein Homology Prediction KDD competition
containing 145,751 observations with 74 features,

• MNIST (LeCun et al., 1998) — 70,000 low resolution images of handwritten characters trans-
formed using PCA with whitening and retaining 10 dimensions.
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Figure 9: The evolution of the loss of k-Means on the test set. The shaded areas represent 95%
confidence intervals over 100 runs.

The evolution of the cost function on the test set with respect to the elapsed training time is
shown in Figure 9. The chosen datasets illustrate three observed behaviors of our algorithm. In the
case of CSN, our method significantly outperforms uniform subsampling. In the case of KDD, the
advantage of our method can be seen in the reduced variance of the cost over multiple runs, whereas
on MNIST we observe no advantage. This behavior is highly dependent on intrinsic dataset charac-
teristics: for MNIST, we note that the entropy of the best-in-hindsight sampling distribution is close
the entropy of the uniform distribution. We have also compared VRB with the bandit algorithms
mentioned in the previous section. Since mini-batch k-Means converges in 1-2 epochs, these meth-
ods with uniform initialization do not outperform uniform subsampling significantly. Thus, for this
setting, careful initialization is necessary, which is naturally supported by our method.
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