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Abstract
Recently, research in unsupervised learning has gravitated towards exploring statistical-computational
gaps induced by sparsity. A line of work initiated in Berthet and Rigollet (2013a) has aimed to ex-
plain these gaps through reductions to conjecturally hard problems from complexity theory. How-
ever, the delicate nature of average-case reductions has limited the development of techniques and
often led to weaker hardness results that only apply to algorithms robust to different noise dis-
tributions or that do not need to know the parameters of the problem. We introduce several new
techniques to give a web of average-case reductions showing strong computational lower bounds
based on the planted clique conjecture. Our new lower bounds include:

• Planted Independent Set: We show tight lower bounds for detecting a planted indepen-
dent set of size k in a sparse Erdős-Rényi graph of size n with edge density Θ̃(n−α).

• Planted Dense Subgraph: If p > q are the edge densities inside and outside of the
community, we show the first lower bounds for the general regime q = Θ̃(n−α) and
p − q = Θ̃(n−γ) where γ ≥ α, matching the lower bounds predicted in Chen and Xu
(2016). Our lower bounds apply to a deterministic community size k, resolving a question
raised in Hajek et al. (2015).

• Biclustering: We show strong lower bounds for Gaussian biclustering as a simple hy-
pothesis testing problem to detect a uniformly at random planted flat k × k submatrix.

• Sparse Rank-1 Submatrix: We show that detection in the sparse spiked Wigner model
is often harder than biclustering, and are able to obtain two different tight lower bounds
for these problems with different reductions from planted clique.

• Sparse PCA: We give a reduction between rank-1 submatrix and sparse PCA to obtain
tight lower bounds in the less sparse regime k �

√
n, when the spectral algorithm is

optimal over the SDP. We give an alternate reduction recovering the lower bounds of
Berthet and Rigollet (2013a); Gao et al. (2017) in the simple hypothesis testing variant of
sparse PCA. We also observe a subtlety in the complexity of sparse PCA that arises when
the planted vector is biased.

• Subgraph Stochastic Block Model: We introduce a model where two small communi-
ties are planted in an Erdős-Rényi graph of the same average edge density and give tight
lower bounds yielding different hard regimes than planted dense subgraph.

Our results demonstrate that, despite the delicate nature of average-case reductions, using nat-
ural problems as intermediates can often be beneficial, as is the case in worst-case complexity. Our

c© 2018 M. Brennan, G. Bresler & W. Huleihel.



REDUCIBILITY AND COMPUTATIONAL LOWER BOUNDS

main technical contribution is to introduce a set of techniques for average-case reductions that:
(1) maintain the level of signal in an instance of a problem; (2) alter its planted structure; and (3)
map two initial high-dimensional distributions simultaneously to two target distributions approxi-
mately under total variation. We also give algorithms matching our lower bounds and identify the
information-theoretic limits of the models we consider.
Keywords: Planted clique, statistical-computational gap, average-case complexity

1. Introduction

The field of statistics is undergoing a dramatic conceptual shift, with computation moving from
the periphery to center stage. Prompted by the demands of modern data analysis, researchers real-
ized two decades ago that a new approach to estimation was needed for high-dimensional problems
in which the dimensionality of the data is at least as large as the sample size. High-dimensional
problems are inherently underdetermined, often precluding nontrivial rates of estimation. However,
this issue typically disappears if the underlying signal is known to have an appropriate structure,
such as low rank or sparsity. Although structural assumptions can yield nontrivial estimation rates,
the statistically optimal estimators for these problems typically entail an exhaustive search over
the set of possible structures and are thus not efficiently computable. Conversely, all known effi-
cient algorithms for these problems are statistically suboptimal, requiring more data than strictly
necessary. This phenomenon has led to a number of conjectured statistical-computational gaps for
high-dimensional problems with structure. This raises an intriguing question: how are these gaps
related to one another and are they emerging for a common reason?

In the last few years, several lines of work have emerged to make rigorous the notion of what
is and what is not achievable statistically by efficient algorithms. In the seminal work of Berthet
and Rigollet (2013a), a conjectured computational-statistical gap for sparse principal component
analysis (PCA) was shown to follow from the planted clique conjecture. This marked the first re-
sult basing the hardness of a natural statistics problem on an average-case hardness assumption
and produced a framework for showing statistical-computational gaps by approximately mapping
in total variation. This subsequently led to several more reductions from the planted clique conjec-
ture to show computational-statistical gaps for problems including submatrix detection/biclustering
Ma and Wu (2015), submatrix localization Cai et al. (2015a), planted dense subgraph Hajek et al.
(2015), RIP certification Wang et al. (2016a), sparse PCA and sparse canonical correlation analy-
sis Wang et al. (2016b); Gao et al. (2017). We draw heavily from the framework for average-case
reductions laid out in these papers. More recently, focus has shifted to showing unconditional hard-
ness results for restricted models of computation and classes of algorithms. An exciting line of work
has emerged surrounding applications of the Sum of Squares (SOS) semidefinite programming hi-
erarchy to problems with statistical computational gaps. SOS Lower bounds have been shown for
planted clique Barak et al. (2016) and for sparse PCA Krauthgamer et al. (2015); Ma and Wigder-
son (2015); Hopkins et al. (2017). Tight computational lower bounds have also been shown in the
statistical query model for planted clique and planted random k-SAT Feldman et al. (2012, 2015).

One reason behind this focus on showing hardness in restricted models of computation is that
average-case reductions are inherently delicate, creating obstacles to obtaining satisfying hardness
results. As described in Barak (2017), these technical obstacles have left us with an unsatisfying
theory of average-case hardness. Reductions in worst-case complexity typically take a general
instance of a problem A to a structured instance of a problem B. For example, a classic reduction
from 3SAT to INDEPENDENT-SET produces a very specific type of graph with a cluster of seven
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vertices per clause corresponding to each satisfying assignment such that two vertices are connected
if together they yield an inconsistent assignment. If such a reduction were applied to a random 3SAT
instance, the resulting graph instance would be far from any natural graph distribution. Unlike
reductions in worst-case complexity, average-case reductions between natural decision problems
need to precisely map the distributions on instances to one another without destroying the underlying
signal in polynomial-time. The delicate nature of this task has severely limited the development of
techniques and left open reductions between decision problems that seem to be obviously equivalent
from the standpoint of algorithm design. For example, it remains unknown whether refuting random
constraint satisfaction problems with 10m clauses is equivalent to refuting those with 11m clauses
or whether the planted clique conjecture at edge density 1/2 implies the conjecture at edge density
0.49. For more on average-case complexity, we refer to the survey of Bogdanov et al. (2006).

In order to overcome these average-case difficulties, prior reductions have often made assump-
tions on the robustness of the underlying algorithm such as that it succeeds for any noise distribu-
tions from a fixed class as in Berthet and Rigollet (2013a); Wang et al. (2016b); Cai et al. (2015a).
This corresponds to composite vs. composite hypothesis testing formulations of detection prob-
lems, where the composite null hypothesis H0 consists of the class of noise distributions. Other
reductions have shown hardness for precise noise distributions but for algorithms that do not need
to exactly know the parameters of the given instance Ma and Wu (2015); Gao et al. (2017). This
typically corresponds to simple vs. composite hypothesis testing where the composite alternative
H1 consists of models defined by varying parameters such as the sparsity k or signal strength. The
strongest prior reduction from planted clique is that to the sparsest regime of planted dense subgraph
in Hajek et al. (2015). A lower bound is shown for a simple vs. simple hypothesis testing variant
of the problem, with each consisting of a single distribution. However, the community in their for-
mulation of planted dense subgraph was binomially distributed and therefore still assumed to be
unknown exactly to the algorithm. Prior reductions have also shown hardness at particular points
in the parameter space, deducing that an algorithm cannot always perform better than a conjectured
computational barrier rather than showing that no algorithm can ever perform better. For example,
prior reductions for sparse PCA have only shown tight hardness around the single parameter point
where the signal is θ = Θ̃(1) and the sparsity is k = Θ̃(

√
n). Simplifying parameters in their

reductions, both Berthet and Rigollet (2013a) and Gao et al. (2017) approximately map a planted
clique instance on n vertices with clique size k to an instance of sparse PCA with θ ≈ Θ̃(k2/n)
which is only tight to the conjectured barrier of θ∗ = Θ(

√
k2/n) when k = Θ̃(

√
n).

These assumptions leave a subtle disparity between the existing average-case lower bounds
for many problems and algorithmic upper bounds. Many algorithmic results assume a canonical
generative model or implicitly assume knowledge of parameters. For example, even in the recent
literature on robust algorithms for problems with sparsity in Balakrishnan et al. (2017); Li (2017),
the setup is in the context of specific canonical generating models, such as the spiked covariance
model for sparse PCA. Even when corrupted by adversarial noise, the spiked covariance model is
far in distribution from many sub-gaussian formulations of sparse PCA. Despite existing average-
case lower bounds, hardness for the canonical generative models for many problems has remained
open. This includes biclustering with a flat planted k × k submatrix selected uniformly at random
in gaussian noise, sparse PCA with a k-sparse principal component chosen uniformly at random to
have entries equal to ±1/

√
k and planted dense subgraph with deterministic community size.
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Sparse PCA Subgraph Stochastic Block Model

Figure 1: Graph of average-case reductions for detection problems showing tight statistical-computational
gaps given the planted clique conjecture.

Overview

The aim of this paper is threefold: (1) to demonstrate that a web of average-case reductions among
problems with statistical-computational gaps is feasible even for showing strong computational
lower bounds; (2) to introduce a number of new techniques for average-case reductions between
problems; and (3) to fully characterize the computationally hard regime of several models. The
graph of our reductions is shown in Figure 1. Our new lower bounds are as follows.

• Planted Independent Set: We show tight lower bounds for detecting a planted independent
set of size k in a sparse Erdős-Rényi graph of size n with edge density Θ̃(n−α).

• Planted Dense Subgraph: If p > q are the edge densities inside and outside of the commu-
nity, we show the first lower bounds for the general regime q = Θ̃(n−α) and p−q = Θ̃(n−γ)
where γ ≥ α, matching the lower bounds predicted in Chen and Xu (2016). Our lower bounds
apply to a deterministic community size k, resolving a question raised in Hajek et al. (2015).

• Biclustering: We show lower bounds for Gaussian biclustering as a simple hypothesis test-
ing problem to detect a uniformly at random planted flat k × k submatrix. Our alternative
reduction matches the barriers in Ma and Wu (2015), where a computational lower bound
was shown for a composite hypothesis testing variant of biclustering. We show hardness for
the natural simple hypothesis testing problem where the k× k submatrix is chosen uniformly
at random and has equal entries.

• Sparse Rank-1 Submatrix: We show that detection in the sparse spiked Wigner model has
a different computational threshold from biclustering when k �

√
n. Surprisingly, we are

able to obtain tight lower bounds matching these different detection thresholds with different
reductions from planted clique.

• Sparse PCA: We give a reduction between rank-1 submatrix and sparse PCA to obtain tight
lower bounds in the less sparse regime k �

√
n, when the spectral algorithm is optimal

over the SDP. This yields the first tight characterization of a computational barrier for sparse
PCA over an entire parameter regime. We also give an alternate reduction recovering the
lower bounds of Berthet and Rigollet (2013a) and Gao et al. (2017) in the canonical simple
hypothesis testing variant of sparse PCA.
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• Biased Sparse PCA: We show that any assumption on the sparse principal component having
a constant fraction more or fewer positive entries than negative entries yields a detection-
recovery gap that is not present in sparse PCA.

• Subgraph Stochastic Block Model: We introduce a model where two small communities are
planted in an Erdős-Rényi graph of the same average edge density. Parallel to the difference
between biclustering and sparse rank-1 submatrix when k �

√
n, we show that detection in

this model is much harder than in planted dense subgraph when k �
√
n.

Our lower bounds for planted independent set, the general regime of planted dense subgraph, rank-1
submatrix, sparse PCA when k �

√
n, biased sparse PCA and the subgraph stochastic block model

are novel. As previously mentioned, lower bounds for sparse PCA when k �
√
n, for biclustering

and for planted dense subgraph in the sparsest regime were previously known. In each of these
cases, we strengthen the existing lower bounds to the apply to the canonical generative model.
We show computational lower bounds for simple vs. simple hypothesis testing in all cases other
than for sparse PCA, rank-1 submatrix and the subgraph stochastic block model all in the regime
k �

√
n. This is a consequence of our underlying reduction technique, reflection cloning, and

appears unavoidable given our methods. However, we do show that the distribution we reduce to is
in some sense close to the canonical generative model.

2. Problem Formulations

2.1. Detection and Recovery Problems

We consider problems P with planted sparse structure as both detection and recovery tasks, which
we denote by PD and PR, respectively.

Detection. In detection problems PD, the algorithm is given a set of observations and tasked with
distinguishing between two hypotheses:

• a uniform hypothesis H0, under which observations are generated from the natural noise
distribution for the problem; and

• a planted hypothesis H1, under which observations are generated from the same noise distri-
bution with a latent planted sparse structure.

In all of the detection problems we consider, H0 is a simple hypothesis consisting of a single dis-
tribution and H1 is either also simple or a composite hypothesis consisting of several distributions.
WhenH1 is a composite hypothesis, it consists of a set of distributions of the form Pθ where θ is the
latent sparse structure of interest. OftenH1 is a simple hypothesis consisting of a single distribution
which is a mixture of Pθ with θ in some sense chosen uniformly at random. In both cases, we
will abuse notation and refer to H1 as a set of distributions. Given an observation X , an algorithm
A(X) ∈ {0, 1} solves the detection problem with nontrivial probability if there is an ε > 0 such
that its Type I+II error satisfies that

lim sup
n→∞

(
PH0 [A(X) = 1] + sup

P∈H1

PX∼P[A(X) = 0]

)
≤ 1− ε

where n is the parameter indicating the size of X . We refer to this quantity as the asymptotic Type
I+II error of A for the problem PD. If the asymptotic Type I+II error of A is zero, then we say
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A solves the detection problem PD. Our reductions under total variation all yield exact correspon-
dences between asymptotic Type I+II errors. Specifically, they show that if a polynomial time
algorithm has asymptotic Type I+II error of ε on the problem of interest then there is a polynomial
time algorithm with asymptotic Type I+II error ε on the problem being reduced from.

Recovery. In recovery problemsPR, the algorithm is given an observation from Pθ for some latent
θ from a space Θ and the task is to recover the support S(θ) of the sparse structure θ. There are
several variants of the recovery task. Given a randomized algorithm with output A(X) ∈ {S(θ) :
θ ∈ Θ} and a distribution π on the latent space Θ, the variants of the recovery task are as follows.

• Partial Recovery: A solves partial recovery if

EX∼EπPθ [|A(X) ∩ S(θ)|] = Ω(|S(θ)|) as n→∞

• Weak Recovery: A solves weak recovery if

EX∼EπPθ [|A(X)∆S(θ)|] = o(|S(θ)|) as n→∞

• Exact Recovery: A solves exact recovery with nontrivial probability ε > 0 if for all θ ∈ Θ

lim inf
n→∞

PX∼EπPθ [A(X) = S(θ)] ≥ ε

Here, EπPθ denotes the mixture of Pθ induced by π and ∆ denotes the symmetric difference be-
tween two sets. Whenever the corresponding detection problem PD has a simple hypothesis H1,
π will be the prior on Θ as in H1, which typically is a uniform prior. When PD has a composite
hypothesis H1, then an algorithm A solves each of the three variants of the recovery task if the
above conditions are met for all distributions π. Given a problem P , the notation PR will denote
the exact recovery problem, and PPR and PWR will denote partial and weak recovery, respectively.
All of our recovery reductions will apply to all recovery variants simultaneously.

Computational Model. The algorithms we consider here are either unconstrained or run in ran-
domized polynomial time. An unconstrained algorithm refers to any randomized function or Markov
transition kernel from one space to another. These algorithms considered in order to show that
information-theoretic lower bounds are asymptotically tight. An algorithm that runs in random-
ized polynomial time has access to poly(n) independent random bits and must run in poly(n) time
where n is the size of the input. For clarity of exposition, we assume that explicit expressions can
be exactly computed and that N(0, 1) and Poisson random variables can be sampled in O(1) time.

2.2. Problems

In this section, we define the problems that we show computational lower bounds for and the con-
jectures on which these lower bounds are based. Each problem we consider has a natural parameter
n, which typically denotes the number of samples or dimension of the data, and sparsity parameter
k. Every parameter for each problem is implicitly a function of n, that grows or decays polynomi-
ally in n. For example, k = k(n) = Θ̃(nβ) for some constant β ∈ (0, 1) throughout the paper. For
simplicity of notation, we do not write this dependence on n. We mostly will be concerned with the
polynomial order of growth of each of the parameters and not with subpolynomial factors. We now
formally define the problems we consider.
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Planted Clique and Independent Set. The hypotheses in the planted clique detection problem
PCD(n, k, p) are

H0 : G ∼ G(n, p) and H1 : G ∼ G(n, k, p)

where G(n, p) is an Erdős-Rényi random graph with edge probability and G(n, k, p) is a sample of
G(n, p) with a clique of size k planted uniformly at random. All known polynomial time algorithms
for planted clique fail if k �

√
n. This has led to the following hardness conjecture.

Conjecture 1 (PC Conjecture) Fix some constant p ∈ (0, 1). Suppose that {An} is a sequence of
randomized polynomial time algorithms An : Gn → {0, 1} and kn is a sequence of positive integers
satisfying that lim supn→∞ logn kn <

1
2 . Then if G is an instance of PCD(n, k, p), it holds that

lim inf
n→∞

(PH0 [An(G) = 1] + PH1 [An(G) = 0]) ≥ 1.

The hardness assumption we use throughout our results is the planted clique conjecture. Other
than to show hardness for planted dense subgraph in the sparsest regime, we will only need the
planted clique conjecture with edge density p = 1/2. An interesting open problem posed in Hajek
et al. (2015) is to show that the PC conjecture at p = 1/2 implies it for any fixed constant p < 1/2.

The hypotheses in the planted independent set detection problem PISD(n, k, p) are

H0 : G ∼ G(n, p) and H1 : G ∼ GI(n, k, p)

where GI(n, k, p) is a sample of G(n, p) where all of the edges of vertex set of size k removed uni-
formly at random. The recovery PCR(n, k, p) and PISR(n, k, p) problems are to estimate the latent
clique and independent set supports given samples from G(n, k, p) and GI(n, k, p), respectively.

Planted Dense Subgraph. The hypotheses in the detection problem PDSD(n, k, p, q) are

H0 : G ∼ G(n, q) and H1 : G ∼ G(n, k, p, q)

where G(n, k, p, q) is the distribution on Gn formed by selecting a size k subset S of [n] uniformly
at random and joining every two nodes in S with probability p and every other two nodes with prob-
ability q. The recovery problem PDSR(n, k, p, q) is to estimate the latent planted dense subgraph
support S given samples from G(n, k, p, q).

A phenomenon observed in Hajek et al. (2015) and in Chen and Xu (2016) is that planted dense
subgraph appears to have a detection-recovery gap in the regime where k �

√
n. The following is

a formulation of the conjectured sharper recovery lower bound.

Conjecture 2 (PDS Recovery Conjecture) Suppose that G ∼ G(n, k, p, q) and

lim inf
n→∞

logn k >
1

2
and lim sup

n→∞
logn

(
k2(p− q)2

q(1− q)

)
< 1

then there is no sequence of randomized polynomial-time algorithms An : Gn →
([n]
k

)
such that

An(G) achieve exact recovery of the vertices in the latent planted dense subgraph as n→∞.
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This conjecture asserts that the threshold of n/k2 on the signal (p−q)2
q(1−q) of an instance of PDS is

tight for the recovery problem. In contrast, our results show that the tight detection threshold for
PDS given the PC conjecture is lower, at n2/k4. We will use this conjecture to establish similar
detection-recovery gaps for biased sparse PCA and biclustering. We note that a related detection-
recovery gap for BC was shown in Cai et al. (2015a). The same lower bound was established for
strong recovery algorithms that solve biclustering for all subgaussian noise distributions assuming
hardness of planted clique for a different distribution on random graphs than Erdős-Rényi.

Subgraph Stochastic Block Model. We introduce a planted subgraph variant of the two com-
munity stochastic block model without the edge-thresholding test that produced the conjectural
detection-recovery gap in planted dense subgraph. Let GB(n, k, q, ρ) denote the set of distributions
on Gn generated a graph G as follows. Fix any two positive integers k1 and k2 satisfying that

k

2
− k1−δ ≤ k1, k2 ≤

k

2
+ k1−δ

where δ = δSSBM > 0 is a small constant that will remained fixed throughout the paper. Let
S = [k1] and T = [k1 + k2]\[k1]. Then generate the edges of G independently as follows:

1. include edges within S or within T with probability at least q + ρ;

2. include edges between S and T with probability at most q − ρ; and

3. include all other edges with probability q.

Then permute the vertices of G according to a permutation selected uniformly at random. The
communities of the graph are defined to be the images of S and T under this permutation. Note
that GB(n, k, q, ρ) defines a set of distributions since k1 and k2 are permitted to vary and the edges
between S and T are included independently with a probability at least q + ρ for each edge. Thus
given the random permutation, G is distributed as an inhomogeneous random graph with inde-
pendent edges. The subgraph stochastic block model detection problem SSBMD(n, k, q, ρ) has
hypotheses given by

H0 : G ∼ G(n, q) and H1 : G ∼ P for some P ∈ GB(n, k, q, ρ)

Biclustering. LetMn,k ⊆ Rn×n be the set of sparse matrices supported on a k×k submatrix with
each nonzero entry equal to 1. The biclustering detection problem BCD(n, k, µ) has hypotheses

H0 : M ∼ N(0, 1)⊗n×n and H1 : M ∼ µ ·A+N(0, 1)⊗n×n where A ∼ Unif [Mn,k]

The recovery problem BCR is to estimate the latent support matrix A given a sample from H1.

Rank-1 Submatrix and Sparse Spiked Wigner. In rank-1 submatrix, sparse spiked Wigner and
sparse PCA, the planted sparse vectors will have sufficiently large entries for support recovery to be
possible. We consider the following set of near-uniform magnitude unit vectors

Vd,k =

{
v ∈ Sd−1 : k − k

log k
≤ ‖v‖0 ≤ k and |vi| ≥

1√
k

for i ∈ supp(v)

}
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The function log k can be replaced by any sub-polynomially growing function but is given explicitly
for simplicity. The detection problem ROSD(n, k, µ) has hypotheses

H0 : M ∼ N(0, 1)⊗n×n and H1 : M ∼ µ · rc> +N(0, 1)⊗n×n where r, c ∈ Vn,k

The recovery problem ROSR is to estimate the latent supports supp(r) and supp(c). An n × n
GOE matrix GOE(n) is a symmetric matrix with i.i.d. N(0, 1) entries below its main diagonal and
i.i.d. N(0, 2) entries on its main diagonal. The sparse spiked Wigner detection problem SSWD has
hypotheses

H0 : M ∼ GOE(n) and H1 : M ∼ µ · rr> + GOE(n) where r ∈ Vn,k

and the recovery problem SSWR is to estimate the latent supports supp(r). A simple intermediate
variant that will be useful in our reductions is SROS, which is ROS constrained to have a symmetric
spike r = c. Note that if M is an instance of SROSD(n, k, µ) then it follows that 1√

2
(M +M>) is

an instance of SSWD(n, k, µ/
√

2).

Sparse PCA. Detection in the spiked covariance model of SPCAD(n, k, d, θ) has hypotheses

H0 : X1, X2, . . . , Xn ∼ N(0, Id)
⊗n and

H1 : X1, X2, . . . , Xn ∼ N
(

0, Id + θvv>
)⊗n

where v ∈ Vd,k

The recovery task SPCAR is to estimate supp(v) given observations X1, X2, . . . , Xn sampled
from N

(
0, Id + θvv>

)⊗n where v ∈ Vd,k. We also consider a simple hypothesis testing vari-
ant USPCAD of sparse PCA with a simple hypothesis H1 where v is chosen uniformly at random
from the set Sk ⊆ Rd of all k-sparse unit vectors with nonzero coordinates equal to ±1/

√
k.

Biased Sparse PCA. We introduce a variant of the spiked covariance model with an additional
promise. In particular, v is restricted to the set BVd,k of vectors in Vd,k with some overall positive
or negative bias. Formally, if ‖v‖+0 denotes the number of positive entries of v then

BVd,k =

{
v ∈ Vd,k : ‖v‖+0 ≥

(
1

2
+ δ

)
k or ‖v‖+0 ≤

(
1

2
− δ
)
k

}
where δ = δBSPCA > 0 is an arbitrary constant that will remain fixed throughout the paper. The
detection problem BSPCAD(n, k, d, θ) has the same hypotheses as SPCAD(n, k, d, θ) with the
added constraint v ∈ BVd,k. The recovery problem BSPCAR is do estimate supp(v) given obser-
vations X1, X2, . . . , Xn sampled from N

(
0, Id + θvv>

)⊗n where v ∈ BVd,k. We also consider a
simple hypothesis testing variant UBSPCAD defined similarly to USPCAD with v ∼ Unif[BSk]
where BSk is the set of all k-sparse unit vectors with nonzero coordinates equal to 1/

√
k.

3. Summary of Results

Each problem has three regimes for each of its detection and recovery variants. In the easy regime,
there is a polynomial-time algorithm for the task. In the hard regime, the PC or PDS recovery
conjecture implies that there is no polynomial-time algorithm but there is an inefficient algorithm
solving the task. In the impossible regime, the task is information-theoretically impossible. Our
results are informally stated below and depicted visually in Figure 4 in Appendix A.1.
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Figure 2: Types of hardness regimes by SNR in Theorem 3. TYPE I and TYPE III each have two variants A
and B depending on the Easy regime when k � n1/2.

Theorem 3 (Informal Main Theorem) Given the PC and PDS recovery conjectures, the easy,
hard and impossible regimes of the problems in Section 2.2 are classified in Figure 3 as following
one of the configurations of regimes in Figure 2.

We remark that all of the computational lower bounds in Theorem 3 follow from the PC con-
jecture other than those for PISR, PDSR,BCR and BSPCAWR which follow from the PDS con-
jecture. Appendix C introduces PC-LIFTING to reduce from PCD to PISD. Section D introduces
rejection kernels and general DISTRIBUTIONAL-LIFTING which are then applied in Appendix E
to reduce from PCD to all regimes of PDSD. Appendix F introduces reflection cloning to reduce
from BCD to ROSD, SSWD and SSBMD. Section G introduces random rotations to reduce from
SSWD to SPCAD and from BCD to BSPCAD. In Appendix E, we also give a reduction from
PDSR to BCR and in Appendix G, we reduce from PDSR to BSPCAWR. In Section H, we es-
tablish the algorithmic upper bounds and information-theoretic lower bounds in Theorem 3. In
Appendix I, we show that our detection lower bounds imply recovery lower bounds. Note that this
gives a complete characterization of the easy, hard and impossible regions for all of the problems we
consider other than sparse PCA and biased sparse PCA. The SDP relaxation of the MLE for sparse
PCA succeeds if d = Θ(n) and k �

√
n down to the signal level of θ ≈ k/

√
n, which is generally

conjectured to be optimal. There is a gap between the lower bounds we prove here, which match
those of Berthet and Rigollet (2013b) and Gao et al. (2017) and this conjecturally optimal threshold
when k �

√
n. We also do not consider the recovery problem for the subgraph stochastic block

model and only consider weak, rather than exact, recovery for sparse PCA and biased sparse PCA.
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PROBLEMS PARAMETER REGIME SNR TYPE

PISD(n, k, q), PDSD(n, k, cq, q) q = Θ̃(n−α) for fixed α ∈ [0, 1) and c > 1 q TYPE IA
PISR(n, k, q), PDSR(n, k, cq, q) q = Θ̃(n−α) for fixed α ∈ [0, 1) and c > 1 q TYPE IIIA

PDSD(n, k, p, q) q = Θ̃(n−α) and p− q = Θ̃(n−γ) with (p−q)2
q(1−q) TYPE IA

p > q for fixed α, γ ∈ [0, 1)

PDSR(n, k, p, q) q = Θ̃(n−α) and p− q = Θ̃(n−γ) with (p−q)2
q(1−q) TYPE IIIA

p > q for fixed α, γ ∈ [0, 1)

SSBMD(n, k, q, ρ) q = Θ(1) and ρ = Θ̃(n−α) ρ2 TYPE IIIA
for fixed α ∈ [0, 1)

BCD(n, k, µ) µ = Θ̃(n−α) for fixed α ∈ [0, 1) µ2 TYPE IB
BCR(n, k, µ) µ = Θ̃(n−α) for fixed α ∈ [0, 1) µ2 TYPE IIIB

ROSD(n, k, µ), ROSR(n, k, µ), µ = Θ̃(n−α) for fixed α ∈ [0, 1) µ2

k2
TYPE IIIB

SSWD(n, k, µ), SSWR(n, k, µ)

SPCAD(n, k, d, θ), d = Θ(n) and θ = Θ̃(n−α) θ TYPE II
SPCAWR(n, k, d, θ), for fixed α ∈ [0, 1)
BSPCAWR(n, k, d, θ)

BSPCAD(n, k, d, θ) d = Θ(n) and θ = Θ̃(n−α) θ TYPE IV
for fixed α ∈ [0, 1)

Figure 3: Classification of regimes for each problem as in Theorem 3. For each problem, k is in the regime
k = Θ̃(nβ) where β ∈ (0, 1) is a constant.

4. Techniques

Our main technical contribution is to introduce four techniques for mapping problems approxi-
mately in total variation without degrading the underlying planted sparse structure.

Distributional Lifting. We introduce several new techniques resembling graph lifts to increase the
size k of a sparse structure, while appropriately maintaining the level of signal and independence
in the noise distribution. Given a graph G, the main idea behind our techniques is to replace the
{0, 1}-valued edge indicators with Gaussian and Poisson random variables. We then increase the
size of an instance by a factor of two iteratively, while maintaining the signal and independence,
through distributional tricks such as Poisson thinning and the rotational invariance of independent
Gaussians. In Hajek et al. (2015), the reduction from planted clique to planted dense subgraph also
expands an input graph. Rather than proceed iteratively, their method expands the graph in one
step. The main technical issue arising from this is that the diagonal entries of the graph’s adjacency
matrix are mapped to low-density subgraphs in the hidden community. Showing that these are not
detectable requires a subtle argument and that the hidden community is randomly sized according
to a Binomial distribution. By proceeding incrementally as in our approach, the diagonal entries
become much easier to handle. However for many regimes of interest, incremental approaches that
preserve the fact that the instance is a graph seem to unavoidably introduce dependence between
edges. Our insight is to map edges to other random variables that can be preserved incrementally
while maintaining independence and the desired parameter scaling to produce tight lower bounds.
Using Poisson and Gaussian variants of this lifting procedure, we are able to reduce from planted
clique in a wide range of parameter regimes. Gaussian lifting also recover a simple vs. simple
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hypothesis testing variant of the lower bounds for biclustering shown in Ma and Wu (2015) as an
intermediate step towards reducing to planted dense subgraph.

Rejection Kernels. We give a simple scheme based on rejection sampling that approximately
maps a sample from Bern(p) to a sample from P and from Bern(q) to Q where p, q ∈ [0, 1] and
P and Q are two distributions on R. By truncating samples from a pair of distributions P ′ and Q′,
and then mapping the resulting Bernoulli random variables to a pair of target distributions P and Q,
this method yields an efficient procedure to simultaneously perform two changes of measure. This
method is used in distributional lifting to map from edge indicators to a pair of chosen distributions.
This framework extends and uses similar ideas to the approximate sampling methods introduced in
Hajek et al. (2015) and Ma and Wu (2015).

Reflection Cloning. While distributional lifting appears to accurately characterize the hard regimes
in many detection problems with an optimal test involving summing the entire input matrix, it is fun-
damentally lossy. In each iteration, these lifting techniques generate additional randomness in order
to maintain independence in the noise distribution of the instance. For rank-1 submatrix detection,
these cloning techniques do not come close to showing hardness at the computational barrier. We
introduce a more sophisticated cloning procedure for cases of Gaussian noise that introduces sig-
nificantly less randomness in each iteration. Let R denote the linear operator on n × n matrices
that reflects the matrix about its vertical axis of symmetry and let F denote the linear operator that
multiplies each entry on the right half of the matrix by −1. Then one step of reflection cloning
replaces a matrix W with

W ← 1√
2

(RW σ + FW σ)

where σ is a random permutation. Reflection cloning then repeats this for rows instead of columns.
If W = uv> + G has even dimensions and G has i.i.d. N(0, 1) entries, then reflection cloning
effectively doubles the sparsity of u and v while mildly decreasing the signal. Importantly, it can
be checked that the gaussian noise matrix retains the fact that it has independent entries. Using
reflection cloning, we establish tight computational lower bounds for rank-1 submatrix detection
and for sparse PCA in the regime k �

√
n. This marks the first tight computational lower bound

for sparse PCA over an entire parameter regime.

Random Rotations and Sparse PCA. We also introduce a simple connection between sparse
PCA, biclustering and rank-1 submatrix through random rotations. This yields lower bounds match-
ing those of Gao et al. (2017) and Berthet and Rigollet (2013a). Although often suboptimal, the
random rotations map we introduce tightly gives lower bounds in the regime k �

√
n, using re-

flection cloning as an intermediate. This illustrates the utility of natural average-case problems as
intermediates, suggesting that webs of reductions can be useful beyond worst-case complexity.
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Appendix A. Preliminaries

A.1. Figure for the Main Theorem
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Figure 4: Parameter regimes by problem plotted as signal vs. sparsity. Sparsity is k = Θ̃(nβ). First labels
characterize detection and second labels characterize exact recovery. Recovery is not considered for SSBM
and weak recovery is considered for SPCA and BSPCA. In Easy (E) regimes, there is a polynomial-time
algorithm. In Hard (H) regimes, the PC or PDS conjecture implies there is no polynomial-time algorithm. In
Impossible (I) regimes, the task is information-theoretically impossible. Hardness in black regions is open.
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the strongest guarantees of each algorithm. The line marked as previous reductions shows the strongest
previously known planted clique lower bounds for sparse PCA when k .

√
n. No planted clique lower

bounds were known for k �
√
n.

A.2. Hardness Results from an Algorithmic Perspective

In this section, we motivate our computational lower bounds and techniques using algorithms
for sparse PCA as an example. Consider the detection problem for sparse PCA where either
X1, X2, . . . , Xn are sampled i.i.d. from N(0, Id) or are sampled i.i.d. from N(0, Id + θvv>)
for some latent k-sparse unit vector v with nonzero entries equal to ±1/

√
k. The task is to detect

which of the two distributions the samples originated from. For now assume that d = Θ(n). Now
consider the following four algorithms:

1. Semidefinite Programming: Form the empirical covariance matrix Σ̂ = 1
n

∑n
i=1XiX

>
i and

solve the convex program

max
Z

Tr
(

Σ̂Z
)

s.t. Tr(Z) = 1, |Z|1 ≤ k, Z � 0

As shown in Berthet and Rigollet (2013a), thresholding the resulting maximum solves the
detection problem as long as θ = Ω̃(

√
k2/n).

2. Spectral Algorithm: Threshold the maximum eigenvalue of Σ̂. If the data are sampled from
N(0, Id), then the largest eigenvalue is with high probability at most

λmax(Σ̂) ≤ d

n
+

√
d

n
+ 1 + o(1)

by standard bounds on the singular values of random Gaussian matrices. Since d = Θ(n),
this algorithm succeeds as long as θ = Ω(1). This algorithm was considered in Krauthgamer
et al. (2015).

23



REDUCIBILITY AND COMPUTATIONAL LOWER BOUNDS

3. Sum Test: Sum the entries of Σ̂ and threshold the absolute value of the sum. If v has sum
exactly zero, then this test will not succeed. However, if we assume that Σ̂ has even 51% of
its nonzero entries of one sign, then this test succeeds if θ = Ω̃(

√
n/k).

4. k-Sparse Eigenvalue: Compute and threshold the k-sparse unit vector u that maximizes
u>Σ̂u. This can be found by finding the largest eigenvector of each k×k principal submatrix
of Σ̂. Note that this takes exponential time. It was shown in Berthet and Rigollet (2013a) that
this succeeds as long as θ = Ω̃(

√
k/n).

The boundaries at which these algorithms begin to succeed are shown in Figure 5 for the regime
k = Θ̃(nβ) and θ = Θ̃(n−α). The computational lower bound mapping to θ ≈ k2/n in Berthet
and Rigollet (2013a) and Gao et al. (2017) is also drawn. As shown, the only point in the parameter
diagram for which it matches an algorithmic upper bound is α = 0 and β = 1/2, corresponding to
when θ = Θ̃(1) and k = Θ̃(

√
n).

For sparse PCA with d = Θ(n), the SDP is optimal up to k = Θ(
√
n), at which point the

spectral algorithm has stronger guarantees. This algorithmic transition at k = Θ(
√
n) is charac-

teristic of all of the problems we consider. For the biased variant of sparse PCA where the sum
test succeeds, the sum test always does strictly better than the spectral algorithm. Furthermore, the
biased variant ceases to have a statistical computational gap around k = Θ(n2/3). While the sum
test yields an improved algorithm for detection, unlike the other three algorithms considered above,
it does not translate into an algorithm for recovering the support of the sparse component. Given a
conjecture about recovery in planted dense subgraph, we show that the best recovery algorithm for
biased sparse PCA can only match the guarantees of the spectral algorithm. Thus the biased variant
induces a detection-recovery gap when k �

√
n. We show that the disappearance of a statistical

computation gap at k = Θ(n2/3) and a detection-recovery gap when k �
√
n are features of the

problems we consider that admit a sum test. These are biased sparse PCA, planted independent
set, planted dense subgraph and biclustering. Distributional lifting gives tight planted clique lower
bounds for these problems.

In contrast, rank-1 submatrix, the subgraph stochastic block model and sparse PCA do not admit
a sum test. Given the planted clique conjecture, rank-1 submatrix and sparse PCA have no detection-
recovery gap and retain their statistical-computational gap for all sparsities k. Reflection cloning
shows tight lower bounds for these problems in the regime k �

√
n, where spectral algorithms

become optimal. It is surprising that the planted clique conjecture can tightly capture completely
different sets of computational barriers for different problems, illustrating its power as an average-
case hardness assumption. Although analogues of the sum test, spectral algorithms and semidefinite
programs all have equivalent guarantees up to logarithmic factors for planted clique, reductions from
planted clique show tight hardness in problems for which this is not true.

A.3. Prior Work

This work is part of a growing body of literature giving rigorous evidence for computational-
statistical gaps in high-dimensional inference problems. We focus on average-case reductions to
directly relate computational-statistical gaps in different problems, as opposed to giving worst-case
evidence for hardness in statistical problems Zhang et al. (2014); Hardt et al. (2014); Chan et al.
(2016). A survey of prior results on computational-statistical gaps with a focus on predictions from
statistical physics can be found in Bandeira et al. (2018) and a general analysis of gaps for al-
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gorithms from several convex relaxation hierarchies can be found in Chandrasekaran and Jordan
(2013).

Planted Clique and Independent Set. Our computational lower bounds are based on average-
case reductions to the problem of finding a planted clique of size k in an Erdős-Rényi graph with n
vertices. The planted clique problem was introduced in Alon et al. (1998), where a spectral algo-
rithm was shown to recover the planted clique if k = Ω(

√
n). A number of algorithms for planted

clique have since been studied, including approximate message passing, semidefinite programming,
nuclear norm minimization and several combinatorial approaches Feige and Krauthgamer (2000);
McSherry (2001); Feige and Ron (2010); Ames and Vavasis (2011); Dekel et al. (2014); Deshpande
and Montanari (2015a); Chen and Xu (2016). All of these algorithms require that k = Ω(

√
n),

which has led to the planted clique conjecture that no polynomial time algorithm can recover the
planted clique if k = o(

√
n). It was also shown in Alon et al. (2007), recovering and detecting

the planted clique are equivalent up to log n factors in k. There have been a number of previous
average-case reductions from the planted clique conjecture, which we discuss in more detail in the
prior work section on average-case reductions.

Several works have considered finding independent sets in sparse Erdős-Rényi graphs, similar
to the regime with edge density q = Θ̃(n−α) where α ∈ (0, 2) we consider here. In Coja-Oghlan
and Efthymiou (2015); Gamarnik and Sudan (2014); Rahman et al. (2017), the authors examine
greedy and local algorithms to find independent sets in the regime q = Θ̃(n−1) in models related
to Erdős-Rényi graphs. In Feige and Ofek (2005), a spectral algorithm is given to find a planted
independent set in the regime q = Θ̃(n−1) and in Coja-Oghlan (2003), the planted independent set
recovery problem is shown to be possible in polynomial time in the regime α ∈ (0, 1) when q � n

k2

even in a semirandom model. The algorithms of Chen and Xu (2016) also apply to recovering
planted independent sets after taking the complement of the input graph.

Planted Dense Subgraph and Community Detection. The planted dense subgraph detection
problem was considered in Arias-Castro et al. (2014); Butucea and Ingster (2013); Verzelen et al.
(2015); Hajek et al. (2015) and generalizations of the recovery problem were considered in Chen
and Xu (2016); Hajek et al. (2016b); Montanari (2015); Candogan and Chandrasekaran (2018). In
Hajek et al. (2015), a reduction from planted clique was given for the regime p = cq for some
constant c > 1 and q = Θ̃(n−α) and k is binomially distributed, where k, n, p and q are the size of
the community, size of the graph, community edge density and graph edge density, respectively. Our
results strengthen this lower bound to apply for deterministic k and for all p > q with p− q = O(q)
where q = Θ̃(n−α). When p = ω(q), the resulting regime is the planted dense subgraph problem
considered in Bhaskara et al. (2010). The computational barrier for this problem is conjectured
to be the log-density threshold k = Θ̃(nlogq p) when k �

√
n and is achieved by very different

algorithms than those that are optimal when p = O(q) Chlamtac et al. (2012); Chlamtáč et al.
(2017). Recently, it was shown in Chlamtáč and Manurangsi (2018) that Ω̃(log n) rounds of the
Sherali-Adams hierarchy cannot solve the planted dense subgraph detection problem below the log-
density threshold in the regime p = ω(q). Hardness below the log-density threshold has been
used as an average-case assumption in several reductions, as outlined in the prior work section on
average-case reductions.

Community detection in the stochastic block model has been the focus of an extensive body of
literature surveyed in Abbe (2017). It recently has been shown that the two-community stochastic
block model does not exhibit statistical-computational gaps for partial and exact recovery, which
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are possible when the edge density scales like Θ(n−1) Mossel et al. (2012, 2013); Massoulié
(2014) and Θ(n−1 log n) Mossel et al. (2014); Hajek et al. (2016a); Abbe et al. (2016), respec-
tively. In contrast, the subgraph variant of the two-community stochastic block model that we intro-
duce has computational-statistical gaps for partial recovery, exact recovery and detection, given the
planted clique conjecture. The k-block stochastic block model is also conjectured to have statistical-
computational gaps starting at k ≥ 4 Abbe and Sandon (2015).

Biclustering and the Spiked Wigner Model. Gaussian biclustering was considered as a detec-
tion problem in Butucea and Ingster (2013); Ma and Wu (2015); Montanari et al. (2015) and as
a recovery problem in Shabalin et al. (2009); Kolar et al. (2011); Balakrishnan et al. (2011); Cai
et al. (2015a); Chen and Xu (2016); Hajek et al. (2016b). In Ma and Wu (2015), a reduction from
planted clique was given for a simple vs. composite hypothesis testing variant of the biclustering
detection problem, where the size and mean entries of the planted submatrix were allowed to vary.
In Cai et al. (2015a), submatrix localization with subgaussian noise was shown to be hard assuming
a variant of the planted clique conjecture for regular graphs.

A large body of literature has studied the spectrum of the spiked Wigner model Péché (2006);
Féral and Péché (2007); Capitaine et al. (2009); Benaych-Georges and Nadakuditi (2011). Spec-
tral algorithms and information-theoretic lower bounds for the spiked Wigner model detection and
recovery problems were considered in Montanari et al. (2015); Perry et al. (2016a,b). The sparse
spiked Wigner model where the sparsity k of the planted vector satisfies k = Θ(n) was studied in
Perry et al. (2016a,b); Banks et al. (2018). The sparse spiked Wigner model with k = Θ̃(nβ) for
some β ∈ (0, 1) was considered in Hopkins et al. (2017), where the authors showed sum of squares
lower bounds matching our planted clique reductions.

Sparse PCA. Since its introduction in Johnstone and Lu (2004), sparse principal component anal-
ysis has been studied broadly in the statistics and computer science communities. A number of
algorithms solving sparse PCA under the spiked covariance model have been proposed Amini and
Wainwright (2009); Ma (2013); Cai et al. (2013); Berthet and Rigollet (2013b,a); Shen et al. (2013);
Krauthgamer et al. (2015); Deshpande and Montanari (2014); Wang et al. (2016b). The information-
theoretic limits for detection and recovery in the spiked covariance model have also been examined
extensively Amini and Wainwright (2009); Vu and Lei (2012); Berthet and Rigollet (2013b); Birn-
baum et al. (2013); Cai et al. (2013); Wang et al. (2016b); Cai et al. (2015b). The computational
limits of sparse PCA problems have also been considered in the literature. Degree four SOS lower
bounds for the spiked covariance model were shown in Ma and Wigderson (2015). In Berthet and
Rigollet (2013a), the authors give a reduction from planted clique to a subgaussian composite vs.
composite hypothesis testing formulation of sparse PCA as a detection problem, and Berthet and
Rigollet (2013b) gives a reduction from planted clique showing hardness for semidefinite programs.
In Gao et al. (2017), the authors give a reduction from planted clique to a simple vs. composite
hypothesis testing formulation of detection in the spiked covariance model matching our reduction
when k �

√
n. In Wang et al. (2016b), the authors give a reduction from planted clique to a

subgaussian variant of the sparse PCA recovery problem. As mentioned in the introduction, these
planted clique lower bounds do not match the conjectured algorithmic upper bounds when k differs
in a polynomial factor from

√
n.

Average-Case Reductions. While the theory of worst-case complexity has flourished to the point
that many natural problems now known to be NP-hard or even NP-complete, the theory of average-
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case complexity is far less developed. In the seminal work of Levin (1986), it was shown that an
average-case complete problem exists. However, no natural problem with a natural distribution on
inputs has yet been shown to be average-case complete. As mentioned in this section, there are
obfuscations to basing average-case complexity on worst-case complexity Bogdanov and Trevisan
(2006). For more on the theory of average-case complexity, see Section 18 of Arora and Barak
(2009) and Bogdanov et al. (2006).

As previously mentioned, there have been a number of average-case reductions from planted
clique to average-case problems in both the computer science and statistics literature. These include
reductions to testing k-wise independence Alon et al. (2007), biclustering detection and recovery
Ma and Wu (2015); Cai et al. (2015a); Cai and Wu (2018), planted dense subgraph Hajek et al.
(2015), RIP certification Wang et al. (2016a); Koiran and Zouzias (2014), matrix completion Chen
(2015), minimum circuit size and minimum Kolmogorov time-bounded complexity Hirahara and
Santhanam (2017) and sparse PCA Berthet and Rigollet (2013b,a); Wang et al. (2016b); Gao et al.
(2017). The planted clique conjecture has also been used as a hardness assumption for average-
case reductions in cryptography Juels and Peinado (2000); Applebaum et al. (2010), as described in
Sections 2.1 and 6 of Barak (2017). There have also been a number of average-case reductions from
planted clique to show worst-case lower bounds such as hardness of approximation. Planted clique
has been used to show worst-case hardness of approximating densest k-subgraph Alon et al. (2011),
finding approximate Nash equilibria Minder and Vilenchik (2009); Hazan and Krauthgamer (2011);
Austrin et al. (2013), signalling Dughmi (2014); Bhaskar et al. (2016), approximating the minmax
value of 3-player games Eickmeyer et al. (2012), aggregating pairwise comparison data Shah et al.
(2016) and finding endogenously formed communities Balcan et al. (2013).

A number of average-case reductions in the literature have started with different average-case
assumptions than the planted clique conjecture. Variants of planted dense subgraph have been used
to show hardness in a model of financial derivatives under asymmetric information Arora et al.
(2011), link prediction Baldin and Berthet (2018), finding dense common subgraphs Charikar et al.
(2018) and online local learning of the size of a label set Awasthi et al. (2015). Hardness conjectures
for random constraint satisfaction problems have been used to show hardness in improper learning
complexity Daniely et al. (2014), learning DNFs Daniely and Shalev-Shwartz (2016) and hardness
of approximation Feige (2002). There has also been a recent reduction from a hypergraph variant
of the planted clique conjecture to tensor PCA Zhang and Xia (2017).

Lower Bounds for Classes of Algorithms. As described in the introduction, recently there has
been a focus on showing unconditional hardness results for restricted models of computation and
classes of algorithms. In Jerrum (1992), it was shown that the Metropolis process cannot find large
cliques in samples from planted clique. The fundamental limits of spectral algorithms for biclus-
tering and low-rank planted matrix problems were examined in Montanari et al. (2015). Integrality
gaps for SDPs solving sparse PCA, planted dense subgraph and submatrix localization were shown
in Krauthgamer et al. (2015) and Chen and Xu (2016). SOS lower bounds have been shown for
a variety of average-case problems, including planted clique Deshpande and Montanari (2015b);
Raghavendra and Schramm (2015); Hopkins et al. (2016); Barak et al. (2016), sparse PCA Ma and
Wigderson (2015), sparse spiked Wigner and tensor PCA Hopkins et al. (2017), maximizing ran-
dom tensors on the sphere Bhattiprolu et al. (2017) and random CSPs Kothari et al. (2017). Lower
bounds for relaxations of planted clique and maximum independent set in the Lovász-Schrijver hier-
archy are shown in Feige and Krauthgamer (2003) and lower bounds for Sherali-Adams relaxations
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of planted dense subgraph in the log-density regime are shown in Chlamtáč and Manurangsi (2018).
Tight lower bounds have been shown in the statistical query model for planted clique Feldman et al.
(2013), random CSPs Feldman et al. (2015) and robust sparse mean estimation Diakonikolas et al.
(2016). It also has been recently shown that planted clique with k �

√
n is hard for regular

resolution Atserias and Razborov (2018). In Hopkins and Steurer (2017), a meta-algorithm for
Bayesian estimation based on low-degree polynomials, SDPs and tensor decompositions is intro-
duced and shown to achieve the best known upper bound for the k-block stochastic block model,
with a matching lower bound for the meta-algorithm.

A.4. Notation

In this paper, we adopt the following notational conventions. Let L(X) denote the distribution law
of a random variableX . Given a distribution P, let P⊗n denote the distribution of (X1, X2, . . . , Xn)
where the Xi are i.i.d. according to P. Similarly, let P⊗m×n denote the distribution on Rm×n with
i.i.d. entries distributed as P. Given a finite or measurable set X , let Unif[X ] denote the uniform
distribution on X . Let dTV and dKL denote total variation distance and Kullback-Leibler divergence,
respectively. Given a measurable set X , let ∆(X ) denote the set of all distributions π on X . If X
is itself a set of distributions, we refer to ∆(X ) as the set of priors on X . Throughout the paper, C
refers to any constant independent of the parameters of the problem at hand and will be reused for
different constants.

Let N(µ, σ2) denote a normal random variable with mean µ and variance σ2 when µ ∈ R
and σ ∈ R≥0. Let N(µ,Σ) denote a multivariate normal random vector with mean µ ∈ Rd and
covariance matrix Σ, where Σ is a d × d positive semidefinite matrix. Let β(x, y) denote a beta
distribution with parameters x, y > 0 and let χ2(k) denote a χ2-distribution with k degrees of
freedom. Let B0(k) denote the set of all unit vectors v ∈ Rd with ‖v‖0 ≤ k. Let [n] = {1, 2, . . . , n}
and

([n]
k

)
denote the set of all size k subsets of [n]. Let Gn denote the set of all simple graphs on

vertex set [n]. Let the Orthogonal group on Rd×d be Od. Let 1S denote the vector v ∈ Rn with
vi = 1 if i ∈ S and vi = 0 if i 6∈ S where S ⊆ [n]. For subsets S ⊆ R, let 1S denote the indicator
function of the set S. Let Φ denote the cumulative distribution of a standard normal random variable
with Φ(x) =

∫ x
−∞ e

−t2/2dt. Given a simple undirected graph G, let V (G) and E(G) denote its
vertex and edge sets, respectively. The notation a(n) � b(n) will denote a growing polynomially
faster in n than b. In other words, a � b if lim infn→∞ a(n)/n > lim supn→∞ b(n)/n. The
notation a = Θ̃(b) denotes the equality limn→∞ a(n)/n = limn→∞ b(n)/n. Here, a . b denotes
a ≤ b up to polylogarithmic factors in n.

An instance of a detection problem PD hereby refers to an observation X . If PD is a simple
vs. simple hypothesis testing problem, then the instance X takes one of two distributions – its
distribution under H0 and H1, which we respectively denote by LH0(X) and LH1(X). If H1 is
composite, then the distribution of X under P is denoted as LP(X) for each P ∈ H1. An instance
of a recovery problem PR refers to an observation from some Pθ for some latent θ ∈ Θ if the
corresponding detection problem has a compositeH1 or fromLH1(X) = EπPθ if the corresponding
detection problem has a simple H1.

Appendix B. Average-Case Reductions under Total Variation

The typical approach to show computational lower bounds for detection problems is to reduce an
instance of one problem to a random object close in total variation distance to an instance of another

28



REDUCIBILITY AND COMPUTATIONAL LOWER BOUNDS

problem in randomized polynomial time. More precisely, let P and P ′ be detection problems andX
and Y be instances of P and P ′, respectively. Suppose we are given a polynomial-time computable
map φ taking an object φ(X) with total variation distance to Y decaying to zero simultaneously
under each of H0 and H1. Then any algorithm that can distinguish H0 and H1 for P ′ in polynomial
time when applied to φ(X) also distinguishes H0 and H1 for P . Taking P to be PC and P ′ to be
the problem of interest then yields a computational hardness result for P ′ conditional on the PC
conjecture. The general idea in this approach is formalized in the following simple lemma.

Lemma 4 Let P and P ′ be detection problems with hypotheses H0, H1, H
′
0, H

′
1 and let X and

Y be instances of P and P ′, respectively. Suppose there is a polynomial time computable map φ
satisfying

dTV

(
LH0(φ(X)),LH′0(Y )

)
+ sup

P∈H1

inf
π∈∆(H′1)

dTV

(
LP(φ(X)),

∫
H′1

LP′(Y )dπ(P′)

)
≤ δ

If there is a polynomial time algorithm solving P ′ with Type I+II error at most ε, then there is a
polynomial time algorithm solving P with Type I+II error at most ε+ δ.

Proof Let ψ be a polynomial time computable test function solving P ′ with Type I+II error at
most ε. Note that for any observation X of P , the value ψ ◦ φ(X) ∈ {0, 1} can be computed in
polynomial time. This is because the fact that φ(X) can be computed in polynomial time implies
that φ(X) has size polynomial in the size of X . We claim that ψ ◦ φ solves the detection problem
P ′. Now fix some distribution P ∈ H1 and prior π ∈ ∆(H ′1). By the definition of total variation,∣∣∣PH0 [ψ ◦ φ(X) = 1]− PH′0 [ψ(Y ) = 1]

∣∣∣ ≤ dTV

(
LH0(φ(X)),LH′0(Y )

)
∣∣∣∣∣PX∼P [ψ ◦ φ(X) = 0]−

∫
H′1

PY∼P′ [ψ(Y ) = 0] dπ(P′)

∣∣∣∣∣ ≤ dTV

(
LP(φ(X)),

∫
H′1

LP′(Y )dπ(P′)

)

Also note that since π is a probability distribution,∫
H′1

PY∼P′ [ψ(Y ) = 0] dπ(P′) ≤ sup
P′∈H′1

PY∼P′ [ψ(Y ) = 0]

Combining these inequalities with the triangle inequality yields that

PH0 [ψ ◦ φ(X) = 1] + PX∼P [ψ ◦ φ(X) = 0] ≤ ε+ dTV

(
LH0(φ(X)),LH′0(Y )

)
+ dTV

(
LP(φ(X)),

∫
H′1

LP′(Y )dπ(P′)

)

Fixing P and choosing the prior π so that the second total variation above approaches its infimum
yields that the right hand side above is upper bounded by ε + δ. The fact that this bound holds for
all P ∈ H1 proves the lemma.

We remark that the second term in the total variation condition of Lemma 1 can be interpreted as
ensuring that each distribution P ∈ H1 is close to a distribution formed by taking a prior π over the
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distributions in hypothesis H ′1. In light of this lemma, to reduce one problem to another it suffices
to find such a map φ. In the case that P and P ′ are both simple hypothesis testing problems, the
second term is simply dTV

(
LH1(φ(X)),LH′1(Y )

)
.

Throughout the analysis of our average-case reductions, total variation will be the key object
of interest. We will make use of several standard results concerning total variation, including the
triangle inequality, data processing inequality and tensorization of total variation. The latter two
results are stated below.

Lemma 5 (Data Processing) Let P and Q be distributions on a measurable space (X ,B) and let
f : X → Y be a Markov transition kernel. If A ∼ P and B ∼ Q then

dTV (L(f(A)),L(f(B))) ≤ dTV(P,Q)

Lemma 6 (Tensorization) Let P1, P2, . . . , Pn and Q1, Q2, . . . , Qn be distributions on a measur-
able space (X ,B). Then

dTV

(
n∏
i=1

Pi,

n∏
i=1

Qi

)
≤

n∑
i=1

dTV (Pi, Qi)

A typical analysis of a multi-step algorithm will proceed as follows. Suppose that A = A2 ◦A1

is an algorithm with two steps A1 and A2. Let P0 be the input distribution and P2 be the target
distribution that we would like to show is close in variation to A(P0). Let P1 be an intermediate
distribution which is close in total variation to A1(P0). By the triangle inequality,

dTV (A(P0), P2) ≤ dTV (A(P0), A2(P1)) + dTV (A2(P1), P2)

= dTV (A2 ◦A1(P0), A2(P1)) + dTV (A2(P1), P2)

≤ dTV (A1(P0), P1) + dTV (A2(P1), P2)

by the data-processing inequality. Thus total variation accumulates over the steps of a multi-step
algorithm. This style of analysis will appear frequently in our reductions. Another lemma about
total variation that will be useful throughout this work is as follows.

Lemma 7 For any random variable Y and event A in the σ-algebra σ{Y }, it holds that

dTV (L(Y |A),L(Y )) = P[Y ∈ Ac]

Proof Let B be any event in σ{Y }. It follows that

P [Y ∈ B|Y ∈ A]− P [Y ∈ B] = P [Y ∈ B|Y ∈ A] · (1− P[Y ∈ A])− P [Y ∈ B ∩Ac]

Since P [Y ∈ B ∩Ac] ≤ P[Y ∈ Ac] = 1− P[Y ∈ A] and P [Y ∈ B|Y ∈ A] ∈ [0, 1], we have that
the quantity above is between −P[Y ∈ Ac] and P[Y ∈ Ac]. Therefore, by the definition of total
variation distance

dTV (L(Y |A),L(Y )) = sup
B∈σ{Y }

|P [Y ∈ B|Y ∈ A]− P [Y ∈ B]| = P[Y ∈ Ac]

where the equality case is achieved by setting B = A. This proves the lemma.
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Appendix C. Densifying Planted Clique and Planted Independent Set

In this section, we give a reduction increasing the ambient edge density in planted clique and
showing tight hardness for the planted independent set problem. This reduction, which we term
PC-LIFTING, serves as an introduction to the general distributional lifting procedure in the next
section. Distributional lifting will subsequently be specialized to produce Poisson and Gaussian
variants of the procedure, which will be used to prove hardness for biclustering and different regimes
of planted dense subgraph.

C.1. Detecting Planted Generalized Diagonals

We first prove a technical lemma that will be used in all of our cloning procedures. Given a matrix
M , letMσ1,σ2 denote the matrix formed by permuting rows according to σ1 and columns according
to σ2. Let id denote the identity permutation.

Lemma 8 Let P and Q be two distributions such that Q dominates P and χ2(P,Q) ≤ 1. Suppose
that M is an n × n matrix with all of its non-diagonal entries i.i.d. sampled from Q and all of its
diagonal entries i.i.d. sampled from P . Suppose that σ is a permutation on [n] chosen uniformly at
random. Then

dTV
(
L(M id,σ), Q⊗n×n

)
≤
√
χ2(P,Q)

2

Proof Let σ′ be a permutation of [n] chosen uniformly at random and independent of σ. Note that
by Fubini’s theorem we have that

χ2
(
L(M id,σ), Q⊗n×n

)
+1 =

∫
Eσ [PM id,σ(X|σ)]2

PQ⊗n×n(X)
dX = Eσ,σ′

∫ PM id,σ(X|σ)PM id,σ′ (X|σ′)
PQ⊗n×n(X)

dX

Now note that conditioned on σ, the entries of M id,σ are independent with distribution

PM id,σ(X|σ) =
n∏
i=1

P
(
Xiσ(i)

) ∏
j 6=σ(i)

Q (Xij)

Therefore we have that∫ PM id,σ(X|σ)PM id,σ′ (X|σ′)
PQ⊗n×n(X)

dX =

∫  ∏
i:σ(i)=σ′(i)

P
(
Xiσ(i)

)2
Q
(
Xiσ(i)

)
 ∏

i:σ(i) 6=σ′(i)

P
(
Xiσ(i)

)
×

 ∏
i:σ(i)6=σ′(i)

P
(
Xiσ′(i)

) ∏
j 6=σ(i),j 6=σ′(i)

Q (Xij)

 dX

=
∏

i:σ(i)=σ′(i)

(∫
P
(
Xiσ(i)

)2
Q
(
Xiσ(i)

) dXiσ(i)

)

=
(
1 + χ2(P,Q)

)|{i:σ(i)=σ′(i)}|

If τ = σ′ ◦ σ−1, then τ is a uniformly at random chosen permutation and Y = |{i : σ(i) = σ′(i)}|
is the number of fixed points of τ . As in Pitman (1997), the ith moment of Y is the ith Bell number
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for i ≤ n and for i > n, the ith moment of Y is at most the ith Bell number. Since a Poisson
distribution with rate 1 has its ith moment given by the ith Bell number for all i, it follows that for
each t ≥ 0 the MGF E[etY ] is at most that of a Poisson with rate 1, which is exp(et − 1). Setting
t = log(1 + χ2(P,Q)) > 0 yields that

χ2
(
L(M id,σ), Q⊗n×n

)
= E

[
(1 + χ2(P,Q))Y

]
− 1 ≤ exp

(
χ2(P,Q)

)
− 1 ≤ 2 · χ2(P,Q)

since ex ≤ 1 + 2x for x ∈ [0, 1]. Now by Cauchy-Schwarz we have that

dTV
(
L(M id,σ), Q⊗n×n

)
≤ 1

2

√
χ2 (L(M id,σ), Q⊗n×n) ≤

√
χ2(P,Q)

2

which completes the proof of the lemma.

C.2. Planted Clique Lifting

In this section, we analyze the reduction PC-LIFTING, which is given in Figure 6. This reduction
will be shown to approximately take an instance of PC(n, n1/2−ε, 1/2) to PC(N, k, 1 − q) where
N = Θ̃(n1+α), k = Θ̃(n1/2+α/2−ε) and q = Θ̃(n−α). By taking the complement of the resulting
graph, this shows planted clique lower bounds for PISD(N, k, q) up to the boundary N2

k4
� q,

exactly matching the computational boundary stated in Theorem 1. The reduction PC-LIFTING

proceeds iteratively, with PC(n, k, p) approximately mapped at each step to PC(2n, 2k, p1/4).
Given a labelled graph G on n vertices and a permutation σ on [n], let Gσ denote the labelled

graph formed by permuting the vertex labels ofG according to σ. Given disjoint subsets S, T ⊆ [n],
let G[S] denote the induced subgraph on the set S and G[S × T ] denote the induced bipartite
subgraph between S and T . Also let B(m,n, p) denote the random bipartite graph with parts of
sizes m and n, respectively, where each edge is included independently with probability p. Let
G(n, p, S) where S is a k-subset of [n] denote an instance of G(n, k, p) where the planted clique is
conditioned to be on S.

Lemma 9 (Planted Clique Lifting) Suppose that n and ` are such that ` = O(log n) and are
sufficiently large. Let w(n) > 2 be an increasing function with w(n) → ∞ as n → ∞. Then
φ = PC-LIFTING is a randomized polynomial time computable map φ : Gn → G2`n such that
under both H0 and H1, it holds that

dTV

(
φ (PC(n, k, 1/2)) , PC

(
2`n, 2`k,

(
1− w(n)−1

) 1

4`

))
≤ 2√

w(n)

Proof If ` = O(log n), this algorithm runs in randomized polynomial time. Let φ` be the algorithm
that outputs the value of H in φ after ` iterations of Step 3. Note that φ0 outputs H after Steps 1
and 2.

We first consider a single iteration of Step 3 applied to G ∼ G(n, p, S), where G(n, p, S) is
the distribution of Erdős-Renyı́ graphs with a planted clique on a fixed vertex set S ⊆ [n] of size
|S| = k and p ≥ 1/2. For each pair of distinct {i, j} 6∈

(
S
2

)
, it holds that 1{i,j}∈E(G) ∼ Bern(p)

and by the probability in Step 3a that xij ∼ Bern(p1/4)⊗4. Therefore the graph H ′ constructed in
Step 3b satisfies that:
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Algorithm PC-LIFTING

Inputs: Planted clique instance G ∈ Gn, number of iterations `, function w with w(n)→∞

1. For each pair of vertices {i, j} 6∈ E(G), add the edge {i, j} to E(G) independently with
probability 1− 2 · w(n)−1

2. Initialize H ← G, m← n and p← 1− w(n)−1

3. For i = 0, 1, . . . , `− 1 do:

a. For each pair {i, j} of distinct vertices in [m], sample xij ∈ {0, 1}4 such that

• If {i, j} ∈ E(H), then xij = (1, 1, 1, 1)

• If {i, j} 6∈ E(H), then xij = v with probability

P
[
xij = v

]
=
p|v|1/4

(
1− p1/4

)4−|v|1
1− p

for each v ∈ {0, 1}4 with v 6= (1, 1, 1, 1)

b. Construct the graph H ′ on the vertex set [2m] such that for distinct i, j ∈ [m]

• {i, j} ∈ E(H ′) if xij1 = 1

• {2m+ 1− i, j} ∈ E(H ′) if xij2 = 1

• {i, 2m+ 1− j} ∈ E(H ′) if xij3 = 1

• {2m+ 1− i, 2m+ 1− j} ∈ E(H ′) if xij4 = 1

and for each i ∈ [m], add the edge {i, 2m+ 1− i} ∈ E(H ′)

c. Generate a permutation σ on [2m] uniformly at random

d. Update H ← (H ′)σ, p← p1/4 and m← 2m

4. Output H

Figure 6: Planted clique lifting procedure in Lemma 9.

• S′ = S ∪ {2n+ 1− i : i ∈ S} forms a clique of size 2k;

• {2n+ 1− i, i} ∈ E(H ′) for each i ∈ [n]; and

• each other edge is in E(H ′) independently with probability p1/4.

Now consider the graph φ1(G) = H = (H ′)σ conditioned on the set σ(S′). We will show that
this graph is close in total variation to G(2n, p1/4, σ(S′)). Let T1 = [n]\S and T2 = [2n]\{2n +
1 − i : i ∈ S}. Note that every pair of vertices of the form {2n + 1 − i, i} in H ′ are either
both in S′ or between T1 and T2. This implies that every pair of distinct vertices not in σ(S′)2 or
σ(T1) × σ(T2) is in E(H) independent with probability p1/4, exactly matching the corresponding
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edges in G(2n, p1/4, σ(S′)). Coupling these corresponding edges yields only the edges between
σ(T1) and σ(T2) uncoupled. Therefore we have that

dTV

(
L(H|σ(S′)), G

(
2n, p1/4, σ(S′)

))
= dTV

(
L (H[σ(T1)× σ(T2)]) , B

(
n− k, n− k, p1/4

))
Now let the (n−k)×(n−k) matrixM have 1’s on its main diagonal and each other entry distributed
sampled i.i.d. from Bern(p1/4). If τ is a random permutation on [n− k], then the adjacency matrix
of H[σ(T1)×σ(T2)] conditioned on σ(S′) is distributed as L

(
M id,τ

)
, since T1 and T2 are disjoint.

Therefore it follows that

dTV

(
L (H[σ(T1)× σ(T2)]) , B

(
n− k, n− k, p1/4

))
= dTV

(
L
(
M id,τ) ,Bern(p1/4)⊗(n−k)×(n−k)

)
≤
√
χ2(Bern(1),Bern(p1/4))

2

≤
√

1− p1/4

by Lemma 8 and since p ≥ 1/2. It follows by the triangle inequality that

dTV

(
φ1(G(n, p1/4, S)), G(2n, 2k, p1/4)

)
≤ Eσ(S′)

[
dTV

(
L(H|σ(S′)), G

(
2n, p1/4, σ(S′)

))]
Letting S be chosen uniformly at random over all subsets of [n] of size k, applying the triangle
inequality again and combining the inequalities above yields that

dTV

(
φ1(G(n, k, p)), G(2n, 2k, p1/4)

)
≤ ES

[
dTV

(
φ1(G(n, p, S)), G(2n, 2k, p1/4)

)]
≤
√

1− p1/4

A nearly identical but slightly simpler argument shows that

dTV

(
φ1(G(n, p)), G(2n, p1/4)

)
≤
√

1− p1/4

For each ` ≥ 0, let p` =
(
1− w(n)−1

) 1

4` be the value of p after ` iterations of Step 2. Now note
that for each ` ≥ 0, we have by triangle inequality and data processing inequality that

dTV

(
φ`+1 (G(n, k, 1/2)) , G

(
2`+1n, 2`+1k, p`+1

))
≤ dTV

(
φ1 (φ` (G(n, k, 1/2))) , φ1

(
G
(

2`n, 2`k, p`

)))
+ dTV

(
φ1

(
G
(

2`n, 2`k, p`

))
, G
(

2`+1n, 2`+1k, p`+1

))
≤ dTV

(
φ` (G(n, k, 1/2)) , G

(
2`n, 2`k, p`

))
+
√

1− p`+1

and an identical inequality for φ`(G(n, 1/2)). Noting that this total variation is zero when ` = 0
and applying these inequalities inductively yields that

dTV

(
φ` (G(n, k, 1/2)) , G

(
2`n, 2`k, p`

))
≤
∑̀
i=1

√
1− pi
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and an identical inequality for φ`(G(n, 1/2)). Now note that if x ≤ 1/2 then (1−x)1/4 ≥ 1−x/3.
Iterating this inequality yields that 1− pi ≤ 3−iw(n)−1. Therefore

∑̀
i=1

√
1− pi ≤

1√
w(n)

∑̀
i=1

3−i/2 <
2√
w(n)

This completes the proof of the lemma.

The next theorem formally gives the hardness result guaranteed by the reduction analyzed above
together with the PC conjecture. There will be many theorems of this form throughout the paper,
which will typically resolve to applying a total variation bound guaranteed in a previous lemma with
Lemma 4, and analyzing the asymptotic regime of several parameters.

Theorem 10 Let α ∈ [0, 2) and β ∈ (0, 1) be such that β < 1
2 + α

4 . There is a sequence
{(Nn,Kn, qn)}n∈N of parameters such that:

1. The parameters are in the regime q = Θ̃(N−α) and K = Θ̃(Nβ) or equivalently,

lim
n→∞

log q−1
n

logNn
= α and lim

n→∞

logKn

logNn
= β

2. For any sequence of randomized polynomial-time tests φn : GNn → {0, 1}, the asymptotic
Type I+II error of φn on the problems PISD(Nn,Kn, qn) is at least 1 assuming the PC
conjecture holds with density p = 1/2.

Therefore the computational boundary for PISD(n, k, q) in the parameter regime q = Θ̃(n−α) and
k = Θ̃(nβ) is β∗ = 1

2 + α
4 .

Proof If β < α then PIS is information-theoretically impossible. Thus we may assume that β ≥ α.
Let γ = 2β−α

2−α and note that γ ∈ (0, 1/2). Now set

`n =

⌈
α log2 n

2− α

⌉
, kn = dnγe, Nn = 2`nn Kn = 2`nkn, qn = 1−(1−w(n)−1)1/4`n

where w(n) is any sub-polynomial increasing function tending to infinity. By Lemma 9, there is
a randomized polynomial time algorithm mapping PCD(n, kn, 1/2) to PCD(Nn,Kn, 1 − qn) with
total variation converging to zero as n → ∞. Now note that flipping every edge to a non-edge and
non-edge to an edge maps PCD(Nn,Kn, 1 − qn) to PISD(Nn,Kn, qn). This map with Lemma 1
now implies that property 2 above holds. We now verify property 1. Note that

lim
n→∞

logKn

logNn
= lim

n→∞

⌈
α log2 n

2−α

⌉
· log 2 +

(
2β−α
2−α

)
log n⌈

α log2 n
2−α

⌉
· log 2 + log n

=
α

2−α + 2β−α
2−α

α
2−α + 1

= β

Note that as n→∞, it follows that since 4−`n log(1− w(n)−1)→ 0,

qn = 1− (1− w(n)−1)1/4`n = 1− e4−`n log(1−w(n)−1) ∼ 4−`n log(1− w(n)−1)
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Now it follows that

lim
n→∞

log q−1
n

logNn
= lim

n→∞

2
⌈
α log2 n

2−α

⌉
log 2− log(1− w(n)−1)⌈

α log2 n
2−α

⌉
· log 2 + log n

=
2α

2−α
α

2−α + 1
= α

which completes the proof.

Appendix D. Rejection Kernels and Distributional Lifting

In this section, we generalize the idea in PC-LIFTING to apply to any distribution with a natural
cloning operation, analogous to Step 3a in PC-LIFTING. Before describing this general distribu-
tional lifting procedure, we first will establish several results on applying rejection kernels, a general
method for changes of measure such as from Bernoulli edge indicators to Gaussians, that we will
need throughout our reductions.

D.1. Rejection Kernels

All of our remaining reductions will involve approximately mapping from a pair of Bernoulli ran-
dom variables, typically edge indicators in random graphs, to a given pair of random variables.
Similar entry-wise transformations of measure were used in Ma and Wu (2015) and Gao et al.
(2017) for mapping from Bernoulli random variables to Gaussian random variables. We generalize
these maps to arbitrary distributions and give a simple algorithm using rejection sampling to imple-
ment them. The general objective is to construct a single randomized function RK : {0, 1} → R that
simultaneously maps Bern(p) to the distribution fX and Bern(q) to gX , approximately in total vari-
ation distance. For maps from instances G of planted clique, such a map with p = 1 and q = 1/2
approximately sends the edge indicators 1{i,j}∈E(G) to fX if i and j are in the planted clique and to
gX otherwise.

We first describe the general structure of the maps RK and their precise total variation guarantees
in the following lemma. Then we give particular rejection kernels that we will use in our reductions.

Lemma 11 Let fX and gX be probability mass or density functions supported on subsets of R such
that gX dominates fX . Let p, q ∈ [0, 1] be such that p > q and let

S =

{
x ∈ R :

1− p
1− q

≤ fX(x)

gX(x)
≤ p

q

}
Suppose that fX(x) and gX(x) can be computed inO(T1) time and samples from fX and gX can be
generated in randomized O(T2) time. Then there is a randomized O(N(T1 +T2)) time computable
map RK : {0, 1} → R such that dTV (RK(Bern(p)), fX) ≤ ∆ and dTV (RK(Bern(q)), gX) ≤ ∆
where

∆ = max

{
2 · PX∼fX [X 6∈ S]

p− q
+

(
PX∼gX [X 6∈ S] +

q

p

)N
,

2 · PX∼gX [X 6∈ S]

p− q
+

(
PX∼fX [X 6∈ S] +

1− p
1− q

)N}
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Algorithm RK(x)

Parameters: Input x ∈ {0, 1}, a pair of PMFs or PDFs fX and gX that can be efficiently computed
and sampled, Bernoulli probabilities p, q ∈ [0, 1], number of iterations N

1. Initialize Y ← 0

2. For N iterations do:

a. If x = 0, sample Z ∼ gX and if

p · gX(Z) ≥ q · fX(Z)

then with probability 1− q·fX(Z)
p·gX(Z) , update Y ← Z and break

b. If x = 1, sample Z ∼ fX and if

(1− q) · fX(Z) ≥ (1− p) · gX(Z)

then with probability 1− (1−p)·gX(Z)
(1−q)·fX(Z) , update Y ← Z and break

3. Output Y

Figure 7: Rejection kernel in Lemma 11

Proof Let RK be implemented as shown in Figure 11 and note that RK runs in randomizedO(N(T1+
T2)) time. Define S0 and S1 by

S0 =

{
x ∈ R :

fX(x)

gX(x)
≤ p

q

}
and S1 =

{
x ∈ R :

1− p
1− q

≤ fX(x)

gX(x)

}
Now define the distributions by the densities or mass functions

ϕ0(x) =
p · gX(x)− q · fX(x)

p · PX∼gX [X ∈ S0]− q · PX∼fX [X ∈ S0]
for x ∈ S0

ϕ1(x) =
(1− q) · fX(x)− (1− p) · gX(x)

(1− q) · PX∼fX [X ∈ S1]− (1− p) · PX∼gX [X ∈ S1]
for x ∈ S1

Note that these are both well-defined PDFs or PMFs since they are nonnegative by the definitions of
S0 and S1 and normalized. First consider the case when x = 0. Let Ai be the event that the update
Y ← Z occurs in the ith iteration of Step 2a. The probability of Ai is

P[Ai] =

∫
S0

gX(x)

(
1− q · fX(x)

p · gX(x)

)
dx = PX∼gX [X ∈ S0]− q

p
· PX∼fX [X ∈ S0]

The density of Y given the event Ai is therefore given by

fY |Ai(x) = P[Ai]
−1 · fX|X∈S0

(x) ·
(

1− q · fX(x)

p · gX(x)

)
= ϕ0(x)
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If A = A1 ∪ A2 ∪ · · · ∪ AN is the event that the update Y ← Z occurs in an iteration of Step 2a,
then it follows by independence that

P
[
AC
]

=
N∏
i=1

(1− P[Ai]) =

(
1− PX∼gX [X ∈ S0] +

q

p
· PX∼fX [X ∈ S0]

)N
≤
(
PX∼gX [X 6∈ S] +

q

p

)N
since S ⊆ S0. Note that fY |A(x) = ϕ0(x) and RK(0) is Y if x = 0. Therefore it follows by Lemma
7 that

dTV (RK(0), ϕ0) = P
[
AC
]
≤
(
PX∼gX [X 6∈ S] +

q

p

)N
A symmetric argument shows that when x = 1,

dTV (RK(1), ϕ1) ≤
(
PX∼fX [X 6∈ S] +

1− p
1− q

)N
Now note that∥∥∥∥ϕ0 −

p · gX − q · fX
p− q

∥∥∥∥
1

=

∫
SC0

q · fX(x)− p · gX(x)

p− q
dx

+

∫
S0

∣∣∣∣ p · gX(x)− q · fX(x)

p · PX∼gX [X ∈ S0]− q · PX∼fX [X ∈ S0]
− p · gX(x)− q · fX(x)

p− q

∣∣∣∣ dx
=

∣∣∣∣1− p · PX∼gX [X ∈ S0]− q · PX∼fX [X ∈ S0]

p− q

∣∣∣∣
+
q · PX∼fX [X 6∈ S0]− p · PX∼gX [X 6∈ S0]

p− q

=
2(q · PX∼fX [X 6∈ S0]− p · PX∼gX [X 6∈ S0])

p− q

≤
2 · PX∼fX [X 6∈ S]

p− q

since S0 ⊆ S. A similar computation shows that∥∥∥∥ϕ1 −
(1− q) · fX − (1− p) · gX

p− q

∥∥∥∥
1

=
2((1− p) · PX∼gX [X 6∈ S1]− (1− q) · PX∼fX [X 6∈ S1])

p− q

≤
2 · PX∼gX [X 6∈ S]

p− q

Now note that

fX = p · (1− q) · fX − (1− p) · gX
p− q

+ (1− p) · p · gX − q · fX
p− q
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Therefore by the triangle inequality, we have that

dTV (RK(Bern(p)), fX) ≤ dTV (RK(Bern(p)), p · ϕ1 + (1− p) · ϕ0)

+ dTV (p · ϕ1 + (1− p) · ϕ0, fX)

≤ p · dTV (RK(1), ϕ1) + p ·
∥∥∥∥ϕ1 −

(1− q) · fX − (1− p) · gX
p− q

∥∥∥∥
1

+ (1− p) · dTV (RK(0), ϕ0) + (1− p) ·
∥∥∥∥ϕ0 −

p · gX − q · fX
p− q

∥∥∥∥
1

≤ p ·

(
2 · PX∼fX [X 6∈ S]

p− q
+

(
PX∼gX [X 6∈ S] +

q

p

)N)

+ (1− p) ·

(
2 · PX∼gX [X 6∈ S]

p− q
+

(
PX∼fX [X 6∈ S] +

1− p
1− q

)N)
≤ ∆

Similarly, note that

gX = q · (1− q) · fX − (1− p) · gX
p− q

+ (1− q) · p · gX − q · fX
p− q

The same triangle inequality applications as above show that

dTV (RK(Bern(q)), gX) ≤ q ·

(
2 · PX∼fX [X 6∈ S]

p− q
+

(
PX∼gX [X 6∈ S] +

q

p

)N)

+ (1− q) ·

(
2 · PX∼gX [X 6∈ S]

p− q
+

(
PX∼fX [X 6∈ S] +

1− p
1− q

)N)
≤ ∆

completing the proof of the lemma.

We will denote RK as defined with the parameters in the lemma above as RK(p → fX , q →
gX , N) from this point forward. We now give the particular rejection kernels we will need in
our reductions and their total variation guarantees. The first rejection kernel maps from the edge
indicators in planted clique to Poisson random variables and will be essential in Poisson lifting.

Lemma 12 Let n be a parameter and let ε > 0, c > 1 and p ∈ (0, 1) be fixed constants satisfying
that 3ε−1 ≤ logc p

−1. If λ = λ(n) satisfies that 0 < λ ≤ n−ε, then the map

RKP1 = RK(1→ Pois(cλ), p→ Pois(λ), N)

where N = d6 logp−1 ne can be computed in O(log n) time and satisfies that

dTV (RKP1(1),Pois(cλ)) = On(n−3) and dTV (RKP1(Bern(p)),Pois(λ)) = On(n−3)

39



REDUCIBILITY AND COMPUTATIONAL LOWER BOUNDS

Proof Let fX(m) and gX(m) be the PMFs of Pois(cλ) and Pois(λ), respectively. Note that

fX(m) =
e−cλ(cλ)m

m!
and gX(m) =

e−λ(λ)m

m!

can be computed and sampled in O(1) operations. Therefore Lemma 11 implies that RKP1 can
be computed in O(N) = O(log n) time. Let the set S be as defined in Lemma 11, let M =
logc(2p)

−1 ≥ 3ε−1 and define the set S′ = {m ∈ Z≥0 : m ≤M}. Now note that if m ∈ S′ then

fX(m)

gX(m)
=

e−cλ(cλ)m

m!
e−λ(λ)m

m!

= e−(c−1)λcm ≤ cM ≤ p−1

and therefore it follows that S′ ⊆ S. For sufficiently large n, we have thatM = logc p
−1 ≥ cn−ε ≥

cλ > λ and therefore a standard Poisson tail bound yields that

PX∼gX [X 6∈ S] ≤ PX∼gX [X > M ] ≤ e−λ
(
eλ

M

)M
≤
( e

M

)M
λ3ε−1 ≤

( e

M

)M
n−3

since λ ≤ n−ε. Similarly, we have that PX∼fX [X 6∈ S] ≤
(
ce
M

)M
n−3. Now note that for suffi-

ciently large n, we have that

2 · PX∼fX [X 6∈ S]

1− p
+ (PX∼gX [X 6∈ S] + p)N ≤

2
(
ce
M

)M
n−3

1− p
+

(( e

M

)M
n−3 + p

)N
≤

2
(
ce
M

)M
n−3

1− p
+
(
p1/2

)N
≤
(

2(1− p)−1
( ce
M

)M
+ 1

)
n−3

By similar reasoning, we have that for sufficiently large n

2 · PX∼gX [X 6∈ S]

1− p
+ (PX∼fX [X 6∈ S])N ≤

(
2(1− p)−1

( e

M

)M
+ 1

)
n−3

Therefore ∆ ≤
(

2(1− p)−1
(
ce
M

)M
+ 1
)
n−3 for sufficiently large n and applying Lemma 11

proves the lemma.

The next lemma gives another approximate map to Poisson random variables from Bernoulli
random variables corresponding to the edge indicators in the edge-dense regime of planted dense
subgraph. We use the following lemma to apply Poisson lifting after Gaussian lifting in order to
deduce hardness in the general regime of PDS. The proof is very similar to that of Lemma 12.

Lemma 13 Let ε ∈ (0, 1) be a fixed constant and let n be a parameter. Suppose that:

• λ = λ(n) satisfies that 0 < λ ≤ n−ε;

• c = c(n) > 1 satisfies that c = On(1); and
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• ρ = ρ(n) ∈ (0, 1/2) satisfies that ρ ≥ n−K for sufficiently large n where K = Θn(1) is
positive and

(K + 3)ε−1 ≤ logc(1 + 2ρ) = On(1)

Then the map

RKP2 = RK

(
1

2
+ ρ→ Pois(cλ),

1

2
→ Pois(λ), N

)
where N =

⌈
6ρ−1 log n

⌉
can be computed in poly(n) time and satisfies

dTV (RKP2(Bern(1/2 + ρ)),Pois(cλ)) = On(n−3), and

dTV (RKP2(Bern(1/2)),Pois(λ)) = On(n−3)

Proof As in Lemma 12, let fX(m) and gX(m) be the PMFs of Pois(cλ) and Pois(λ) and note
that they can be computed and sampled in O(1) operations. Lemma 11 implies that RKP2 can be
computed in O(N) = O(nK log n) = poly(n) time. Let the set S be as defined in Lemma 11, let
M = logc(1 + 2ρ) ≥ (K + 3)ε−1 and define the set S′ = {m ∈ Z≥0 : m ≤M}. Now note that if
n > 1, then λ ≤ n−ε < 1 and it follows that

e−(c−1)λ ≥ 1− (c− 1)λ > 2− c ≥ 2− (1 + 2ρ)ε/(K+3) > 1− 2ρ

since ε ∈ (0, 1). Therefore if m ∈ S′, then

1− 2ρ < e−(c−1)λ ≤ fX(m)

gX(m)
= e−(c−1)λcm ≤ cM ≤ 1 + 2ρ

and it follows that S′ ⊆ S. By the same Poisson tail bounds as in Lemma 12, we have that for
sufficiently large n

PX∼gX [X 6∈ S] ≤
( e

M

)M
n−K−3 and PX∼fX [X 6∈ S] ≤

( ce
M

)M
n−K−3

Now note that for sufficiently large n, we have that ρ−1 ≤ nK and
(
e
M

)M
n−K−3 ≤ 1

2n
−K ≤ 1

2ρ
since M = On(1). Therefore

2ρ−1 · PX∼fX [X 6∈ S] +

(
PX∼gX [X 6∈ S] +

1

1 + 2ρ

)N
≤ 2ρ−1

( ce
M

)M
n−K−3

+

(( e

M

)M
n−K−3 + 1− ρ

)N
≤ 2

( ce
M

)M
n−3 +

(
1− ρ

2

)N
≤ 2

( ce
M

)M
n−3 + e−ρN/2

≤
(

2
( ce
M

)M
+ 1

)
n−3

By similar reasoning, we have that for sufficiently large n,

2ρ−1 · PX∼gX [X 6∈ S] + (PX∼fX [X 6∈ S] + 1− 2ρ)N ≤
(

2
( e

M

)M
+ 1

)
n−3
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Therefore ∆ ≤
(

2
(
ce
M

)M
+ 1
)
n−3 for sufficiently large n and applying Lemma 11 proves the

lemma.

The next lemma of this section approximately maps from Bernoulli to discretized Gaussian
random variables. Gaussian random variables appear in two different contexts in our reductions:
(1) the problems ROS, SPCA and BC have observations sampled from multivariate Gaussians; and
(2) random matrices with Gaussian entries are used as intermediate in our reductions to PDS in the
general regime and SSBM. In both cases, we will need the map in the following lemma. As in the
proofs of the previous two lemmas, this next lemma also verifies the conditions of Lemma 11 for
Gaussians and derives an upper bound on ∆.

Lemma 14 Let n be a parameter and suppose that p = p(n) and q = q(n) satisfy that p > q,
p, q ∈ [0, 1], max(q, 1 − q) = Ωn(1) and p − q ≥ n−On(1). Let δ = min

{
log
(
p
q

)
, log

(
1−q
1−p

)}
.

Suppose that µ = µ(n) ∈ (0, 1) is such that

µ ≤ δ

2
√

6 log n+ 2 log(p− q)−1

Then the map
RKG = RK (p→ N(µ, 1), q → N(0, 1), N)

where N =
⌈
6δ−1 log n

⌉
can be computed in poly(n) time and satisfies

dTV (RKG(Bern(p)), N(µ, 1)) = On(n−3) and dTV (RKG(Bern(q)), N(0, 1)) = On(n−3)

Proof Let fX(x) and gX(x) be the PDFs of N(µ, 1) and N(0, 1), respectively, where

fX(x) =
1√
2π
e−(x−µ)2/2 and gX(x) =

1√
2π
e−x

2/2

which can be computed and sampled in O(1) operations in the given computational model. Now
note that since log(1 + x) ≥ x/2 for x ∈ (0, 1), we have that

log

(
p

q

)
≥ p− q

2q
≥ 1

2
(p− q) ≥ 1

2
n−On(1)

and similarly that log
(

1−q
1−p

)
≥ p−q

2(1−p) ≥
1
2(p − q) ≥ 1

2n
−On(1). Therefore N = poly(n) and

Lemma 11 implies that RKG can be computed in poly(n) time. Let the set S be as defined in
Lemma 11, let M =

√
6 log n+ 2 log(p− q)−1 and define the set S′ = {x ∈ R : |x| ≤M}. Note

that if x ∈ S′ then we have that since Mµ = δ/2,

1− p
1− q

≤ exp (−2Mµ) ≤ exp

(
−Mµ− µ2

2

)
≤ fX(x)

gX(x)
= exp

(
xµ− µ2

2

)
≤ exp (Mµ) ≤ p

q

for sufficiently large n since M → ∞ as n → ∞ and µ ∈ (0, 1). This implies that S′ ⊆ S. Using
the bound 1− Φ(t) ≤ 1√

2π
· t−1e−t

2/2 for t ≥ 1, we have that

PX∼gX [X 6∈ S] ≤ PX∼gX [X 6∈ S′] = 2 (1− Φ(M)) ≤ 2√
2π
·M−1e−M

2/2
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Similarly, it follows that for sufficiently large n we have that M/(M − µ) ≤ 2 and thus

PX∼fX [X 6∈ S] ≤ PX∼fX [X 6∈ S′] = (1− Φ(M − µ)) + (1− Φ(M + µ))

≤ 1√
2π
· (M − µ)−1e−(M−µ)2/2

+
1√
2π
· (M + µ)−1e−(M+µ)2/2

≤ 1√
2π
·M−1e−(µ2+M2)/2

[
M

M − µ
· eMµ + 1

]
≤ 1√

2π

(
1 + 2

√
p

q

)
·M−1e−M

2/2

Now note that M−1e−M
2/2 ≤ e−M

2/2 ≤ (p − q)n−3 for sufficiently large n. If n is large enough
then 2√

2π
·n−3 ≤ q1/2

p(p1/2+q1/2)
= Ωn(1) since q = Ωn(1). Rearranging yields that 2√

2π
(p−q)n−3 ≤√

q
p −

q
p . This implies that

2 · PX∼fX [X 6∈ S]

p− q
+

(
PX∼gX [X 6∈ S] +

q

p

)N
≤ 2√

2π

(
1 + 2

√
p

q

)
n−3

+

(
2√
2π

(p− q)n−3 +
q

p

)N
≤ 2√

2π

(
1 + 2

√
p

q

)
n−3 +

(
q

p

)N/2
≤
(

1 +
2√
2π

+
4√
2π

√
p

q

)
n−3 = On(n−3)

Now note that if 1√
2π

(
1 + 2

√
p
q

)
n−3 > (1−p)1/2

(1−q)((1−q)1/2+(1−p)1/2)
then it follows that

1− p
1− q

≤
(

(1− q)√
2π

(
1 + 2

√
p

q

)
· n3 − 1

)−1

≤ Cn−3

for some constant C > 0 if n is sufficiently large, since 1 − q = Ωn(1). Otherwise, the same

manipulation as above implies that 1√
2π

(
1 + 2

√
p
q

)
n−3 ≤

√
1−p
1−q −

1−p
1−q . Therefore we have in

either case that

1√
2π

(
1 + 2

√
p

q

)
n−3 +

1− p
1− q

≤ max

{√
1− p
1− q

,
1√
2π

(
1 + 2

√
p

q

)
n−3 + Cn−3

}
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For sufficiently large n, the second term in the maximum above is at most n−2. Therefore

2 · PX∼gX [X 6∈ S]

p− q
+

(
PX∼fX [X 6∈ S] +

1− p
1− q

)N
≤
(

4√
2π

)
n−3

+

(
1√
2π

(
1 + 2

√
p

q

)
n−3 +

1− p
1− q

)N
≤
(

4√
2π

)
n−3

+ max

{(
1− p
1− q

)N/2
, n−2N

}
= On(n−3)

Therefore ∆ = On(n−3) for sufficiently large n since q = Ωn(1). Now applying Lemma 11 proves
the lemma.

D.2. Distributional Lifting

The general distributional lifting procedure begins with an instance G ∈ Gn of a planted dense
subgraph problem such as planted clique and applies a rejection kernel element-wise to its adjacency
matrix. This yields a symmetric matrix M with zeros on its main diagonal, i.i.d. entries sampled
from Pλ0 on entries corresponding to clique edges and i.i.d. entries sampled from Qλ0 elsewhere.
As an input to the procedure, we assume a random cloning map fcl that exactly satisfies

fcl(Pλ) ∼ P⊗4
gcl(λ)

and fcl(Qλ) ∼ Q⊗4
gcl(λ)

for some parameter update function gcl. Applying this cloning map entry-wise to M and arranging
the resulting entries correctly yields a matrix M of size 2n × 2n with a planted submatrix of size
2k×2k. The only distributional issue that arises are the anti-diagonal entries, which are now all from
Qgcl(λ) although some should be from Pgcl(λ) . We handle these approximately in total variation by
randomly permuting the rows and columns and applying Lemma 8. Iterating this procedure ` times
yields a matrix M ′ of size 2`n× 2`n with a planted submatrix of size 2`k× 2`k. If λi+1 = gcl(λi),
thenM ′ has all i.i.d. entries fromQλ` underH0 and a planted submatrix with i.i.d. entries from Pλ`
under H1. We then truncate the entries of M ′ to produce the adjacency matrix of a graph with i.i.d.
edge indicators, conditioned on the vertices in the planted subgraph. This yields a general procedure
to reduce from an instance of planted clique to subgraph problems with larger planted subgraphs.

A natural question is: what is the purpose of the distributions Pλ and Qλ? If the initial and
final distributions are both graph distributions with Bernoulli edge indicators, it a priori seems un-
necessary to use matrix distributions without Bernoulli entries as intermediates. Our main reason
for introducing these intermediate distributions is that they achieve the right parameter tradeoffs to
match the best known algorithms for PDS where cloning procedures that stay within the set of graph
distributions do not. Consider the target planted dense subgraph instance of PDS(n, k, p, q) where
p = 2q and q = Θ̃(n−α). To produce lower bounds tight with the computational barrier in Theorem
3, a lifting procedure mapping n → 2n and k → 2k at each step would need its cloning map to
satisfy

fcl(Bern(q)) ∼ Q = Bern(q/4)⊗4 and fcl(Bern(p)) ∼ P = Bern(p/4)⊗4
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where p = 2q. It is not difficult to verify that for any random map fcl : {0, 1} → {0, 1}4, it would
need to hold that

1− p
1− q

≤ P (x)

Q(x)
≤ p

q
for all x ∈ {0, 1}4

However, P (1, 1, 1, 1)/Q(1, 1, 1, 1) = 16 > 2 = p/q, so no such map can exist. Another approach
is to relax fcl to be an approximate map like a rejection kernel. However, this seems to induce a large
loss in total variation from the target distribution on M ′. Our solution is to use a rejection kernel
to map to distributions with natural cloning maps fcl, such as a Poisson or Gaussian distribution, to
front-load the total variation loss to this approximate mapping step and induce no entry-wise total
variation loss later in the cloning procedure. We choose the precise distributions Pλ and Qλ to
match the parameter tradeoff along the computational barrier. Note that this general distributional
lifting procedure can also be used to map to problems other than variants of subgraph detection,
such as biclustering, by not truncating in Step 4.

We remark that the PC-LIFTING reduction presented in the previous section is almost an in-
stance of distributional lifting with Pλ = Bern(1) for all λ and Qλ = Bern(λ), with the parameter
update gcl(λ) = λ1/4. However in PC-LIFTING, the planted anti-diagonal entries between the
vertices i and 2m + 1 − i in Step 3b are from the planted distribution Pλ, rather than Qλ as in
distributional lifting. This requires a slightly different analysis of the planted anti-diagonal entries
with Lemma 8.

We now proceed to describe distributional lifting and prove its guarantees. Given two dis-
tributions P and Q, let Mn(Q) denote the distribution on n × n symmetric matrices with zero
diagonal entries and every entry below the diagonal sampled independently from Q. Similarly, let
Mn(S, P,Q) denote the distribution on random n× n symmetric matrices formed by:

1. sampling the entries of the principal submatrix with indices in S below its main diagonal
independently from P ;

2. sampling all other entries below the main diagonal independently from Q; and

3. placing zeros on the diagonal.

Let Mn(k, P,Q) denote the distribution of matrices Mn(S, P,Q) where S is a size k subset of [n]
selected uniformly at random. Given a matrix M ∈ Rn×n and index sets S, T ⊆ [n], let M [S × T ]
denote the |S| × |T | submatrix of M with row indices in S and column indices in T . Also let
G(n, p, q, S) where S is a k-subset of [n] denote an instance of G(n, k, p, q) where the planted
dense subgraph is conditioned to be on S. The guarantees of distributional lifting are as follows.

Theorem 15 (Distributional Lifting) Suppose that n and ` are such that ` = O(log n) and are
sufficiently large. Let p′, q′ ∈ [0, 1] and define the parameters:

• target planted and noise distribution families Pλ and Qλ parameterized by λ;

• a rejection kernel RK that can be computed in randomized poly(n) time and parameter λ0

such that RK(Bern(p′)) ∼ P̃λ0 and RK(Bern(q′)) ∼ Q̃λ0;

• a cloning map fcl that can be computed in randomized poly(n) time and parameter map gcl
such that

fcl(Pλ) ∼ P⊗4
gcl(λ)

and fcl(Qλ) ∼ Q⊗4
gcl(λ)

for each parameter λ;
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Algorithm DISTRIBUTIONAL-LIFTING

Inputs: Graph G ∈ Gn, number of iterations `, parameterized families of target planted and noise
distributions Pλ and Qλ, a TV-approximation Q′λ to Qλ that can be efficiently sampled, rejection
kernel RK approximately mapping Bern(p′) → Pλ0 and Bern(q′) → Qλ0 , threshold t, cloning
map fcl and corresponding parameter map gcl

1. Form the symmetric matrix M ∈ Rn×n with Mii = 0 and off-diagonal terms

Mij = RK
(
1{i,j}∈E(G)

)
2. Initialize W ←M and m← n

3. For i = 0, 1, . . . , `− 1 do:

a. For each pair of distinct i, j ∈ [m], let (x1
ij , x

2
ij , x

3
ij , x

4
ij) = fcl(Wij)

b. Let W ′ ∈ R2m×2m be the symmetric matrix with W ′ii = 0 and

W ′ij = x1
ij

W ′(2m+1−i)j = x2
ij

W ′i(2m+1−j) = x3
ij

W ′(2m+1−i)(2m+1−j) = x4
ij

for all distinct i, j ∈ [m] and

W ′i,2m+1−i ∼i.i.d. Q
′
λ

for all i ∈ [m]

c. Generate a permutation σ on [2m] uniformly at random

d. Update W ← (W ′)σ,σ, m← 2m and λ← gcl(λ)

4. Output the graph H with {i, j} ∈ E(H) if Wij > t

Figure 8: Distributional lifting procedure in Theorem 15.

• a randomized poly(n) time algorithm for sampling from Q′λi for each 1 ≤ i ≤ ` where the
sequence of parameters λi are such that λi+1 = gcl(λi) for each i; and

• a threshold t ∈ R.
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Then φ = DISTRIBUTIONAL-LIFTING with these parameters is a randomized polynomial time
computable map φ : Gn → G2`n such that under both H0 and H1, it holds that

dTV

(
φ(PDS(n, k, p′, q′)), PDS

(
2`n, 2`k, p, q

))
≤
(
n

2

)
·max

{
dTV

(
P̃λ0 , Pλ0

)
, dTV

(
Q̃λ0 , Qλ0

)}
+
∑̀
i=1

(
2in · dTV

(
Qλi , Q

′
λi

)
+

√
χ2(Qλi , Pλi)

2

)

where p = PX∼Pλ` [X > t] and q = PX∼Qλ` [X > t].

Proof If ` = O(log n), the algorithm DISTRIBUTIONAL-LIFTING runs in randomized polynomial
time. Let φi(W ) be the algorithm that outputs the value of W after i iterations of Step 4 given the
original value of W and Let φ′i(G) be the algorithm that outputs the value of W after i iterations of
Step 4 given the original graph G. Note that φ′0 outputs the value of M after Step 1.

We first consider an iteration of Step 3 applied to M ∼Mm(S, Pλ, Qλ) where |S| = k. By the
definition of fcl, if i, j are distinct and both in S, then (x1

ij , x
2
ij , x

3
ij , x

4
ij) ∼ P⊗4

gcl(λ). Similarly, if at

least one of i or j is not in S, then (x1
ij , x

2
ij , x

3
ij , x

4
ij) ∼ Q

⊗4
gcl(λ). Therefore the symmetric matrix W ′

constructed in Step 4b has independent entries below its main diagonal and satisfies that:

• W ′ij ∼ Pgcl(λ) for all distinct i, j ∈ S′ = S ∪ {2m+ 1− i : i ∈ S} with i+ j 6= 2m+ 1;

• W ′ij ∼ Qgcl(λ) for all distinct (i, j) 6∈ S′ × S′;

• W ′ij ∼ Q′gcl(λ) with i+ j = 2m+ 1; and

• W ′ii = 0.

Let W ′r be the matrix with each of its entries identically distributed to those of W ′ except (W ′r)ij ∼
Qgcl(λ) if i+ j = 2m+ 1. Coupling entries individually yields that

dTV(L(W ′),L(W ′r)) ≤ m · dTV

(
Qgcl(λ), Q

′
gcl(λ)

)
Now consider the matrix Wr = (W ′r)

σ,σ conditioned on the two sets σ(S) and σ(S′\S) where σ
is a uniformly at random chosen permutation on [2m]. We will show that this matrix is close in
total variation to M2m(σ(S′), Pgcl(λ), Qgcl(λ)). Note that fully conditioned on σ, the entries of Wr

below the main diagonal are independent and identically distributed to M2m(σ(S′), Pgcl(λ), Qgcl(λ))
other than the entries with indices (σ(i), σ(2m + 1 − i)) where i ∈ S′. These entries are dis-
tributed as Qgcl(λ) in Wr|σ and as Pgcl(λ) in the target distribution M2m(σ(S′), Pgcl(λ), Qgcl(λ)).
Marginalizing to only condition on the sets σ(S) and σ(S′, S), yields that all entries (Wr)ij with
(i, j) 6∈ σ(S)× σ(S′, S)∪ σ(S′, S)× σ(S) are identically distributed in Wr|{σ(S), σ(S′\S)} and
the target distribution. Coupling these corresponding entries yields that the total variation between
Wr|{σ(S), σ(S′\S)} and the target distribution satisfies that

dTV
(
L(Wr|σ(S), σ(S′\S)), M2m(σ(S′), Pgcl(λ), Qgcl(λ))

)
= dTV

(
L(Wr[σ(S)× σ(S′\S)]),Mk(Pgcl(λ))

)
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Now observe that Wr[σ(S) × σ(S′\S)] is distributed as L(Aid,τ ) where τ is permutation of [k]
selected uniformly at random and A is a matrix with its diagonal entries i.i.d. Qgcl(λ) and its other
entries i.i.d. Pgcl(λ). By Lemma 8, we therefore have that

dTV
(
L(Wr[σ(S)× σ(S′\S)]),Mk(Pgcl(λ))

)
= dTV

(
L(Aid,τ ),Mk(Pgcl(λ))

)
≤
√

1

2
· χ2

(
Qgcl(λ), Pgcl(λ)

)
Now consider the matrix φ1(M) = W = (W ′)σ,σ. By the data processing inequality, we have that

dTV
(
L(Wr|σ(S), σ(S′\S)),L(W |σ(S), σ(S′\S)

)
≤ dTV(L(W ′),L(W ′r))

≤ m · dTV

(
Qgcl(λ), Q

′
gcl(λ)

)
The triangle inequality now implies that

dTV
(
L(W |σ(S), σ(S′\S)), M2m(σ(S′), Pgcl(λ), Qgcl(λ))

)
≤ m · dTV

(
Qgcl(λ), Q

′
gcl(λ)

)
+

√
1

2
· χ2

(
Qgcl(λ), Pgcl(λ)

)
Letting S be chosen uniformly at random over all subsets of [n] of size k and the triangle inequality
now imply that

dTV
(
φ1(Mm(k, Pλ, Qλ)),M2m(2k, Pgcl(λ), Qgcl(λ))

)
≤ ESEσ(S),σ(S′\S)

[
dTV

(
L(W |σ(S), σ(S′\S)),M2m(σ(S′), Pgcl(λ), Qgcl(λ))

)]
≤ m · dTV

(
Qgcl(λ), Q

′
gcl(λ)

)
+

√
1

2
· χ2

(
Qgcl(λ), Pgcl(λ)

)
For each i ≥ 0, combining this inequality with the triangle inequality and data processing inequality
yields that

dTV
(
φi+1(Mm(k, Pλ0 , Qλ0)),M2i+1m

(
2i+1k, Pλi+1

, Qλi+1

))
≤ dTV

(
φ1 ◦ φi(Mm(k, Pλ0 , Qλ0)), φ1

(
M2im

(
2ik, Pλi , Qλi

)))
+ dTV

(
φ1

(
M2im

(
2ik, Pλi , Qλi

))
,M2i+1m

(
2i+1k, Pλi+1

, Qλi+1

))
≤ dTV

(
φi(Mm(k, Pλ0 , Qλ0)),M2im

(
2ik, Pλi , Qλi

))
+ 2im · dTV

(
Qλi+1

, Q′λi+1

)
+

√
1

2
· χ2

(
Qλi+1

, Pλi+1

)
Now note that the adjacency matrix Aij(G) = 1{i,j}∈E(G) of G ∼ G(n, p′, q′, S) is distributed as
Mn(S,Bern(p′),Bern(q′)). Note that φ′0 applies RK element-wise to the entries below the main di-
agonal ofAij(G). Coupling each of the independent entries below the diagonals of φ′0(G(n, p′, q′, S))
and Mn(S, Pλ0 , Qλ0) separately, we have that if |S| = k then

dTV
(
φ′0(G(n, p′, q′, S)),Mn(S, Pλ0 , Qλ0)

)
≤
(
k

2

)
· dTV

(
P̃λ0 , Pλ0

)
+

((
n

2

)
−
(
k

2

))
· dTV

(
Q̃λ0 , Qλ0

)
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Taking S to be uniformly distributed over all k element subsets of [n] yields by triangle inequality,

dTV
(
φ′0(G(n, k, p′, q′)), Mn(k, Pλ0 , Qλ0))

≤ ES
[
dTV

(
φ′0(G(n, p′, q′, S)),Mn(S, Pλ0 , Qλ0)

)]
≤
(
n

2

)
·max

{
dTV

(
P̃λ0 , Pλ0

)
, dTV

(
Q̃λ0 , Qλ0

)}
Applying the bounds above iteratively, the triangle inequality and the data processing inequality
now yields that

dTV

(
φ′`(G(n, k, p′, q′)),M2`n(2`k, Pλ` , Qλ`)

)
≤ dTV

(
φ` ◦ φ′0(G(n, k, p)), φ` (Mn(k, Pλ0 , Qλ0))

)
+ dTV

(
φ`(Mn(k, Pλ0 , Qλ0)),M2`n(2`k, Pλ` , Qλ`)

)
≤ dTV

(
φ′0(G(n, k, p)),Mn(k, Pλ0 , Qλ0)

)
+
∑̀
i=1

(
2i−1n · dTV

(
Qλi , Q

′
λi

)
+

√
χ2(Qλi , Pλi)

2

)

≤
(
n

2

)
·max

{
dTV

(
P̃λ0 , Pλ0

)
, dTV

(
Q̃λ0 , Qλ0

)}
+
∑̀
i=1

(
2i−1n · dTV

(
Qλi , Q

′
λi

)
+

√
χ2(Qλi , Pλi)

2

)
By the same reasoning, we have that

dTV
(
φ′0(G(n, q′)),Mn(Qλ0)

)
≤
(
n

2

)
· dTV

(
Q̃λ0 , Qλ0

)
Now note that if M ∼ Mm(Qλ0), every entry of W ′ij in Step 3b below the main diagonal is i.i.d.
sampled from Qλ1 other than those with i + j = 2m + 1, which are sampled from Q′λ1 . Coupling
entries individually implies that

dTV (φ1(M),M2m(Qλ1)) ≤ m · dTV
(
Qλ1 , Q

′
λ1

)
By induction we have that the data processing and triangle inequalities imply that

dTV (φ`(M),M2m(Qλ`)) ≤
∑̀
i=1

2i−1m · dTV
(
Qλi , Q

′
λi

)
Therefore it follows that

dTV
(
φ′`(G(n, q′)),M2`n(Qλ`)

)
≤ dTV

(
φ` ◦ φ′0(G(n, q′)), φ` (Mn(Qλ0))

)
+ dTV (φ`(Mn(Qλ0)),M2`n(Qλ`))

≤ dTV
(
φ′0(G(n, q′)),Mn(Qλ0)

)
+
∑̀
i=1

2i−1m · dTV
(
Qλi , Q

′
λi

)
≤
(
n

2

)
· dTV

(
Q̃λ0 , Qλ0

)
+
∑̀
i=1

2i−1m · dTV
(
Qλi , Q

′
λi

)
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Algorithm POISSON-LIFTING

Inputs: Graph G ∈ Gn, iterations `, parameters γ, ε ∈ (0, 1) and c > 1 with 3ε−1 ≤ logc γ
−1

Return the output of DISTRIBUTIONAL-LIFTING applied to G with ` iterations and parameters:

• initial densities p′ = 1 and q′ = γ

• target families Pλ = Pois(cλ) and Qλ = Q′λ = Pois(λ)

• rejection kernel RKP1 = RK
(
1→ Pois(cλ0), γ → Pois(λ0), d6 logγ−1 ne

)
and λ0 = n−ε

• cloning map fcl(x) = (x1, x2, x3, x4) computed as follows:

1. Generate x numbers in [4] uniformly at random

2. Let xi be the number of i’s generated for each i ∈ [4]

• parameter map gcl(λ) = λ/4

• threshold t = 0

Figure 9: Poisson lifting procedure in Lemma 16.

If W ∼ M2`n(2`k, Pλ` , Qλ`), then the graph with adjacency matrix Aij = 1{Wij>t} is distributed
as G(2`n, 2`k, p, q) where p = PX∼Pλ` [X > t] and q = PX∼Qλ` [X > t]. Similarly if W ∼
M2`n(Qλ`) then the graph with adjacency matrix Aij = 1{Wij>t} is distributed as G(2`n, q). Now
combining the total variation bounds above with the data processing inequality proves the theorem.

Appendix E. Planted Dense Subgraph and Biclustering

E.1. Poisson Lifting and Lower Bounds for Low-Density PDS

In this section, we introduce Poisson lifting to give a reduction from planted clique to PDS(n, k, p, q)
in the regime where p

q → c as n→∞ for some fixed c > 1 and q = Θ̃(n−α) for some fixed α > 0.
Poisson lifting is a specific instance of DISTRIBUTIONAL-LIFTING with Poisson target distribu-
tions. The guarantees of Poisson lifting are captured in the following lemma.

Lemma 16 (Poisson Lifting) Suppose that n and ` are such that ` = O(log n) and are sufficiently
large. Fix arbitrary constants ε ∈ (0, 1) and c > 1 and let λ0 = n−ε. Suppose that γ is a small
enough constant satisfying that logc γ

−1 ≥ 3ε−1. Then φ = POISSON-LIFTING is a randomized
polynomial time computable map φ : Gn → G2`n such that under both H0 and H1, it holds that

dTV

(
φ(PC(n, k, γ)), PDS

(
2`n, 2`k, p, q

))
= O

(
n−ε/2

)
where p = 1− e4−`cλ0 and q = 1− e4−`λ0 .
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Proof Let POISSON-LIFTING be the algorithm DISTRIBUTIONAL-LIFTING applied with the pa-
rameters in Figure 9. Let λi+1 = gcl(λi) = λi/4 for each 0 ≤ i ≤ ` − 1. Note that the cloning
map fcl(x) can be computed inO(1) operations. Furthermore, if x ∼ Pois(λ) then Poisson thinning
implies that if fcl(x) = (x1, x2, x3, x4) then the xi are independent and satisfy that xi ∼ Pois(λ/4).
Therefore it follows that

fcl(Pλ) = fcl(Pois(cλ)) ∼ Pois(cλ/4)⊗4 = P⊗4
gcl(λ) and

fcl(Qλ) = fcl(Pois(λ)) ∼ Pois(λ/4)⊗4 = Q⊗4
gcl(λ)

Furthermore, note that Pλ = Pois(cλ) and Qλ = Q′λ = Pois(λ) can be sampled in O(1) time. Note
that the χ2 divergence between these distributions is

χ2 (Qλ, Pλ) = −1 +
∞∑
t=0

(
1
t!e
−λλt

)2
1
t!e
−cλ(cλ)t

= −1 + exp
(
c−1(c− 1)2λ

)
·
∞∑
t=0

e−λ/c(λ/c)t

t!

= exp
(
c−1(c− 1)2λ

)
− 1 ≤ 2c−1(c− 1)2λ

as long as c−1(c − 1)2λ ≤ 1 since ex ≤ 1 + 2x for x ∈ [0, 1]. By Lemma 12, the rejection kernel
RKP1 can be computed in O(log n) time and satisfies that

dTV (RKP1(1), Pλ0) = O(n−3) and dTV (RKP1(Bern(γ)), Qλ0) = O(n−3)

Now note that Pλ` = Pois(4−`cλ0) and Qλ` = Pois(4−`λ0) which implies that p = PX∼Pλ` [X >

0] = 1−e4−`cλ0 and q = PX∼Qλ` [X > 0] = 1−e4−`λ0 . Since PDS(n, k, 1, γ) is the same problem
as PC(n, k, γ), applying Theorem 15 yields that under both H0 and H1, we have

dTV

(
φ(PC(n, k, γ)), PDS

(
2`n, 2`k, p, q

))
≤
(
n

2

)
·max {dTV (RKP1(1), Pλ0) , dTV (RKP1(Bern(γ)), Qλ0)}+

∑̀
i=1

√
χ2(Qλi , Pλi)

2

≤
(
n

2

)
·O(n−3) + c−1/2(c− 1)

∑̀
i=1

√
λi

= O(n−1) + c−1/2(c− 1)n−ε/2
∑̀
i=1

2−i = O
(
n−1 + n−ε/2

)
which completes the proof of the lemma.

We now use the reduction based on Poisson lifting analyzed above to prove hardness for the
sparsest regime of PDS.

Theorem 17 Fix some c > 1. Let α ∈ [0, 2) and β ∈ (0, 1) be such that β < 1
2 + α

4 . There is a
sequence {(Nn,Kn, pn, qn)}n∈N of parameters such that:

1. The parameters are in the regime q = Θ̃(N−α) and K = Θ̃(Nβ) or equivalently,

lim
n→∞

log q−1
n

logNn
= α, lim

n→∞

logKn

logNn
= β and lim

n→∞

pn
qn

= c
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2. For any sequence of randomized polynomial-time tests φn : GNn → {0, 1}, the asymptotic
Type I+II error of φn on the problems PDSD(Nn,Kn, pn, qn) is at least 1 assuming the PC
conjecture holds for each fixed density p ≤ 1/2.

Therefore the computational boundary for PDSD(n, k, p, q) in the parameter regime q = Θ̃(n−α),
p
q → c and k = Θ̃(nβ) is β∗ = 1

2 + α
4 .

Proof If β < α then PDS in this regime is information-theoretically impossible. Thus we may
assume that β ≥ α. Take ε > 0 to be a small enough constant so that

β + ε(1− β) <
1

2
+
α

4

Now let γ = 2β−α+ε(1−β)
2−α . Rearranging the inequality above yields that γ ∈ (0, 1/2). Now set

`n =

⌈
(α− ε) log2 n

2− α

⌉
, kn = dnγe, Nn = 2`nn Kn = 2`nkn,

pn = 1− e4−`ncn−ε , qn = 1− e4−`nn−ε

Take p to be a small enough constant so that p < 1
2c
−3ε−1

. By Lemma 16, there is a randomized
polynomial time algorithm mapping PCD(n, kn, p) to PDSD(Nn,Kn, pn, qn) with total variation
converging to zero as n → ∞. This map with Lemma 4 now implies that property 2 above holds.
We now verify property 1. Note that

lim
n→∞

logKn

logNn
= lim

n→∞

⌈
(α−ε) log2 n

2−α

⌉
· log 2 +

(
2β−α+ε(1−β)

2−α

)
log n⌈

(α−ε) log2 n
2−α

⌉
· log 2 + log n

=
α−ε
2−α + 2β−α+ε(1−β)

2−α
α−ε
2−α + 1

= β

Note that as n→∞, it follows that since 4−`nn
−ε → 0,

qn = 1− e4−`nn−ε ∼ 4−`nn−ε

Similarly pn ∼ 4−`ncn−ε and thus pn
qn
→ c. Note that

lim
n→∞

log q−1
n

logNn
= lim

n→∞

2
⌈

(α−ε) log2 n
2−α

⌉
log 2 + ε log n⌈

(α−ε) log2 n
2−α

⌉
· log 2 + log n

=

2(α−ε)
2−α + ε
α−ε
2−α + 1

= α

which completes the proof.

In this section, we gave a planted clique lower bound for PDSD(n, k, p, q) with p
q → c as

opposed to p = cq exactly. We now will describe a simple reduction from PDSD(n, k, p, q) with
p
q → c1 where c1 > c to PDSD(n, k, p1, q1) where p1 = cq1 and q1 = Θ(q). Given an instance of
PDSD(n, k, p, q), add in every non-edge independently with probability ρ = p−cq

c−1+p−cq which is in
(0, 1) since c1 > c implies that p > cq for large enough n. This yields an instance of PDSD with
p1 = 1 − (1 − ρ)(1 − p) = p + ρ − ρp and q1 = 1 − (1 − ρ)(1 − q) = q + ρ − ρq. The choice
of ρ implies that p1 = cq1 exactly and ρ = Θ(q) since p

q → c1 > c. Applying this reduction after
POISSON-LIFTING yields that PDSD(n, k, cq, q) has the same planted clique lower bound as in the
previous theorem.
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Algorithm GAUSSIAN-LIFTING

Inputs: Graph G ∈ Gn, iterations `

Return the output of DISTRIBUTIONAL-LIFTING applied to G with ` iterations and parameters:

• initial densities p′ = 1 and q′ = 1/2

• target families Pλ = N(λ, 1) and Qλ = Q′λ = N(0, 1)

• rejection kernel RKG = RK (1→ N(λ0, 1), 1/2→ N(0, 1), N) where N = d6 log2 ne and
λ0 = log 2

2
√

6 logn+2 log 2

• cloning map fcl(x) = (x1, x2, x3, x4) computed as follows:

1. Generate G1, G2, G3 ∼i.i.d. N(0, 1)

2. Compute (x1, x2, x3, x4) as

x1 =
1

2
(x+G1 +G2 +G3)

x2 =
1

2
(x−G1 +G2 −G4)

x3 =
1

2
(x+G1 −G2 −G3)

x4 =
1

2
(x−G1 −G2 +G3)

• parameter map gcl(λ) = λ/2

• threshold t = 0

Figure 10: Gaussian lifting procedure in Lemma 18.

E.2. Gaussian Lifting and Lower Bounds for High-Density PDS and BC

In parallel to the previous section, here we introduce Gaussian lifting to give a reduction from
planted clique to the dense regime of PDS(n, k, p, q) where q = Θ(1) and p − q = Θ̃(n−α) for
some fixed α > 0.

The next lemma we prove is an analogue of Lemma 16 for GAUSSIAN-LIFTING and follows
the same structure of verifying the preconditions for and applying Lemma 15.

Lemma 18 (Gaussian Lifting) Suppose that n and ` are such that ` = O(log n) and are suffi-
ciently large and let

µ =
log 2

2
√

6 log n+ 2 log 2
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Then φ = GAUSSIAN-LIFTING is a randomized polynomial time computable map φ : Gn → G2`n

such that under both H0 and H1, it holds that

dTV

(
φ(PC(n, k, 1/2)), PDS

(
2`n, 2`k,Φ

(
2−`µ

)
, 1/2

))
= O

(
1√

log n

)
Proof Let GAUSSIAN-LIFTING be the algorithm DISTRIBUTIONAL-LIFTING applied with the
parameters in Figure 10. Let λi+1 = gcl(λi) = λi/2 for each 0 ≤ i ≤ ` − 1. Note that the
cloning map fcl(x) can be computed in O(1) operations. Now suppose that x ∼ N(λ, 1). If
fcl(x) = (x1, x2, x3, x4), then it follows that

x1

x2

x3

x4

 =
λ

2


1
1
1
1

+
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·

x− λ
G1
ij

G2
ij

G3
ij


Since x − µ,G1

ij , G
2
ij and G3

ij are zero-mean and jointly Gaussian with covariance matrix I4, it
follows that the entries of (x1, x2, x3, x4) are also jointly Gaussian. Furthermore, the coefficient
matrix above is orthonormal, implying that the covariance matrix of (x1, x2, x3, x4) remains I4.
Therefore it follows that fcl(N(λ, 1)) ∼ N(λ/2, 1)⊗4. Applying this identity with λ = 0 yields
that fcl(N(0, 1)) ∼ N(0, 1)⊗4. Thus fcl is a valid cloning map for Pλ and Qλ with parameter map
gcl(λ) = λ/2.

Observe that Pλ = N(λ, 1) and Qλ = Q′λ = N(0, 1) can be sampled in O(1) time in the given
computational model. Note that the χ2 divergence between these distributions is

χ2 (Qλ, Pλ) = −1 +

∫ ∞
−∞

(
1√
2π
e−x

2/2
)2

1√
2π
e−(x−λ)2/2

dx = −1 +
e2λ2

√
2π

∫ ∞
−∞

e−(x+λ)2/2dx = e2λ2 − 1 ≤ 4λ2

as long as 4λ2 ≤ 1 since ex ≤ 1 + 2x for x ∈ [0, 1], which is the case for all λ = λi. By Lemma
14, the rejection kernel RKG can be computed in poly(n) time and satisfies that

dTV (RKG(1), Pλ0) = O(n−3) and dTV (RKG(Bern(1/2)), Qλ0) = O(n−3)

Now note that Pλ` = N(2−`µ, 1) and Qλ` = N(0, 1) which implies that p = PX∼Pλ` [X > 0] =

Φ
(
2−`µ

)
and q = PX∼Qλ` [X > 0] = 1/2. Since PDS(n, k, 1, 1/2) is the same problem as

PC(n, k, 1/2), applying Theorem 15 yields that under both H0 and H1, we have

dTV

(
φ(PC(n, k, 1/2)), PDS

(
2`n, 2`k, p, q

))
≤
(
n

2

)
·max {dTV (RKG(1), Pλ0) , dTV (RKG(Bern(1/2)), Qλ0)}+

∑̀
i=1

√
χ2(Qλi , Pλi)

2

≤
(
n

2

)
·O(n−3) +

√
2 ·
∑̀
i=1

λi

= O(n−1) + µ
√

2 ·
∑̀
i=1

2−i = O

(
n−1 +

1√
log n

)
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which completes the proof of the lemma.

We now use this GAUSSIAN-LIFTING reduction to deduce hardness for the dense variant of
planted dense subgraph, which has a slightly different computational boundary than the sparsest
variant.

Theorem 19 Let α ∈ [0, 2) and β ∈ (0, 1) be such that β < 1
2 + α

2 . There is a sequence
{(Nn,Kn, pn, qn)}n∈N of parameters such that:

1. The parameters are in the regime q = Θ(1), p − q = Θ̃(N−α) and K = Θ̃(Nβ) or equiva-
lently,

lim
n→∞

log(pn − qn)−1

logNn
= α and lim

n→∞

logKn

logNn
= β

2. For any sequence of randomized polynomial-time tests φn : GNn → {0, 1}, the asymptotic
Type I+II error of φn on the problems PDSD(Nn,Kn, pn, qn) is at least 1 assuming the PC
conjecture holds with density p = 1/2.

Therefore the computational boundary for PDSD(n, k, p, q) in the parameter regime q = Θ(1),
p− q = Θ̃(n−α) and k = Θ̃(nβ) is β∗ = 1

2 + α
2 .

Proof If β < 2α then PDS is information-theoretically impossible. Thus we may assume that
β ≥ 2α. Let γ = β−α

1−α and note that γ ∈ (0, 1/2). Now set

`n =

⌈
α log2 n

1− α

⌉
, kn = dnγe, Nn = 2`nn Kn = 2`nkn,

pn = Φ

(
2−`n · log 2

2
√

6 log n+ 2 log 2

)
By Lemma 16, there is a randomized polynomial time algorithm mapping PCD(n, kn, 1/2) to the
detection problem PDSD(Nn,Kn, pn, 1/2) with total variation converging to zero as n→∞. This
map with Lemma 4 now implies that property 2 above holds. We now verify property 1. Note that

lim
n→∞

logKn

logNn
= lim

n→∞

⌈
α log2 n

1−α

⌉
· log 2 +

(
β−α
1−α

)
log n⌈

α log2 n
1−α

⌉
· log 2 + log n

=
α

1−α + β−α
1−α

α
1−α + 1

= β

Let µ = log 2
2
√

6 logn+2 log 2
and note that as n→∞, we have that

lim
n→∞

Φ
(
2−`nµ

)
− 1

2

2−`nµ
= lim

τ→0

(
1

τ
√

2π

∫ τ

0
e−x

2/2dx

)
=

1√
2π

Therefore pn − qn ∼ 2−`nµ√
2π

as n→∞. This implies

lim
n→∞

log(pn − qn)−1

logNn
= lim

n→∞

2
⌈
α log2 n

1−α

⌉
· log 2− logµ⌈

α log2 n
1−α

⌉
· log 2 + log n

=
2α

1−α
α

1−α + 1
= α
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Algorithm BC-REDUCTION

Inputs: Graph G ∈ Gn, iterations `

1. Set W to be the output of GAUSSIAN-LIFTING applied to G with ` iterations without the
thresholding in Step 4 of DISTRIBUTIONAL-LIFTING

2. Replace the diagonal entries with Wii ∼i.i.d. N(0, 2)

3. Generate an antisymmetric 2`n × 2`n matrix A of with i.i.d. N(0, 1) random variables
below its main diagonal and set

W ← 1√
2

(W +A)

4. Generate a permutation σ of [2`n] uniformly at random and output W id,σ

Figure 11: Reduction to biclustering in Lemma 20.

which completes the proof.

Note that to prove this theorem, it was only necessary to map to instances with ambient density
q = 1/2. We remark that it is possible to map from q = 1/2 to any constant q by removing edges
with a constant probability ρ < 1 or removing non-edges with probability ρ. Note that this still
preserves the asymptotic regime p − q = Θ̃(n−α). We now use GAUSSIAN-LIFTING to give a
reduction from planted clique to biclustering.

Lemma 20 Suppose that n and ` are such that ` = O(log n) and are sufficiently large and

µ =
log 2

2
√

6 log n+ 2 log 2

Then there is a randomized polynomial time computable map φ = BC-REDUCTION with φ : Gn →
R2`n×2`n such that under H0 and H1, it holds that

dTV

(
φ(PC(n, k, 1/2)),BC

(
2`n, 2`k, 2−`−1/2µ

))
= O

(
1√

log n

)
Proof Let φ = BC-REDUCTION be as in Figure 13. Let φ′` denote GAUSSIAN-LIFTING applied to
G that outputsW after ` iterations without the thresholding in Step 4 of DISTRIBUTIONAL-LIFTING.
Lemmas 15 and 18 imply GAUSSIAN-LIFTING ensures that

dTV
(
φ′`(G(n, 1/2)),M2`n(N(0, 1))

)
= O

(
1√

log n

)
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Now suppose thatW ∼M2`n(N(0, 1)) and letW ′ = φ2-3(W ) denote the value ofW after applying
Steps 2 and 3 in Figure 13 to W . Note that the diagonal entries of W are i.i.d. N(0, 1) since the
diagonal entries of A are zero. If i < j, then it follows that

W ′ij =
1√
2

(Wij +Gij) and W ′ji =
1√
2

(Wij −Gij)

Since Wij and Gij are independent and distributed as N(0, 1), it follows that W ′ij and W ′ji are
jointly Gaussian and uncorrelated, which implies that they are independent. Furthermore, W ′ij and
W ′ji are both in the σ-algebra σ{Wij , Gij} and collection of σ-algebras σ{Wij , Gij} with i < j

is independent. Thus it follows that both W ′ and (W ′)id,σ are distributed as N(0, 1)⊗2`n×2`n. It
follows by the data processing inequality that

dTV

(
φ(G(n, 1/2)), N(0, 1)⊗2`n×2`n

)
≤ dTV

(
φ′`(G(n, 1/2)),L(W )

)
= O

(
1√

log n

)
Now consider G ∼ G(n, k, 1/2) and note that GAUSSIAN-LIFTING ensures that

dTV

(
φ′`(G),M2`n(2`k,N(2−`µ, 1), N(0, 1))

)
= O

(
1√

log n

)
Now let W ′ ∼ M2`n(S,N(2−`µ, 1), N(0, 1)) where S is a subset of [2`n] of size 2`k and let W
be the matrix formed by applying Steps 1 and 2 above to W ′ in place of φ′`(G). By the same
jointly Gaussian independence argument above, it follows that the entries of W are independent
and distributed as:

• Wij ∼ N(2−`−1/2µ, 1) if (i, j) ∈ S × S and i 6= j; and

• Wij ∼ N(0, 1) if (i, j) 6∈ S × S or i = j.

Now consider the matrix (W ′)id,σ conditioned on the permutation σ. Its entries are independent and
identically distributed to the corresponding entries of 2−`−1/2µ · 1S1>T + N(0, 1)⊗2`n×2`n where
T = σ(S) other than at the indices (i, σ(i)) for i ∈ S. Marginalizing to condition only on σ(S) = T
and coupling all entries with indices outside of S × T yields that

dTV
(
L((W ′)id,σ|σ(S) = T ), L

(
2−`−1/2µ · 1S1>T +N(0, 1)⊗2`n×2`n

))
= dTV

(
L
(
(W ′)id,σ[S × T ]|σ(S) = T

)
, N(2−`−1/2µ, 1)⊗2`k×2`k

)
≤
√

1

2
· χ2

(
N(0, 1), N(2−`−1/2µ, 1)

)
≤ 2−`µ ≤ log 2

2`+1
√

6 log n+ 2 log 2
= O

(
1

2`
√

log n

)
by applying Lemma 8 and the χ2 upper bound shown in Lemma 18. Note that Lemma 8 applies
because (W ′)id,σ[S × T ] conditioned only on σ(S) = T is distributed as a 2`k × 2`k matrix with
i.i.d. entries N(2−`−1/2µ, 1), other than its diagonal entries which are i.i.d. N(0, 1), and with its
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columns randomly permuted. Letting σ(S) = T be chosen uniformly at random over all ordered
pairs of size 2`k subsets of [2`n] yields by the triangle inequality that

dTV

(
L((W ′)id,σ),

∫
L
(

2−`−1/2µ · 1S1>T +N(0, 1)⊗2`n×2`n
)
dπ′(T )

)
= O

(
1

2`
√

log n

)
where π′ is the uniform distribution on all size 2`k subsets of [2`n]. Let π(S, T ) be the uniform
distribution on all pairs of subsets of size 2`k of [2`n]. Taking S to be also chosen uniformly at
random yields by the data processing and triangle inequalities that

dTV

(
L (φ(G)) ,

∫
L
(

2−`−1/2µ · 1S1>T +N(0, 1)⊗2`n×2`n
)
dπ(S, T )

)
≤ dTV

(
φ′`(G),M2`n(2`k,N(2−`µ, 1), N(0, 1))

)
+ ES

[
dTV

(
L((W ′)id,σ),

∫
L
(

2−`−1/2µ · 1S1>T +N(0, 1)⊗2`n×2`n
)
dπ′(T )

)]
= O

(
1√

log n

)
which completes the proof of the lemma.

Note that Lemma 20 provides a randomized polynomial time map that exactly reduces from
PCD(n, k, 1/2) to BCD(2`n, 2`k, 2−`−1/2µ). This reduction yields tight computational lower bounds
for a simple vs. simple hypothesis testing variant of biclustering as stated in Theorem 21. This fol-
lows from setting `n, kn, Nn and Kn as in Theorem 19 and µn = 2−`n−1/2µ, then applying an
identical analysis as in Theorem 19. Note that when β < 1

2 , this choice sets `n = 0 and deduces
that BCD is hard when α > 0.

Theorem 21 Letα > 0 and β ∈ (0, 1) be such that β < 1
2+α

2 . There is a sequence {(Nn,Kn, µn)}n∈N
of parameters such that:

1. The parameters are in the regime µ = Θ̃(N−α) and K = Θ̃(Nβ) or equivalently,

lim
n→∞

logµ−1
n

logNn
= α and lim

n→∞

logKn

logNn
= β

2. For any sequence of randomized polynomial-time tests φn : RNn×Nn → {0, 1}, the asymp-
totic Type I+II error of φn on the problems BCD(Nn,Kn, µn) is at least 1 assuming the PC
conjecture holds with density p = 1/2.

Therefore the computational boundary for BCD(n, k, µ) in the parameter regime µ = Θ̃(n−α) and
k = Θ̃(nβ) is β∗ = 1

2 + α
2 and α∗ = 0 when β < 1

2 .

We now deduce the computational barrier for the biclustering recovery problem from the PDS
recovery conjecture. The obtained boundary of β∗ = 1

2 + α is stronger than the detection boundary
β∗ = 1

2 + α
2 in the previous theorem. First we will need the following lemma, which gives the

necessary total variation guarantees for our reduction. We omit details that are identical to the proof
of Lemma 20.
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Algorithm BC-RECOVERY

Inputs: Graph G ∈ Gn, density bias ρ

1. Let RKG = RK
(

1
2 + ρ→ N(µ, 1), 1

2 → N(0, 1), N
)

where µ = log(1+2ρ)

2
√

6 logn+2 log 2
and N =

d6 log1+2ρ ne and compute the symmetric matrix W ∈ Rn×n with

Wij = RKG
(
1{i,j}∈E(G)

)
for all i 6= j and Wii ∼i.i.d. N(0, 2)

2. Generate an antisymmetric matrix A ∈ Rn×n of with i.i.d. N(0, 1) random variables below
its main diagonal and set

W ← 1√
2

(W +A)

3. Generate a permutation σ of [n] uniformly at random and output W id,σ

Figure 12: Reduction to biclustering recovery in Lemma 22.

Lemma 22 Suppose that n, µ and ρ ≥ n−1 are such that

µ =
log(1 + 2ρ)

2
√

6 log n+ 2 log 2

Then there is a randomized polynomial time computable map φ = BC-RECOVERY with φ : Gn →
Rn×n such that for any subset S ⊆ [n] with |S| = k, it holds that

dTV

(
φ (G(n, 1/2 + ρ, 1/2, S)) ,

∫
L
(
µ · 1S1>T +N(0, 1)⊗n×n

)
dπ(T )

)
= O

(
1√

log n

)
where π is the uniform distribution on subsets of [n] of size k.

Proof Let φ = BC-RECOVERY be as in Figure 12. Applying Lemma 14, it holds that RKG can be
computed in poly(n) time and that

dTV (RKG(Bern(1/2 + ρ)), N(µ, 1)) = O(n−3) and dTV (RKG(Bern(1/2)), N(0, 1)) = O(n−3)

Let W1 and W2 be the values of W after Steps 1 and 2, respectively, applied to an input graph
G ∼ G(n, 1/2 + ρ, 1/2, S). Let M be a sample from Mn(S,N(µ, 1), N(0, 1)) with i.i.d. N(0, 2)
random variables on its diagonal. Coupling entries individually yields that

dTV (L(W1),L(M)) ≤
(
k

2

)
· dTV (RKG(Bern(1/2 + ρ)), N(µ, 1))

+

((
n

2

)
−
(
k

2

))
· dTV (RKG(Bern(1/2)), N(0, 1))

=

(
n

2

)
·O(n−3) = O(n−1)
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An identical argument as in Lemma 20 now shows that W2 is at total variation distance O(n−1)
from µ · 1S1>S + N(0, 1)⊗n×n with all of its diagonal entries replaced with i.i.d. samples from
N(0, 1). The same permutation argument applying Lemma 8 now yields that

dTV

(
L((W ′2)id,σ),

∫
L
(
µ · 1S1>T +N(0, 1)⊗n×n

)
dπ(T )

)
= O

(
1√

log n

)
Applying the triangle and data processing inequalities as in the conclusion of Lemma 20 completes
the proof of the lemma.

With this lemma, we now deduce the recovery barrier for biclustering from the PDS and PC
conjectures. Note that the recovery barrier of β∗ = 1

2 + α and detection barrier of β∗ = 1
2 + α

2
indicates that recovery is conjectured to be strictly harder than detection for the formulations we
consider in the regime β > 1

2 .

Theorem 23 Let α > 0 and β ∈ (0, 1). There is a sequence {(Nn,Kn, µn)}n∈N of parameters
such that:

1. The parameters are in the regime µ = Θ̃(N−α) and K = Θ̃(Nβ) or equivalently,

lim
n→∞

logµ−1
n

logNn
= α and lim

n→∞

logKn

logNn
= β

2. If β ≥ 1
2 and β < 1

2 + α, then the following holds. Let ε > 0 be fixed and let Mn be
an instance of BCR(Nn,Kn, µn). There is no sequence of randomized polynomial-time com-

putable functions φn : RNn×Nn →
([Nn]
k

)2
such that for all sufficiently large n the probability

that φn(Mn) is exactly the pair of latent row and column supports of Mn is at least ε, assum-
ing the PDS recovery conjecture.

3. If β < 1
2 and α > 0, then the following holds. There is no sequence of randomized

polynomial-time computable functions φn : RNn×Nn →
([Nn]
k

)2
such that for all sufficiently

large n the probability that φn(Mn) is exactly the pair of latent row and column supports of
Mn is at least ε, assuming the PC conjecture.

Therefore, given the PDS recovery conjecture, the computational boundary for BCR(n, k, µ) in the
parameter regime µ = Θ̃(n−α) and k = Θ̃(nβ) is β∗ = 1

2 + α when β ≥ 1
2 and α∗ = 0 when

β < 1
2 .

Proof First we consider the case when β ≥ 1/2 and β < 1
2 + α. Now set

kn = dnβe, ρn = n−α, Nn = n Kn = kn, µn =
log(1 + 2ρn)

2
√

6 log n+ 2 log 2

Assume for contradiction that there is a sequence of randomized polynomial-time computable func-
tions φn as described above and let φrn denote the restriction of φn to output latent row support
only. Let ϕn = BC-RECOVERY be the reduction in Lemma 22, let Gn ∼ G(n, S, 1/2 + ρn, 1/2)
and let Mn = ϕn(Gn) where S is a kn-subset of [n]. Let Ln,S,T = L

(
µn1S1

>
T +N(0, 1)⊗n×n

)
and let Ln,S =

∫
Ln,S,Tdπ(T ) where π is the uniform distribution over kn-subsets of [n] be the
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distribution of an instance of BCR(Nn,Kn, µn) conditioned on the event that the row support of its
planted submatrix is S. Now observe that

∣∣PM∼L(Mn) [φrn(M) = S]− PM∼Ln,S [φrn(M) = S]
∣∣ ≤ dTV (L(Mn),Ln,S) = O

(
1√

log n

)
because of Lemma 22. Now note that PM∼Ln,S [φrn(M) = S] = ET∼πPM∼Ln,S,T [φrn(M) = S] ≥
ε for sufficiently large n by assumption. Therefore it follows that

P[φrn ◦ ϕn(Gn) = S] ≥ ε−O
(

1√
log n

)
which is at least ε/2 for sufficiently large n. Now observe that

lim
n→∞

log kn
log n

= β and lim
n→∞

logn

(
k2
nρ

2
n

1
4 − ρ2

n

)
= 2β − 2α < 1

Since the sequence of functions φrn ◦ ϕn can be computed in randomized polynomial time, this
contradicts the PDS recovery conjecture. Therefore no such sequence of functions φn exists for the
parameter sequence {(Nn,Kn, µn)}n∈N defined above. Now note that as n→∞,

µn =
log(1 + 2ρn)

2
√

6 log n+ 2 log 2
∼ ρn√

6 log n
=

n−α√
6 log n

Therefore it follows that

lim
n→∞

logµ−1
n

logNn
= lim

n→∞

α log n+ 1
2 log(6 log n)

log n
= α and lim

n→∞

logKn

logNn
= β

This completes the proof in the case that β ≥ 1/2. Now consider the case where β < 1/2.
Set ρn = 1/2 and all other parameters as above. Let Gn ∼ G(n, kn, S) and repeat the same
argument as above to obtain that P[φrn ◦ ϕn(Gn) = S] ≥ ε − o(1). Now consider the algorithm
φ′n : Gn → {0, 1} that computes S′ = φrn ◦ ϕn(Gn) and checks if S′ is a clique, outputting a 1 if it
is and 0 or 1 uniformly at random otherwise. If Gn ∼ G(n, 1/2), then with probability 1− o(1) the
largest clique of Gn is less than (2 + ε) log2 n for any fixed ε > 0. It follows by the definition of φn
that |S′| = kn = Θ(nβ) = ω(log n) and thus with probability 1 − o(1), φ′n outputs a random bit.
Therefore PGn∼G(n,1/2)[φ

′
n(Gn) = 1] = 1/2 + o(1). If Gn ∼ G(n, k, 1/2), then with probability

at least ε− o(1), S′ is the support of the planted clique and φ′n outputs a 1. Otherwise, φ′n outputs a
random bit. Therefore PGn∼G(n,k,1/2)[φ

′
n(Gn) = 0] = (1 − ε)/2 + o(1). Therefore it follows that

the Type I+II error of φ′n is

PGn∼G(n,1/2)[φ
′
n(Gn) = 1] + PGn∼G(n,k,1/2)[φ

′
n(Gn) = 0] = 1− ε

2
+ o(1)

which contradicts the PC conjecture. This completes the proof of the theorem.

Since the reduction BC-RECOVERY exactly preserves the latent support S of the instance of
PDSR when mapping to BCR, the same reduction shows hardness of partial recovery if the PDS
conjecture is strengthened to hold for partial recovery. The same is true for weak recovery.
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Algorithm GENERAL-PDS-REDUCTION

Inputs: Graph G ∈ Gn, iterations `1, `2

1. Let H be the output of GAUSSIAN-LIFTING applied to G with `1 iterations

2. Update H to be the output of POISSON-LIFTING applied to H with `2 iterations where the
rejection kernel is replaced with

RKP2 = RK

(
1

2
+ ρ→ Pois(cλ),

1

2
→ Pois(λ), N

)
where the rejection kernel has natural parameter 2`1n and satisfies λ = (2`1n)−ε, N =

d6ρ−1 log(2`1n)e, ρ = Φ(2−`1µ)− 1/2 and c =
(
2Φ
(
2−`1µ

))ε/4
3. Output H

Figure 13: Reduction to the general regime of planted dense subgraph in Lemma 24.

E.3. Lower Bounds for General PDS

In this section we give a reduction to the general regime of PDS where q = Θ̃(n−α) and p − q =
Θ̃(n−β) where β > α. Note that in order to completely characterize PDS when p− q = O(q), we
also need the computational lower bound shown in Appendix E.1 when α = β. We now give this
reduction, which applies GAUSSIAN-LIFTING and POISSON-LIFTING in sequence.

Lemma 24 Fix some arbitrary ε ∈ (0, 1). Suppose that n, `1 and `2 are such that `1, `2 =
O(log n) and are sufficiently large. Let ` = `1 + `2 and

µ =
log 2

2
√

6 log n+ 2 log 2

Then there is a randomized polynomial time computable map φ = GENERAL-PDS-REDUCTION

with φ : Gn → G2`n such that under both H0 and H1, it holds that

dTV

(
φ(PC(n, k, 1/2)), PDS

(
2`n, 2`k, p`1,`2 , q`1,`2

))
= O

(
1√

log n

)
where p`1,`2 and q`1,`2 are defined to be

p`1,`2 = 1−exp

(
4−`2

(
2`1n

)−ε
·
(

2Φ
(

2−`1µ
))ε/4)

and q`1,`2 = 1−exp

(
4−`2

(
2`1n

)−ε)
Proof Let φ = GENERAL-PDS-REDUCTION be as in Figure 13. Let φ1(G) denote the map in Step
1 applying GAUSSIAN-LIFTING for `1 iterations and let φ2(G) denote the map in Step 2 applying
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the modified version of POISSON-LIFTING for `2 iterations. If G ∼ G(n, k, 1/2) then Lemma 18
implies that

dTV

(
φ1(G), G

(
2`1n, 2`1k,Φ

(
2−`1µ

)
, 1/2

))
= O

(
1√

log n

)
For the values of λ, ρ and c in Step 2, we have that c < 21/4 and logc(1 + 2ρ) = 4ε−1 = O(1).
Also observe that as n→∞,

ρ = Φ
(

2−`1µ
)
− 1/2 ∼ 1√

2π
· 2−`1µ = Ω

(
1

2`1
√

log n

)
= ω

(
1

2`1n

)
Therefore the values K = 1, ε, λ, ρ, c and natural parameter 2`1n satisfy the preconditions to apply
Lemma 14. It follows that

dTV (RKP2(Bern(1/2 + ρ)),Pois(cλ)) ≤ O
(

2−3`1n−3
)
, and

dTV (RKP2(Bern(1/2)),Pois(λ)) ≤ O
(

2−3`1n−3
)

Now let H ′ be a sample from G
(
2`1n, 2`1k,Φ

(
2−`1µ

)
, 1/2

)
. The argument in Lemma 16 applied

with these total variation bounds yields that

dTV

(
φ2(H ′), G

(
2`n, 2`k, p`1,`2 , q`1,`2

))
= O

(
2−`1ε/2n−ε/2

)
Applying the triangle inequality and data processing inequality yields that

dTV

(
φ(G(n, k, 1/2)), G

(
2`n, 2`k, p`1,`2 , q`1,`2

))
≤ dTV

(
φ2 ◦ φ1(G), φ2

(
H ′
))

+ dTV

(
φ2(H ′), G

(
2`n, 2`k, p`1,`2 , q`1,`2

))
= O

(
1√

log n
+ 2−`1ε/2n−ε/2

)
= O

(
1√

log n

)
By the same argument, if G ∼ G(n, 1/2) then

dTV

(
φ(G(n, 1/2)), G

(
2`n, q`1,`2

))
= O

(
1√

log n

)
which completes the proof of the lemma.

We now use this reduction combining GAUSSIAN-LIFTING and POISSON-LIFTING to identify
the computational barrier in the general PDS problem.

Theorem 25 Let α, γ ∈ [0, 2) and β ∈ (0, 1) be such that γ ≥ α and β < 1
2 + γ

2 −
α
4 . There is a

sequence {(Nn,Kn, pn, qn)}n∈N of parameters such that:

1. The parameters are in the regime p − q = Θ̃(N−γ), q = Θ̃(N−α) and K = Θ̃(Nβ) or
equivalently,

lim
n→∞

log q−1
n

logNn
= α, lim

n→∞

log(pn − qn)−1

logNn
= γ and lim

n→∞

logKn

logNn
= β
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2. For any sequence of randomized polynomial-time tests φn : GNn → {0, 1}, the asymptotic
Type I+II error of φn on the problems PDSD(Nn,Kn, cqn, qn) is at least 1 assuming the PC
conjecture holds for p = 1/2.

Therefore the computational boundary for PDSD(n, k, p, q) in the parameter regime p − q =
Θ̃(n−γ), q = Θ̃(n−α) and k = Θ̃(nβ) where γ ≥ α is β∗ = 1

2 + γ
2 −

α
4 .

Proof If β < 2γ − α then PDS in this regime is information-theoretically impossible. Thus we
may assume that 1 > β ≥ 2γ − α. Now let

η = 1− (1− β) · 2− ε
2− α− (2− ε)(γ − α)

Note that the given condition on α, β and γ rearranges to 1−β
2−α−2(γ−α) >

1
4 . Therefore taking ε > 0

to be small enough ensures that 2− α− (2− ε)(γ − α) > 0, η ∈ (0, 1/2) and α > ε. Now set

`1n =

⌈
(γ − α)(2− ε) log2 n

2− α− (2− ε)(γ − α)

⌉
, `2n =

⌈
(α− ε) log2 n

2− α− (2− ε)(γ − α)

⌉
,

kn = dnηe, Nn = 2`
1
n+`2nn, Kn = 2`

1
n+`2nkn,

pn = 1− exp

(
4−`

2
n

(
2`

1
nn
)−ε
·
(

2Φ
(

2−`
1
nµ
))ε/4)

, qn = 1− exp

(
4−`

2
n

(
2`

1
nn
)−ε)

where µ = log 2
2
√

6 logn+2 log 2
. By Lemma 24, there is a randomized polynomial time algorithm map-

ping PCD(n, kn, 1/2) to PDSD(Nn,Kn, pn, qn) with total variation converging to zero as n→∞.
This map with Lemma 4 now implies that property 2 above holds. We now verify property 1. Note
that

lim
n→∞

logKn

logNn
=

(γ−α)(2−ε)
2−α−(2−ε)(γ−α) + α−ε

2−α−(2−ε)(γ−α) + 1− (1−β)(2−ε)
2−α−(2−ε)(γ−α)

(γ−α)(2−ε)
2−α−(2−ε)(γ−α) + α−ε

2−α−(2−ε)(γ−α) + 1

=

2−ε
2−α−(2−ε)(γ−α) −

(1−β)(2−ε)
2−α−(2−ε)(γ−α)

2−ε
2−α−(2−ε)(γ−α)

= β

Using the approximations in the proof of Theorem 19, we obtain as n→∞

qn ∼ 4−`
2
n

(
2`

1
nn
)−ε

pn − qn ∼ 4−`
2
n

(
2`

1
nn
)−ε [(

2Φ
(

2−`
1
nµ
))ε/4

− 1

]
∼ 4−`

2
n

(
2`

1
nn
)−ε
· ε

2
√

2π
· 2−`1nµ

Now it follows that

lim
n→∞

log q−1
n

logNn
=

2 · α−ε
2−α−(2−ε)(γ−α) + ε · (γ−α)(2−ε)

2−α−(2−ε)(γ−α) + ε

2−ε
2−α−(2−ε)(γ−α)

= α

lim
n→∞

log(pn − qn)−1

logNn
=

2 · α−ε
2−α−(2−ε)(γ−α) + (1 + ε) · (γ−α)(2−ε)

2−α−(2−ε)(γ−α) + ε

2−ε
2−α−(2−ε)(γ−α)

= γ

which completes the proof.

64



REDUCIBILITY AND COMPUTATIONAL LOWER BOUNDS

Appendix F. Reflection Cloning and Subgraph Stochastic Block Model

F.1. Reflecting Cloning and Rank-1 Submatrix

Suppose that n is even and fixed. Let R denote the linear operator on Rn×n matrices that reflects
a matrix horizontally about its vertical axis of symmetry. Let F denote the linear operator that
multiplies each entry on the right half of a matrix by −1. The reflection cloning reduction is to
iteratively update the matrix W to

W ← 1√
2

(RW σ + FW σ)

where σ is chosen uniformly at random and then to update W similarly with vertical analogues of
R and F . This achieves the same scaling of µ as GAUSSIAN-LIFTING but does not increase n. This
ends up tightly achieving the right parameter scaling to deduce the sharper hardness of ROSD and,
indirectly, SPCAD over problems that admit sum-tests such as PISD, PDSD, BCD and BSPCAD.
The parameter scaling in these problems is captured exactly by the cloning methods in the previous
two sections. Note that even without Step 3, REFLECTION-CLONING necessarily causes r′ and
c′ to have negative entries and hence cannot show hardness of BCD. We remark that all previous
cloning methods are in some sense lossy, introducing independent sources of randomness at each
entry of the input matrix. In contrast, the only randomness introduced in REFLECTION-CLONING

are random permutations of rows and columns, and ends up achieving a much sharper scaling in µ.
We remark that if r, c ∈ {−1, 0, 1} then r′ and c′ have most of their entries in {−1, 0, 1}.

However, those that are not are information-theoretically detectable. We note that if it were possible
to reduce from r, c ∈ {−1, 0, 1} to r′ and c′ with this property, then this would strengthen our
hardness results for SSBMD, SSWD,ROSD and SPCAD. Given a vector v ∈ Rn and permutation
σ of [n], let rσ denote the vector formed by permuting the indices of r according to σ.

Lemma 26 (Reflection Cloning) Suppose n is even and ` = O(log n). There is a randomized
polynomial-time computable map φ = REFLECTION-CLONING with φ : Rn×n → Rn×n and

1. It holds that
φ
(
N(0, 1)⊗n×n

)
∼ N(0, 1)⊗n×n

2. Consider any λ > 0 and any pair of vectors r, c ∈ Zn. Then there is a distribution π over
vectors r′, c′ ∈ Zn with ‖r′‖22 = 2`‖r‖22 and ‖c′‖22 = 2`‖c‖22 such that

φ
(
λ · rc> +N(0, 1)⊗n×n

)
∼
∫
L
(
λ

2`
· r′c′> +N(0, 1)⊗n×n

)
dπ(r′, c′)

where it holds with probability at least 1− 4‖r‖−1
0 − 4‖c‖−1

0 over π that

2`‖r‖0 ≥ ‖r′‖0 ≥ 2`‖r‖0
(

1−max

(
2C` · log(2`‖r‖0)

‖r‖0
,
2`‖r‖0
n

))
2`‖c‖0 ≥ ‖c′‖0 ≥ 2`‖c‖0

(
1−max

(
2C` · log(2`‖c‖0)

‖c‖0
,
2`‖c‖0
n

))
for some constant C if ‖r‖0 and ‖c‖0 are sufficiently large and at most 2−`−1n. Furthermore,
if r = c then r′ = c′ holds almost surely.
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Algorithm REFLECTION-CLONING

Inputs: Matrix M ∈ Rn×n where n is even, number of iterations `

1. Initialize W ←M

2. For i = 0, 1, . . . , `− 1 do:

a. Generate a permutation σ of [n] uniformly at random

a. Let W ′ ∈ Rn×n have entries

W ′ij =
1

2

(
W σ,σ
ij +W σ,σ

(n+1−i)j +W σ,σ
(n+1−i)(n+1−j) +W σ,σ

(n+1−i)(n+1−j)

)
W ′(n+1−i)j =

1

2

(
W σ,σ
ij −W

σ,σ
(n+1−i)j +W σ,σ

(n+1−i)(n+1−j) −W
σ,σ
(n+1−i)(n+1−j)

)
W ′i(n+1−j) =

1

2

(
W σ,σ
ij +W σ,σ

(n+1−i)j −W
σ,σ
(n+1−i)(n+1−j) −W

σ,σ
(n+1−i)(n+1−j)

)
W ′(n+1−i)(n+1−j) =

1

2

(
W σ,σ
ij −W

σ,σ
(n+1−i)j −W

σ,σ
(n+1−i)(n+1−j) +W σ,σ

(n+1−i)(n+1−j)

)
for each 1 ≤ i, j ≤ n/2

b. Set W ←W ′

3. Output W

Figure 14: Reflection cloning procedure in Lemma 26.

Proof Let φ(M) be implemented by the procedure REFLECTION-CLONING(M, `) as in Figure 6.
If ` = O(log n), this algorithm runs in randomized polynomial time. Let φ1(W ) denote the map
that takes the value W prior to an iteration of Step 2 as its input and outputs the value of W after
this iteration.

If W ∼ N(0, 1)⊗n×n, then it follows by a similar argument as in Lemma 7 that φ1(W ) ∼
N(0, 1)⊗n×n. Specifically, for each 1 ≤ i, j ≤ n/2 we have that

W ′ij
W ′(n+1−i)j
W ′i(n+1−j)

W ′(n+1−i)(n+1−j)

 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·


W σ,σ
ij

W σ,σ
(n+1−i)j

W σ,σ
i(n+1−j)

W σ,σ
(n+1−i)(n+1−j)


where σ is the random permutation generated in Step 2a. It holds that W σ,σ ∼ N(0, 1)⊗n×n

and therefore that the vector of entries on the right hand side above is distributed as N(0, 1)⊗4.
Since the coefficient matrix is orthogonal, it follows that the vector on the left hand side is also
distributed as N(0, 1)⊗4. Since the σ-algebras σ{W σ,σ

ij ,W σ,σ
(n+1−i)j ,W

σ,σ
i(n+1−j),W

σ,σ
(n+1−i)(n+1−j)}

are independent as (i, j) ranges over [n/2]2, it follows thatW ′ = φ1(W ) ∼ N(0, 1)⊗n×n. Iterating,
it now follows that φ(N(0, 1)⊗n×n) ∼ N(0, 1)⊗n×n, establishing Property 1.
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Now consider the case when W = λ · rc> + U where U ∼ N(0, 1)⊗n×n. Note that W ′ can be
expressed in terms of W σ,σ as

W ′ =
1

2
(A+B)>W σ,σ (A+B)> =

λ

2
(Arσ +Brσ) (Acσ +Bcσ)>+

1

2
(A+B)> Uσ,σ (A+B)

where B is the n× n matrix with ones on its anti-diagonal and zeros elsewhere, and A is given by

A =

[
In/2 0

0 −In/2

]
Note that 1

2 (A+B)> Uσ,σ (A+B) is distributed as φ1(U) ∼ N(0, 1)⊗n×n. Since A + B is
symmetric and satisfies that (A+B)2 = 2 · In, we have that

‖Arσ +Brσ‖22 = 2‖rσ‖22 = 2‖r‖22 and ‖Acσ +Bcσ‖22 = 2‖cσ‖22 = 2‖c‖22

Let r0 = r and ri+1 = Arσi + Brσi where σi is the permutation generated in the ith iteration of
Step 2. It follows by induction that r` ∈ Zn and ‖r`‖22 = 2`‖r‖22 hold almost surely. Analogously
define ci for each 0 ≤ i ≤ ` and note that

φ
(
λ · rc> +N(0, 1)⊗n×n

)
∼ L

(
λ

2`
· r`c>` +N(0, 1)⊗n×n

)
Furthermore note that if r0 = r = c = c0, then ri = ci for all i holds almost surely. Thus it suffices
to show that the desired bounds on ‖r`‖0 and ‖c`‖0 hold with high probability in order to establish
Property 2.

Note that since A + B has two nonzero entries per row and column, it follows that 2‖ri‖0 ≥
‖ri+1‖0 for all i. Now consider the set

Si = {{j, n+ 1− j} : j, n+ 1− j ∈ supp (rσi )}

Note that if j ∈ supp (rσi ), then j is only not in the support of ri+1 if it is in some unordered pair in
Si. Also note that (ri+1)j + (ri+1)n+1−j = 2rσj 6= 0 if j is in some unordered pair in Si. Therefore
at most one element per unordered pair of Si can be absent from the support of ri+1. This implies
that 2‖ri‖0−‖ri+1‖0 ≤ |Si| for each i. For each 1 ≤ j ≤ n/2, let Xj be the indicator for the event
that {j, n+ 1− j} ∈ Si. Let t = ‖ri‖0 and note that |Si| = X1 +X2 + · · ·+Xn/2. For any subset
T ⊆ [n/2], it follows that if |T | ≤ n/2 then

E

∏
j∈T

Xj

 =
t(t− 1) · · · (t− 2|T |+ 1)

n(n− 1) · · · (n− 2|T |+ 1)
≤
(
t

n

)2|T |

and if |T | > n/2, then this expectation is zero. Let Y ∼ Bin(n/2, t2/n2) and note that the above
inequality implies that E[|Si|k] ≤ E[Y k] for all j ≥ 0. This implies that if θ ≥ 0, then

E[exp(θ|Si|)] ≤ E[exp(θY )] =

(
1 + (eθ − 1) · t

2

n2

)n/2
≤ exp

(
(eθ − 1) · t

2

2n

)
A Chernoff bound now yields that

P[|Si| ≥ k] ≤ exp

(
(eθ − 1) · t

2

2n
− θk

)
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Setting k = t2/n and θ = ln 2 yields that

P
[
|Si| ≥

t2

n

]
≤
(e

4

) t2

2n ≤ 1

t

if t2/2n ≥ log4/e t. If t2/2n < log4/e t, setting θ = ln 2 and k = 1
ln 2

(
log4/e t+ ln t

)
= C log t

yields

P [|Si| ≥ C log t] ≤ exp

(
t2

2n
− (ln 2)k

)
=

1

t

Therefore with probability at least 1 − 1/‖ri‖0, it follows that |Si| < max(C log ‖ri‖0, ‖ri‖20/n).
Note that this inequality implies that

‖ri+1‖0 ≥ 2‖ri‖0 − |Si| ≥ 2‖ri‖0
(

1−max

(
C log ‖ri‖0
‖ri‖0

,
‖ri‖0
n

))
We now will show by induction on 0 ≤ j ≤ ` that as long as ‖r‖0 is sufficiently large, we have

‖rj‖0 ≥ 2j‖r‖0
(

1−max

(
2Cj · log(2j‖r‖0)

‖r‖0
,
2j‖r‖0
n

))
(1)

holds with probability at least

1− 4(1− 2−j)

‖r‖0
The claim is vacuously true when j = 0. Now assume that this holds for a particular j. Now note
that since j ≤ ` and ‖r‖0 is sufficiently large but at most 2−`−1n, we have that

max

(
2Cj · log(2j‖r‖0)

‖r‖0
,
2j‖r‖0
n

)
≤ 1

2

Therefore ‖rj‖0 ≥ 2j−1‖r‖0. We now condition on the value of ‖rj‖0 and the event (7.1) holds.
Under this conditioning, it follows by the induction hypothesis that with probability at least 1 −
1/‖rj‖0 ≥ 1− 21−j‖r‖−1

0 , we have that

‖rj+1‖0 ≥ 2j+1‖r‖0
(

1−max

(
2Cj · log(2j‖r‖0)

‖r‖0
,
2j‖r‖0
n

))(
1−max

(
C log ‖rj‖0
‖rj‖0

,
‖rj‖0
n

))
2j+1‖r‖0

(
1−max

(
2C(j + 1) · log(2j+1‖r‖0)

‖r‖0
,
2j+1‖r‖0

n

))
since 2j−1‖r‖0 ≤ ‖rj‖ ≤ 2j‖r‖0. Marginalizing over ‖rj‖0 and whether or not (7.1) holds yields
that the above inequality holds with probability at least(

1− 4(1− 2−j)

‖r‖0

)(
1− 21−j

‖r‖−1
0

)
≥ 1− 4(1− 2−j)

‖r‖0
− 21−j

‖r‖0
= 1− 4(1− 2−j−1)

‖r‖0

which completes the induction. Obtaining symmetric results for c and taking j = ` completes the
proof of the lemma.

Combining this reflection cloning procedure with the reduction from planted clique to biclus-
tering yields a reduction from planted clique to rank-1 submatrix.
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Algorithm ROS-REDUCTION

Inputs: Graph G ∈ Gn, number of iterations `

1. Compute the output W of BC-REDUCTION applied to G with zero iterations

2. Return the output of REFLECTION-CLONING applied to W with ` iterations

Figure 15: Reduction to rank-1 submatrix in Lemma 27.

Lemma 27 Suppose that n is even and 2`k < n
log k where n is sufficiently large. Let

µ =
log 2

2
√

6 log n+ 2 log 2

There is a randomized polynomial time computable map φ = ROS-REDUCTION with φ : Gn →
Rn×n such that if G is an instance of PC(n, k, 1/2) then under H0, it holds that

dTV
(
LH0(φ(G)), N(0, 1)⊗n×n

)
= O

(
1√

log n

)
and, under H1, there is a prior π on pairs of unit vectors in Vn,2`k such that

dTV

(
LH1(φ(G)),

∫
L
(
µk√

2
· uv> +N(0, 1)⊗n×n

)
dπ(u, v)

)
= O

(
1√

log n
+ k−1

)
Proof Let φ = ROS-REDUCTION be as in Figure 15. Let φ1 : Gn → Rn×n and φ2 : Rn×n →
Rn×n denote the maps in Steps 1 and 2, respectively. By Lemma 20, it holds that

dTV
(
φ1(G(n, 1/2)), N(0, 1)⊗n×n

)
= O

(
1√

log n

)
dTV

(
φ1(G(n, k, 1/2)),

∫
L
(
µ√
2
· 1S1>T +N(0, 1)⊗n×n

)
dπ′(S, T )

)
= O

(
1√

log n

)
where π′ is the uniform distribution over pairs of k-subsets S, T ⊆ [n]. By Lemma 26, it holds that
φ2 (N(0, 1)⊗n×n) ∼ N(0, 1)⊗n×n. By the data processing inequality, we have that

dTV
(
LH0(φ(G)), N(0, 1)⊗n×n

)
= dTV

(
φ2 ◦ φ1(G(n, 1/2)), φ2

(
N(0, 1)⊗n×n

))
≤ dTV

(
φ1(G(n, 1/2)), N(0, 1)⊗n×n

)
= O

(
1√

log n

)
LetM be a the matrix distributed as µ√

2
·1S1>T +N(0, 1)⊗n×n where S and T are k-element subsets

of [n] chosen uniformly at random. It follows that the distribution of φ2(M) conditioned on the sets
S and T is given by

L (φ2 (M) |S, T ) ∼
∫
L
(

µ

2`
√

2
· rc> +N(0, 1)⊗n×n

)
dπ(r, c)
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where π is the prior in Lemma 26. As shown in Lemma 26, it follows that each pair (r, c) in the
support of π satisfies that ‖r‖22 = 2`‖1S‖22 = 2`k and ‖c‖22 = 2`‖1T ‖22 = 2`k and that ‖r‖0, ‖c‖0 ≤
2`k. Now consider the prior πS,T which is π conditioned on the event that the following inequalities
hold

‖r‖0, ‖c‖0 ≥ 2`k

(
1−max

(
2C` · log(2`k)

k
,
2`k

n

))
As shown in Lemma 26, this event occurs with probability at least 1 − 8/k. Since 2`k < n

log k , it
follows that if u = 1√

2`k
· r and v = 1√

2`k
· c then πS,T induces a prior over pairs (u, v) in Vn,2`k.

This follows from the fact that r, c ∈ Zn implies that u and v have nonzero entries with magnitudes
at least 1/

√
2`k. Applying Lemma 7 yields that since 2−`µ · rc> = µk · uv>,

dTV

(
L (φ2 (M) |S, T ) ,

∫
L
(
µk√

2
· uv> +N(0, 1)⊗n×n

)
dπS,T (u, v)

)
≤ 8

k

Let π(u, v) = ES,T [πS,T (u, v)] be the prior formed by marginalizing over S and T . Note that π is
also supported on pairs of unit vectors in Vn,2`k. By the triangle inequality, it follows that

dTV

(
L (φ2 (M)) ,

∫
L
(
µk√

2
· uv> +N(0, 1)⊗n×n

)
dπ(u, v)

)
≤ ES,T

[
dTV

(
L (φ2 (M) |S, T ) ,

∫
L
(
µk√

2
· uv> +N(0, 1)⊗n×n

)
dπS,T (u, v)

)]
≤ 8

k

By the triangle inequality and data processing inequality, we now have that

dTV

(
LH1(φ(G)),

∫
L
(
µk√

2
· uv> +N(0, 1)⊗n×n

)
dπ(u, v)

)
≤ dTV (LH1(φ2 ◦ φ1(G)),L(φ2(M)))

+ dTV

(
L (φ2 (M)) ,

∫
L
(
µk√

2
· uv> +N(0, 1)⊗n×n

)
dπ(u, v)

)
= O

(
1√

log n

)
+

8

k
= O

(
1√

log n
+ k−1

)
sinceM is a sample from the mixture

∫
L
(
µ√
2
· 1S1>T +N(0, 1)⊗n×n

)
dπ′(S, T ). This completes

the proof of the lemma.

This lemma provides a polynomial time map from an instance of PCD(n, k, 1/2) toN(0, 1)⊗n×n

under H0 and to a distribution in the composite hypothesis H1 of ROSD(n, 2`k, 2−1/2µ) under H1.
Now we deduce the hard regime of ROSD given the planted clique conjecture as in the next theo-
rem. Here, we consider the asymptotic regime µ

k = Θ̃(n−α) to be consistent with Figure 4. The
purpose of this parameterization is to focus on the factor µ

k required to normalize entries in the
planted submatrix to have magnitude approximately 1. This enables a valid comparison between
the hardness of ROSD and BCD.

Theorem 28 Letα > 0 and β ∈ (0, 1) be such that β < 1
2+α. There is a sequence {(Nn,Kn, µn)}n∈N

of parameters such that:
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1. The parameters are in the regime µ
K = Θ̃(N−α) and K = Θ̃(Nβ) or equivalently,

lim
n→∞

log(Knµ
−1
n )

logNn
= α and lim

n→∞

logKn

logNn
= β

2. For any sequence of randomized polynomial-time tests φn : GNn → {0, 1}, the asymptotic
Type I+II error of φn on the problems ROSD(Nn,Kn, µn) is at least 1 assuming the PC
conjecture holds with density p = 1/2.

Therefore the computational boundary for ROSD(n, k, µ) in the parameter regime µ
k = Θ̃(n−α)

and k = Θ̃(nβ) is β∗ = 1
2 + α and α∗ = 0 when β < 1

2 .

Proof If β < 2α then ROSD is information-theoretically impossible. Thus we may assume that
β ≥ 2α. Let γ = β − α and note that γ ∈ (0, 1/2). Now set

`n = dα log2 ne, kn = dnγe, Nn = 2n, Kn = 2`nkn, µn =
µkn√

2

where µ = log 2
2
√

6 logn+2 log 2
. By Lemma 27, there is a randomized polynomial time algorithm map-

ping PCD(2n, kn, 1/2) to the detection problem ROSD(Nn,Kn, µn) under H0 and to a prior over
H1 with total variation converging to zero as n → ∞. This map with Lemma 4 now implies that
property 2 above holds. We now verify property 1. Note that

lim
n→∞

log(Knµ
−1
n )

logNn
= lim

n→∞

dα log2 ne · log 2− log(µ/
√

2)

log n+ log 2
= α

lim
n→∞

logKn

logNn
= lim

n→∞

dα log2 ne · log 2 + log kn
log n+ log 2

= α+ (β − α) = β

which completes the proof.

F.2. Sparse Spiked Wigner Matrix

We now show a computational lower bound for sparse spiked Wigner matrix detection given the
planted clique conjecture. As observed in Section 2, it suffices to reduce from planted clique to
SROSD. This is because ifM is an instance of SROSD(n, k, µ), then 1√

2
(M +M>) is an instance

of SSWD(n, k, µ/
√

2). This transformation implies that any computational lower bound that ap-
plies to SROSD(n, k, µ) also applies to SSWD(n, k, µ/

√
2). The rest of this section is devoted to

giving a reduction to SROSD(n, k, µ).
Our reduction uses the symmetry preserving property of reflection cloning and yields the same

computational barrier as for ROSD. However, there are two subtle differences between this reduc-
tion and that in Lemma 27. In order to show hardness for SROSD, it is important to preserve the
symmetry of the planted sparse structure. This requires planting the hidden entries along the diag-
onal of the adjacency matrix of the input graph G, which we do by an averaging trick. However,
this induces an arbitrarily small polynomial loss in the size of the spike, unlike in the reduction to
ROSD. Although this does not affect our main theorem statement for SROSD, which only consid-
ers poly(n) size factors, it yields a weaker lower bound than that in Theorem 28 when examined up
to sub-polynomial factors. This reduction to SROSD will also serve as the main sub-routine in our
reduction to SSBMD.
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Algorithm SROS-REDUCTION

Inputs: Planted clique instance G ∈ Gn with clique size k where n is even, iterations `

1. Let RKG = RK (1→ N(µ, 1), 1/2→ N(0, 1), N) where N = d6 log2 ne and µ =
log 2

2
√

6 logn+2 log 2
and form the symmetric matrix W ∈ Rn×n with Wii = 0 and for all i < j,

Wij = RKG
(
1{i,j}∈E(G)

)
2. Sample an antisymmetric matrix A ∈ Rn×n with i.i.d. N(0, 1) entries below its main

diagonal and sample two matrices B,C ∈ Rn×n with i.i.d. N(0, 1) off-diagonal and zero
diagonal entries

3. Form the matrix M ∈ Rn×n with

Mij =
k − 1

2
√
n− 1

(
Wij +Aij +Bij ·

√
2
)

+ Cij ·
√

1− (k − 1)2

n− 1

for all i 6= j and

Mii =
1

2
√
n− 1

n∑
j=1

(
Wij +Aij −Bij ·

√
2
)

4. Update M to be the output of REFLECTION-CLONING applied with ` iterations to M

5. Output Mσ,σ where σ is a permutation of [n] chosen uniformly at random

Figure 16: Reduction to sparse spiked Wigner matrix in Lemma 29.

Lemma 29 Suppose that n is even and 2`k < n
log k where n is sufficiently large. Let

µ =
log 2

2
√

6 log n+ 2 log 2

There is a randomized polynomial time computable map φ = SROS-REDUCTION with φ : Gn →
Rn×n such that if G is an instance of PC(n, k, 1/2) then under H0, it holds that

dTV
(
LH0(φ(G)), N(0, 1)⊗n×n

)
= O(n−1)

and, under H1, there is a prior π on unit vectors in Vn,2`k such that

dTV

(
LH1(φ(G)),

∫
L

(
µk(k − 1)

2
√

(n− 1)
· vv> +N(0, 1)⊗n×n

)
dπ(v)

)
= O

(
n−1

)
Proof Let φ = SROS-REDUCTION be as in Figure 16. Applying the total variation bounds in
Lemma 14 and entry-wise coupling as in Lemma 22 yields that

dTV (LH0(W ),Mn(N(0, 1))) = O(n−1) and dTV (LH1(W ),Mn(k,N(µ, 1), N(0, 1))) = O(n−1)
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Let W ′ ∈ Rn×n be such that W ′ ∼ Mn(N(0, 1)) under H0 and W ′ ∼ Mn(k,N(µ, 1), N(0, 1))
under H1. Let M ′ denote the matrix computed in Step 3 using the matrix W ′ in place of W . We
will first argue that under H0, the variables W ′ij +Aij +Bij ·

√
2 and W ′ij +Aij −Bij ·

√
2 for all

i 6= j are independent. First note that the σ-algebras σ{W ′ij , Aij , Bij} for all i < j are independent.
Therefore it suffices to verify that the four variables W ′ij +Aij±Bij ·

√
2 and W ′ji+Aji±Bji ·

√
2

are independent. Observe that these four variables are jointly Gaussian and satisfy that

1

2
·


W ′ij +Aij +Bij ·

√
2

W ′ij +Aij −Bij ·
√

2

W ′ji +Aji +Bji ·
√

2

W ′ji +Aji −Bji ·
√

2

 =
1

2
·


1 1

√
2 0

1 1 −
√

2 0

1 −1 0
√

2

1 −1 0 −
√

2

 ·

W ′ij
Aij
Bij
Bji


since W ′ is symmetric and A is antisymmetric. Observe that W ′ij , Aij , Bij , Bji are independent
Gaussians and since the coefficient matrix above is orthogonal, it follows that the vector on the
left hand side above is distributed as N(0, 1)⊗4 and thus has independent entries. Since the C has
i.i.d. N(0, 1) entries off of its diagonal and W ′, A,B and C all have zero diagonals, it follows that
Var(M ′ij) = 1 for all i, j ∈ [n]. Since the entries of M ′ are independent and each entry is Gaussian
with variance 1, it follows that M ′ ∼ N(0, 1)⊗n×n.

Now suppose that H1 holds and let S ⊆ [n] be indices of the rows and columns containing
the planted N(µ, 1) entries of W ′. It now follows that W ′ij = µ + W ′′ij if i 6= j and i, j ∈ S and
W ′ij = W ′′ij where W ′′ ∼Mn(N(0, 1)). Now note that if i 6= j, we have that conditioned on S,

M ′ij =
(k − 1)µ

2
√
n− 1

· 1{i,j∈S} +
k − 1

2
√
n− 1

(
W ′′ij +Aij +Bij ·

√
2
)

+ Cij ·
√

1− (k − 1)2

n− 1

∼ (k − 1)µ

2
√
n− 1

· 1{i,j∈S} +N(0, 1)

by applying the previous argument to W ′′. Furthermore M ′ii has diagonal entries

M ′ij =
(k − 1)µ

2
√
n− 1

· 1{i,j∈S} +
1

2
√
n− 1

n∑
j=1

(
W ′′ij +Aij −Bij ·

√
2
)

∼ (k − 1)µ

2
√
n− 1

· 1{i∈S} +N(0, 1)

conditioned on S. Therefore M ′|S ∼ (k−1)µ

2
√
n−1
· 1S1>S + N(0, 1)⊗n×n. Now by the data processing

inequality, we now have that under H0,

dTV
(
LH0(M), N(0, 1)⊗n×n

)
≤ dTV (LH0(W ),Mn(N(0, 1))) = O(n−1)

By the data processing and triangle inequalities, we have that

dTV

(
LH1(M),

∫
L

(
(k − 1)µ

2
√

(n− 1)
· 1S1>S +N(0, 1)⊗n×n

)
dπ′(S)

)

≤ ESdTV

(
LH1(M),

(k − 1)µ

2
√

(n− 1)
· 1S1>S +N(0, 1)⊗n×n

)
= O(n−1)
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where π′ is the uniform distribution on k-subsets of [n]. Now applying the same argument as in
the proof of Lemma 27 and the fact that REFLECTION-CLONING preserves the fact that the rank-1
mean submatrix is symmetric as shown in Lemma 26, proves the lemma.

We now use this lemma to deduce the computational barriers for SROSD and SSWD. Although
the barrier matches Theorem 28, the parameter settings needed to achieve it are slightly different
due to the polynomial factor loss in the reduction in Lemma 29.

Theorem 30 Letα > 0 and β ∈ (0, 1) be such that β < 1
2+α. There is a sequence {(Nn,Kn, µn)}n∈N

of parameters such that:

1. The parameters are in the regime µ
K = Θ̃(N−α) and K = Θ̃(Nβ) or equivalently,

lim
n→∞

log(Knµ
−1
n )

logNn
= α and lim

n→∞

logKn

logNn
= β

2. For any sequence of randomized polynomial-time tests φn : GNn → {0, 1}, the asymptotic
Type I+II error of φn on the problems SROSD(Nn,Kn, µn) and SSWD(Nn,Kn, µn/

√
2)

is at least 1 assuming the PC conjecture holds with density p = 1/2.

Therefore the computational boundaries for SROSD(n, k, µ) and SSWD(n, k, µ) in the parameter
regime µ

k = Θ̃(n−α) and k = Θ̃(nβ) is β∗ = 1
2 + α and α∗ = 0 when β < 1

2 .

Proof When 2α > β, it holds that SROSD is information-theoretically impossible. Therefore we
may assume that 2α ≤ β and in particular that α < 1

2 . Now suppose that β < 1
2 +α. First consider

the case when β ≥ 1
2 and let ε = 1

2

(
α+ 1

2 − β
)
∈
(
0, 1

2

)
. Now set

`n =

⌈(
β − 1

2
+ ε

)
log2 n

⌉
, kn =

⌈
n

1
2
−ε
⌉
, Nn = 2n, Kn = 2`nkn, µn =

µkn(kn − 1)

2
√
n− 1

where µ = log 2
2
√

6 logn+2 log 2
. By Lemma 29, there is a randomized polynomial time algorithm map-

ping PCD(2n, kn, 1/2) to the detection problem SROSD(Nn,Kn, µn) under H0 and to a prior over
H1 with total variation converging to zero as n → ∞. This map with Lemma 4 now implies that
property 2 above holds. We now verify property 1. Note that

lim
n→∞

log(Knµ
−1
n )

logNn
= lim

n→∞

⌈(
β − 1

2 + ε
)

log2 n
⌉
· log 2− log(kn − 1)− log(µ/2) + 1

2 log(n− 1)

log n+ log 2

= (β − 1

2
+ ε)−

(
1

2
− ε
)

+
1

2
= α

lim
n→∞

logKn

logNn
= lim

n→∞

⌈(
β − 1

2 + ε
)

log2 n
⌉
· log 2 + log kn

log n+ log 2
=

(
β − 1

2
+ ε

)
+

1

2
− ε = β

Now consider the case when β < 1
2 and α > 0. In this case, set `n = 0, kn =

⌈
n

1
2
−ε
⌉

, Kn = kn

and

Nn = 2
⌈
n

1
β ( 1

2
−ε)
⌉

and µn =
µ′kn(kn − 1)

2
√
n− 1
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Algorithm SSBM-REDUCTION

Inputs: Planted clique instance G ∈ Gn with clique size k where n is even, iterations `

1. Compute the output M of SROS-REDUCTION applied to G with ` iterations

2. Sample n i.i.d. Rademacher random variables x1, x2, . . . , xn and update each entry of M
to be Mij ← xixjMij

3. Output the graph H where {i, j} ∈ E(H) if and only if Mij > 0 for each i < j

Figure 17: Reduction to the subgraph stochastic block model in Lemma 31.

where ε = min
(

α
2(α+β) ,

1
2 − β

)
and

µ′ =
log 2

2
√

6 log n+ 2 log 2
· nε−

α
β ( 1

2
−ε)

Note that ε ≤ α
2(α+β) implies that ε − α

β

(
1
2 − ε

)
≤ 0. By Lemma 29, there is a randomized poly-

nomial time algorithm mapping PCD(2n, kn, 1/2) to the detection problem SROSD(2n,Kn, µn)
under H0 and to a prior over H1 with total variation converging to zero as n → ∞. Now consider
the map that pads the resulting instance with i.i.d. N(0, 1) random variables until it is Nn × Nn.
Note that since ε ≤ 1

2 − β, we have that Nn ≥ 2n. By the data processing and triangle inequal-
ities, it follows that this map takes PCD(2n, kn, 1/2) to SSWD(Nn,Kn, µn) with total variation
converging to zero as n→∞. This implies that property 2 above holds and we now verify property
1. Note

lim
n→∞

log(Knµ
−1
n )

logNn
= lim

n→∞

log 2 + 1
2 log(n− 1)− log(kn − 1)− logµ′

log 2 + 1
β

(
1
2 − ε

)
log n

=

1
2 −

(
1
2 − ε

)
−
(
ε− α

β

(
1
2 − ε

))
1
β

(
1
2 − ε

) = α

lim
n→∞

logKn

logNn
= lim

n→∞

(
1
2 − ε

)
log n

log 2 + 1
β

(
1
2 − ε

)
log n

= β

which completes the proof of the theorem.

F.3. Subgraph Stochastic Block Model

In this section, we show tight hardness for the subgraph stochastic block using the reflection cloning
reduction from planted clique to SROSD. This captures the sharper hardness of detection in the
subgraph stochastic block model over planted dense subgraph and the lack of a sum test. Note that
here total variation distance under H1 refers to the total variation distance to some prior over the
distributions in H1.
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Lemma 31 Suppose that n is even and δ ∈ (0, 1/2) is such that (2`k)1+2δ = O(n) and k =
Ω
(
nδ
)
. Let µ > 0 be such that

µ =
log 2

2
√

6 log n+ 2 log 2

There is a polynomial time map φ = SSBM-REDUCTION with φ : Gn → Gn such that for some
mixture LSSBM of distributions in GB

(
n, 2`k, 1/2, ρ

)
, it holds that

dTV (φ(G(n, 1/2)), G(n, 1/2)) = O
(
n−1

)
and dTV (φ(G(n, k, 1/2)),LSSBM) = O

(
k−1

)
where ρ is given by

ρ = Φ

(
µ(k − 1)

2`+1
√
n− 1

)
− 1

2

Proof Given a vector v ∈ Zn and β > 0, let M(β, v) ∈ Rn×n be distributed as β · vv> +
N(0, 1)⊗n×n. Let S ⊆ [n] and P ∈ [0, 1]|S|×|S| be a symmetric matrix with zero diagonal entries
and rows and columns indexed by vertices in S. Let G (n, S, P, q) be the distribution on graphs G
generated as follows:

1. if i 6= j and i, j ∈ S then the edge {i, j} ∈ E(G) independently with probability Pij ; and

2. all other edges of G are included independently with probability q.

Now let τ : Rn×n → Gn be the map sending a matrix M to the graph G such that

E(G) = {{i, j} : Mij > 0 and i < j}

In other words, G is the graph formed by thresholding the entries of M below its main diagonal
at zero. Suppose that v ∈ Zn is k-sparse and S = supp(v). Since the entries of M(β, v) are
independent, it follows that

τ (M(β, v)) ∼ G(n, S, P, q) where Pij = Φ (β · vivj) for each i, j ∈ S

Now let S = A ∪ B where A = A(v) = {i ∈ S : vi > 0} and B = B(v) = {i ∈ S : vi < 0}.
Note that since v ∈ Zn, it follows that if i, j ∈ A or i, j ∈ B then vivj ≥ 1 and thus Pij =
Φ (β · vivj) ≥ Φ(β). Furthermore if (i, j) ∈ A × B or (i, j) ∈ B × A then vivj ≤ −1 and
Pij = Φ (β · vivj) ≤ 1 − Φ(β). Now note that if σ is a permutation of [n] chosen uniformly at
random then

L (τ (M(β, v))σ) = L (τ (M(β, v)σ,σ)) ∈ GB (n, k, 1/2,Φ(β)− 1/2)

if it also holds that k2 − k
1−δ ≤ |A|, |B| ≤ k

2 + k1−δ.
Let φ1 = SROS-REDUCTION and let W ∼ N(0, 1)⊗n×n. As shown in Lemma 29,

dTV (φ1(G(n, 1/2)),L(W )) = O(n−1)

Now observe that since N(0, 1) is symmetric and since the entries of W are independent, the
distribution of W is invariant to flipping the signs of any subset of the entries of W . Therefore
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xx> ◦W ∼ N(0, 1) where ◦ denotes the entry-wise or Schur product on Rn×n and x ∈ {−1, 1}n
is chosen uniformly at random. Therefore the data processing inequality implies that

dTV

(
L
(
xx> ◦ φ1(G(n, 1/2))

)
,L(W )

)
= dTV

(
L
(
xx> ◦ φ1(G(n, 1/2))

)
,L
(
xx> ◦W

))
≤ dTV (φ1(G(n, 1/2)),L(W )) = O(n−1)

Now note that φ(G(n, 1/2)) is distributed as τ
(
xx> ◦ φ1(G(n, 1/2))

)
and that τ (N(0, 1)⊗n×n) is

distributed as G(n, 1/2). It follows by the data processing inequality that

dTV (φ(G(n, 1/2)), G(n, 1/2)) = dTV

(
L
(
τ
(
xx> ◦ φ1(G(n, 1/2))

))
,L(τ(W ))

)
= O(n−1)

Repeating the analysis in Lemmas 27 and 29 without converting the prior in Lemma 26 to be over
unit vectors yields that there is a prior π on vectors in u ∈ Zn such that

dTV

(
φ1(G(n, k, 1/2)),

∫
L
(

µ(k − 1)

2`+1
√
n− 1

· uu> +N(0, 1)⊗n×n
)
dπ(u)

)
= O

(
n−1

)
and such that with probability at least 1− 8k−1 it holds that

2`k ≥ ‖u‖0 ≥ 2`k

(
1−max

(
2C` · log(2`k)

k
,
2`k

n

))
= 2`k −O

(
2`(log n)2 + (2`k)1−2δ

)
where C > 0 is the constant in Lemma 26. Now let π′ be the prior π conditioned on the inequality
above. It follows by Lemma 7 that dTV(π, π′) ≤ 8k−1. Now let β = µ(k−1)

2`+1
√
n−1

and let the matrix
M ′ be distributed as

M ′ ∼
∫
L
(
β · uu> +N(0, 1)⊗n×n

)
dπ(u)

As above, let x ∈ {−1, 1}n be chosen uniformly at random. The same argument above shows that

L
(
xx> ◦M ′

∣∣∣x ◦ u = v
)

= L
(
β · vv> +N(0, 1)⊗n×n

)
= L(M(β, v))

As shown above, this implies that

L
(
τ
(
xx> ◦M ′

) ∣∣∣x ◦ u = v
)
∈ GB

(
n, 2`k, 1/2,Φ(β)− 1/2

)
as long as 2`−1k − (2`k)1−δ ≤ |A(v)|, |B(v)| ≤ 2`−1k + (2`k)1−δ. Let π′′(x, u) be the product
distribution of L(x) and π′ conditioned on the event that these inequalities hold for v = x ◦ u. Now
note that conditioning on u yields that |A(x ◦ u)|+ |B(x ◦ u)| = ‖u‖0 and |A(x ◦ u)| is distributed
as Bin(‖u‖0, 1/2). By Hoeffding’s inequality, we have that conditioned on u,

P
[∣∣∣∣|A(x ◦ u)| − 1

2
‖u‖0

∣∣∣∣ >√‖u‖0 log k

]
≤ 2

k2

Note that if this inequality holds for |A(x ◦ u)|, then it also holds for |B(x ◦ u)| since these sum to
‖u‖0. Therefore with probability at least 1− 2k−2, it holds that∣∣∣|A(x ◦ u)| − 2`−1k

∣∣∣ ≤ ∣∣∣∣|A(x ◦ u)| − 1

2
‖u‖0

∣∣∣∣+O
(

2`(log n)2 + (2`k)1−2δ
)

= O
(√

2`k log k + 2`(log n)2 + (2`k)1−2δ
)
≤ (2`k)1−δ
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for sufficiently large k and the same inequalities hold for |B(x ◦ u)|. This verifies that the desired
inequalities on |A(x ◦ u)| and |B(x ◦ u)| hold with probability at least 1 − 2k−2 over L(x) ⊗
π(u). Applying Lemma 7 therefore yields that dTV (L(x)× π′(u), π′′(x, u)) ≤ 2k−2. The data
processing and triangle inequalities then imply that

dTV
(
L(x)⊗ π(u), π′′(x, u)

)
≤ dTV

(
L(x)⊗ π(u),L(x)⊗ π′(u)

)
+ dTV

(
L(x)⊗ π′(u), π′′(x, u)

)
≤ dTV(π, π′) + 2k−2 = O(k−1)

Now observe that

dTV

(
φ(G(n, k, 1/2),

∫
L
(
τ
(
xx> ◦M ′

) ∣∣∣x, u) dπ′′(x, u)

)
≤ dTV

(
L
(
τ
(
xx> ◦ φ1(G(n, k, 1/2)

))
,

∫
L
(
τ
(
xx> ◦M ′

) ∣∣∣x, u) dL(x)dπ(u)

)
+ dTV

(∫
L
(
τ
(
xx> ◦M ′

) ∣∣∣x, u) dL(x)dπ(u),

∫
L
(
τ
(
xx> ◦M ′

) ∣∣∣x, u) dπ′′(x, u)

)
≤ dTV

(
φ1(G(n, k, 1/2),L(M ′)

)
+ dTV

(
L(x)⊗ π(u), π′′(x, u)

)
= O(n−1) +O(k−1) = O(k−1)

By the definition of π′′, the distribution

LSSBM =

∫
L
(
τ
(
xx> ◦M ′

) ∣∣∣x, u) dπ′′(x, u)

is a mixture of distributions in GB
(
n, 2`k, 1/2,Φ(β)− 1/2

)
, completing the proof of the lemma.

Applying this reduction and setting parameters similarly to Theorem 30 yields the following
computational lower bound for the subgraph stochastic block model.

Theorem 32 Let α ∈ [0, 2) and β ∈ (δ, 1 − 3δ) be such that β < 1
2 + α. There is a sequence

{(Nn,Kn, qn, ρn)}n∈N of parameters such that:

1. The parameters are in the regime q = Θ(1), ρ = Θ̃(N−α) and K = Θ̃(Nβ) or equivalently,

lim
n→∞

log ρ−1
n

logNn
= α, lim

n→∞

logKn

logNn
= β and lim

n→∞
qn = q

2. For any sequence of randomized polynomial-time tests φn : GNn → {0, 1}, the asymptotic
Type I+II error of φn on the problems SSBMD(Nn,Kn, qn, ρn) is at least 1 assuming the
PC conjecture holds with density p = 1/2.

Therefore the computational boundary for SSBMD(n, k, q, ρ) in the parameter regime q = Θ(1),
ρ = Θ̃(n−α) and k = Θ̃(nβ) is β∗ = 1

2 + α.

Proof When 2α > β, it holds that SSBMD is information-theoretically impossible. Therefore we
may assume that 2α ≤ β and in particular that α < 1

2 . Now suppose that β < 1
2 + α. We consider
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the cases β ≥ 1
2 and β < 1

2 and q ≤ 1
2 and q > 1

2 , separately. First consider the case when β ≥ 1
2

and q ≤ 1
2 . Let ε = 1

2

(
α+ 1

2 − β
)
∈
(
0, 1

2

)
and set parameters similarly to Theorem 30 with

`n =

⌈(
β − 1

2
+ ε

)
log2 n

⌉
, kn =

⌈
n

1
2
−ε
⌉
, Nn = 2n, Kn = 2`nkn, qn = q

ρn = 2q · Φ
(

µ(kn − 1)

2`n+1
√
n− 1

)
− q

where µ = log 2
2
√

6 logn+2 log 2
. By Lemma 31, there is a randomized polynomial time algorithm

mapping PCD(2n, kn, 1/2) to the detection problem SSBMD(Nn,Kn, 1/2, (2q)
−1ρn) under H0

and to a prior over H1 with total variation converging to zero as n → ∞. Now consider the
algorithm that post-processes the resulting graph by keeping each edge independently with prob-
ability 2q. This maps any instance of SSBMD(Nn,Kn, 1/2, (2q)

−1ρn) exactly to an instance of
SSBMD(Nn,Kn, q, ρn). Therefore the data processing inequality implies that these two steps to-
gether yield a reduction that combined with Lemma 4 implies property 2 holds. Now observe that
as n→∞,

ρn = 2q · Φ
(

µ(kn − 1)

2`n+1
√
n− 1

)
− q ∼ 2q · 1√

2π
· µ(kn − 1)

2`n+1
√
n− 1

The same limit computations as in Theorem 30 show that property 1 above holds. If q > 1/2, then
instead set

ρn = 2(1− q) · Φ
(

µ(kn − 1)

2`n+1
√
n− 1

)
− (1− q)

and post-process the graph resulting from the reduction in Lemma 31 by adding each absent edge
with probability 2q − 1. By a similar argument, the resulting reduction shows properties 1 and 2.

Now consider the case when β < 1
2 , α > 0 and q ≤ 1

2 . Set `n = 0, kn =
⌈
n

1
2
−ε
⌉

, Kn = kn

and

Nn = 2
⌈
n

1
β ( 1

2
−ε)
⌉

and ρn = 2q · Φ
(
µ′(k − 1)

2
√
n− 1

)
− q

where ε = min
(

α
2(α+β) ,

1
2 − β

)
and µ′ = log 2

2
√

6 logn+2 log 2
· nε−

α
β ( 1

2
−ε) as in the proof of Theorem

30. Note that since ε ≤ 1
2 − β, it follows that Nn ≥ 2n. By Lemma 31, there is a randomized

polynomial time algorithm mapping PCD(2n, kn, 1/2) to SSBMD(2n,Kn, 1/2, (2q)
−1ρn) under

H0 and to a prior over H1 with total variation converging to zero as n→∞. Now consider the map
that post-processes the graph by:

1. keeping each edge independently with probability 2q;

2. adding Nn − 2n vertices to the resulting graph and includes each edge incident to these new
vertices independently with probability q; and

3. randomly permuting the vertices of the resulting Nn-vertex graph.

Note that this maps any instance of SSBMD(2n,Kn, 1/2, (2q)
−1ρn) exactly to an instance of

SSBMD(Nn,Kn, q, ρn). Thus the data processing inequality implies that this post-processing to-
gether with the reduction of Lemma 31 yields a reduction showing property 2. The same limit
computations as in Theorem 30 show that property 1 above holds. The same adaptation as in the
case β ≥ 1

2 also handles q < 1
2 . This completes the proof of the theorem.
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Algorithm RANDOM-ROTATION

Inputs: Matrix M ∈ Rm×n, parameter τ ∈ N

1. Construct the m × τn matrix M ′ such that the leftmost m × n submatrix of M ′ is M and
the remaining entries of M ′ are sampled i.i.d. from N(0, 1)

2. Let R be the leftmost τn × n submatrix of a random orthogonal matrix sampled from the
normalized Haar measure on the orthogonal group Oτn

3. Output M ′R

Figure 18: Random rotation procedure in Lemma 34.

Appendix G. Random Rotations and Sparse PCA

In this section, we deduce tight lower bounds for detection in sparse PCA when k �
√
n. We also

show a suboptimal lower bound when k �
√
nmatching the results of Berthet and Rigollet (2013a)

and Gao et al. (2017). In both cases, we reduce from biclustering and rank-1 submatrix to biased
and unbiased variants of sparse PCA. The reductions in this section are relatively simple, with most
of the work behind the lower bounds we show residing in the reductions from PC to biclustering
and rank-1 submatrix. This illustrates the usefulness of using natural problems as intermediates in
constructing average-case reductions. The lower bounds we prove make use of the following theo-
rem of Diaconis and Freedman showing that the firstm coordinates of a unit vector in n dimensions
where m� n are close to independent Gaussians in total variation Diaconis and Freedman (1987).

Theorem 33 (Diaconis and Freedman Diaconis and Freedman (1987)) Suppose (v1, v2, . . . , vn)
is uniformly distributed according to the Haar measure on Sn−1. Then for each 1 ≤ m ≤ n− 4,

dTV
(
L (v1, v2, . . . , vm) , N(0, n−1)⊗m

)
≤ 2(m+ 3)

n−m− 3

The next lemma is the crucial ingredient in the reductions of this section. Note that the proce-
dure RANDOM-ROTATION in Figure 19 requires sampling the Haar measure on Oτn. This can be
achieved efficiently by iteratively sampling a Gaussian, projecting it onto the orthogonal comple-
ment of the vectors chosen so far, normalizing it and adding it to the current set. Repeating this for n
iterations yields an implementation for the sampling part of Step 2 in Figure 19. In the next lemma,
we show that RANDOM-ROTATION takes an instance λ · uv> +N(0, 1)⊗m×n of rank-1 submatrix
to an m× n matrix with its n columns sampled i.i.d. from N(0, Im + θvv>).

Lemma 34 (Random Rotation) Let τ : N→ N be an arbitrary function with τ(n)→∞ as n→
∞. Consider the map φ : Rm×n → Rm×n that sends M to RANDOM-ROTATION with inputs M
and τ . It follows that φ(N(0, 1)⊗m×n) ∼ N(0, 1)⊗m×n and for any unit vectors u ∈ Rm, v ∈ Rn
we have that

dTV

(
φ
(
λ · uv> +N(0, 1)⊗m×n

)
, N

(
0, Im +

λ2

τn
· uu>

)⊗n)
≤ 2(n+ 3)

τn− n− 3
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Proof Let R′ ∈ Oτn be the original τn × τn sampled in Step 2 of RANDOM-ROTATION and let
R be its upper τn × n submatrix. Let M and M ′ be the matrices input to RANDOM-ROTATION

and computed in Step 1, respectively, as shown in Figure 19. If M ∼ N(0, 1)⊗m×n, then it follows
that M ′ ∼ N(0, 1)⊗m×τn. Since the rows of M ′ are independent and distributed according to the
isotropic distribution N(0, 1)⊗τn, multiplication on the right by any orthogonal matrix leaves the
distribution of M ′ invariant. Therefore M ′R′ ∼ N(0, 1)⊗m×τn and since M ′R consists of the first
n columns of M ′R′, it follows that φ(M) = M ′R ∼ N(0, 1)⊗m×n.

Now suppose that M is distributed as λ ·uv>+N(0, 1)⊗m×n for some unit vectors u, v. Let v′

be the unit vector in Rτn formed by appending τn − n zeros to the end of v. It follows that M ′ is
distributed as λ ·uv′>+N(0, 1)⊗m×τn. Let M ′ = λ ·uv′>+W where W ∼ N(0, 1)⊗m×τn. Now
let W ′ = WS−1 where S ∈ Oτn is sampled according to the Haar measure and independently of
R′. Observe that

M ′R′ = λ · u ·
(
R′>v′

)>
+W ′SR′

Now note that conditioned on R′, the product SR′ is distributed according to the Haar measure
on Oτn. This implies that SR′ is independent of R′. Therefore W ′SR′ is independent of R′ and
distributed according to N(0, 1)⊗m×τn. This also implies that R′>v is independent of W ′SR′ and
distributed uniformly over Sτn−1. Let r ∈ Rn denote the vector consisting of the first n coordinates
of R′>v′ and let W ′′ denote the m × n matrix consisting of the first n columns of W ′SR′. It
follows that φ(M) = M ′R = λ · ur> + W ′′ where r and W ′′ are independent. Now let g ∈ Rn
be a Gaussian vector with entries i.i.d. sampled from N(0, n−1). Also let Z = λ · ug> + W ′′ and
note that by Diaconis-Freedman’s theorem and coupling the noise terms W ′′, the data processing
inequality implies

dTV

(
L
(
λ · ug> +W ′′

)
,L
(
λ · ur> +W ′′

))
≤ dTV (L(r),L(g)) ≤ 2(n+ 3)

τn− n− 3

Now note that since the entries of g are independent, the matrix λ · ug> + W ′′ has independent
columns. Its ith row has jointly Gaussian entries with covariance matrix

E
[
(λ · ugi +Wi)(λ · ugi +Wi)

>
]

= E
[
λ2 · uu>g2

i + λ · gi · uW>i + λ · gi ·Wiu
> +WiW

>
i

]
=
λ2

τn
· uu> + Im

Therefore λ · ug> +W ′′ ∼ N
(

0, Im + λ2

τn · uu
>
)⊗n

. Combining these results yields that

dTV

(
φ(M), N

(
0, Im +

λ2

τn
· uu>

)⊗n)
≤ 2(n+ 3)

τn− n− 3

which completes the proof of the lemma.

Applying reflection cloning to produce an instance of rank-1 submatrix and then randomly
rotating to obtain an instance of sparse PCA yields a reduction from PC to SPCA as given in
SPCA-HIGH-SPARSITY. This establishes tight lower bounds in the regime k �

√
n. This reduc-

tion is stated in the next lemma, which takes an instance of PC(n, k, 1/2) to an instance of sparse
PCA with sparsity 2`k and θ = µ2k2

2τn where τ and µ can be taken to be polylogarithmically small in
n.
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Algorithm SPCA-HIGH-SPARSITY

Inputs: Graph G ∈ Gn, number of iterations `, function τ : N→ N with τ(n)→∞

1. Compute the output M of ROS-REDUCTION applied to G with ` iterations

2. Output the matrix returned by RANDOM-ROTATION applied with inputs M and τ

Algorithm SPCA-LOW-SPARSITY

Inputs: Graph G ∈ Gn, number of iterations `, function τ : N→ N with τ(n)→∞

1. Compute the output M of BC-REDUCTION applied to G with ` iterations

2. Output the matrix returned by RANDOM-ROTATION applied with inputs M and τ

Algorithm SPCA-RECOVERY

Inputs: Graph G ∈ Gn, density bias ρ, function τ : N→ N with τ(n)→∞

1. Let M be the output of BC-RECOVERY applied to G with density bias ρ

2. Output the matrix returned by RANDOM-ROTATION applied with inputs M and τ

Figure 19: Reductions to SPCAD when k &
√
n and k .

√
n in Lemmas 35 and 36 and reduction to

SPCAR in Theorem 39.

Lemma 35 Suppose that n and ` are such that ` = O(log n) and are sufficiently large,

µ =
log 2

2
√

6 log n+ 2 log 2

and τ : N → N is a function with τ(n) → ∞ as n → ∞. Then φ = SPCA-HIGH-SPARSITY is
a randomized polynomial time computable map φ : Gn → Rn×n such that if G is an instance of
PC(n, k, 1/2) then under H0, it holds that φ(G) ∼ N(0, 1)⊗n×n and under H1, there is a prior π
such that

dTV

(
LH1(φ(G)),

∫
N

(
0, In +

µ2k2

2τn
· uu>

)⊗n
dπ(u)

)
≤ 2(n+ 3)

τn− n− 3
+O

(
1√

log n
+ k−1

)
where π is supported on unit vectors in Vn,2`k.

Proof LetM ′ be the matrix output in Step 2. UnderH0, Lemma 27 implies thatM ∼ N(0, 1)⊗n×n

and Lemma 34 implies that we also have M ′ ∼ N(0, 1)⊗n×n. It suffices to consider the case ofH1.
By Lemma 27,

dTV

(
LH1(M),

∫
L
(
µk√

2
· uv> +N(0, 1)⊗n×n

)
dπ′(u, v)

)
= O

(
1√

log n
+ k−1

)
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where π′(u, v) is a prior supported on pairs of unit vectors in Vn,2`k. Let W ∼ µk√
2
· uv> +

N(0, 1)⊗n×n where (u, v) is distributed according to π′ and let ϕ denote the map in Step 2 taking
A to RANDOM-ROTATION(A, τ). Conditioning on (u, v) yields by Lemma 34 that

dTV

(
L (ϕ(W )|u, v) , N

(
0, In +

µ2k2

2τn
· uu>

)⊗n)
≤ 2(n+ 3)

τn− n− 3

Now consider the measure π(u) = Evπ′(u, v) given by marginalizing over v in π′. The triangle
inequality implies that

dTV

(
L(ϕ(W )),

∫
N

(
0, In +

µ2k2

2τn
· uu>

)⊗n
dπ(u)

)

≤ Eu,v

[
dTV

(
L (ϕ(W )|u, v) , N

(
0, In +

µ2k2

2τn
· uu>

)⊗n)]
≤ 2(n+ 3)

τn− n− 3

By the data processing inequality and triangle inequality, we now have that

dTV

(
LH1(φ(G)),

∫
N

(
0, In +

µ2k2

2τn
· uu>

)⊗n
dπ(u)

)

≤ dTV (LH1(M),L(W )) + dTV

(
L(ϕ(W )),

∫
N

(
0, In +

µ2k2

2τn
· uu>

)⊗n
dπ(u)

)

≤ 2(n+ 3)

τn− n− 3
+O

(
1√

log n
+ k−1

)
since LH1(φ(G)) ∼ LH1(ϕ(M)). This completes the proof of the lemma.

The next lemma gives the guarantees of SPCA-LOW-SPARSITY, which maps from planted
clique to an instance of biclustering and then to sparse PCA. This reduction shows hardness for the
canonical simple vs. simple hypothesis testing formulation of sparse PCA. In particular, the output
in Lemma 34 is close in total variation to the simple vs. simple model UBSPCA. After multiplying
the rows of the matrix output in Lemma 34 by ±1, each with probability 1/2, this also yields a
reduction to USPCA. The lemma can be proven with the same applications of the triangle and
data processing inequalities as in Lemma 35 using the total variation bound in Lemma 20 instead of
Lemma 27.

Before stating the lemma, we determine the parameters of the sparse PCA instance that the
mapping SPCA-LOW-SPARSITY produces. Under H1, BC-REDUCTION takes an instance of
G(n, k, 1/2) approximately in total variation to 2−`−1/2µ ·1S1>T +N(0, 1)⊗2`n×2`n where S, T ⊆
[2`n] have size 2`k and µ is subpolynomial in n. This matrix can be rewritten as 2−1/2µk · uv> +

N(0, 1)⊗2`n×2`n where u, v are 2`k-sparse unit vectors. Now RANDOM-ROTATION takes this ma-
trix to an instance of UBSPCAD with the resulting parameters d = n′ = 2`n, k′ = 2`k and
θ = µ2k2

2`+1τn
where τ, µ are subpolynomial in n.

Lemma 36 Suppose that n and ` are such that ` = O(log n) and are sufficiently large,

µ =
log 2

2
√

6 log n+ 2 log 2
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and τ : N → N is a function with τ(n) → ∞ as n → ∞. Then φ = SPCA-LOW-SPARSITY is a
randomized polynomial time computable map φ : Gn → R2`n×2`n such that if G is an instance of
PC(n, k, 1/2) then under H0, it holds that φ(G) ∼ N(0, 1)⊗2`n×2`n and

dTV

(
LH1(φ(G)),

∫
N

(
0, In +

µ2k2

2`+1τn
· uu>

)⊗n
dπ(u)

)
≤ 2(2`n+ 3)

τ · 2`n− 2`n− 3
+O

(
1√

log n

)
where π is the uniform distribution over all 2`k-sparse unit vectors in R2`n with nonzero entries
equal to 1/

√
2`k.

We now apply these reductions to deduce planted clique hardness for sparse PCA and its vari-
ants. Note that when k �

√
n, the lower bounds for sparse PCA are not tight. For biased sparse

PCA, the lower bounds are only tight at the single point when θ = Θ̃(1). The next theorem deduces
tight hardness for SPCAD when k &

√
n with Lemma 35.

Theorem 37 Let α > 0 and β ∈ (0, 1) be such that α > max(1 − 2β, 0). There is a sequence
{(Nn,Kn, dn, θn)}n∈N of parameters such that:

1. The parameters are in the regime d = Θ(N), θ = Θ̃(N−α) andK = Θ̃(Nβ) or equivalently,

lim
n→∞

log θ−1
n

logNn
= α and lim

n→∞

logKn

logNn
= β

2. For any sequence of randomized polynomial-time tests φn : GNn → {0, 1}, the asymptotic
Type I+II error of φn on the problems SPCAD(Nn,Kn, dn, θn) is at least 1 assuming the
PC conjecture holds for p = 1/2.

Proof Note that if α ≥ 1, then sparse PCA is information theoretically impossible. Thus we may
assume that α ∈ (0, 1) and β > 1−α

2 . Let γ = 1−α
2 ∈ (0, 1/2). Now set Nn = dn = n

`n =

⌈(
β − 1− α

2

)
log2 n

⌉
, kn = dnγe, Kn = 2`nkn, θn =

µ2k2
n

2τn

where µ = log 2
2
√

6 logn+2 log 2
and τ is a sub-polynomially growing function of n. By Lemma 35, there

is a randomized polynomial time algorithm mapping PCD(n, kn, 1/2) to the detection problem
SPCAD(Nn,Kn, dn, θn), exactly under H0 and to a prior over H1, with total variation converging
to zero as n → ∞. This map with Lemma 4 now implies that property 2 above holds. We now
verify property 1. Note that

lim
n→∞

logKn

logNn
= lim

n→∞

⌈(
β − 1−α

2

)
log2 n

⌉
· log 2 +

(
1−α

2

)
log n

log n
= β

lim
n→∞

log θ−1
n

logNn
= lim

n→∞

(1− 2γ) log n− 2 logµ+ log(2τ)

log n
= α

which completes the proof.

Similarly, varying the parameters ` and k in Lemma 36 yields the following hardness for
the simple vs. simple hypothesis testing formulations of biased and ordinary sparse PCA. Since
UBSPCAD and USPCAD are instances of BSPCAD and SPCAD, respectively, the next theorem
also implies the lower bounds when α > 1− 2β in Theorem 37 when k .

√
n.
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Theorem 38 Let α > 0 and β ∈ (0, 1) be such that 1−α
2 < β < 1+α

2 . There is a sequence
{(Nn,Kn, dn, θn)}n∈N of parameters such that:

1. The parameters are in the regime d = Θ(N), θ = Θ̃(N−α) andK = Θ̃(Nβ) or equivalently,

lim
n→∞

log θ−1
n

logNn
= α and lim

n→∞

logKn

logNn
= β

2. For any sequence of randomized polynomial-time tests φn : GNn → {0, 1}, the asymptotic
Type I+II error of φn on USPCAD(Nn,Kn, dn, θn) and UBSPCAD(Nn,Kn, dn, θn) is at
least 1 assuming the PC conjecture holds for p = 1/2.

Proof Note that if α ≥ 1, then USPCAD and UBSPCAD are information theoretically impossible.
Thus we may assume that α ∈ (0, 1). Now observe that β ∈ (0, 1) and 1−α

2 < β < 1+α
2 imply that

γ = 1−α
3−α−2β ∈ (0, 1/2), that α+ 2β − 1 > 0 and 3− α− 2β > 0. Now set

Nn = dn = 2`nn, `n =

⌈(
α+ 2β − 1

3− α− 2β

)
log2 n

⌉
, kn = dnγe,

Kn = 2`nkn, θn =
µ2k2

n

2`n+1τn

where µ = log 2
2
√

6 logn+2 log 2
and τ is a sub-polynomially growing function of n. By Lemma 36,

there is a randomized polynomial time algorithm mapping PCD(n, kn, 1/2) to the detection prob-
lem UBSPCAD(Nn,Kn, dn, θn), exactly under H0 and to a prior over H1, with total variation
converging to zero as n → ∞. This map with Lemma 4 now implies that property 2 above holds.
We now verify property 1. Note that

lim
n→∞

logKn

logNn
= lim

n→∞

⌈(
α+2β−1
3−α−2β

)
log2 n

⌉
· log 2 +

(
1−α

3−α−2β

)
log n⌈(

α+2β−1
3−α−2β

)
log2 n

⌉
· log 2 + log n

=

α+2β−1
3−α−2β + 1−α

3−α−2β

α+2β−1
3−α−2β + 1

= β

lim
n→∞

log θ−1
n

logNn
= lim

n→∞

⌈(
α+2β−1
3−α−2β

)
log2 n

⌉
· log 2 + (1− 2γ) log n− 2 logµ+ log(2τ)⌈(

α+2β−1
3−α−2β

)
log2 n

⌉
· log 2 + log n

=

α+2β−1
3−α−2β − 2 · 1−α

3−α−2β + 1

α+2β−1
3−α−2β + 1

=
α+ 2β − 1− 2(1− α) + 3− α− 2β

2
= α

which completes the proof. As described previously, the corresponding lower bound for USPCAD

follows by randomly signing the rows of the data matrix of the resulting UBSPCAD instance.

To conclude this section, we observe that the reduction SPCA-RECOVERY shows that recovery
in UBSPCAR is hard if θ � 1 given the PDS recovery conjecture. The proof of the following
theorem follows the same structure as Lemma 35 and Theorem 23. Note that BC-RECOVERY

approximately maps from PDSR(n, k, 1/2 +ρ, 1/2) to BCR(n, k, µ) where µ = log(1+2ρ)

2
√

6 logn+2 log 2
=

Θ̃(ρ). This map preserves the support of the planted dense subgraph in the row support of the
planted matrix in BCR. Then RANDOM-ROTATION approximately maps from this BCR instance
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to a UBSPCAR(n, k, n, θ) instance with θ = k2µ2

τn = Θ̃
(
k2ρ2

n

)
. This map ensures that the planted

vector u is supported on the same indices as the original PDSR instance. Furthermore, the PDS
conjecture is that the original PDSR instance is hard if ρ2 � n

k2
which corresponds to the barrier

θ � 1 under this reduction.

Theorem 39 Let α ∈ R and β ∈ (0, 1). There is a sequence {(Nn,Kn, Dn, θn)}n∈N of parame-
ters such that:

1. The parameters are in the regime d = Θ(N), θ = Θ̃(N−α) andK = Θ̃(Nβ) or equivalently,

lim
n→∞

log θ−1
n

logNn
= α and lim

n→∞

logKn

logNn
= β

2. If α > 0 and β > 1
2 , then the following holds. Let ε > 0 be fixed and let Xn be an

instance of UBSPCAR(Nn,Kn, Dn, θn). There is no sequence of randomized polynomial-

time computable functions φn : RDn×Nn →
([Nn]
k

)2
such that for all sufficiently large n the

probability that φn(Xn) is exactly the pair of latent row and column supports ofXn is at least
ε, assuming the PDS recovery conjecture.

Therefore, given the PDS recovery conjecture, the computational boundary for UBSPCAR(n, k, d, θ)
in the parameter regime θ = Θ̃(n−α) and k = Θ̃(nβ) is α∗ = 0 when β > 1

2 .

Proof Suppose that α > 0 and β ≥ 1
2 . Let γ = β − 1−α

2 > 0 and define

Kn = kn = dnβe, ρn = n−γ , Nn = Dn = n, µn =
log(1 + 2ρn)

2
√

6 log n+ 2 log 2
, θn =

k2
nµ

2
n

τn

where τ is an arbitrarily slowly growing function of n. Let ϕn = SPCA-RECOVERY be the reduc-
tion in Figure 19. Let Gn ∼ G(n, S, 1/2 + ρn, 1/2) and Xn = ϕn(Gn) where S is a kn-subset of
[n]. Let uS denote the unit vector supported on indices in S with nonzero entries equal to 1/

√
kn.

Lemma 22 and Lemma 34 together imply that

dTV

(
L(Xn), N

(
0, In + θnuSu

>
S

))
≤ O

(
1√

log n

)
+

2(n+ 3)

τn− n− 3
→ 0 as n→∞

Let Ln,S = N
(
0, In + θnuSu

>
S

)
. Assume for contradiction that there is a sequence of randomized

polynomial-time computable functions φn as described above. Now observe that∣∣PX∼L(Xn) [φn(X) = S]− PX∼Ln,S [φn(X) = S]
∣∣ ≤ dTV (L(Xn),Ln,S)→ 0 as n→∞

Since PX∼Ln,S [φn(X) = S] ≥ ε for sufficiently large n, it follows that

PX∼L(Xn) [φn ◦ ϕn(Gn) = S] = PX∼L(Xn) [φn(X) = S] ≥ ε/2

for sufficiently large n. Furthermore observe

lim
n→∞

log kn
log n

= β and lim
n→∞

logn

(
k2
nρ

2
n

1
4 − ρ2

n

)
= 2β − 2γ = 1− α < 1

86



REDUCIBILITY AND COMPUTATIONAL LOWER BOUNDS

Since the sequence of functions φn ◦ ϕn can be computed in randomized polynomial time, this
contradicts the PDS recovery conjecture. Therefore no such sequence of functions φn exists for
the parameter sequence {(Nn,Kn, Dn, θ)}n∈N defined above. As in Theorem 23, µn ∼ ρn√

6 logn
as

n→∞. Therefore it follows that

lim
n→∞

log θ−1
n

logNn
= lim

n→∞

2γ log n+ log(6 log n) + log n− 2β log n

log n
= α and lim

n→∞

logKn

logNn
= β

which completes the proof of the theorem.

As is the case for BC-RECOVERY, the reduction SPCA-RECOVERY also shows hardness for
partial and weak recovery if the PDS recovery conjecture is strengthened to assume hardness of
partial and weak recovery, respectively, for PDSR.

Appendix H. Algorithms and Information-Theoretic Thresholds

In this section, we give the algorithms and information-theoretic lower bounds necessary to prove
Theorem 3. Specifically, for each problem, we give an information-theoretic lower bound, an inef-
ficient algorithm that achieves the information-theoretic lower bound and a polynomial-time algo-
rithm. As the computational lower bounds and reductions previously presented are the main novel
contribution of the paper, the details in this section are succinctly presented only as needed for
Theorem 3.

Many of the problems we consider have pre-existing algorithms and information-theoretic lower
bounds. In these cases, we cite the relevant literature and state the results needed for Theorem 3.
Note that we only require algorithms and lower bounds optimal up to sub-polynomial factors for
Theorem 3. For some problems, we only give an information-theoretic lower bound for detection
and show that this implies the recovery lower bound in the next section.

H.1. Biclustering, Planted Dense Subgraph and Independent Set

Information-Theoretic Lower Bounds. The information-theoretic lower bound for BCD was
shown in Butucea and Ingster (2013). More precisely, they showed the following theorem re-written
in our notation. Note that they showed a lower bound for a composite hypothesis testing version of
BCD, but took a uniform prior over the support of the hidden submatrix, matching our formulation.

Theorem 40 (Theorem 2.2 in Butucea and Ingster (2013)) Suppose that k, µ are such that as n→
∞, it holds that k/n→ 0 and one of the following holds

µk2

n
→ 0 and lim sup

n→∞

µ

2
√
k−1 log(n/k)

< 1

Then if Mn denotes an instance of BCD(n, k, µ),

dTV (LH0(Mn),LH1(Mn))→ 0 as n→∞

This corresponds exactly to the information-theoretic barrier of µ � 1√
k

and µ � n
k2

. We
remark that the information-theoretic lower bounds for biclustering can also be deduced from the
information-theoretic lower bounds for planted dense subgraph with q = 1/2 using the reduction
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from Lemma 22 and the data-processing inequality. Tight information-theoretic lower bounds for
PDSD and PISD can be deduced from a mild adaptation of Hajek et al. (2015). The argument from
the proof of Proposition 3 in Hajek et al. (2015) yields the following lemma.

Lemma 41 (Proposition 3 in Hajek et al. (2015)) If G is an instance of PDSD(n, k, p, q), then

dTV (LH0(G),LH1(G)) ≤ 1

2

√
E
[
exp

(
(p− q)2

q(1− q)
·H2

)
− 1

]
where H ∼ Hypergeometric(n, k, k).

This lemma can be derived by combining the χ2 computation in the proof of Proposition 3 with
Cauchy-Schwarz. In Hajek et al. (2015), Proposition 3 is specifically for the case when p = cq
where c > 1 and also for a mixture over PDSD(n,K, p, q) where K ∼ Bin(n, k/n). However,
the first step in the proof of Proposition 3 is to condition on K and prove this bound for each fixed
K. When combined with Lemma 14 from Hajek et al. (2015), we obtain the desired information-
theoretic lower bounds.

Lemma 42 (Lemma 14 in Hajek et al. (2015)) There is an increasing function τ : R+ → R+

with limx→0+ τ(x) = 1 and
E[exp(λH2)] ≤ τ(b)

where H ∼ Hypergeometric(n, k, k), λ = b ·max
{

1
k log

(
en
k

)
, n

2

k4

}
and 0 < b < (16e)−1.

Combining these two lemmas and setting b as

b =
(p− q)2

q(1− q)
·
(

max

{
1

k
log
(en
k

)
,
n2

k4

})−1

yields the following theorem on the information-theoretic lower bound for the general regime of
PDSD.

Theorem 43 Suppose p, q, k are such that as n→∞, it holds that (p−q)2
q(1−q) �

1
k and (p−q)2

q(1−q) �
n2

k4
.

Then if Gn is an instance of PDSD(n, k, p, q), it follows that

dTV (LH0(Gn),LH1(Gn))→ 0 as n→∞

Note that when p = cq for some constant c > 1 or when p = 0, this barrier is q � 1
k and

q � n2

k4
. This recovers the information-theoretic lower bounds for PISD and PDSD when p = cq.

The information-theoretic lower bounds for the weak and strong recovery variants BCR and PDSR
are derived in Hajek et al. (2016b). The following theorems of Hajek et al. (2016b) characterize
these lower bounds.

Theorem 44 (Corollary 2 in Hajek et al. (2016b)) Suppose k and µ are such that as n→∞,

kµ2 →∞ and lim inf
n→∞

(k − 1)µ2

log n
k

> 4 (2)

then weak recovery in BCR(n, k, µ) is possible. If weak recovery is possible, then (2) holds as a
non-strict inequality.
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Theorem 45 (Corollary 4 in Hajek et al. (2016b)) Suppose k and µ are such that as n → ∞,
condition (2) holds and

lim inf
n→∞

kµ2(√
2 log n+

√
2 log k

)2 > 1 (3)

then exact recovery in BCR(n, k, µ) is possible. If exact recovery is possible, then (2) and (3) hold
as a non-strict inequalities.

Theorem 46 (Corollary 1 in Hajek et al. (2016b)) Suppose p and q are such that the ratios log p
q

and log 1−p
1−q are bounded as n→∞. If k satisfies

k · dKL(p, q)→∞ and lim inf
n→∞

k · dKL(p, q)

log n
k

> 2 (4)

then there is an algorithm achieving weak recovery for PDSR(n, k, p, q) is possible. If weak recov-
ery is possible, then (4) holds as a non-strict inequality.

Theorem 47 (Corollary 3 in Hajek et al. (2016b)) Suppose p and q are such that the ratios log p
q

and log 1−p
1−q are bounded as n→∞. If k satisfies

τ =
log 1−q

1−p + 1
k log n

k

log p(1−q)
q(1−p)

If (4) holds and

lim inf
n→∞

k · dKL(τ, q)

log n
> 1 (5)

then exact recovery in PDSR(n, k, p, q) is possible. If exact recovery is possible, then (4) and (5)
hold as non-strict inequalities.

These theorems show that both weak and strong recovery for BCR(n, k, µ) are information-
theoretically impossible when µ . 1√

k
by the first condition in (2). Now note that if p− q = O(q)

and q → 0 as n→∞, then

dKL(p, q) = p log

(
p

q

)
+ (1− p) · log

(
1− p
1− q

)
= p ·

(
p− q
q

)
−O

(
p ·
(
p− q
q

)2
)
− (1− p) ·

(
p− q
1− q

)
−O

(
(1− p) ·

(
p− q
1− q

)2
)

=
(p− q)2

q(1− q)
+O

(
p ·
(
p− q
q

)2

+ (p− q)2

)
= O

(
(p− q)2

q(1− q)

)
as n → ∞. Therefore it follows that if p − q = O(q), q → 0 as n → ∞ and log p

q and log 1−p
1−q

are bounded as n → ∞ then both weak and strong recovery in PDSR(n, k, p, q) are information-
theoretically impossible if (p−q)2

q(1−q) . 1
k by the first condition in (4). Note that these theorems of

Hajek et al. (2016b) do not imply the necessary information-theoretic lower bound for PISR since
p = 0 violates the condition that log p

q is bounded. However, the genie argument in the necessary
part of Theorem 1 in Hajek et al. (2016b) can be mildly adapted to obtain the following theorem.
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Theorem 48 If k ≥ 2, q � 1
k and n− k = Ω(n) as n→∞, then weak recovery in PISR(n, k, q)

is impossible.

Proof Let G ∼ GI(n, k, q) where S ⊆ [n] denotes the indices of the planted independent set in
G and satisfies |S| = k. Fix a vertex i ∈ [n] and consider a random J ∈ [n] where J is chosen
uniformly at random from S if i 6∈ S and J is chosen uniformly at random from SC if i ∈ S. Now
consider the binary hypothesis testing problem with observations (G, J, S\{i, J}) and the task of
distinguishing between H0 : i 6∈ S and H1 : i ∈ S.

Since S is chosen uniformly at random, it follows that the identity of the vertex J is uniformly at
random chosen from [n]\{i} and is independent of the event {i ∈ S}. It also holds that conditioned
on J and the outcome of the event {i ∈ S}, the set S\{i, J} is uniformly distributed on (k − 1)-
subsets of [n]\{i, J}. Therefore for any J ∈ [n]\{i} and (k − 1) subset S\{i, J} of [n]\{i, J}, it
holds that

P[G, J, S\{i, J}|i ∈ S]

P[G, J, S\{i, J}|i 6∈ S]
=

P[G,S\{i, J}|i ∈ S, J ]

P[G,S\{i, J}|i 6∈ S, J ]

=
P[G|i ∈ S, J, S\{i, J}]
P[G|i 6∈ S, J, S\{i, J}]

=
∏

k∈S\{i,J}

(1−Aik) · qAJk(1− q)1−AJk

(1−AJk) · qAik(1− q)1−Aik

where A = A(G) is the adjacency matrix of G. From this factorization, it follows that the vector v
of valuesAik andAJk for all k ∈ S\{i, J} is therefore a sufficient statistic for this binary hypothesis
testing problem. Furthermore, if i ∈ S then v has its first k − 1 coordinates equal to zero and its
last k − 1 coordinates distributed as Bern(q)⊗(k−1). If i 6∈ S, then v has its first k − 1 coordinates
distributed as Bern(q)⊗(k−1) and its last k− 1 coordinates equal to zero. Thus the given hypothesis
testing problem is equivalent to testing between these two distributions. Note that

PH0 [v = 0] = PH1 [v = 0] = (1− q)k−1 ≥ 1− (k − 1)q → 1 as n→∞

by Bernoulli’s inequality if k ≥ 2. Taking any coupling of LH0(v) and LH1(v) such that the events
{v = 0} under H0 and H1 coincide yields that

dTV (LH0(v),LH1(v)) ≤ 1− (1− q)k−1 → 0 as n→∞

Now let pE1 and pE2 be the optimal Type I and Type II error probabilities. Note that the prior on the
hypotheses H0 : i ∈ S and H1 : i 6∈ S is P[i ∈ S] = k/n. Let E be the optimal average probability
of testing error under this prior. Also note that pE1 + pE2 = 1 − dTV (LH0(v),LH1(v)) → 1 as
n→∞.

Now assume for contradiction that there is some algorithm A : Gn →
([n]
k

)
that achieves weak

recovery with E[|S ∩A(G)|] = k − o(k) as n→∞. It follows that

k − E[|S ∩A(G)|] =

n∑
i=1

P
[
1{i∈A(G)} 6= 1{i∈S}

]
≥

n∑
i=1

min
φi(G)

P
[
φi(G) 6= 1{i∈S}

]
≥

n∑
i=1

min
φi(G,J,S\{i,J})

P
[
φi(G, J, S\{i, J}) 6= 1{i∈S}

]
= nE

The first minimum is over all functions φi : Gn → {0, 1} that only observe the graph G, while the
second minimum is over all functions φi that also observe J and S\{i, J}. From these inequalities,
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it must follow that E = o(k/n) which implies the test achieving E must have Type I and Type II
errors that are o(1) as n→∞ since 1− k

n = Ω(1). This implies that pE1 + pE2 = o(1), which is a
contradiction.

Information-Theoretically Optimal Algorithms. An algorithm achieving the information-theoretic
lower bound for BCD was also shown in Butucea and Ingster (2013). Their algorithm outputs the
hypothesis H1 if either the maximum sum over all k × k submatrices of the input exceeds a thresh-
old or if the total sum of the input exceeds another threshold. The guarantees of this algorithm are
summarized in the following theorem.

Theorem 49 (Theorem 2.1 in Butucea and Ingster (2013)) Suppose that k, µ are such that as n→
∞, it holds that k/n→ 0 and one of the following holds

µk2

n
→∞ or lim sup

n→∞

µ

2
√
k−1 log(n/k)

> 1

Then there is an algorithm solving BCD(n, k, µ) with Type I+II error tending to zero as n→∞.

A very similar algorithm is optimal for PDSD. Generalizing the concentration bounds in the
proof of Proposition 4 in Hajek et al. (2015) to any p, q with p − q = O(q) and q → 0 yields the
following theorem.

Theorem 50 Suppose that p, q and k are such that |p− q| = O(q), q → 0 and

(p− q)2

q(1− q)
= ω

(
n2

k4

)
or

(p− q)2

q(1− q)
= ω

(
log(n/k)

k

)
as n → ∞. Then there is an algorithm solving PDSD(n, k, p, q) with Type I+II error tending to
zero as n→∞.

Proof First suppose that p > q. Let G be an instance of PDSD(n, k, p, q). Note that under H0, the
edge count |E(G)| ∼ Bin(

(
n
2

)
, q) and underH1, |E(G)| is the independent sum of Bin(

(
n
2

)
−
(
k
2

)
, q)

and Bin(
(
k
2

)
, p). By Bernstein’s inequality, we have that

PH0

[
|E(G)| >

(
n

2

)
q +

(
k

2

)
· p− q

2

]
≤ exp

(
−

(
k
2

)2
(p− q)2/4

2
(
n
2

)
q +

(
k
2

)
· (p− q)/3

)

= exp

(
−Ω

(
k4

n2
· (p− q)2

q(1− q)

))
By the multiplicative Chernoff bound, it follows that

PH1

[
|E(G)| ≤

(
n

2

)
q +

(
k

2

)
· p− q

2

]
≤ exp

(
−

(
k
2

)2
(p− q)2/4

2
(
n
2

)
q + 2

(
k
2

)
(p− q)

)

= exp

(
−Ω

(
k4

n2
· (p− q)2

q(1− q)

))
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Now let X be the maximum number of edges over all subgraphs of G on k vertices. By a union
bound and Bernstein’s inequality

PH0

[
X ≥

(
k

2

)
· p+ q

2

]
≤

∑
R∈([n]k )

PH0

[
|E (G[R])| ≥

(
k

2

)
· p+ q

2

]

≤
(en
k

)k
exp

(
−

(
k
2

)2
(p− q)2/4

2
(
k
2

)
q +

(
k
2

)
· (p− q)/3

)

= exp

(
k log(en/k)− Ω

(
k2 · (p− q)2

q(1− q)

))
where the second inequality uses the fact that for any fixedR, |E (G[R])| ∼ Bin(

(
k
2

)
, q). UnderH1,

it holds that if S is the vertex set of the latent planted dense subgraph then |E(G[S])| ∼ Bin(
(
k
2

)
, p).

By the multiplicative Chernoff bound, it follows that

PH1

[
X <

(
k

2

)
· p+ q

2

]
≤ PH1

[
|E(G[S])| <

(
k

2

)
· p+ q

2

]
≤ exp

(
−
(
k
2

)2
(p− q)2/4

2
(
k
2

)
p

)

= exp

(
−Ω

(
k2 · (p− q)2

q(1− q)

))
Therefore the test that outputs H1 if |E(G)| >

(
n
2

)
q+
(
k
2

)
· p−q2 or X ≥

(
k
2

)
· p+q2 and H0 otherwise

has Type I+II error tending to zero as n→∞ if one of the two given conditions holds. In the case
when p < q, this test with inequalities reversed can be shown to have Type I+II error tending to
zero as n→∞ by analogous concentration bounds.

This theorem gives the necessary algorithm matching the information-theoretic lower bound
for PDSD in the general regime p − q = O(q), including p = cq for some constant c > 1. The
algorithm needed for PISD can be obtained by setting p = 0 in this theorem. An algorithm matching
the information-theoretic lower bound for BCR follows from Theorem 45, which asserts that exact
recovery is possible as long as

µ > (1 + ε) ·
√

2 log n+
√

2 log k√
k

for some fixed ε > 0. Specializing Corollary 2.4 in Chen and Xu (2016) to the case of r = 1 clusters
yields an analogous algorithm for PDSR.

Theorem 51 (Corollary 2.4 in Chen and Xu (2016)) Suppose that p, q and k are such that p > q
and

(p− q)2

q(1− q)
≥ C log n

k
, q ≥ C log k

k
and kq log

p

q
≥ C log n

for some sufficiently large constant C > 0. Then the maximum likelihood estimator for the planted
dense subgraph in PDSR(n, k, p, q) solves strong recovery with error probability tending to zero.
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This implies that if p > q, p−q = O(q), q → 0 and (p−q)2
q(1−q) & 1

k as n→∞, then exact recovery
is possible. Specializing the result to p = 1 and applying this algorithm to the complement graph of
a PISR instance yields that there is an algorithm for PISR if q & 1

k . We remark that the necessary
algorithm for PDSR can also be deduced from Theorem 47. However, the constraints that log p

q and
log 1−p

1−q must be bounded does not yield the desired algorithm for PISR.

Polynomial-Time Algorithms. The polynomial time algorithm matching our planted clique lower
bound for BCD is another simple algorithm thresholding the maximum and sum of the input matrix.
Given an instanceM of BCD(n, k, µ), let max(M) = maxi,j∈[n]Mij and sum(M) =

∑n
i,j=1Mij .

Specializing Lemma 1 of Ma and Wu (2015) to our setup yields the following lemma.

Lemma 52 (Lemma 1 in Ma and Wu (2015)) If M is an instance of BCD(n, k, µ) then

PH0

[
sum(M) >

µk2

2

]
+ PH1

[
sum(M) ≤ µk2

2

]
≤ exp

(
−µ

2k4

8n2

)
If c > 0 is any absolute constant and τ =

√
(4 + c) log n, then

PH0 [max(M) > τ ] + PH1 [max(M) ≤ τ ] ≤ n−c/2 + exp

(
−1

2
|µ− τ |+

)
It follows that the algorithm that outputs H1 if max(M) >

√
5 log n or sum(M) > µk2

2 solves
BCD with Type I+II error tending to zero as n → ∞ if either µ ≥

√
6 log n or µ = ω

(
n
k2

)
. By

Theorem 50, if (p−q)2
q(1−q) = ω

(
n2

k4

)
it follows that thresholding the number of edges of an instance

G of PDSD(n, k, p, q) has Type I+II error tending to zero as n → ∞. Setting p = 0 recovers
the computational barrier of PISD. Polynomial-time algorithms for the recovery variants of these
problems were given in Chen and Xu (2016). The following are three theorems of Chen and Xu
(2016) written in our notation.

Theorem 53 (Theorem 2.5 in Chen and Xu (2016)) A polynomial-time convex relaxation of the
MLE solves exact recovery in PDSR(n, k, p, q) with error probability at most n−10 if p > q and

k2(p− q) ≥ C [p(1− q)k log n+ q(1− q)n]

where C > 0 is a fixed constant.

Theorem 54 (Theorem 3.3 in Chen and Xu (2016)) A polynomial-time convex relaxation of the
MLE solves exact recovery in BCR(n, k, µ) with error probability at most n−10 if

µ2 ≥ C
[

log n

k
+
n

k2

]
where C > 0 is a fixed constant.

Theorem 55 (Theorem 3.3 in Chen and Xu (2016)) A polynomial-time element-wise threshold-
ing algorithm solves exact recovery in BCR(n, k, µ) with error probability at most n−3 if µ2 ≥
C log n where C > 0 is a fixed constant.
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Since k log n = Õ(n) and p = O(q) if p− q = O(q), the first theorem above implies that exact
recovery is possible in polynomial time for the general regime of PDSR if (p−q)2

q(1−q) �
n
k2

. Taking

the complement graph of the input and setting p = 1 and q = 1 − Θ̃(n−α) in the first theorem
yields that PISR(n, k, 1 − q) can be solved in polynomial time if 1 − q � n

k2
. The second and

third theorems above imply that exact recovery for BCR is possible in polynomial time if µ� 1√
k

or µ � 1. These polynomial-time algorithms for detection and recovery match the computational
lower bounds shown in previous sections.

H.2. Rank-1 Submatrix, Sparse Spiked Wigner and Subgraph SBM

Information-Theoretic Lower Bounds. Applying a similar χ2 computation as in information-
theoretic lower bounds for sparse PCA and planted dense subgraph, we can reduce showing an
information-theoretic lower bound for SROSD to bounding an MGF. In the case of SROSD, this
MGF turns out to be that of the square of a symmetric random walk on Z terminated after a hyper-
geometric number of steps. An asymptotically tight upper bound on this MGF was obtained in Cai
et al. (2015b) through the following lemma.

Lemma 56 (Lemma 1 in Cai et al. (2015b)) Suppose that d ∈ N and k ∈ [p]. LetB1, B2, . . . , Bk
be independent Rademacher random variables. Let the symmetric random walk on Z stopped at the
mth step be

Gm =
m∑
i=1

Bi

If H ∼ Hypergeometric(d, k, k) then there is an increasing function g : (0, 1/36) → (1,∞) such
that limx→0+ g(x) = 1 and for any a ∈ (0, 1/36), it holds that

E
[
exp

(
G2
H ·

a

k
log

ed

k

)]
≤ g(a)

With this bound, we obtain the following information-theoretic lower bound for SROSD, which
matches Theorem 3.

Theorem 57 Suppose that M is an instance of SROSD(n, k, µ) where under H1, the planted vec-
tor v is chosen uniformly at random from all k-sparse unit vectors in Rn with nonzero coordinates
equal to ± 1√

k
. Suppose it holds that µ ≤

√
β0k log en

k for some 0 < β0 < (16e)−1. Then there is
a function w : (0, 1)→ (0, 1) satisfying that limβ0→0+ w(β0) = 0 and

dTV (LH0(M),LH1(M)) ≤ w(β0)

Proof Let P0 denote LH0(M) = N(0, 1)⊗n×n and Pu denote L
(
µ · uu> +N(0, 1)⊗n×n

)
where

u is in the set S of k-sparse unit vectors u with nonzero entries equal to±1/
√
k. Now let P1 denote

LH1(M) which can also be written as

P1 =
1

|S|
∑
u∈S

Pu
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Given two matrices A,B ∈ Rn×n, let 〈A,B〉 =
∑n

i,j=1AijBij denote their inner product. Now
note that for any X ∈ Rn×n,

dPu
dP0

(X) = exp

−1

2

n∑
i,j=1

(Xij − µ · uiuj)2 +
1

2

n∑
i,j=1

X2
ij


= exp

(
µ · 〈X,uu>〉 − µ2

2
‖u‖42

)
= exp

(
µ · 〈X,uu>〉 − µ2

2

)
since ‖u‖2 = 1. Now observe that

χ2(P1,P0) = EX∼P0

[(
dP1

dP0
(X)− 1

)2
]

= −1 +
1

|S|2
∑
u,v∈S

EX∼P0

[
dPu
dP0

(X) · dPv
dP0

(X)

]
= −1 +

1

|S|2
∑
u,v∈S

EX∼P0

[
exp

(
µ · 〈X,uu> + vv>〉 − µ2

)]
= −1 +

1

|S|2
∑
u,v∈S

exp

(
µ2

2

∥∥∥uu> + vv>
∥∥∥2

F
− µ2

)

= −1 +
1

|S|2
∑
u,v∈S

exp

(
µ2

2
〈uu>, uu>〉+ µ2〈uu>, vv>〉+

µ2

2
〈vv>, vv>〉 − µ2

)
= −1 +

1

|S|2
∑
u,v∈S

exp
(
µ2〈u, v〉2

)
= −1 + Eu,v∼Unif[S]

[
exp

(
µ2〈u, v〉2

)]
where the third inequality follows since E[exp (〈t,X〉)] = exp

(
1
2‖t‖

2
2

)
and the last inequality

follows since 〈uu>, uu>〉 = ‖u‖42 = 〈vv>, vv>〉 = ‖v‖42 = 1 and 〈uu>, vv>〉 = 〈u, v〉2. Let Gm
denote a symmetric random walk on Z stopped at the mth step and H ∼ Hypergeometric(n, k, k)
as in Lemma 56. Now note that if u, v ∼ Unif[S] are independent, then 〈u, v〉 is distributed as
GH/k. Now let a = µ2

(
k log en

k

)−1 ≤ β0 and note that Lemma 56 along with Cauchy-Schwarz
implies that

dTV(P0,P1) ≤ 1

2

√
χ2(P1,P0) ≤ 1

2

√
g(β0)− 1

where g is the function from Lemma 56. Setting w(β0) = 1
2

√
g(β0)− 1 proves the theorem.

Note that any instance of SROSD is also an instance of ROSD and thus the information theoretic
lower bound in Theorem 57 also holds for ROSD. Symmetrizing SROSD as in Appendix E yields
that the same information-theoretic lower bound holds for SSWD. Now consider the function
τ : Rn×n → Gn that such that if τ(M) = G then {i, j} ∈ E(G) if and only ifMij > 0 for all i < j.
In other words, τ thresholds the above-diagonal entries of M as in Step 3 of SSBM-REDUCTION

from Lemma 31. Note that τ maps N(0, 1)⊗n×n to G(n, 1/2) and takes LH1(M) from Theorem
57 to a distribution in LSSBM ∈ GB(n, k, 1/2, ρ) where

ρ = Φ
(µ
k

)
− 1

2
=

1√
2π
· µ
k
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As in the proof of Theorem 32 there is a method e : Gn → Gn that either adds or removes edges
with a fixed probability mappingG(n, 1/2) to G(n, q) and LSSBM to e(LSSBM) ∈ GB(n, k, 1/2, ρ′)
where ρ′ = Θ(ρ) as long as q = Θ(1). By the data processing inequality, we now have that

dTV
(
G(n, 1/2),L′SSBM

)
≤ dTV (LH0(M),LH1(M))→ 0 as n→∞

if µ �
√
k which corresponds to ρ � 1/

√
k, establishing the information theoretic lower bound

for SSBMD in the regime q = Θ(1) matching Theorem 3.
Corresponding recovery lower bounds for these problems follow from information-theoretic

lower bounds for biclustering. Observe that an instance of BCWR(n, k, µ) is also an instance of
ROSWR(n, k, µ/k). By Theorem 44, ROSWR(n, k, µ) is therefore information-theoretically im-
possible if µ ≤ 2

√
k log n

k . An analogous information-theoretic lower bound is given for a sym-
metric variant of BCWR in Hajek et al. (2016b), which implies the corresponding lower bounds for
SROSWR and SSWWR.

Information-Theoretically Optimal Algorithms. Unlike existing maximum likelihood estima-
tors for recovery such as those for BCR in Chen and Xu (2016) and Cai et al. (2015a), the definition
of Vn,k requires that algorithms solving ROSR are adaptive to the sparsity level k. We introduce a
modified exhaustive search algorithm ROS-SEARCH that searches over all possible sparsity levels
and checks whether each resulting output is reasonable using an independent copy B of the data
matrix.

We first establish the notation that will be used in this section. Given some v ∈ Rn, let supp+(v)
denote the set of i with vi > 0 and supp−(v) denote the set of i with vi < 0. If A,B ∈ Rn×n,
let 〈A,B〉 = Tr(A>B). Let St be the set of v ∈ Rn with exactly t nonzero entries each in
{−1, 1}. In order to show that ROS-SEARCH succeeds at solving ROSR asymptotically down to
its information-theoretic limit, we begin by showing the following lemma.

Lemma 58 Let R and C be subsets of [n] such that |R| = k1 and |C| = k2 where k1, k2 ∈ [c1k, k]
for some constant c1 ∈ (0, 1). Let ρ > 0 and M ∈ Rn×n be a random matrix and with independent
sub-Gaussian entries with sub-Gaussian norm at most 1 such that:

• E[Mij ] ≥ ρ if (i, j) ∈ R× C; and

• E[Mij ] = 0 if (i, j) 6∈ R× C.

There is an absolute constant c2 > 0 such that if kρ2 ≥ c2 log n, then

argmax(u,v)∈Sk1×Sk2

{
u>Mv

}
is either (1R,1C) and (−1R,−1C) with probability at least 1− n−1 for sufficiently large n.

Proof For each pair (u, v) ∈ Sk1 × Sk2 , let A1(u, v) be the set of pairs (i, j) ∈ R × C with
uivj = −1, let A2(u, v) be the set of pairs (i, j) ∈ supp(u)× supp(v) that are not in R×C and let
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Algorithm ROS-SEARCH

Inputs: Matrix M ∈ Rn×n, sparsity upper bound k, threshold ρ > 0, constant c1 ∈ (0, 1)

1. Sample G ∼ N(0, 1)⊗n×n and form A = 1√
2
(M +G) and B = 1√

2
(M −G)

2. For each pair k1, k2 ∈ [c1k, k] do:

a. Let St be the set of v ∈ Rn with exactly t nonzero entries each in {−1, 1} and compute

(u, v) = argmax(u,v)∈Sk1×Sk2

{
u>Av

}
b. Mark the pair (u, v) if it satisfies that

• The set of i with
∑n

j=1 uivjBij ≥
1
2k2ρ is exactly supp(u)

• The set of j with
∑n

i=1 uivjBij ≥
1
2k1ρ is exactly supp(v)

3. Output supp(u), supp(v) where (u, v) is the marked pair maximizing |supp(u)|+ |supp(v)|

Figure 20: Exhaustive search algorithm for sparse rank-1 submatrix recovery in Theorem 58.

A3(u, v) be the set of (i, j) ∈ R× C that are not in supp(u)× supp(v). Now observe that

1>RM1C − u>Mv = 〈M,1R1
>
C − uv>〉

=
∑

(i,j)∈A1(u,v)

2Mij −
∑

(i,j)∈A2(u,v)

uivjMij +
∑

(i,j)∈A3(u,v)

Mij

≥ ρ (2|A1(u, v)|+ |A3(u, v)|) +
∑

(i,j)∈A1(u,v)

2 (Mij − E[Mij ])

−
∑

(i,j)∈A2(u,v)

uivjMij +
∑

(i,j)∈A3(u,v)

(Mij − E[Mij ])

Since R × C and supp(u) × supp(v) both have size k1k2, it follows that |A2(u, v)| = |A3(u, v)|.
Note that the random variables in the sum above are independent, zero mean and sub-Gaussian with
norm at most 1. By Hoeffding’s inequality for sub-Gaussian random variables as in Proposition
5.10 in Vershynin (2010), it follows that

P
[
〈M,1R1

>
C − uv>〉 ≤ 0

]
≤ e · exp

(
− cρ2 (2|A1(u, v)|+ |A2(u, v)|)2

4|A1(u, v)|+ |A2(u, v)|+ |A3(u, v)|

)

= e · exp

(
−1

2
cρ2 (2|A1(u, v)|+ |A2(u, v)|)

)
≤ e · n−c

−2
1 ·

16
k

(2|A1(u,v)|+|A2(u,v)|)

for some absolute constant c > 0 as long as cρ2 ≥ 16kc−2
1 log n. Let S(a1, a2, b1, b2) be the set

of all pairs (u, v) such that a1 = |supp(u)\R|, a2 = |supp−(u) ∩ R|, b1 = |supp(v)\C| and
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b2 = |supp−(v) ∩ C|. Suppose that a2 ≤ 1
2(k1 − a1). Note that for any (u, v) ∈ S(a1, a2, b1, b2),

we have

|A1(u, v)| = a2(k2 − b1 − b2) + b2(k1 − a1 − a2) and |A2(u, v)| = a1k2 + b1k1 − a1b1

Note that k1, k2 ≥ c1k, a1 + a2 ≤ k1 and b1 + b2 ≤ k2. Therefore we have that 1
k |A2(u, v)| ≥

a1 · k2k ≥ c1a1 and 1
k |A2(u, v)| ≥ c1b1. This implies that 1

k |A2(u, v)| ≥ 1
2c1(a1 + b1). Now note

that if b2 ≥ c1a2, then it holds that

1

k
|A1(u, v)| ≥ b2

k
(k1 − a1 − a2) ≥ 1

2k
b2(k1 − a1) ≥ c1

2
· b2 −

a1

2
≥ c2

1

4
(a2 + b2)− a1

2

Otherwise if b2 < c1a2 then it follows that b2 < c1a2 ≤ c1 · 12(k1−a1) ≤ k2
2 since k2 ≥ c1k ≥ c1k1.

Now we have that

1

k
|A1(u, v)| ≥ a2

k
(k2 − b1 − b2) ≥ a2

k
(k2 − b2)− b1 ≥

c1

2
a2 − b1 ≥

c1

4
(a2 + b2)− b1

Therefore in either case it follows that

1

k
|A1(u, v)| ≥ c2

1

4
(a2 + b2)− a1 − b1

Combining these inequalities and the fact that c1 ∈ (0, 1) yields that

2

k
|A1(u, v)|+ 1

k
|A2(u, v)| ≥ c1

4k
· |A1(u, v)|+ 1

k
|A2(u, v)|

≥ c2
1

4
(a2 + b2) +

c1

4
(a1 + b1) ≥ c2

1

4
(a1 + a2 + b1 + b2)

as long as a2 ≤ 1
2(k1 − a1). Furthermore, we have that

|S(a1, a2, b1, b2)| =
(
k1

a1

)(
n− k1

a1

)(
k1 − a1

a2

)(
k2

b1

)(
n− k2

b1

)(
k2 − b1
b2

)
≤ n2a1+2b1+a2+b2

since
(
n
k

)
≤ nk and k1, k2 ≤ n. Let T be the set of (a1, a2, b1, b2) 6= (0, 0, 0, 0) such that

a1, a2, b1, b2 ≥ 0, a1 + a2 ≤ k1, b1 + b2 ≤ k2 and a2 ≤ 1
2(k1 − a1). Now note for all (u, v) ∈ S2,

it holds that at least one of the pairs (u, v) or (−u,−v) satisfies that a2 ≤ 1
2(k1 − a1). Since (u, v)

and (−u,−v) yield the same value of u>Mv, we can restrict to T in the following union bound.
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Now note that

P
[
there is (u, v) ∈ S2 with (u, v) 6= ±(1R,1C) and 〈M,1R1

>
C − uv>〉 ≤ 0

]
≤

∑
(a1,a2,b1,b2)∈T

 ∑
(u,v)∈S(a1,a2,b1,b2)

e · n−c
−2
1 ·

16
k

(2|A1(u,v)|+|A2(u,v)|)


≤

∑
(a1,a2,b1,b2)∈T

|S(a1, a2, b1, b2)| · n−4(a1+a2+b1+b2)

≤
∑

(a1,a2,b1,b2)∈T

n−2a1−3a2−2b1−3b2

≤ −1 +
∞∑

a1,a2,b1,b2=0

n−2a1−3a2−2b1−3b2

= −1 +

( ∞∑
i=0

n−2i

)2
 ∞∑
j=0

n−3j

2

= −1 + (1− n−2)−2(1− n−3)−2 = O(n−2)

which as at most n−1 for sufficiently large n, completing the proof of the lemma.

We now use this lemma to prove the following theorem, which shows that ROS-SEARCH solves
ROSR and SSWR as long as µ &

√
k, asymptotically matching their information theoretic limits.

Theorem 59 Suppose that M ∼ µ · rc>+N(0, 1)⊗n×n where r, c ∈ Vn,k. There is an an absolute
constant c > 0 such that if µ ≥ c

√
k log n, then ROS-SEARCH applied with c1 = 1/2 and ρ = µ/k

outputs supp(r) and supp(c) with probability at least 1− 4n−1 for sufficiently large n.

Proof Suppose that (u, v) ∈ Sk1 × Sk2 where k1, k2 ∈ [c1k, k] are random vectors that are in-
dependent of B and either supp(u) 6⊆ supp(r) or supp(v) 6⊆ supp(c). Note that the definition of
Vn,k is such that any fixed c1 ∈ (0, 1) suffices for sufficiently large k. We first observe that if
ρ = µ/k and µ ≥ c

√
k log n then (u, v) is not marked in Step 2b of ROS-SEARCH with proba-

bility at least 1 − n−3. If supp(u) 6⊆ supp(r), then let i ∈ supp(u)\ ⊆ supp(r). It follows that∑n
j=1 uivjBij ∼ N(0, k2) since ‖v‖0 = k2 and by Gaussian tail bounds that

P

 n∑
j=1

uivjBij ≥
1

2
k2ρ

 ≤ 1√
2π
· 2

ρ
√
k2
· exp

(
−ρ

2k2

8

)
≤ n−3

if µ2 ≥
√

3c1k log n. This implies that if supp(u) 6⊆ supp(r), then (u, v) is marked in Step 2b of
ROS-SEARCH with probability at most n−3. A symmetric argument shows that the same is true if
supp(v) 6⊆ supp(c). Now for each pair k1, k2 ∈ [c1k, k], let uk1 and vk2 be such that

(uk1 , vk2) = argmax(u,v)∈Sk1×Sk2

{
u>Av

}
if the pair is marked and let (uk1 , vk2) = (0, 0) otherwise. By Lemma 81 in the next section, A and
B from Step 1 of ROS-SEARCH are i.i.d. and distributed as 1√

2
· rc>+N(0, 1)⊗n×n. In particular,
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the pairs (uk1 , vk2) are in the σ-algebra generated byA and hence are independent ofB. By a union
bound, we have

P [supp(uk1) ⊆ supp(r) and supp(vk2) ⊆ supp(c) for all k1, k2 ∈ [c1k, k]]

≥ 1−
∑

k1,k2∈[c1k,k]

P [supp(uk1) 6⊆ supp(r) or supp(vk2) 6⊆ supp(c)]

≥ 1− k2 · n−3 ≥ 1− n−1

Now let k′1 = ‖r‖0 and k′2 = ‖c‖0 and let r′ be the vector such that r′i = 0 if vi = 0, r′i = 1 if vi > 0
and r′i = −1 if vi < 0. Define the map τr : Rn → Rn such that τr maps v to the vector with ith entry
r′ivi. Define c′ and τc analogously. Now let M ′ be the matrix with (i, j)th entry r′ic

′
jAij . Since the

entries of M are independent Gaussians, it follows that M ′ ∼ µ · τr(r)τc(c)>+N(0, 1)⊗n×n. Now
observe that since Sk′1 and Sk′2 are preserved by τr and τc, respectively, we have that (uk′1 , vk′2) =
(τr(u), τc(v)) where

(u, v) = argmax(u,v)∈Sk′1
×Sk′2

{
u>M ′v

}
Now note that the mean matrix µ · τr(r)τc(c)> of M ′ has all nonnegative entries. Furthermore,
the entries in its support are at least µ · min(i,j)∈supp(r)×supp(c) |ricj | ≥ µ

k = ρ by the definition
of Vn,k. Applying Lemma 58 now yields that with probability at least 1 − n−1, it follows that
(u, v) = (1supp(r),1supp(c)) or (u, v) = (−1supp(r),−1supp(c)). This implies that uk′1 = r′ and
vk′2 = c′ and thus are supported on all of supp(r) and supp(c), respectively.

We now will show that r′ and c′ are marked by the test in Step 2b with high probability. If i ∈
supp(r), then

∑n
j=1 r

′
ic
′
jBij ∼ N

(∑n
j=1 µ · |ri| · |cj |, k2

)
. Since

∑n
j=1 µ · |ri| · |cj | ≥ µ ·

k2
k = k2ρ

by the definition of Vn,k. Therefore it follows by the same Gaussian tail bound as above that

P

 n∑
j=1

r′ic
′
jBij <

1

2
k2ρ

 ≤ P
[
N(0, k2) < −1

2
k2ρ

]
≤ n−3

Furthermore, if i 6∈ supp(r) it follows that
∑n

j=1 r
′
ic
′
jBij ∼ N(0, k2) and thus

P

 n∑
j=1

r′ic
′
jBij ≥

1

2
k2ρ

 = P
[
N(0, k2) ≥ 1

2
k2ρ

]
≤ n−3

Now a union bound yields that

P

supp(r) =

i ∈ [n] :

n∑
j=1

r′ic
′
jBij ≥

1

2
k2ρ


 ≥ 1−

∑
i∈supp(r)

P

 n∑
j=1

r′ic
′
jBij <

1

2
k2ρ


−

∑
i 6∈supp(r)

P

 n∑
j=1

r′ic
′
jBij ≥

1

2
k2ρ


≥ 1− k1 · n−3 − (n− k1)n−3 = 1− n−2
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An identical argument yields that

P

[
supp(c) =

{
j ∈ [n] :

n∑
i=1

r′ic
′
jBij ≥

1

2
k2ρ

}]
≥ 1− n−2

A union bound now yields that (r′, c′) is marked by the test in Step 2b with probability at least
1 − 2n−2. A further union bound now yields that with probability at least 1 − 2n−1 − 2n−2, the
following events all hold:

• supp(uk1) ⊆ supp(r) and supp(vk2) ⊆ supp(c) for all k1, k2 ∈ [c1k, k];

• (uk′1 , vk′2) = (r′, c′); and

• (r′, c′) is marked when input to the test in Step 2b.

These three events imply that that the vector (r′, c′) is marked in ROS-SEARCH and hence the
maximum of |supp(uk1)| + |supp(vk2)| over marked pairs (uk1 , vk2) is k′1 + k′2. Furthermore, first
event implies that any marked pair (uk1 , vk2) with |supp(uk1)|+ |supp(vk2)| = k′1 +k′2 must satisfy
that supp(uk1) = supp(r) and supp(vk2) = supp(v). Thus the algorithm correctly recovers the
supports of r and c with probability at least 1− 2n−1 − 2n−2, proving the theorem.

The last theorem of this section gives a simple test solving the detection problems SSBMD,
ROSD and SSWD asymptotically down to their information-theoretic limits. More precisely, this
test solves SSBMD if ρ & 1√

k
and by setting ρ = µ/k, solves ROSD and SSWD as long as

µ &
√
k.

Theorem 60 Suppose that c1 ∈ (0, 1) is a fixed constant and let R+ and R− be disjoint subsets of
[n] with c1k ≤ |R+|+ |R−| ≤ k. Let C+ and C− be defined similarly. Let M ∈ Rn×n be a random
matrix with independent sub-Gaussian entries with sub-Gaussian norm at most 1 such that:

• E[Mij ] ≥ ρ if (i, j) ∈ R+ × C+ or (i, j) ∈ R− × C−;

• E[Mij ] ≤ −ρ if (i, j) ∈ R+ × C− or (i, j) ∈ R− × C+; and

• E[Mij ] = 0 if (i, j) 6∈ (R+ ∪R−)× (C+ ∪ C−).

There is a constant c2 > 0 such that if kρ ≥ c2
√

log n, then max(u,v)∈S2
k
u>Mv ≥ 1

2c
2
1k

2ρ with
probability at least 1− en−1. If E[Mij ] = 0 for all (i, j) ∈ [n]2, then there is some constant c3 > 0
such that if kρ2 ≥ c2 log n then max(u,v)∈S2

k
u>Mv < 1

2c
2
1k

2ρ with probability at least 1− en−1.

Proof Let u ∈ Sk satisfy that ui = 1 for each i ∈ R+ and ui = −1 for each i ∈ R−. Similarly let
v ∈ Sk satisfy that vi = 1 for each i ∈ C+ and vi = −1 for each i ∈ C−. It follows that

n∑
i,j=1

uivj · E[Mij ] ≥ (|R+|+ |R−|)(|C+|+ |C−|)ρ ≥ c2
1k

2ρ
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Now note that if c · c4
1k

2ρ2 ≥ 4 log n, then

P
[
u>Mv <

1

2
c2

1k
2ρ

]
= P

 n∑
i,j=1

uivj (Mij − E[Mij ]) <
1

2
c2

1k
2ρ−

n∑
i,j=1

uivj · E[Mij ]


≤ P

 n∑
i,j=1

uivj (Mij − E[Mij ]) < −
1

2
c2

1k
2ρ


≤ e · exp

(
−
c ·
(
c2

1k
2ρ
)2

4k2

)
≤ en−1

for some constant c > 0 by Hoeffding’s inequality for sub-Gaussian random variables as in Propo-
sition 5.10 in Vershynin (2010). This proves the first claim of the theorem.

Now suppose that E[Mij ] = 0 for all (i, j) ∈ [n]2. For a fixed pair (u, v) ∈ S2
k , we have by the

same application of Hoeffding’s inequality that

P
[
u>Mv ≥ 1

2
c2

1k
2ρ

]
≤ e · exp

(
−c · c

4
1k

2ρ2

4

)
Now note that |Sk| = 2k

(
n
k

)
≤ (2n)k. Thus a union bound yields that

P

[
max

(u,v)∈S2
k

u>Mv ≥ 1

2
c2

1k
2ρ

]
≤ |Sk| · e · exp

(
−c · c

4
1k

2ρ2

4

)
≤ e · exp

(
k log(2n)− c · c4

1k
2ρ2

4

)
≤ en−1

if c · c4
1k

2ρ2 ≥ 4k log(2n) + 4 log n. This completes the proof of the theorem.

Polynomial-Time Algorithms. The polynomial-time algorithms achieving the tight boundary for
the problems in this section are very different in the regimes k .

√
n and k &

√
n. When

k .
√
n, the simple linear-time algorithm thresholding the absolute values of the entries of the

data matrix matches the planted clique lower bounds in Theorem 3 up to polylogarithmic factors.
This is captured in the following simple theorem, which shows that if µ & k then this algorithm
solves ROSR and SSWR. Setting u = v = 0 in the Theorem yields that the test outputting H1 if
maxi,j∈[n]2 |Mij | >

√
6 log n solves the detection variants ROSD and SSWD if µ & k.

Theorem 61 LetM ∼ µ·uv>+N(0, 1)⊗n×n where u, v ∈ Vn,k and suppose that µ ≥ 2k
√

6 log n,
then the set of (i, j) with |Mij | >

√
6 log n is exactly supp(u) × supp(v) with probability at least

1−O(n−1).

Proof This theorem follows from the Gaussian tail bound 1−Φ(t) ≤ 1√
2π
· t−1e−t

2/2 for all t ≥ 1

and a union bound. Now observe that if (i, j) 6∈ supp(u)× supp(v), then Mij ∼ N(0, 1) and thus

P
[
|Mij | >

√
6 log n

]
= 2

(
1− Φ(

√
6 log n)

)
≤ 2√

2π
· e−3 logn = O(n−3)
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Algorithm ROS-SPECTRAL-PROJECTION

Inputs: Matrix M ∈ Rn×n

1. Let G ∼ N(0, 1)⊗n×n and let A = 1√
2
(M +G) and B = 1√

2
(M −G)

2. Compute the top left and right singular vectors U and V of A

3. Sort the n entries of U>B in decreasing order and separate the entries into two clusters R
and [n]\R at the largest gap between consecutive values

4. Sort the n entries of BV in decreasing order and separate the entries into two clusters C
and [n]\C at the largest gap between consecutive values

5. Output R and C

Figure 21: Algorithm for sparse rank-1 submatrix recovery from Cai et al. (2015a) and in Theorem 62.

If (i, j) 6∈ supp(u) × supp(v), then Mij ∼ N(µ · uivj , 1) where |µ · uivj | ≥
√

6 log n since
|ui|, |vj | ≥ 1/

√
k by the definition of Vn,k. This implies that

P
[
|Mij | ≤

√
6 log n

]
≤
(

1− Φ(
√

6 log n)
)

+
(

1− Φ(3
√

6 log n)
)
≤ 2√

2π
·e−3 logn = O(n−3)

Now the probability that the set of (i, j) with |Mij | >
√

6 log n is not exactly supp(u) × supp(v)
is, by a union bound, at most∑
(i,j)∈supp(u)×supp(v)

P
[
|Mij | ≤

√
6 log n

]
+

∑
(i,j)6∈supp(u)×supp(v)

P
[
|Mij | >

√
6 log n

]
= O(n−1)

which completes the proof of the theorem.

In the regime k &
√
n, the spectral projection algorithm in Figure 21 from Cai et al. (2015a)

achieves exact recovery in ROSR down to the planted clique lower bounds in Theorem 3. This
method is described in Algorithm 1 and its guarantees established in Lemma 1 of Cai et al. (2015a).
Although it is stated as a recovery algorithm for a sub-Gaussian variant of BCR, as indicated
in Remark 2.1 in Cai et al. (2015a), the guarantees of the algorithm extend more generally to
rank one perturbations of a sub-Gaussian noise matrix. Our model of ROSR does not exactly
fit into the extended model in Remark 2.1, but the argument in Lemma 1 can be applied to show
ROS-SPECTRAL-PROJECTION solves ROSR. The details of this argument are show below. For
brevity, we omit parts of the proof that are identical to Cai et al. (2015a).

Theorem 62 Suppose that M = µ · rc> + N(0, 1)⊗n×n where r, c ∈ Vn,k. There is a constant
C1 > 0 such that if µ ≥ C1(

√
n +
√
k log n) then the algorithm ROS-SPECTRAL-PROJECTION

correctly outputs supp(r) and supp(c) with probability at least 1 − 2n−C2 − 2 exp(−2C2n) for
some constant C2 > 0.
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Proof Let Pu denote the projection operator onto the vector u and let ‖r‖0 = k1 and ‖c‖0 = k2.
By the definition of Vn,k, it follows that

k

(
1− 1

log k

)
≤ k1, k2 ≤ k

By the argument in Lemma 1 of Cai et al. (2015a), there are constants C2, C3 > 0 such that

‖PUB·j − µcjr‖2 ≤ C3

√
log n+ C3

√
n

k1

‖PVB>i· − µric‖2 ≤ C3

√
log n+ C3

√
n

k2

hold for all 1 ≤ i, j ≤ n with probability at least 1 − 2n−C2 − 2 exp(−2C2n). Now note that if
j ∈ supp(c) and j′ 6∈ supp(c), then it follows that

‖µcjr − µcj′r‖2 = µ · |cj | ≥
µ√
k

by the definition of Vn,k. Similarly, if i ∈ supp(r) and i′ 6∈ supp(r) then ‖µric− µri′c‖2 ≥ µ/
√
k.

Therefore if for both i = 1, 2

µ√
k
≥ 6C3

(√
log n+

√
n

ki

)
then it holds that

2 max
j,j′∈supp(c)

∥∥PUB·j − PUB·j′∥∥2
≤ max

j∈supp(c),j′ 6∈supp(c)

∥∥PUB·j − PUB·j′∥∥2

2 max
i,i′∈supp(c)

∥∥∥PVB>i· − PUB>i′·∥∥∥
2
≤ max

i∈supp(c),i′ 6∈supp(c)

∥∥∥PVB>i· − PUB>i′·∥∥∥
2

and Steps 3 and 4 succeed in recovering supp(r) and supp(c).

A simple singular value thresholding algorithm solves ROSD if µ &
√
n and is comparatively

simpler to analyze. As previously mentioned, this algorithm also solves SSWD since any instance
of SSWD is an instance of ROSD. Let σ1(M) denote the largest singular value of the matrix M .

Theorem 63 Suppose that M is an instance of ROSD(n, k, µ). There is a constant C1 > 0 such
that if µ > 4

√
n+ 2

√
2 log n then the algorithm that outputs H1 if σ1(M) ≥ 1

2µ and H0 otherwise
has Type I+II error tending to zero as n→∞.

Proof Under H0, it holds that M ∼ N(0, 1)⊗n×n. By Corollary 5.35 in Vershynin (2010), we have

σ1(M) ≤ 2
√
n+

√
2 log n

with probability at least 1− 2n−1. Now consider the case of H1 and suppose that M = µ · rc>+Z
where r, c ∈ Vn,k and Z ∼ N(0, 1)⊗n×n. By Weyl’s interlacing inequality, it follows that

|µ− σ1(M)| = |σ1(µ · rc>)− σ1(M)| ≤ σ1(Z) ≤ 2
√
n+

√
2 log n
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with probability at least 1−2n−1. If µ > 4
√
n+2

√
2 log n then the Type I+II error of the algorithm

is at most 4n−1, proving the theorem.

To complete this section, we give a simple spectral thresholding algorithm for SSBMD if ρ &√
n
k . Let λ1(X) denote the largest eigenvalue of X where X is a square symmetric matrix.

Theorem 64 Let G be an instance of SSBMD(n, k, q, ρ) where q = Θ(1), k = Ω(
√
n) and ρ ≥

6
√
n
k . Let A ∈ Rn×n be the adjacency matrix of G and J ∈ Rn×n be the matrix with zeros on its

diagonal and ones elsewhere. Then the algorithm that outputs H1 if λ1(A − qJ) ≥ 2
√
n and H0

otherwise has Type I+II error tending to zero as n→∞.

Proof Suppose that G is drawn from some distribution in H1 and that the two hidden communities
have index sets S1, S2 ⊆ [n] where k1 = |S1| and k2 = |S2|. For the remainder of the analysis of
H1, consider A and G conditioned on S1 and S2. Now let v be the vector

vi =


1√

k1+k2
if i ∈ S1

− 1√
k1+k2

if i ∈ S2

0 otherwise

for each i ∈ [n]. Now observe that

v>(A− qJ)v =
2

k1 + k2

 ∑
(i,j)∈S2

1∪S2
2 :i<j

(
1{i,j}∈E(G) − q

)
+

∑
(i,j)∈S1×S2

(
q − 1{i,j}∈E(G)

)
By the definition of H1 in SSBMD, the expression above is the sum of

(
k1+k2

2

)
independent shifted

Bernoulli random variables each with expectation at least ρ. Therefore it follows that

E
[
v>(A− qJ)v

]
≥ 2

k1 + k2
·
(
k1 + k2

2

)
· ρ = (k1 + k2 − 1)ρ ≥ 3

√
n

since k1 + k2− 1 ≥ k− 2k1−δSSBM − 1 ≥ k
2 for sufficiently large k, as defined in Section 2.2. Now

note that each of the centered random variables 1{i,j}∈E(G) − E[1{i,j}∈E(G)] and E[1{i,j}∈E(G)]−
1{i,j}∈E(G) are bounded in [−1, 1] and therefore Bernstein’s inequality implies that for all t > 0,

P
[
v>(A− qJ)v < E[v>(A− qJ)v]− 2t

k1 + k2

]
≤ exp

(
−

1
2 t

2

n+ 1
3 t

)
Note that v is a unit vector and thus λ1(A− qJ) ≥ v>(A− qJ)v. Setting t = 1

2(k1 + k2)
√
n now

yields that

P
[
λ1(A− qJ) < 2

√
n
]
≤ exp

(
−

1
8(k1 + k2)2n

n+ 1
6(k1 + k2)

√
n

)
= exp (−Ω(n))

since k1 + k2 ≥ k
2 = Ω(

√
n) for sufficiently large k. Now suppose that G is drawn from G(n, q) as

in H0. By Theorem 1.5 in Vu (2005), it follows that with probability 1− on(1), we have that

λ1(A− qJ) ≤ 2
√
q(1− q)n+ C(q − q2)1/4n1/4 log n

for some constant C > 0. Therefore λ1(A − qJ) is less than 2
√
n for sufficiently large values of

n since q(1 − q) ≤ 1/4. Therefore the Type I+II error of this algorithm on SSBMD is on(1) +
exp (−Ω(n)) = on(1) as n→∞.
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H.3. Sparse PCA and Biased Sparse PCA

Information-Theoretic Lower Bounds. In Berthet and Rigollet (2013b), information-theoretic
lower bounds for SPCAD(n, k, d, θ) were considered and it was shown that if

θ ≤ min

{
1√
2
,

√
k log(1 + o(d/k2))

n

}

then the optimal Type I+II error of any algorithm for SPCAD tends to 1 as n → ∞. The proof of
this information-theoretic lower bound follows a similar χ2 and MGF argument as in the previous
section. If d � k2, then this bound degrades to θ = o

(
d
kn

)
. When d = Θ(n), there is a gap

between this information-theoretic lower bound and the best known algorithm based on thresholding
the k-sparse eigenvalue of the empirical covariance matrix, which only requires θ &

√
k/n. This

information-theoretic lower bound was improved in Cai et al. (2015b) to match the algorithmic
upper bound. The following is their theorem in our notation.

Theorem 65 (Proposition 2 in Cai et al. (2015b)) Let β0 ∈ (0, 1/36) be a constant. Suppose that
X = (X1, X2, . . . , Xn) is an instance of SPCAD(n, k, d, θ) where under H1, the planted vector
v is chosen uniformly at random from all k-sparse unit vectors with nonzero coordinates equal to
± 1√

k
. If it holds that

θ ≤ min

{
1,

√
β0k

n
log

(
ed

k

)}
then there is a function w : (0, 1/36)→ (0, 1) satisfying that limβ0→0+ w(β0) = 0 and

dTV (LH0(X),LH1(X)) ≤ w(β0)

In particular if θ �
√
k/n, then this inequality eventually applies for every β0 > 0 and

dTV (LH0(X),LH1(X))→ 0, establishing the desired information-theoretic lower bound for SPCAD.
We now show that BSPCAD satisfies a weaker lower bound. The prior on the planted vector v
used in Theorem 5.1 of Berthet and Rigollet (2013b) to derive the suboptimal lower bound for
SPCAD shown above placed entries equal to 1/

√
k on a random k-subset of the d coordinates

of v. Therefore their bound also applies to BSPCAD. In order strengthen this to the optimal
information-theoretic lower bound for BSPCAD, we need apply Lemma 42 in place of the weaker
hypergeometric squared MGF bounds used in Berthet and Rigollet (2013b). To simplify the proof,
we will use the following lemma from Cai et al. (2015b).

Lemma 66 (Lemma 7 in Cai et al. (2015b)) Let v be a distribution on d × d symmetric random
matricesM such that ‖M‖ ≤ 1 almost surely. If Ev[N(0, Id+M)⊗n] =

∫
N(0, Id+M)⊗ndv(M),

then
χ2
(
Ev[N(0, Id +M)⊗n], N(0, Id)

⊗n)+ 1 = E
[
det(Id −M1M2)−n/2

]
where M1 and M2 are independently drawn from v.

Applying this lemma with the hypergeometric squared MGF bounds in Lemma 42 yields the
following information-theoretic lower bound for BSPCAD.
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Theorem 67 Suppose that X = (X1, X2, . . . , Xn) is an instance of BSPCAD(n, k, d, θ) where
under H1, the planted vector v is chosen uniformly at random from all k-sparse unit vectors in Rd
with nonzero coordinates equal to 1√

k
. Suppose it holds that θ ≤ 1/

√
2 and

θ ≤ min

{√
β0k

n
log

(
ed

k

)
,

√
β0d2

nk2

}

for some 0 < β0 < (16e)−1. Then there is a function w : (0, 1) → (0, 1) satisfying that
limβ0→0+ w(β0) = 0 and

dTV (LH0(X),LH1(X)) ≤ w(β0)

Proof Let uS denote the d-dimensional unit vector with entries in S equal to 1/
√
k and all other

entries equal to zero where S is some k-subset of d. Let v be the distribution on matrices θuSu>S
where θ ≤ 1 and S is chosen uniformly at random from the set of k-subsets of [d]. Note that
LH0(X) = N(0, Id)

⊗n and LH1(X) = Ev[N(0, Id + θuSu
>
S )⊗n]. By Lemma 66, it follows that

χ2 (LH1(X),LH0(X)) = E
[
det
(
Id − θ2uSu

>
S uTu

>
T

)−n/2]
− 1

= E

[(
1− θ2

k2
· |S ∩ T |2

)−n/2]
− 1

≤ E
[
exp

(
nθ2

k2
· |S ∩ T |2

)]
− 1

where S and T are independent random k-subsets of [d]. The last inequality above follows from
the fact that (1 − t)−1/2 ≤ et if t ≤ 1/2, θ2 ≤ 1/2 and |S ∩ T | ≤ k. Now note that |S ∩ T | ∼
Hypergeometric(d, k, k) and let

b =
nθ2

k2
·
(

max

{
1

k
log

(
ed

k

)
,
d2

k4

})−1

The given condition on θ implies that b ≤ β0. It follows by Lemma 42 that χ2 (LH1(X),LH0(X)) ≤
τ(β0)− 1 and by Cauchy-Schwarz that if w(β0) = 1

2

√
τ(β0)− 1 then

dTV (LH0(X),LH1(X)) ≤ 1

2

√
χ2 (LH1(X),LH0(X)) ≤ w(β0)

where w(β0)→ 0 as β0 → 0+, proving the theorem.

We remark that this same proof technique applied to the ensemble of k-sparse unit vectors v
chosen uniformly at random from those with nonzero coordinates equal to ±1/

√
k with Lemma

56 proves Theorem 65. This difference in the lower bounds resulting from these two choices of
ensembles illustrates the information-theoretic difference between SPCAD and BSPCAD. We
now will show information-theoretic lower bounds for the weak recovery problems SPCAWR and
BSCPAWR. The argument presented here is similar to the proof of Theorem 3 in Wang et al.
(2016b). For this argument, we will need a variant of the Gilbert-Varshamov lemma and generalized
Fano’s lemma as in Wang et al. (2016b). Given two u, v ∈ Rd, let dH(u, v) denote the Hamming
distance between u and v.
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Lemma 68 (Gilbert-Varshamov, Lemma 4.10 in Massart (2007)) Suppose thatα, β ∈ (0, 1) and
k ≤ αβd. Let

ρ =
α

log(αβ)−1
(β − log β − 1)

Then there is a subset S of {v ∈ {0, 1}d : ‖v‖0 = k} of size at least
(
d
k

)ρk
such that for any two

u, v ∈ S with u 6= v, it holds that dH(u, v) ≥ 2(1− α)k.

Lemma 69 (Generalized Fano’s Lemma, Lemma 3 in Yu (1997)) Let P1, P2, . . . , PM be proba-
bility distributions on a measurable space (X ,B) and assume that dKL(Pi, Pj) ≤ β for all i 6= j.
Any measurable function φ : X → {1, 2, . . . ,M} satisfies that

max
1≤i≤M

Pi(φ 6= i) ≥ 1− β + log 2

logM

With these two lemmas, we now will show that the weak recovery problems SPCAWR and
BSCPAWR cannot be solved if θ .

√
k/n, matching Theorem 3. Note that in the theorem

below, φ(X) and supp(v) have size k for all X ∈ Rd×n and v ∈ S. Therefore it holds that
|φ(X)∆supp(v)| = 2k − 2|φ(X) ∩ supp(v)| for all such X and v.

Theorem 70 Fix positive integers n, k, d and real numbers θ > 0 and a constant ε ∈ (0, 1) such
that k ≤ εd/4. Let Pv denote the distribution N(0, Id + θvv>) and let S be the set of all k-sparse
unit vectors with nonzero entries equal to 1/

√
k. If

nθ2

2(1 + θ)
+ log 2 ≤ ε2

2 log 4ε−1
· k log

(
d

k

)
then for any function φ : Rd×n →

([n]
k

)
, it holds that

min
v∈S

EX∼P⊗nv [|φ(X) ∩ supp(v)|] ≤
(

1

2
+ ε

)
k

Proof Note that dKL(N(0,Σ0), N(0,Σ1)) = 1
2

[
Tr
(
Σ−1

1 Σ0

)
− d+ ln det(Σ1)

det(Σ0)

]
for any positive

semidefinite Σ0,Σ1 ∈ Rd×d. Therefore for any ‖u‖2 = ‖v‖2 = 1,

dKL(P⊗nu , P⊗nv ) = n · dKL(Pu, Pv) =
n

2
· Tr
((

Id + θuu>
)−1 (

Id + θvv>
)
− Id

)
=
nθ

2
· Tr
((

Id + θuu>
)−1 (

vv> − uu>
))

=
nθ

2
· Tr
((

Id −
θ

1 + θ
· uu>

)(
vv> − uu>

))
=
nθ

2
· Tr
(
vv> − uu> − θ

1 + θ
· 〈u, v〉 · uv> +

θ

1 + θ
· uu>

)
=

nθ2

4(1 + θ)
· ‖u− v‖22 ≤

nθ2

2(1 + θ)
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since det(Id + θuu>) = det(Id + θvv>) = 1 + θ. Let S0 be the subset from Gilbert-Varshamov’s
lemma applied with α = ε and β = 1

4 . It follows that

log |S0| ≥
ε

2 log 4ε−1
· k log

(
d

k

)
For each u ∈ S, let û be an element of S0 such that |supp(u) ∩ supp(û)| is maximal. Let φ̂ denote
the function that maps X ∈ Rd×n to supp(û) where u = 1φ(X). Suppose that v ∈ S0 is such that
v 6= û. Observe by the triangle inequality that

4k − 2|φ(X) ∩ supp(v)| − 2|φ̂(X) ∩ φ(X)| = dH(û, u) + dH(u, v) ≥ dH(û, v) ≥ 2(1− ε)k

Rearranging and using the fact that |φ(X) ∩ supp(v)| ≤ |φ̂(X) ∩ φ(X)| yields that

k − |φ(X) ∩ supp(v)| ≥ 1

2
(1− ε) k

Note that k − |φ(X) ∩ supp(v)| ≥ 0 is true for all v. Therefore if v ∈ S0, we have

EX∼P⊗nv [k − |φ(X) ∩ supp(v)|] ≥ PX∼P⊗nv
[
φ̂(X) 6= v

]
· 1

2
(1− ε) k

Now observe by generalized Fano’s Lemma,

max
v∈S

EX∼P⊗nv [k − |φ(X) ∩ supp(v)|] ≥ max
v∈S0

EX∼P⊗nv [k − |φ(X) ∩ supp(v)|]

≥ 1

2
(1− ε) k ·max

v∈S0

PX∼P⊗nv
[
φ̂(X) 6= v

]
≥ 1

2
(1− ε) k ·

1−
nθ2

2(1+θ) + log 2

log |S0|


≥ 1

2
(1− ε) k · (1− ε) ≥

(
1

2
− ε
)
k

Rearranging completes the proof of the lemma.

Information-Theoretically Optimal Algorithms. Given a positive semidefinite matrix M ∈
Rd×d, let the k-sparse maximum eigenvalue and eigenvector be

λkmax(M) = max
‖u‖2=1,‖u‖0=k

u>Mu and vkmax(M) = arg max
‖u‖2=1,‖u‖0=k

u>Mu

Note that λkmax(M) and vkmax(M) can be computed by searching over all principal k×k minors for
the maximum eigenvalue and corresponding eigenvector. In Berthet and Rigollet (2013a) and Wang
et al. (2016b), the k-sparse maximum eigenvalue and eigenvector of the empirical covariance matrix
are shown to solve sparse PCA detection and estimation in the `2 norm under general distributions
satisfying a restricted covariance concentration condition. Specializing these results to Gaussian
formulations of sparse PCA yields the following theorems. Let L(u, v) =

√
1− 〈u, v〉 for u, v ∈

Rd with ‖u‖2 = ‖v‖2 = 1. The statement of Theorem 2 in Berthet and Rigollet (2013a) is for
k �

√
d, but the same argument also shows the result for k � d. Note that the following theorem

applies to BSPCAD since any instance of BSPCAD is also an instance of SPCAD.
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Theorem 71 (Theorem 2 in Berthet and Rigollet (2013a)) Suppose that X = (X1, X2, . . . , Xn)
is an instance of SPCAD(n, k, d, θ) and let Σ̂ be the empirical covariance matrix of X . If θ, δ ∈
(0, 1) are such that

θ > 15

√
k log

(
3ed
kδ

)
n

then the algorithm that outputs H1 if λkmax(Σ̂) > 1+ 8

√
k log( 3ed

kδ )
n and H0 otherwise has Type I+II

error at most δ.

Theorem 72 (Theorem 2 in Wang et al. (2016b)) Suppose that k, d and n are such that 2k log d ≤
n. Let Pv denote the distribution N(0, Id+θvv>) and given someX = (X1, X2, . . . , Xn) ∼ P⊗nv ,
let Σ̂(X) be the empirical covariance matrix of X . It follows that

sup
v∈Vd,k

EX∼PvL
(
vkmax

(
Σ̂(X)

)
, v
)
≤ 7

√
k log d

nθ2

The latter result on estimation in the `2 norm yields a weak recovery algorithm for SPCAWR

and BSPCAWR by thresholding the entries of vkmax(Σ̂), as in the following theorem. If k log d
nθ2

→ 0
then this algorithm achieves weak recovery.

Theorem 73 Suppose that k, d and n are such that 2k log d ≤ n. Let S(X) ⊆ [d] be the set of
coordinates of vkmax

(
Σ̂(X)

)
with magnitude at least 1

2
√
k

. It follows that

sup
v∈Vd,k

EX∼Pv
[

1

k
|S(X)∆supp(v)|

]
≤ 56

√
2k log d

nθ2

Proof Let u = vkmax

(
Σ̂(X)

)
− v and note that

‖u‖22 = ‖v‖22 +
∥∥∥vkmax

(
Σ̂(X)

)∥∥∥2

2
− 2

〈
v, vkmax

(
Σ̂(X)

)〉
= 2 · L

(
vkmax

(
Σ̂(X)

)
, v
)2

If i ∈ supp(v) where v ∈ Vd,k, then |v|i ≥ 1√
k

. Therefore each i ∈ S(X)∆supp(v) satisfies that

|u|i ≥ 1
2
√
k

, which implies that

1

k
|S(X)∆supp(v)| ≤ 4 ·

∑
i∈S(X)∆supp(v)

|u|2i ≤ 4‖u‖22 ≤ 8
√

2 · L
(
vkmax

(
Σ̂(X)

)
, v
)

using the fact that L(u, v) ≤
√

2 if ‖u‖2 = ‖v‖2 = 1. This inequality along with the previous
theorem completes the proof.

We next analyze an algorithm thresholding the sum of the entries of the empirical covariance
matrix. For instances of BSPCAD, this sum test solves the detection problem when θ &

√
n
k in the

regime d = Θ(n) and becomes optimal when k & n2/3. Recall that δ = δBSPCA > 0 is the constant
in the definition of BVd,k.
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Theorem 74 Suppose that X = (X1, X2, . . . , Xn) is an instance of BSPCAD(n, k, d, θ) and let
Σ̂(X) be the empirical covariance matrix of X . Suppose that 2δ2kθ ≤ d and nk2θ2

d2
→ ∞ as

n→∞. Then the test that outputs H1 if 1>Σ̂(X)1 > d+ 2δ2kθ and H0 otherwise has Type I+II
error tending to zero as n→∞.

Proof First assume that H0 holds and X ∼ N(0, Id)
⊗n. Observe that

n

d
· 1>Σ̂(X)1 =

1

d

n∑
i=1

〈1, Xi〉2

where the values 1√
d
〈1, Xi〉 are independent and distributed as N(0, 1). Therefore n

d · 1
>Σ̂(X)1 is

distributed as a χ2 distribution with n degrees of freedom. Since 1
d〈1, Xi〉2 − 1 is zero-mean and

sub-exponential with norm 1, Bernstein’s inequality implies that for all t ≥ 0

P
[n
d
· 1>Σ̂(X)1 ≥ n+ t

]
≤ 2 exp

(
−c ·min

(
t2

n
, t

))
for some constant c > 0. Substituting t = 2nδ2kθ

d ≤ n yields that

P
[
1>Σ̂(X)1 ≥ d+ 2δ2kθ

]
≤ 2 exp

(
−c ·min

(
4nδ4k2θ2

d2
,
2nδ2kθ

d

))
= 2 exp

(
−4cnδ4k2θ2

d2

)
which tends to zero as n→∞. Now assume that H1 holds and X ∼ N(0, Id + θvv>)⊗n for some
v ∈ BVd,k. Note that each Xi can be written as Xi =

√
θ · giv + Zi where g1, g2, . . . , gn ∼i.i.d.

N(0, 1) and Z1, Z2, . . . , Zn ∼i.i.d. N(0, Id). If s(v) =
∑d

j=1 vj is the sum of the entries of v, then

〈1, Xi〉 =
√
θ · gis(v) +

d∑
j=1

Zij ∼ N
(
0, d+ θs(v)2

)
Furthermore, these inner products are independent for i = 1, 2, . . . , n. Therefore n

d+θs(v)2
·1>Σ̂(X)1

is also distributed as a χ2 distribution with n degrees of freedom. Since v ∈ BVd,k, it either fol-
lows that |supp+(v)| ≥

(
1
2 + δ

)
k or |supp−(v)| ≥

(
1
2 + δ

)
k. If |supp+(v)| ≥

(
1
2 + δ

)
k, then by

Cauchy-Schwarz we have that

s(v) =
∑

i∈supp+(v)

vi −
∑

i∈supp−(v)

|vi| ≥
(

1

2
+ δ

)√
k −

 ∑
i∈supp−(v)

|vi|2
1/2

·
√
|supp−(v)|

=

(
1

2
+ δ

)√
k −

1−
∑

i∈supp+(v)

|vi|2
1/2

·
√
|supp−(v)|

≥
(

1

2
+ δ

)√
k −

(
1−
|supp+(v)|

k

)1/2

·

√(
1

2
− δ
)
k ≥ 2δ

√
k
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Bernstein’s inequality with t = 2nδ2kθ
d+θs(v)2

≤ n now implies that

P
[
1>Σ̂(X)1 ≤ d+ 2δ2kθ

]
≤ 2 exp

(
− 4cnδ4k2θ2

(d+ θs(v)2)2

)
which tends to zero as n → ∞ since θs(v)2 ≤ θk ≤ d

2δ2
by Cauchy-Schwarz. This completes the

proof of the theorem.

Polynomial-Time Algorithms. As shown in Berthet and Rigollet (2013a), SPCAD and BSPCAD

can be solved with a semidefinite program in the regime k .
√
n. Their algorithm computes a

semidefinite relaxation of the maximum k-sparse eigenvalue, first forming the empirical covariance
matrix Σ̂(X) and solving the convex program

SDP(X) = max
Z

Tr
(

Σ̂(X)Z
)

s.t. Tr(Z) = 1, |Z|1 ≤ k, Z � 0

Thresholding SDP(X) yields a detection algorithm for SPCAD with guarantees captured in the
following theorem. In Berthet and Rigollet (2013a), a more general model is considered with sub-
Gaussian noise. We specialize the more general theorem in Berthet and Rigollet (2013a) to our
setup.

Theorem 75 (Theorem 5 in Berthet and Rigollet (2013a)) Suppose that δ ∈ (0, 1). Let X =
(X1, X2, . . . , Xn) be an instance of SPCAD(n, k, d, θ) and suppose that θ ∈ [0, 1] satisfies that

θ ≥ 23

√
k2 log(d2/δ)

n

Then the algorithm that outputsH1 if SDP(X) ≥ 16

√
k2 log(d2/δ)

n + 1√
n

andH0 otherwise has Type
I+II error at most δ.

In Wang et al. (2016b), a semidefinite programming approach is shown to solve the sparse PCA
estimation task under the `2 norm. As in the proof of Theorem 73, this yields a weak recovery
algorithm for SPCAWR and BSPCAWR, achieving the tight barrier when k .

√
n. The SDP

algorithm in Wang et al. (2016b) is shown in Figure 22 and its guarantees specialized to the case of
Gaussian data are in the following theorem.

Theorem 76 (Theorem 5 in Wang et al. (2016b)) Suppose that k, d and n are such that 4 log d ≤
n ≤ k2d2θ−2 log d and 0 < θ ≤ k. Let Pv denote the distribution N(0, Id + θvv>) and given some
X = (X1, X2, . . . , Xn) ∼ P⊗nv , let vSDP(X) be the output of SPCA-SDP applied to X . Then

sup
v∈Vd,k

EX∼PvL (vSDP(X), v) ≤ min

(
(16
√

2 + 2)

√
k2 log d

nθ2
, 1

)

Using an identical argument to Theorem 73, we obtain the following theorem.
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Algorithm SPCA-SDP

Inputs: X = (X1, X2, . . . , Xn) ∈ Rd×n

1. Compute the empirical covariance matrix Σ̂ = Σ̂(X) and set

ε =
log d

4n
and λ = 4

√
log d

n

2. Let f : Rd×d → R be
f(M) = Tr

(
Σ̂M

)
− λ‖M‖1

and compute an ε-maximizer M̂ ε of f(M) subject to the constraints that M is symmetric,
M � 0 and Tr(M) = 1

3. Output vSDP = arg max‖u‖2=1 u
>M̂ εu

Figure 22: SDP algorithm for weak `2 estimation in sparse PCA from Wang et al. (2016b) and in Theorem
76.

Theorem 77 Suppose that k, d and n are such that 4 log d ≤ n ≤ k2d2θ−2 log d and 0 < θ ≤ k.
Let S(X) ⊆ [d] be the set of coordinates of vSDP(X) with magnitude at least 1

2
√
k

. It follows that

sup
v∈Vd,k

EX∼Pv
[

1

k
|S(X)∆supp(v)|

]
≤ 8
√

2 ·min

(
(16
√

2 + 2)

√
k2 log d

nθ2
, 1

)

To establish the polynomial-time upper bounds for SPCA and BSPCA in Theorem 3, it now
suffices to consider k &

√
n. First consider the detection problems SPCAD and BSPCAD. The

following theorem establishes that a spectral algorithm directly applied to the empirical covariance
matrix solves SPCAD when θ & 1.

Theorem 78 Suppose that X = (X1, X2, . . . , Xn) is an instance of SPCAD(n, k, d, θ) and let
Σ̂(X) be the empirical covariance matrix of X . Suppose that d ≤ cn for some constant c > 0,
d→∞ and n(1 + θ)−2 →∞ as n→∞ and it holds that θ > 4

√
c. Then the test that outputs H1

if λ1(Σ̂(X)) > 1 + 2
√
c and H0 otherwise has Type I+II error tending to zero as n→∞.

Proof First observe that Σ̂(X) = 1
nXX

> and thus λ1(Σ̂(X)) = 1
nσ1(X)2. Under H0, it follows

that X ∼ N(0, 1)⊗d×n. By Corollary 5.35 in Vershynin (2010), it follows that

P
[
λ1(Σ̂(X)) > 1 + 2

√
c
]
≤ P

[
σ1(X) >

√
n+ 2

√
d
]
≤ 2e−d/2

Under H1, suppose that X ∼ N(0, Id + θvv>)⊗n where v ∈ Vd,k. As in the proof of Theorem 74,
write Xi =

√
θ · giv + Zi where g1, g2, . . . , gn ∼i.i.d. N(0, 1) and Z1, Z2, . . . , Zn ∼i.i.d. N(0, Id).
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Now observe that

v>Σ̂(X)v =
1

n

n∑
i=1

〈v,Xi〉2 =
1

n

n∑
i=1

(√
θ · gi + 〈v, Zi〉

)2

Note that since ‖v‖2 = 1, it holds that
√
θ · gi + 〈v, Zi〉 ∼ N(0, 1 + θ) and are independent for

i = 1, 2, . . . , n. Now note that (1 + θ)−1〈v,Xi〉2 − 1 is zero-mean and sub-exponential with norm
1. Therefore Bernstein’s inequality implies that

P
[
λ1(Σ̂(X)) ≤ 1 + 2

√
c
]
≤ P

[
v>Σ̂(X)v ≤ 1 + 2

√
c
]

≤ P

[
n∑
i=1

[
(1 + θ)−1〈v,Xi〉2 − 1

]
≤ −2n

√
c

1 + θ

]

≤ 2 exp

(
−c1 ·

4cn

(1 + θ)2

)
→ 0 as n→∞

for some constant c1 > 0 and since 2n
√
c

1+θ < n. This completes the proof of the theorem.

The algorithm summing the entries of the empirical covariance matrix in Theorem 74 runs in
polynomial time and shows that BSPCAD can be solved in polynomial time as long as θ &

√
n
k .

Note that this algorithm gives an upper bound matching Theorem 3 and can detect smaller signal
levels θ in BSPCAD than the spectral algorithm.

For the recovery problem when k &
√
n, the spectral algorithm considered in Theorem 1.1 of

Krauthgamer et al. (2015) achieves the upper bound in Theorem 3 for the exact recovery problems
SPCAR and BSPCAR. As given in Krauthgamer et al. (2015), this spectral algorithm is not adaptive
to the support size of the planted vector and assumes that the planted sparse vector has nonzero
entries of the form ±1/

√
k. We mildly adapt this algorithm to only require that the planted vector

is in Vd,k. The proof of its correctness follows a similar argument as Theorem 1.1 in Krauthgamer
et al. (2015). We omit details that are identical for brevity.

Theorem 79 Suppose that k, d and n are such that k, d → ∞, dn → c and k log d
n → 0 as n → ∞

for some constant c > 0. Let X = (X1, X2, . . . , Xn) ∼ P⊗nv and let v̂ be the leading eigenvector
of Σ̂(X). Let S ⊆ [d] be the set of i such that |v̂i|4 ≥ log d

kd . If θ >
√
c is fixed then S = supp(v)

with probability tending to one as n→∞.

Proof Let v̂ = g · v +
√

1− g2 · u where u is the projection of v̂ onto the space orthogonal to v.
Also assume that g ∈ [0, 1], negating v if necessary. By Theorem 4 in Paul (2007), it follows that

g →
√

θ2 − c
θ2 + θc

with probability 1− o(1) as n→∞

By Theorem 6 in Paul (2007), u is distributed uniformly on the (d − 1)-dimensional unit sphere
of vectors in Rd orthogonal to v. By Lemma 4.1 in Krauthgamer et al. (2015), it holds that |ui| ≤
h
√

log d
d for all i ∈ [d] with probability tending to one. Condition on this event. Since k log d

d → 0,

it follows that log d
d = o

(√
log d
kd

)
. Therefore with probability tending to one, each i 6∈ supp(v)
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satisfies that |v̂i|4 < log d
kd for sufficiently large n, k and d. Now note that each i ∈ supp(v) satisfies

that

|vi| ≥
g√
k
−
√

1− g2 · |ui| ≥
g√
k
− h
√

log d

d
≥ 4

√
log d

kd

for sufficiently large n, k and d with probability tending to one. This is because g = Ω(1) with

probability 1−o(1) and 1√
k

= ω

(√
log d
kd

)
. Therefore it follows that S = supp(v) with probability

tending to one as n→∞.

Note that the theorem statement assumes that d/n → c where c > 1. The algorithm can more
generally accommodate inputs with d = Θ(n) by padding the input X with i.i.d. N(0, 1) entries so
that d/n→ c where c > 1.

Appendix I. Detection-Recovery Reductions

In this section, we show that our computational lower bounds for detection problems imply corre-
sponding lower bounds for the recovery. The idea is to produce two instances of each problem that
are coupled to have the same planted sparse structure but are conditionally independent given this
structure. If there is a polynomial-time recovery algorithm that outputs a set S containing a constant
fraction of the planted sparse structure, then we restrict to the indices in S yields an instance with
a planted structure of linear size and apply a detection algorithm from Appendix H. For each of
the problems that we consider, this solves detection within a sub-polynomial factor of when detec-
tion first becomes information-theoretically possible. The reduction also always runs in polynomial
time. Therefore our detection lower bounds also imply recovery lower bounds.

To carry out this argument, we first require methods of creating two such instances. We first give
such a cloning method for PDS instances. This method is similar to the cloning map in PC-LIFTING

from Appendix C but produces two copies rather than four.

Lemma 80 Suppose that S ⊆ [n] and p, q ∈ (0, 1] are such that p > q. Also suppose that

P,Q ∈ [0, 1] are such thatQ 6= 0, 1 and the quotients P
Q and 1−P

1−Q are both between
√

1−p
1−q and

√
p
q .

If G ∼ G(n, S, p, q) and (G1, G2) is the output of PDS-CLONING applied to G with parameters
p, q, P and Q, then (G1, G2) ∼ G(n, S, P,Q)⊗2. Furthermore, if G ∼ G(n, q) then (G1, G2) ∼
G(n,Q)⊗2.

Proof We first show that the distributions in Step 2 of PDS-CLONING are well-defined. First note
that both are normalized and thus it suffices to verify that they are nonnegative. First suppose that
p > q, then the distributions are well-defined if

1− p
1− q

≤
(
P

Q

)|v|1 (1− P
1−Q

)2−|v|1
≤ p

q

for all v ∈ {0, 1}2, which follows from the assumption onP andQ. Now observe that if 1{i,j}∈E(G) ∼
Bern(q) then xij has distribution

P[xij = v] = q·P[xij = v|{i, j} ∈ E(G)]+(1−q)·P[xij = v|{i, j} 6∈ E(G)] = Q|v|1(1−Q)2−|v|1
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Algorithm PDS-CLONING

Inputs: Graph G ∈ Gn, parameters p, q ∈ (0, 1] with p > q

1. Set P = 1−
√

1− p and Q = 1−
√

1− q

2. For each pair i, j ∈ [n] with i < j, independently generate xij ∈ {0, 1}2 such that

• If {i, j} ∈ E(G), then generate xij from

P[xij = v] =
1− q
p− q

· P |v|1(1− P )2−|v|1 − 1− p
p− q

·Q|v|1(1−Q)2−|v|1

• If {i, j} 6∈ E(G), then generate xij from

P[xij = v] =
p

p− q
·Q|v|1(1−Q)2−|v|1 − q

p− q
· P |v|1(1− P )2−|v|1

3. Construct the graphs G1 and G2 such that {i, j} ∈ E(Gk) if and only if xijk = 1

4. Output (G1, G2)

Algorithm GAUSSIAN-CLONING

Inputs: Matrix M ∈ Rn×n

1. Generate a matrix G ∼ N(0, 1)⊗n×n with independent Gaussian entries

2. Compute the two matrices

M1 =
1√
2

(M +G) and M2 =
1√
2

(M −G)

3. Output (M1,M2)

Figure 23: Cloning procedures in Lemmas 80 and 81.

and hence xij ∼ Bern(Q)⊗2. Similarly, if 1{i,j}∈E(G) ∼ Bern(p) then xij ∼ Bern(P )⊗2. It
follows that if G ∼ G(n, q) then (G1, G2) ∼ G(n,Q)⊗2 and if G ∼ G(n, S, p, q) then (G1, G2) ∼
G(n, S, P,Q)⊗2, proving the lemma.

A similar argument as in Lemma 18 on GAUSSIAN-LIFTING yields the following lemma.

Lemma 81 If M ∼ L (A+N(0, 1)⊗n×n) for any fixed matrix A ∈ Rn×n and (M1,M2) is the

output of GAUSSIAN-CLONING applied to M , then (M1,M2) ∼ L
(

1√
2
A+N(0, 1)⊗n×n

)⊗2
.
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Proof Since the entries of M and G are independent, the σ-algebras σ{M1
ij ,M

2
ij} for i, j ∈ [n] are

independent. Now note that M1
ij and M2

ij are jointly Gaussian and E[M1
ijM

2
ij ] = 1

2 ·E[M2−G2] =

0, which implies that they are independent. It follows that Mk
ij are independent for k = 1, 2 and

i, j ∈ [n]. The lemma follows from the fact that each of M1 and M2 is identically distributed to
1√
2
A+N(0, 1)⊗n×n.

With these two lemmas, we now overview how detection lower bounds imply partial recovery
lower bounds for each problem that we consider. In the cases of sparse PCA and biased sparse PCA,
rather than give a direct detection-recovery reduction, we outline modifications to our detection
reductions that yield recovery reductions from planted clique.

Biclustering. Suppose that there is a randomized algorithm φ that solves BCPR. More pre-
cisely, if M is an instance of BCPR(n, k, µ) with latent row and column supports S and T , then
E[|φ1(M) ∩ S|] = Ω(k) and E[|φ2(M) ∩ T |] = Ω(k). Consider the detection algorithm for
BCD(n, k, µ

√
2) that applies GAUSSIAN-CLONING to the input to produce (M1,M2) and then

takes the sum of the entries of M2 restricted to the indices in φ1(M1) × φ2(M1). The algorithm
then outputs H1 if this sum is at least k · τ(k) where τ(k) → ∞ arbitrarily slowly as k → ∞.
Since M1 and M2 are independent, it follows that M2 is independent of φ(M1). Under H0, the
sum is distributed as N(0, k2) which is less than k · τ(k) with probability tending to 1 as k → ∞.
Under H1, let S and T denote the latent row and column supports of the planted submatrix. If
k1 = |φ1(M1) ∩ S| and k2 = |φ2(M1) ∩ T |, then the sum is distributed as N(µ · k1k2, k

2). If
µ · k1k2 ≥ 2k · τ(k), then the algorithm outputs H1 with probability tending to 1 as k → ∞. If
µ ≥ 2τ(k)3

k then µ · k1k2 < 2k · τ(k) is only possible if either k1 · τ(k) < k or k2 · τ(k) < k. By
Markov’s inequality, each of these events occurs with probability tending to zero as k → ∞ over
the randomness of φ. Therefore this algorithm has Type I+II error tending to zero as k → ∞ if
µ ≥ 2τ(k)3

k , which is true for some τ as long as BCR is information-theoretically possible.
In summary, if φ solves BCPR(n, k, µ) then there is a polynomial-time algorithm using φ as a

blackbox that solves BCD(n, k, µ
√

2). Hence our computational and information-theoretic lower
bounds for BCD imply partial recovery lower bounds in the same parameter regimes. We now give
similar detection-recovery reductions using an initial cloning step for other problems.

Sparse Spiked Wigner and Rank-1 Submatrix. Similarly to biclustering, suppose that φ solves
ROSPR(n, k, µ). Consider the detection algorithm for ROSD(n, k, µ

√
2) that first applies GAUSSIAN-CLONING

to the input to produce (M1,M2), forms the k × k matrix W given by M2 restricted to indices in
φ1(M1)× φ2(M1) and then outputs H1 if and only if σ1(W ) > 2

√
k +
√

2 log k where σ1(W ) is
the largest singular value of W . By Corollary 5.35 in Vershynin (2010), the algorithm outputs H0

underH0 with probability at least 1−2k−1. UnderH1, let k1 and k2 be the sizes of the intersections
of φ1(M1) and φ2(M2) with the row and column supports, respectively, of the rank-1 spike. By
the definition of Vn,k, it follows that the rank-1 spike has largest singular value at least µk−1

√
k1k2.

By Weyl’s interlacing inequality, it follows that σ1(W ) ≥ µk−1
√
k1k2−2

√
k−
√

2 log k. Suppose
that µ ≥ τ(k)

√
k where τ(k) → ∞ as k → ∞ arbitrarily slowly. It follows that µk−1

√
k1k2 <

4
√
k + 2

√
2 log k < 8

√
k implies that either τ(k) · k1 < 64k or τ(k) · k2 < 64k. Both of these

events occur with probability tending to zero as k → ∞. It follows that this algorithm has Type
I+II error tending to zero as k → ∞ if µ ≥ τ(k)

√
k, which aligns with the information theoretic

lower bound on ROSR of µ &
√
k. Similar reductions yield an analogous result for SROS and

therefore also SSW.
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Planted Independent Set and Planted Dense Subgraph. We first give a detection-recovery algo-
rithm for PIS. Suppose that φ solves PISPR(n, k, q). Consider the detection algorithm that takes the
complement graph of an input PISD(n, k, q), applies PDS-CLONING with P = p′ = 1, q′ = 1− q
andQ = 1−q/2 to produce (G1, G2) and then outputsH1 if and only ifG2 restricted to the vertices
in φ(G1) contains at most

(
k
2

)
q − k

√
q(1− q) log k edges. Here G denotes the complement of the

graph G. First note that these inputs to PDS-CLONING are valid since 1− P = 1− p′ = 0 and

P

Q
=

1

1− q/2
=

2

1 + q′
≤
√

1

q′
=

√
1

1− q

Under H0, it follows that G1 and G2 are independent and distributed as G(n, q/2). By the same
applications of Bernstein’s inequality as in Theorem 50, the algorithm outputs H1 with probability
tending to zero as k → ∞. Under H1, it follows that G1 and G2 are independent and distributed
as GI(n, k, q/2). Let k1 be the size of the intersection between φ(G1) and the latent support of the
planted independent set. The number of edges inG2 restricted to the vertices in φ(G1) is distributed
as Bin(

(
k
2

)
−
(
k1
2

)
, q). If

(
k1
2

)
q ≥ 2k

√
q(1− q) log k, then with high probability the algorithm

outputsH1. If q ≥ τ(k) log k
k2

where τ(k)→∞ then it would have to hold that τ(k) ·k1 ≤ 4k for this
inequality not to be true. However, this event occurs with probability tending to zero by Markov’s
inequality. This gives a reduction from PISPR(n, k, q) to PISD(n, k, 2q).

Similar detection-recovery reductions apply for planted dense subgraph. Fix some constant
w ∈ (0, 1/2). For an instance of PDSD(n, k, p, q) with p > q, consider PDS-CLONING with
P = wp+(1−w)q

2 and Q = q/2. Note that these are valid inputs to PDS-CLONING when√
1− p
1− q

≤ 1− p− q
2(1− q)

≤ 1− w(p− q)
2− q

=
1− P
1−Q

and
P

Q
=
wp+ (1− w)q

q
= 1 +

w(p− q)
q

≤
√
p

q

where the second inequality holds as long as p−q
q ≤

1−2w
w2 . Taking w to be sufficient small covers

the entire parameter space p − q = O(q). Producing two independent copies of planted dense
subgraph and thresholding the edge count now yields a detection-recovery reduction by the same
argument as for planted independent set.

Sparse PCA and Biased Sparse PCA. Rather than give a generic reduction between detection
and recovery for variants of sparse PCA, we modify our existing reductions to produce two copies.
Note that the reductions SPCA-HIGH-SPARSITY and SPCA-LOW-SPARSITY approximately pro-
duce instances of ROSD and BCD, respectively, as intermediates. Consider the reduction that
applies GAUSSIAN-CLONING to these intermediates and then the second steps of the reductions to
both copies. Under H1, this yields two independent copies of N

(
0, In + θuu>

)
with a common

latent spike u. Furthermore the resulting parameter θ is only affected up to a constant factor.
Now given two independent samples from SPCAD(n, k, n, θ) constrained to have the same

hidden vector under H1 and a randomized algorithm φ that solves the weak recovery problem, we
will show that a spectral algorithm solves detection. Let (X1, X2) denote the n × n data matrices
for the two independent samples. Consider the algorithm that computes the k × k empirical co-
variance matrix Σ̂ using the columns in X2 restricted to the indices in φ(X1) and then outputs H1
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if and only if λ1(Σ̂) ≥ 1 + 2
√
k/n. Under H0, the same argument in Theorem 78 implies that

λ1(Σ̂) < 1 + 2
√
k/n with probability at least 1− 2e−k/2. Under H1, let k1 denote the size of the

intersection between φ(X1) and the latent support of the hidden vector. It follows that each column
of X2 restricted to the indices in S = φ(X1) is distributed as N

(
0, Ik + θuSu

>
S

)
where u is the

hidden vector. Now note that ‖uS‖2 ≥
√
k1/k and by the argument in Theorem 78, it follows that

u>S Σ̂uS ≥ 1 + θ
2k ·
√
k1k2 with probability tending to 1 as k →∞. Therefore if θ ≥ τ(k)

√
k/n for

some τ(k) → ∞, then this algorithm has Type I+II error tending to zero as k → ∞, which aligns
with the information-theoretic lower bound on SPCAD and SPCAR.

Appendix J. Future Directions

A general direction for future work is to add more problems to the web of reductions established
here. This work also has left number of specific problems open, including the following.

1. Collisions between support elements in REFLECTION-CLONING causes our formulations of
SSWD,ROSD, SSBMD and SPCAD to be as composite hypothesis testing problems rather
than the canonical simple hypothesis testing formulations. Is there an alternative reduction
from planted clique that can strengthen these lower bounds to hold for the simple hypothesis
testing analogues?

2. All previous planted clique lower bounds for SPCAD are not tight over the parameter regime
k �

√
n. Is there a reduction from planted clique yielding tight computational lower bounds

for SPCAD in this highly sparse regime?

3. Is there a polynomial time algorithm for the recovery variant of SSBM matching the compu-
tational barrier for the detection variant?

4. Can the PDS recovery conjecture be shown to follow from the planted clique conjecture?
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