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Abstract

Recently, research in unsupervised learning has gravitated towards exploring statistical-computational
gaps induced by sparsity. A line of work initiated in Berthet and Rigollet (2013a) has aimed to ex-
plain these gaps through reductions to conjecturally hard problems from complexity theory. How-
ever, the delicate nature of average-case reductions has limited the development of techniques and
often led to weaker hardness results that only apply to algorithms robust to different noise dis-
tributions or that do not need to know the parameters of the problem. We introduce several new
techniques to give a web of average-case reductions showing strong computational lower bounds
based on the planted clique conjecture. Our new lower bounds include:

¢ Planted Independent Set: We show tight lower bounds for detecting a planted indepen-
dent set of size k in a sparse Erd8s-Rényi graph of size n with edge density ©(n~%).

e Planted Dense Subgraph: If p > ¢ are the edge densities inside and outside of the
community, we show the first lower bounds for the general regime ¢ = (:)(n’o‘) and
p—q= é(n*V) where v > «, matching the lower bounds predicted in Chen and Xu
(2016). Our lower bounds apply to a deterministic community size k, resolving a question
raised in Hajek et al. (2015).

o Biclustering: We show strong lower bounds for Gaussian biclustering as a simple hy-
pothesis testing problem to detect a uniformly at random planted flat k£ x k submatrix.

o Sparse Rank-1 Submatrix: We show that detection in the sparse spiked Wigner model
is often harder than biclustering, and are able to obtain two different tight lower bounds
for these problems with different reductions from planted clique.

o Sparse PCA: We give a reduction between rank-1 submatrix and sparse PCA to obtain
tight lower bounds in the less sparse regime k > /n, when the spectral algorithm is
optimal over the SDP. We give an alternate reduction recovering the lower bounds of
Berthet and Rigollet (2013a); Gao et al. (2017) in the simple hypothesis testing variant of
sparse PCA. We also observe a subtlety in the complexity of sparse PCA that arises when
the planted vector is biased.

o Subgraph Stochastic Block Model: We introduce a model where two small communi-
ties are planted in an Erd6s-Rényi graph of the same average edge density and give tight
lower bounds yielding different hard regimes than planted dense subgraph.

Our results demonstrate that, despite the delicate nature of average-case reductions, using nat-
ural problems as intermediates can often be beneficial, as is the case in worst-case complexity. Our
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main technical contribution is to introduce a set of techniques for average-case reductions that:
(1) maintain the level of signal in an instance of a problem; (2) alter its planted structure; and (3)
map two initial high-dimensional distributions simultaneously to two target distributions approxi-
mately under total variation. We also give algorithms matching our lower bounds and identify the
information-theoretic limits of the models we consider.

Keywords: Planted clique, statistical-computational gap, average-case complexity

1. Introduction

The field of statistics is undergoing a dramatic conceptual shift, with computation moving from
the periphery to center stage. Prompted by the demands of modern data analysis, researchers real-
ized two decades ago that a new approach to estimation was needed for high-dimensional problems
in which the dimensionality of the data is at least as large as the sample size. High-dimensional
problems are inherently underdetermined, often precluding nontrivial rates of estimation. However,
this issue typically disappears if the underlying signal is known to have an appropriate structure,
such as low rank or sparsity. Although structural assumptions can yield nontrivial estimation rates,
the statistically optimal estimators for these problems typically entail an exhaustive search over
the set of possible structures and are thus not efficiently computable. Conversely, all known effi-
cient algorithms for these problems are statistically suboptimal, requiring more data than strictly
necessary. This phenomenon has led to a number of conjectured statistical-computational gaps for
high-dimensional problems with structure. This raises an intriguing question: how are these gaps
related to one another and are they emerging for a common reason?

In the last few years, several lines of work have emerged to make rigorous the notion of what
is and what is not achievable statistically by efficient algorithms. In the seminal work of Berthet
and Rigollet (2013a), a conjectured computational-statistical gap for sparse principal component
analysis (PCA) was shown to follow from the planted clique conjecture. This marked the first re-
sult basing the hardness of a natural statistics problem on an average-case hardness assumption
and produced a framework for showing statistical-computational gaps by approximately mapping
in total variation. This subsequently led to several more reductions from the planted clique conjec-
ture to show computational-statistical gaps for problems including submatrix detection/biclustering
Ma and Wu (2015), submatrix localization Cai et al. (2015a), planted dense subgraph Hajek et al.
(2015), RIP certification Wang et al. (2016a), sparse PCA and sparse canonical correlation analy-
sis Wang et al. (2016b); Gao et al. (2017). We draw heavily from the framework for average-case
reductions laid out in these papers. More recently, focus has shifted to showing unconditional hard-
ness results for restricted models of computation and classes of algorithms. An exciting line of work
has emerged surrounding applications of the Sum of Squares (SOS) semidefinite programming hi-
erarchy to problems with statistical computational gaps. SOS Lower bounds have been shown for
planted clique Barak et al. (2016) and for sparse PCA Krauthgamer et al. (2015); Ma and Wigder-
son (2015); Hopkins et al. (2017). Tight computational lower bounds have also been shown in the
statistical query model for planted clique and planted random k-SAT Feldman et al. (2012, 2015).

One reason behind this focus on showing hardness in restricted models of computation is that
average-case reductions are inherently delicate, creating obstacles to obtaining satisfying hardness
results. As described in Barak (2017), these technical obstacles have left us with an unsatisfying
theory of average-case hardness. Reductions in worst-case complexity typically take a general
instance of a problem A to a structured instance of a problem B. For example, a classic reduction
from 3SAT to INDEPENDENT-SET produces a very specific type of graph with a cluster of seven
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vertices per clause corresponding to each satisfying assignment such that two vertices are connected
if together they yield an inconsistent assignment. If such a reduction were applied to a random 3S AT
instance, the resulting graph instance would be far from any natural graph distribution. Unlike
reductions in worst-case complexity, average-case reductions between natural decision problems
need to precisely map the distributions on instances to one another without destroying the underlying
signal in polynomial-time. The delicate nature of this task has severely limited the development of
techniques and left open reductions between decision problems that seem to be obviously equivalent
from the standpoint of algorithm design. For example, it remains unknown whether refuting random
constraint satisfaction problems with 10m clauses is equivalent to refuting those with 11m clauses
or whether the planted clique conjecture at edge density 1/2 implies the conjecture at edge density
0.49. For more on average-case complexity, we refer to the survey of Bogdanov et al. (2006).

In order to overcome these average-case difficulties, prior reductions have often made assump-
tions on the robustness of the underlying algorithm such as that it succeeds for any noise distribu-
tions from a fixed class as in Berthet and Rigollet (2013a); Wang et al. (2016b); Cai et al. (2015a).
This corresponds to composite vs. composite hypothesis testing formulations of detection prob-
lems, where the composite null hypothesis Hy consists of the class of noise distributions. Other
reductions have shown hardness for precise noise distributions but for algorithms that do not need
to exactly know the parameters of the given instance Ma and Wu (2015); Gao et al. (2017). This
typically corresponds to simple vs. composite hypothesis testing where the composite alternative
H; consists of models defined by varying parameters such as the sparsity k& or signal strength. The
strongest prior reduction from planted clique is that to the sparsest regime of planted dense subgraph
in Hajek et al. (2015). A lower bound is shown for a simple vs. simple hypothesis testing variant
of the problem, with each consisting of a single distribution. However, the community in their for-
mulation of planted dense subgraph was binomially distributed and therefore still assumed to be
unknown exactly to the algorithm. Prior reductions have also shown hardness at particular points
in the parameter space, deducing that an algorithm cannot always perform better than a conjectured
computational barrier rather than showing that no algorithm can ever perform better. For example,
prior reductions for sparse PCA have only shown tight hardness around the single parameter point
where the signal is @ = ©(1) and the sparsity is k = O(y/n). Simplifying parameters in their
reductions, both Berthet and Rigollet (2013a) and Gao et al. (2017) approximately map a planted
clique instance on n vertices with clique size £ to an instance of sparse PCA with 0 ~ (:)(k2 /n)
which is only tight to the conjectured barrier of #* = ©(1/k2/n) when k = ©(y/n).

These assumptions leave a subtle disparity between the existing average-case lower bounds
for many problems and algorithmic upper bounds. Many algorithmic results assume a canonical
generative model or implicitly assume knowledge of parameters. For example, even in the recent
literature on robust algorithms for problems with sparsity in Balakrishnan et al. (2017); Li (2017),
the setup is in the context of specific canonical generating models, such as the spiked covariance
model for sparse PCA. Even when corrupted by adversarial noise, the spiked covariance model is
far in distribution from many sub-gaussian formulations of sparse PCA. Despite existing average-
case lower bounds, hardness for the canonical generative models for many problems has remained
open. This includes biclustering with a flat planted £ x k£ submatrix selected uniformly at random
in gaussian noise, sparse PCA with a k-sparse principal component chosen uniformly at random to
have entries equal to +1/ vk and planted dense subgraph with deterministic community size.
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Figure 1: Graph of average-case reductions for detection problems showing tight statistical-computational
gaps given the planted clique conjecture.

Overview

The aim of this paper is threefold: (1) to demonstrate that a web of average-case reductions among
problems with statistical-computational gaps is feasible even for showing strong computational
lower bounds; (2) to introduce a number of new techniques for average-case reductions between
problems; and (3) to fully characterize the computationally hard regime of several models. The
graph of our reductions is shown in Figure 1. Our new lower bounds are as follows.

Planted Independent Set: We show tight lower bounds for detecting a planted independent
set of size k in a sparse Erds-Rényi graph of size n with edge density ©(n~%).

Planted Dense Subgraph: If p > ¢ are the edge densities inside and outside of the commu-
nity, we show the first lower bounds for the general regime ¢ = ©(n~%) andp—q = O(n™7)
where 7 > «, matching the lower bounds predicted in Chen and Xu (2016). Our lower bounds

apply to a deterministic community size k, resolving a question raised in Hajek et al. (2015).

Biclustering: We show lower bounds for Gaussian biclustering as a simple hypothesis test-
ing problem to detect a uniformly at random planted flat £ x k submatrix. Our alternative
reduction matches the barriers in Ma and Wu (2015), where a computational lower bound
was shown for a composite hypothesis testing variant of biclustering. We show hardness for
the natural simple hypothesis testing problem where the k x k submatrix is chosen uniformly
at random and has equal entries.

Sparse Rank-1 Submatrix: We show that detection in the sparse spiked Wigner model has
a different computational threshold from biclustering when k > +/n. Surprisingly, we are
able to obtain tight lower bounds matching these different detection thresholds with different
reductions from planted clique.

Sparse PCA: We give a reduction between rank-1 submatrix and sparse PCA to obtain tight
lower bounds in the less sparse regime k& > \/n, when the spectral algorithm is optimal
over the SDP. This yields the first tight characterization of a computational barrier for sparse
PCA over an entire parameter regime. We also give an alternate reduction recovering the
lower bounds of Berthet and Rigollet (2013a) and Gao et al. (2017) in the canonical simple
hypothesis testing variant of sparse PCA.



REDUCIBILITY AND COMPUTATIONAL LOWER BOUNDS

¢ Biased Sparse PCA: We show that any assumption on the sparse principal component having
a constant fraction more or fewer positive entries than negative entries yields a detection-
recovery gap that is not present in sparse PCA.

e Subgraph Stochastic Block Model: We introduce a model where two small communities are
planted in an Erd&s-Rényi graph of the same average edge density. Parallel to the difference
between biclustering and sparse rank-1 submatrix when & > /n, we show that detection in
this model is much harder than in planted dense subgraph when & > /n.

Our lower bounds for planted independent set, the general regime of planted dense subgraph, rank-1
submatrix, sparse PCA when k >> \/n, biased sparse PCA and the subgraph stochastic block model
are novel. As previously mentioned, lower bounds for sparse PCA when k < +/n, for biclustering
and for planted dense subgraph in the sparsest regime were previously known. In each of these
cases, we strengthen the existing lower bounds to the apply to the canonical generative model.
We show computational lower bounds for simple vs. simple hypothesis testing in all cases other
than for sparse PCA, rank-1 submatrix and the subgraph stochastic block model all in the regime
k > \/n. This is a consequence of our underlying reduction technique, reflection cloning, and
appears unavoidable given our methods. However, we do show that the distribution we reduce to is
in some sense close to the canonical generative model.

2. Problem Formulations

2.1. Detection and Recovery Problems

We consider problems P with planted sparse structure as both detection and recovery tasks, which
we denote by Pp and Pg, respectively.

Detection. In detection problems Pp, the algorithm is given a set of observations and tasked with
distinguishing between two hypotheses:

e a uniform hypothesis Hp, under which observations are generated from the natural noise
distribution for the problem; and

e a planted hypothesis H;, under which observations are generated from the same noise distri-
bution with a latent planted sparse structure.

In all of the detection problems we consider, Hy is a simple hypothesis consisting of a single dis-
tribution and H; is either also simple or a composite hypothesis consisting of several distributions.
When H; is a composite hypothesis, it consists of a set of distributions of the form Py where 6 is the
latent sparse structure of interest. Often H is a simple hypothesis consisting of a single distribution
which is a mixture of Py with € in some sense chosen uniformly at random. In both cases, we
will abuse notation and refer to H; as a set of distributions. Given an observation X, an algorithm
A(X) € {0, 1} solves the detection problem with nontrivial probability if there is an € > 0 such
that its Type 1411 error satisfies that

lim sup (IF’HO [A(X) = 1] + sup Pxp[A(X) = O]> <l-e
n—00 PecH,

where n is the parameter indicating the size of X. We refer to this quantity as the asymptotic Type
I+II error of A for the problem Pp. If the asymptotic Type I+II error of A is zero, then we say
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A solves the detection problem Pp. Our reductions under total variation all yield exact correspon-
dences between asymptotic Type I-+II errors. Specifically, they show that if a polynomial time
algorithm has asymptotic Type I4-11I error of € on the problem of interest then there is a polynomial
time algorithm with asymptotic Type I4-1I error € on the problem being reduced from.

Recovery. Inrecovery problems Pg, the algorithm is given an observation from Py for some latent
6 from a space © and the task is to recover the support S(#) of the sparse structure 6. There are
several variants of the recovery task. Given a randomized algorithm with output A(X) € {S(0) :
6 € ©} and a distribution 7 on the latent space ©, the variants of the recovery task are as follows.

e Partial Recovery: A solves partial recovery if

Ex~g, r,[ACX) N S(6)]] = IS©)]) asn - o0

e Weak Recovery: A solves weak recovery if

Ex~g. p[|A(X)AS(0)]] = o(|S(0)]) asn — oo

e Exact Recovery: A solves exact recovery with nontrivial probability ¢ > 0 if for all € ©

hﬂilnf ]P)XN]ET(PQ [A(X) = 5(9)] > €

Here, E; Py denotes the mixture of Py induced by 7w and A denotes the symmetric difference be-
tween two sets. Whenever the corresponding detection problem Pp has a simple hypothesis Hy,
m will be the prior on © as in H;, which typically is a uniform prior. When Pp has a composite
hypothesis H7i, then an algorithm A solves each of the three variants of the recovery task if the
above conditions are met for all distributions 7. Given a problem P, the notation Pg will denote
the exact recovery problem, and Ppr and Py r will denote partial and weak recovery, respectively.
All of our recovery reductions will apply to all recovery variants simultaneously.

Computational Model. The algorithms we consider here are either unconstrained or run in ran-
domized polynomial time. An unconstrained algorithm refers to any randomized function or Markov
transition kernel from one space to another. These algorithms considered in order to show that
information-theoretic lower bounds are asymptotically tight. An algorithm that runs in random-
ized polynomial time has access to poly(n) independent random bits and must run in poly(n) time
where n is the size of the input. For clarity of exposition, we assume that explicit expressions can
be exactly computed and that N (0, 1) and Poisson random variables can be sampled in O(1) time.

2.2. Problems

In this section, we define the problems that we show computational lower bounds for and the con-
jectures on which these lower bounds are based. Each problem we consider has a natural parameter
n, which typically denotes the number of samples or dimension of the data, and sparsity parameter
k. Every parameter for each problem is implicitly a function of n, that grows or decays polynomi-
ally in n. For example, k = k(n) = ©(n?) for some constant 3 € (0, 1) throughout the paper. For
simplicity of notation, we do not write this dependence on n. We mostly will be concerned with the
polynomial order of growth of each of the parameters and not with subpolynomial factors. We now
formally define the problems we consider.
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Planted Clique and Independent Set. The hypotheses in the planted clique detection problem
PCp(n,k,p) are
Hy:G~G(n,p) and H;:G~ G(n,k,p)

where G (n, p) is an Erd6s-Rényi random graph with edge probability and G(n, k, p) is a sample of
G (n,p) with a clique of size k planted uniformly at random. All known polynomial time algorithms
for planted clique fail if & < y/n. This has led to the following hardness conjecture.

Conjecture 1 (PC Conjecture) Fix some constant p € (0,1). Suppose that { Ay} is a sequence of
randomized polynomial time algorithms Ay, : G, — {0, 1} and k,, is a sequence of positive integers
satisfying that lim sup,,_, . log,, k, < % Then if G is an instance of PCp(n, k, p), it holds that
liminf (P, [An(G) = 1] + Py, [An(G) =0]) > 1.
n—oo

The hardness assumption we use throughout our results is the planted clique conjecture. Other
than to show hardness for planted dense subgraph in the sparsest regime, we will only need the
planted clique conjecture with edge density p = 1/2. An interesting open problem posed in Hajek

et al. (2015) is to show that the PC conjecture at p = 1/2 implies it for any fixed constant p < 1/2.
The hypotheses in the planted independent set detection problem PIS p(n, k, p) are

Hy:G~G(n,p) and H;:G~ Gr(n,k,p)

where G1(n, k, p) is a sample of G(n, p) where all of the edges of vertex set of size k£ removed uni-
formly at random. The recovery PCg(n, k, p) and PISgp(n, k, p) problems are to estimate the latent
clique and independent set supports given samples from G(n, k, p) and G (n, k, p), respectively.

Planted Dense Subgraph. The hypotheses in the detection problem PDS p(n, k, p, q) are
Hy:G~G(n,q) and H;:G~G(n,k,p,q)

where G(n, k, p, q) is the distribution on G,, formed by selecting a size k subset S of [n] uniformly
at random and joining every two nodes in S with probability p and every other two nodes with prob-
ability g. The recovery problem PDSR(n, k, p, q) is to estimate the latent planted dense subgraph
support S given samples from G(n, k, p, q).

A phenomenon observed in Hajek et al. (2015) and in Chen and Xu (2016) is that planted dense
subgraph appears to have a detection-recovery gap in the regime where k >> /n. The following is
a formulation of the conjectured sharper recovery lower bound.

Conjecture 2 (PDS Recovery Conjecture) Suppose that G ~ G(n, k,p, q) and

1 k,? N2
lim inf log,, k > 3 and limsup log, <(pq)) <1

n—00 n—00 Q(l - Q)

then there is no sequence of randomized polynomial-time algorithms A,, : G, — ([Z]) such that
Ay (QG) achieve exact recovery of the vertices in the latent planted dense subgraph as n — .
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This conjecture asserts that the threshold of n/k? on the signal g()l_fg of an instance of PDS is

tight for the recovery problem. In contrast, our results show that the tight detection threshold for
PDS given the PC conjecture is lower, at n2/k*. We will use this conjecture to establish similar
detection-recovery gaps for biased sparse PCA and biclustering. We note that a related detection-
recovery gap for BC was shown in Cai et al. (2015a). The same lower bound was established for
strong recovery algorithms that solve biclustering for all subgaussian noise distributions assuming
hardness of planted clique for a different distribution on random graphs than Erd6s-Rényi.

Subgraph Stochastic Block Model. We introduce a planted subgraph variant of the two com-
munity stochastic block model without the edge-thresholding test that produced the conjectural
detection-recovery gap in planted dense subgraph. Let Gg(n, k, ¢, p) denote the set of distributions
on G,, generated a graph G as follows. Fix any two positive integers k; and k2 satisfying that

k k
-k <k ko < -+ K
2 ==

where 6 = dssgm > 0 is a small constant that will remained fixed throughout the paper. Let
S = [k1] and T' = [k1 + k2]\[k1]. Then generate the edges of G independently as follows:

1. include edges within .S or within 7" with probability at least g + p;
2. include edges between S and 1" with probability at most ¢ — p; and
3. include all other edges with probability q.

Then permute the vertices of G according to a permutation selected uniformly at random. The
communities of the graph are defined to be the images of S and 7" under this permutation. Note
that Gg(n, k, q, p) defines a set of distributions since k1 and ks are permitted to vary and the edges
between S and 7 are included independently with a probability at least ¢ + p for each edge. Thus
given the random permutation, GG is distributed as an inhomogeneous random graph with inde-
pendent edges. The subgraph stochastic block model detection problem SSBMp(n, k, g, p) has
hypotheses given by

Hy:G~G(n,q) and H;:G~P forsome P e Gp(n,k,q,p)

Biclustering. Let M,, ;; C R™*" be the set of sparse matrices supported on a k x k submatrix with
each nonzero entry equal to 1. The biclustering detection problem BC p(n, k, 1) has hypotheses

Ho: M ~ N(0,1)®"*" and Hy:M ~ p- A+ N(0,1)®"*" where A ~ Unif [M,, z]

The recovery problem BCr, is to estimate the latent support matrix A given a sample from H.

Rank-1 Submatrix and Sparse Spiked Wigner. In rank-1 submatrix, sparse spiked Wigner and
sparse PCA, the planted sparse vectors will have sufficiently large entries for support recovery to be
possible. We consider the following set of near-uniform magnitude unit vectors

k 1
Vi = {v eS| — Togk < ||lvllo < k and |v;| > TE fori € supp(v)}
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The function log k can be replaced by any sub-polynomially growing function but is given explicitly
for simplicity. The detection problem ROS p(n, k, 1) has hypotheses

Hy: M ~ N(0,1)®"" and Hy: M ~ p-rc' 4+ N(0,1)%™" where 7, ¢ € V1

The recovery problem ROSp, is to estimate the latent supports supp(r) and supp(c). Ann x n
GOE matrix GOE(n) is a symmetric matrix with i.i.d. N (0, 1) entries below its main diagonal and
i.i.d. N(0,2) entries on its main diagonal. The sparse spiked Wigner detection problem SSW p has
hypotheses

Hy: M ~GOE(n) and Hy:M ~ p-rr' 4+ GOE(n) where r € V, .

and the recovery problem SSWp, is to estimate the latent supports supp(r). A simple intermediate
variant that will be useful in our reductions is SROS, which is ROS constrained to have a symmetric
spike r = c. Note that if M is an instance of SROS p(n, k, 1) then it follows that %(M +MT)is

an instance of SSWp(n, k, 11/v/2).

Sparse PCA. Detection in the spiked covariance model of SPCA p(n, k, d, #) has hypotheses
Hy:X1,Xo,..., X, ~N(0,I;)®" and

®Xn
Hi: X1, Xo,. o, X0~ N (O,Id n ewT) where v € Vy,

The recovery task SPCAR is to estimate supp(v) given observations X1, Xo, ..., X,, sampled
from N (0, I+ GUUT)®n where v € Vg . We also consider a simple hypothesis testing vari-
ant USPCA p of sparse PCA with a simple hypothesis H; where v is chosen uniformly at random
from the set S C R? of all k-sparse unit vectors with nonzero coordinates equal to £1/ V.

Biased Sparse PCA. We introduce a variant of the spiked covariance model with an additional
promise. In particular, v is restricted to the set BV g, of vectors in V; ;, with some overall positive
or negative bias. Formally, if [|v||§ denotes the number of positive entries of v then

1 1
BVas = {v € Vi ollf = (5+9) kor ol < (5 -0 ]

where = dgspca > 0 is an arbitrary constant that will remain fixed throughout the paper. The
detection problem BSPCAp(n, k,d, 0) has the same hypotheses as SPCAp(n, k,d,0) with the
added constraint v € BV ;. The recovery problem BSPCAR, is do estimate supp(v) given obser-
vations X1, Xo, ..., X, sampled from N (O, I+ GUUT)®n where v € BV 4. We also consider a
simple hypothesis testing variant UBSPCA p defined similarly to USPCA p with v ~ Unif[BSk]
where BS is the set of all k-sparse unit vectors with nonzero coordinates equal to 1/ VE.

3. Summary of Results

Each problem has three regimes for each of its detection and recovery variants. In the easy regime,
there is a polynomial-time algorithm for the task. In the hard regime, the PC or PDS recovery
conjecture implies that there is no polynomial-time algorithm but there is an inefficient algorithm
solving the task. In the impossible regime, the task is information-theoretically impossible. Our
results are informally stated below and depicted visually in Figure 4 in Appendix A.1.
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TYPE I k< nt/? n12§k<<n23 n?% < k
Impossible | SNR < 1 SNR< L — SNR<
Hard SNR >+ £ SSNR < o None
Easy (A) None SNR pe k4 SNR > k4
(B) SNR > 1
TyPE 11 k < nt/? nl?2 <k < n?3 n?% < k
Impossible | SNR < /% SNR < \/g SNR <
Hard k< SNR < & \/: SNR < % None
Easy SNR > /2 SNR > /5 SNR > /5
TYPE I k< nl/? nl/2 <k TYPE IV k< nl/? nl2 <k
Impossible | SNR « % SNR « % Impossible SNR < k SNR <« %
Hard SNR> 1 1SSNR< 4 Hard \f<SNR<< L \f<SNR<<1
Easy (A) None SNR 2 7= Easy SNR > /% ? SNR > 1
(B) SNR > 1

Figure 2: Types of hardness regimes by SNR in Theorem 3. TYPE I and TYPE III each have two variants A
and B depending on the Easy regime when k < n'/2.

Theorem 3 (Informal Main Theorem) Given the PC and PDS recovery conjectures, the easy,
hard and impossible regimes of the problems in Section 2.2 are classified in Figure 3 as following
one of the configurations of regimes in Figure 2.

We remark that all of the computational lower bounds in Theorem 3 follow from the PC con-
jecture other than those for PISg, PDS gk, BCr and BSPCAyr which follow from the PDS con-
jecture. Appendix C introduces PC-LIFTING to reduce from PCp to PISp. Section D introduces
rejection kernels and general DISTRIBUTIONAL-LIFTING which are then applied in Appendix E
to reduce from PCp to all regimes of PDSp. Appendix F introduces reflection cloning to reduce
from BCp to ROSp, SSWp and SSBMp. Section G introduces random rotations to reduce from
SSWp to SPCAp and from BCp to BSPCAp. In Appendix E, we also give a reduction from
PDSg to BCg and in Appendix G, we reduce from PDSy to BSPCAw . In Section H, we es-
tablish the algorithmic upper bounds and information-theoretic lower bounds in Theorem 3. In
Appendix I, we show that our detection lower bounds imply recovery lower bounds. Note that this
gives a complete characterization of the easy, hard and impossible regions for all of the problems we
consider other than sparse PCA and biased sparse PCA. The SDP relaxation of the MLE for sparse
PCA succeeds if d = O(n) and k < /n down to the signal level of § ~ k/\/n, which is generally
conjectured to be optimal. There is a gap between the lower bounds we prove here, which match
those of Berthet and Rigollet (2013b) and Gao et al. (2017) and this conjecturally optimal threshold
when k < /n. We also do not consider the recovery problem for the subgraph stochastic block
model and only consider weak, rather than exact, recovery for sparse PCA and biased sparse PCA.

10
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PROBLEMS PARAMETER REGIME SNR TYPE
PISp(n,k,q),PDSp(n,k,cq,q) | g = ©O(n~?) for fixed o« € [0,1) and ¢ > 1 q TYPE IA
PISg(n, k,q),PDSg(n,k,cq,q) | ¢ =O(n~) forfixeda € [0,1) and ¢ > 1 q TYPE IITA

PDSp(n, k. p, q) g=0(n") andp—q=0O(n"") with % TYPE IA
p > q for fixed o,y € [0,1)
PDSg(n, k., p, q) =O(n~*)and p— ¢ = O(n~7) with ff(’;j; TYPE ITIA
p > ¢ for fixed o,y € [0,1)
SSBMp(n, k, q, p) g=0(1)and p=0O(n"%) 0 TyPpE IITIA
for fixed o € [0, 1)
BCp(n, k,u) p = O(n~%) for fixed o € [0, 1) u? TYPE IB
BCr(n, k, i) pu = O(n"%) for fixed € [0, 1) u? | TYPE IIIB
ROSp(n, k, 1), ROSg(n, k, p), 1= O(n=) for fixed o € [0,1) 4 | TypEIIIB
SSWp(n,k, 1), SSWr(n, k, i)
SPCAp(n, k,d,0). d=0(n)and 6 = B(n ) 9 | TypEll
SPCAwr(n, k,d,0), for fixed o € [0, 1)
BSPCAWR(TL, /{J, d, 9)
BSPCAp(n, k,d,0) d=0(n)and § = O(n™%) 0 TYPE IV
for fixed € [0,1)

Figure 3: Classification of regimes for each problem as in Theorem 3. For each problem, % is in the regime
k = ©(n?) where 8 € (0, 1) is a constant.

4. Techniques

Our main technical contribution is to introduce four techniques for mapping problems approxi-
mately in total variation without degrading the underlying planted sparse structure.

Distributional Lifting. We introduce several new techniques resembling graph lifts to increase the
size k of a sparse structure, while appropriately maintaining the level of signal and independence
in the noise distribution. Given a graph G, the main idea behind our techniques is to replace the
{0, 1}-valued edge indicators with Gaussian and Poisson random variables. We then increase the
size of an instance by a factor of two iteratively, while maintaining the signal and independence,
through distributional tricks such as Poisson thinning and the rotational invariance of independent
Gaussians. In Hajek et al. (2015), the reduction from planted clique to planted dense subgraph also
expands an input graph. Rather than proceed iteratively, their method expands the graph in one
step. The main technical issue arising from this is that the diagonal entries of the graph’s adjacency
matrix are mapped to low-density subgraphs in the hidden community. Showing that these are not
detectable requires a subtle argument and that the hidden community is randomly sized according
to a Binomial distribution. By proceeding incrementally as in our approach, the diagonal entries
become much easier to handle. However for many regimes of interest, incremental approaches that
preserve the fact that the instance is a graph seem to unavoidably introduce dependence between
edges. Our insight is to map edges to other random variables that can be preserved incrementally
while maintaining independence and the desired parameter scaling to produce tight lower bounds.
Using Poisson and Gaussian variants of this lifting procedure, we are able to reduce from planted
clique in a wide range of parameter regimes. Gaussian lifting also recover a simple vs. simple
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hypothesis testing variant of the lower bounds for biclustering shown in Ma and Wu (2015) as an
intermediate step towards reducing to planted dense subgraph.

Rejection Kernels. We give a simple scheme based on rejection sampling that approximately
maps a sample from Bern(p) to a sample from P and from Bern(g) to @) where p,q € [0, 1] and
P and @ are two distributions on R. By truncating samples from a pair of distributions P’ and ',
and then mapping the resulting Bernoulli random variables to a pair of target distributions P and @),
this method yields an efficient procedure to simultaneously perform two changes of measure. This
method is used in distributional lifting to map from edge indicators to a pair of chosen distributions.
This framework extends and uses similar ideas to the approximate sampling methods introduced in
Hajek et al. (2015) and Ma and Wu (2015).

Reflection Cloning. While distributional lifting appears to accurately characterize the hard regimes
in many detection problems with an optimal test involving summing the entire input matrix, it is fun-
damentally lossy. In each iteration, these lifting techniques generate additional randomness in order
to maintain independence in the noise distribution of the instance. For rank-1 submatrix detection,
these cloning techniques do not come close to showing hardness at the computational barrier. We
introduce a more sophisticated cloning procedure for cases of Gaussian noise that introduces sig-
nificantly less randomness in each iteration. Let R denote the linear operator on n X n matrices
that reflects the matrix about its vertical axis of symmetry and let F denote the linear operator that
multiplies each entry on the right half of the matrix by —1. Then one step of reflection cloning
replaces a matrix W with
W ¢1§ (RW? + FW)

where o is a random permutation. Reflection cloning then repeats this for rows instead of columns.
If W = wv' + G has even dimensions and G has i.i.d. N(0,1) entries, then reflection cloning
effectively doubles the sparsity of u and v while mildly decreasing the signal. Importantly, it can
be checked that the gaussian noise matrix retains the fact that it has independent entries. Using
reflection cloning, we establish tight computational lower bounds for rank-1 submatrix detection
and for sparse PCA in the regime k > /n. This marks the first tight computational lower bound
for sparse PCA over an entire parameter regime.

Random Rotations and Sparse PCA. We also introduce a simple connection between sparse
PCA, biclustering and rank-1 submatrix through random rotations. This yields lower bounds match-
ing those of Gao et al. (2017) and Berthet and Rigollet (2013a). Although often suboptimal, the
random rotations map we introduce tightly gives lower bounds in the regime k > \/n, using re-
flection cloning as an intermediate. This illustrates the utility of natural average-case problems as
intermediates, suggesting that webs of reductions can be useful beyond worst-case complexity.
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Appendix A. Preliminaries

A.1. Figure for the Main Theorem
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Figure 4: Parameter regimes by problem plotted as signal vs. sparsity. Sparsity is k = (:)(n5 ). First labels
characterize detection and second labels characterize exact recovery. Recovery is not considered for SSBM
and weak recovery is considered for SPCA and BSPCA. In Easy (E) regimes, there is a polynomial-time
algorithm. In Hard (H) regimes, the PC or PDS conjecture implies there is no polynomial-time algorithm. In
Impossible (I) regimes, the task is information-theoretically impossible. Hardness in black regions is open.
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previous reductions

sum if biased

N

D=

spectral

wN

1
2

Figure 5: Algorithms for sparse PCA with d = O(n), k = O(nf) and §# = O(n~®). Lines represent
the strongest guarantees of each algorithm. The line marked as previous reductions shows the strongest
previously known planted clique lower bounds for sparse PCA when k < /n. No planted clique lower
bounds were known for k > /n.

A.2. Hardness Results from an Algorithmic Perspective

In this section, we motivate our computational lower bounds and techniques using algorithms
for sparse PCA as an example. Consider the detection problem for sparse PCA where either
X1, X, ..., X, are sampled i.i.d. from N(0, ;) or are sampled i.i.d. from N(0,I; + fvv ')
for some latent k-sparse unit vector v with nonzero entries equal to 4-1/+/k. The task is to detect
which of the two distributions the samples originated from. For now assume that d = ©(n). Now
consider the following four algorithms:

1. Semidefinite Programming: Form the empirical covariance matrix S = % Y XX ZT and
solve the convex program

mgx Tr (iZ)
st. Tr(Z)=1,|Z1 <k, Z =0

As shown in Berthet and Rigollet (2013a), thresholding the resulting maximum solves the
detection problem as long as 8 = Q(\/k?/n).

2. Spectral Algorithm: Threshold the maximum eigenvalue of 3. If the data are sampled from
N(0, 1), then the largest eigenvalue is with high probability at most

o d d
maxZS* - 1 1
Amax(5) n+\/;+ +o(1)

by standard bounds on the singular values of random Gaussian matrices. Since d = ©(n),
this algorithm succeeds as long as 6 = €2(1). This algorithm was considered in Krauthgamer
et al. (2015).

23



REDUCIBILITY AND COMPUTATIONAL LOWER BOUNDS

3. Sum Test: Sum the entries of 3. and threshold the absolute value of the sum. If v has sum
exactly zero, then this test will not succeed. However, if we assume that > has even 51% of
its nonzero entries of one sign, then this test succeeds if = Q(y/n/k).

4. k-Sparse Eigenvalue: Compute and threshold the k-sparse unit vector v that maximizes
u " Su. This can be found by finding the largest eigenvector of each k x k principal submatrix
of 3. Note that this takes exponential time. It was shown in Berthet and Rigollet (2013a) that
this succeeds as long as § = Q(+/k/n).

The boundaries at which these algorithms begin to succeed are shown in Figure 5 for the regime
k = ©(n®) and § = ©(n~%). The computational lower bound mapping to # ~ k?/n in Berthet
and Rigollet (2013a) and Gao et al. (2017) is also drawn. As shown, the only point in the parameter
diagram for which it matches an algorithmic upper bound is « = 0 and § = 1/2, corresponding to
when 6 = ©(1) and k = O(y/n).

For sparse PCA with d = ©(n), the SDP is optimal up to k& = O(y/n), at which point the
spectral algorithm has stronger guarantees. This algorithmic transition at k¥ = ©(y/n) is charac-
teristic of all of the problems we consider. For the biased variant of sparse PCA where the sum
test succeeds, the sum test always does strictly better than the spectral algorithm. Furthermore, the
biased variant ceases to have a statistical computational gap around k = G)(n?/ 3). While the sum
test yields an improved algorithm for detection, unlike the other three algorithms considered above,
it does not translate into an algorithm for recovering the support of the sparse component. Given a
conjecture about recovery in planted dense subgraph, we show that the best recovery algorithm for
biased sparse PCA can only match the guarantees of the spectral algorithm. Thus the biased variant
induces a detection-recovery gap when k > /n. We show that the disappearance of a statistical
computation gap at k = @(nz/ 3) and a detection-recovery gap when k > \/n are features of the
problems we consider that admit a sum test. These are biased sparse PCA, planted independent
set, planted dense subgraph and biclustering. Distributional lifting gives tight planted clique lower
bounds for these problems.

In contrast, rank-1 submatrix, the subgraph stochastic block model and sparse PCA do not admit
a sum test. Given the planted clique conjecture, rank-1 submatrix and sparse PCA have no detection-
recovery gap and retain their statistical-computational gap for all sparsities k. Reflection cloning
shows tight lower bounds for these problems in the regime k > ./n, where spectral algorithms
become optimal. It is surprising that the planted clique conjecture can tightly capture completely
different sets of computational barriers for different problems, illustrating its power as an average-
case hardness assumption. Although analogues of the sum test, spectral algorithms and semidefinite
programs all have equivalent guarantees up to logarithmic factors for planted clique, reductions from
planted clique show tight hardness in problems for which this is not true.

A.3. Prior Work

This work is part of a growing body of literature giving rigorous evidence for computational-
statistical gaps in high-dimensional inference problems. We focus on average-case reductions to
directly relate computational-statistical gaps in different problems, as opposed to giving worst-case
evidence for hardness in statistical problems Zhang et al. (2014); Hardt et al. (2014); Chan et al.
(2016). A survey of prior results on computational-statistical gaps with a focus on predictions from
statistical physics can be found in Bandeira et al. (2018) and a general analysis of gaps for al-
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gorithms from several convex relaxation hierarchies can be found in Chandrasekaran and Jordan
(2013).

Planted Clique and Independent Set. Our computational lower bounds are based on average-
case reductions to the problem of finding a planted clique of size k in an Erd6s-Rényi graph with n
vertices. The planted clique problem was introduced in Alon et al. (1998), where a spectral algo-
rithm was shown to recover the planted clique if & = Q(y/n). A number of algorithms for planted
clique have since been studied, including approximate message passing, semidefinite programming,
nuclear norm minimization and several combinatorial approaches Feige and Krauthgamer (2000);
McSherry (2001); Feige and Ron (2010); Ames and Vavasis (2011); Dekel et al. (2014); Deshpande
and Montanari (2015a); Chen and Xu (2016). All of these algorithms require that k& = Q(y/n),
which has led to the planted clique conjecture that no polynomial time algorithm can recover the
planted clique if k& = o(y/n). It was also shown in Alon et al. (2007), recovering and detecting
the planted clique are equivalent up to logn factors in k. There have been a number of previous
average-case reductions from the planted clique conjecture, which we discuss in more detail in the
prior work section on average-case reductions.

Several works have considered finding independent sets in sparse Erdés-Rényi graphs, similar
to the regime with edge density ¢ = ©(n~*) where a € (0,2) we consider here. In Coja-Oghlan
and Efthymiou (2015); Gamarnik and Sudan (2014); Rahman et al. (2017), the authors examine
greedy and local algorithms to find independent sets in the regime ¢ = (:)(nfl) in models related
to Erd6s-Rényi graphs. In Feige and Ofek (2005), a spectral algorithm is given to find a planted
independent set in the regime ¢ = (:)(n_l) and in Coja-Oghlan (2003), the planted independent set
recovery problem is shown to be possible in polynomial time in the regime « € (0, 1) when ¢ > 72
even in a semirandom model. The algorithms of Chen and Xu (2016) also apply to recovering
planted independent sets after taking the complement of the input graph.

Planted Dense Subgraph and Community Detection. The planted dense subgraph detection
problem was considered in Arias-Castro et al. (2014); Butucea and Ingster (2013); Verzelen et al.
(2015); Hajek et al. (2015) and generalizations of the recovery problem were considered in Chen
and Xu (2016); Hajek et al. (2016b); Montanari (2015); Candogan and Chandrasekaran (2018). In
Hajek et al. (2015), a reduction from planted clique was given for the regime p = cq for some
constant ¢ > 1 and ¢ = é(n‘o‘) and k is binomially distributed, where k, n, p and q are the size of
the community, size of the graph, community edge density and graph edge density, respectively. Our
results strengthen this lower bound to apply for deterministic & and for all p > ¢ with p — g = O(q)
where ¢ = ©(n~%). When p = w(q), the resulting regime is the planted dense subgraph problem
considered in Bhaskara et al. (2010). The computational barrier for this problem is conjectured
to be the log-density threshold k = ©(n'°%P) when k < \/n and is achieved by very different
algorithms than those that are optimal when p = O(g) Chlamtac et al. (2012); Chlamta¢ et al.
(2017). Recently, it was shown in Chlamta¢ and Manurangsi (2018) that Q(log n) rounds of the
Sherali-Adams hierarchy cannot solve the planted dense subgraph detection problem below the log-
density threshold in the regime p = w(q). Hardness below the log-density threshold has been
used as an average-case assumption in several reductions, as outlined in the prior work section on
average-case reductions.

Community detection in the stochastic block model has been the focus of an extensive body of
literature surveyed in Abbe (2017). It recently has been shown that the two-community stochastic
block model does not exhibit statistical-computational gaps for partial and exact recovery, which
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are possible when the edge density scales like ©(n~!) Mossel et al. (2012, 2013); Massoulié
(2014) and @(n‘1 logn) Mossel et al. (2014); Hajek et al. (2016a); Abbe et al. (2016), respec-
tively. In contrast, the subgraph variant of the two-community stochastic block model that we intro-
duce has computational-statistical gaps for partial recovery, exact recovery and detection, given the
planted clique conjecture. The k-block stochastic block model is also conjectured to have statistical-
computational gaps starting at £ > 4 Abbe and Sandon (2015).

Biclustering and the Spiked Wigner Model. Gaussian biclustering was considered as a detec-
tion problem in Butucea and Ingster (2013); Ma and Wu (2015); Montanari et al. (2015) and as
a recovery problem in Shabalin et al. (2009); Kolar et al. (2011); Balakrishnan et al. (2011); Cai
et al. (2015a); Chen and Xu (2016); Hajek et al. (2016b). In Ma and Wu (2015), a reduction from
planted clique was given for a simple vs. composite hypothesis testing variant of the biclustering
detection problem, where the size and mean entries of the planted submatrix were allowed to vary.
In Cai et al. (2015a), submatrix localization with subgaussian noise was shown to be hard assuming
a variant of the planted clique conjecture for regular graphs.

A large body of literature has studied the spectrum of the spiked Wigner model Péché (2006);
Féral and Péché (2007); Capitaine et al. (2009); Benaych-Georges and Nadakuditi (2011). Spec-
tral algorithms and information-theoretic lower bounds for the spiked Wigner model detection and
recovery problems were considered in Montanari et al. (2015); Perry et al. (2016a,b). The sparse
spiked Wigner model where the sparsity & of the planted vector satisfies & = O(n) was studied in
Perry et al. (2016a,b); Banks et al. (2018). The sparse spiked Wigner model with k& = (:)(nﬁ ) for
some 3 € (0, 1) was considered in Hopkins et al. (2017), where the authors showed sum of squares
lower bounds matching our planted clique reductions.

Sparse PCA. Since its introduction in Johnstone and Lu (2004), sparse principal component anal-
ysis has been studied broadly in the statistics and computer science communities. A number of
algorithms solving sparse PCA under the spiked covariance model have been proposed Amini and
Wainwright (2009); Ma (2013); Cai et al. (2013); Berthet and Rigollet (2013b,a); Shen et al. (2013);
Krauthgamer et al. (2015); Deshpande and Montanari (2014); Wang et al. (2016b). The information-
theoretic limits for detection and recovery in the spiked covariance model have also been examined
extensively Amini and Wainwright (2009); Vu and Lei (2012); Berthet and Rigollet (2013b); Birn-
baum et al. (2013); Cai et al. (2013); Wang et al. (2016b); Cai et al. (2015b). The computational
limits of sparse PCA problems have also been considered in the literature. Degree four SOS lower
bounds for the spiked covariance model were shown in Ma and Wigderson (2015). In Berthet and
Rigollet (2013a), the authors give a reduction from planted clique to a subgaussian composite vs.
composite hypothesis testing formulation of sparse PCA as a detection problem, and Berthet and
Rigollet (2013b) gives a reduction from planted clique showing hardness for semidefinite programs.
In Gao et al. (2017), the authors give a reduction from planted clique to a simple vs. composite
hypothesis testing formulation of detection in the spiked covariance model matching our reduction
when k£ < /n. In Wang et al. (2016b), the authors give a reduction from planted clique to a
subgaussian variant of the sparse PCA recovery problem. As mentioned in the introduction, these
planted clique lower bounds do not match the conjectured algorithmic upper bounds when k differs
in a polynomial factor from +/n.

Average-Case Reductions. While the theory of worst-case complexity has flourished to the point
that many natural problems now known to be NP-hard or even NP-complete, the theory of average-
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case complexity is far less developed. In the seminal work of Levin (1986), it was shown that an
average-case complete problem exists. However, no natural problem with a natural distribution on
inputs has yet been shown to be average-case complete. As mentioned in this section, there are
obfuscations to basing average-case complexity on worst-case complexity Bogdanov and Trevisan
(2006). For more on the theory of average-case complexity, see Section 18 of Arora and Barak
(2009) and Bogdanov et al. (2006).

As previously mentioned, there have been a number of average-case reductions from planted
clique to average-case problems in both the computer science and statistics literature. These include
reductions to testing k-wise independence Alon et al. (2007), biclustering detection and recovery
Ma and Wu (2015); Cai et al. (2015a); Cai and Wu (2018), planted dense subgraph Hajek et al.
(2015), RIP certification Wang et al. (2016a); Koiran and Zouzias (2014), matrix completion Chen
(2015), minimum circuit size and minimum Kolmogorov time-bounded complexity Hirahara and
Santhanam (2017) and sparse PCA Berthet and Rigollet (2013b,a); Wang et al. (2016b); Gao et al.
(2017). The planted clique conjecture has also been used as a hardness assumption for average-
case reductions in cryptography Juels and Peinado (2000); Applebaum et al. (2010), as described in
Sections 2.1 and 6 of Barak (2017). There have also been a number of average-case reductions from
planted clique to show worst-case lower bounds such as hardness of approximation. Planted clique
has been used to show worst-case hardness of approximating densest k-subgraph Alon et al. (2011),
finding approximate Nash equilibria Minder and Vilenchik (2009); Hazan and Krauthgamer (2011);
Austrin et al. (2013), signalling Dughmi (2014); Bhaskar et al. (2016), approximating the minmax
value of 3-player games Eickmeyer et al. (2012), aggregating pairwise comparison data Shah et al.
(2016) and finding endogenously formed communities Balcan et al. (2013).

A number of average-case reductions in the literature have started with different average-case
assumptions than the planted clique conjecture. Variants of planted dense subgraph have been used
to show hardness in a model of financial derivatives under asymmetric information Arora et al.
(2011), link prediction Baldin and Berthet (2018), finding dense common subgraphs Charikar et al.
(2018) and online local learning of the size of a label set Awasthi et al. (2015). Hardness conjectures
for random constraint satisfaction problems have been used to show hardness in improper learning
complexity Daniely et al. (2014), learning DNFs Daniely and Shalev-Shwartz (2016) and hardness
of approximation Feige (2002). There has also been a recent reduction from a hypergraph variant
of the planted clique conjecture to tensor PCA Zhang and Xia (2017).

Lower Bounds for Classes of Algorithms. As described in the introduction, recently there has
been a focus on showing unconditional hardness results for restricted models of computation and
classes of algorithms. In Jerrum (1992), it was shown that the Metropolis process cannot find large
cliques in samples from planted clique. The fundamental limits of spectral algorithms for biclus-
tering and low-rank planted matrix problems were examined in Montanari et al. (2015). Integrality
gaps for SDPs solving sparse PCA, planted dense subgraph and submatrix localization were shown
in Krauthgamer et al. (2015) and Chen and Xu (2016). SOS lower bounds have been shown for
a variety of average-case problems, including planted clique Deshpande and Montanari (2015b);
Raghavendra and Schramm (2015); Hopkins et al. (2016); Barak et al. (2016), sparse PCA Ma and
Wigderson (2015), sparse spiked Wigner and tensor PCA Hopkins et al. (2017), maximizing ran-
dom tensors on the sphere Bhattiprolu et al. (2017) and random CSPs Kothari et al. (2017). Lower
bounds for relaxations of planted clique and maximum independent set in the Lovasz-Schrijver hier-
archy are shown in Feige and Krauthgamer (2003) and lower bounds for Sherali-Adams relaxations
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of planted dense subgraph in the log-density regime are shown in Chlamta¢ and Manurangsi (2018).
Tight lower bounds have been shown in the statistical query model for planted clique Feldman et al.
(2013), random CSPs Feldman et al. (2015) and robust sparse mean estimation Diakonikolas et al.
(2016). It also has been recently shown that planted clique with k& < /n is hard for regular
resolution Atserias and Razborov (2018). In Hopkins and Steurer (2017), a meta-algorithm for
Bayesian estimation based on low-degree polynomials, SDPs and tensor decompositions is intro-
duced and shown to achieve the best known upper bound for the k-block stochastic block model,
with a matching lower bound for the meta-algorithm.

A.4. Notation

In this paper, we adopt the following notational conventions. Let £(X) denote the distribution law
of arandom variable X. Given a distribution I, let P®™ denote the distribution of (X1, Xo, ..., X,)
where the X; are i.i.d. according to P. Similarly, let P*" denote the distribution on R™*" with
i.i.d. entries distributed as IP. Given a finite or measurable set X, let Unif[X] denote the uniform
distribution on X. Let dty and dki, denote total variation distance and Kullback-Leibler divergence,
respectively. Given a measurable set X, let A(X') denote the set of all distributions 7 on X. If X
is itself a set of distributions, we refer to A(X) as the set of priors on X'. Throughout the paper, C'
refers to any constant independent of the parameters of the problem at hand and will be reused for
different constants.

Let N(u,0?) denote a normal random variable with mean j and variance o? when y € R
and 0 € R>q. Let N(p, %) denote a multivariate normal random vector with mean p € R? and
covariance matrix Y, where X is a d x d positive semidefinite matrix. Let 3(z,y) denote a beta
distribution with parameters z,y > 0 and let x?(k) denote a y2-distribution with k degrees of
freedom. Let By (k) denote the set of all unit vectors v € R with ||[v|jo < k. Let [n] = {1,2,...,n}
and ([Z}) denote the set of all size k subsets of [n]. Let G,, denote the set of all simple graphs on
vertex set [n]. Let the Orthogonal group on R%*¢ be O . Let 15 denote the vector v € R" with
vi=1ifi € Sandv; = 0if i ¢ S where S C [n]. For subsets S C R, let 1¢ denote the indicator
function of the set S. Let ¢ denote the cumulative distribution of a standard normal random variable
with ®(z) = [*_ e~/2dt. Given a simple undirected graph G, let V(G) and E(G) denote its
vertex and edge sets, respectively. The notation a(n) > b(n) will denote a growing polynomially
faster in n than b. In other words, a > b if liminf, . a(n)/n > limsup,,_,. b(n)/n. The
notation a = O(b) denotes the equality lim,, o a(n)/n = lim,_,. b(n)/n. Here, a < b denotes
a < b up to polylogarithmic factors in n.

An instance of a detection problem Pp hereby refers to an observation X. If Pp is a simple
vs. simple hypothesis testing problem, then the instance X takes one of two distributions — its
distribution under Hy and H;, which we respectively denote by L, (X) and Lg, (X). If Hy is
composite, then the distribution of X under P is denoted as Lp(X) for each P € H;. An instance
of a recovery problem Pg refers to an observation from some P, for some latent § € O if the
corresponding detection problem has a composite H; or from L, (X) = E Py if the corresponding
detection problem has a simple H;.

Appendix B. Average-Case Reductions under Total Variation

The typical approach to show computational lower bounds for detection problems is to reduce an
instance of one problem to a random object close in total variation distance to an instance of another
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problem in randomized polynomial time. More precisely, let P and P’ be detection problems and X
and Y be instances of P and P’, respectively. Suppose we are given a polynomial-time computable
map ¢ taking an object ¢(X) with total variation distance to Y decaying to zero simultaneously
under each of Hy and Hy. Then any algorithm that can distinguish Hy and H; for P’ in polynomial
time when applied to ¢(X) also distinguishes Hy and H; for P. Taking P to be PC and P’ to be
the problem of interest then yields a computational hardness result for P’ conditional on the PC
conjecture. The general idea in this approach is formalized in the following simple lemma.

Lemmad4 Let P and P’ be detection problems with hypotheses Hy, H1, H),, H| and let X and
Y be instances of P and P’, respectively. Suppose there is a polynomial time computable map ¢
satisfying

drv (Lo (0(X). Lag(¥)) + swp _int iy <cp<¢<x>>,

Lo (Y)dr (P <9
PeH, T€A(H] o (¥)dr( )> N

H

If there is a polynomial time algorithm solving P’ with Type I+II error at most €, then there is a
polynomial time algorithm solving P with Type I+1I error at most € + .

Proof Let ¢ be a polynomial time computable test function solving P’ with Type I+II error at
most €. Note that for any observation X of P, the value ¢ o ¢(X) € {0,1} can be computed in
polynomial time. This is because the fact that ¢(X) can be computed in polynomial time implies
that ¢(X) has size polynomial in the size of X. We claim that ¢ o ¢ solves the detection problem
P’. Now fix some distribution P € H; and prior 7 € A(H{). By the definition of total variation,

[Paty [0 6(X) = 1] = Py [(Y) = 11| < drv (L1, (6(X)), L1y (¥))

Py [ 0 (X) = 0] - / Py [$(Y) = 0] dn(P)

Hy

<dry (EP(cb(X))’ ﬁp/(Y)dﬂ(P’)>

Hi

Also note that since 7 is a probability distribution,

[ Bror w(y) =0/dn(P) < sup Py [9(¥) =0
It P'eH]

Combining these inequalities with the triangle inequality yields that
Pry [0 6(X) = 1] + Pxcop [t 0 6(X) = 0] < €+ drv ( Loty (6(X)), Ly (V) )

+ drv <£P(¢>(X))7 EP'(Y)dW(P’)>

Hj

Fixing [P and choosing the prior 7 so that the second total variation above approaches its infimum
yields that the right hand side above is upper bounded by € + d. The fact that this bound holds for
all P € H; proves the lemma. |

We remark that the second term in the total variation condition of Lemma 1 can be interpreted as
ensuring that each distribution P € [ is close to a distribution formed by taking a prior 7 over the
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distributions in hypothesis H/. In light of this lemma, to reduce one problem to another it suffices
to find such a map ¢. In the case that P and P’ are both simple hypothesis testing problems, the
second term is simply drv (£H1 (0(X)), L (Y)> .

Throughout the analysis of our average-case reductions, total variation will be the key object
of interest. We will make use of several standard results concerning total variation, including the
triangle inequality, data processing inequality and tensorization of total variation. The latter two
results are stated below.

Lemma 5 (Data Processing) Let P and Q) be distributions on a measurable space (X, B) and let
f: X = Y be a Markov transition kernel. If A ~ P and B ~ Q) then

drv (L(f(A)), £(f(B))) < drv(P, Q)

Lemma 6 (Tensorization) Let Py, P>, ..., P, and QQ1,Qo, ..., Q, be distributions on a measur-
able space (X, B). Then

dry (]_:[1 P, 1:[le> < Z;dTV(PiaQi)

A typical analysis of a multi-step algorithm will proceed as follows. Suppose that A = A 0 A
is an algorithm with two steps A; and A,. Let Py be the input distribution and P, be the target
distribution that we would like to show is close in variation to A(Fy). Let P; be an intermediate
distribution which is close in total variation to A, (FP). By the triangle inequality,

drv (A(Fy), o) < drv (A(Fy), A2(P1)) + drv (A2(Pr), P)
=drv (A2 oA (Po), AQ(Pl)) + drv (Ag(Pl), PQ)
< dty (A1(P), P1) + drv (A2(P1), P»)

by the data-processing inequality. Thus total variation accumulates over the steps of a multi-step
algorithm. This style of analysis will appear frequently in our reductions. Another lemma about
total variation that will be useful throughout this work is as follows.

Lemma 7 For any random variable Y and event A in the o-algebra o{Y'}, it holds that
dry (L(Y]A), £(Y)) = PIY € A°]
Proof Let B be any event in o{Y }. It follows that
PYeBlY €cA]-PY eB|=P[YeB|lY€A]-(1-PY € A]) -P[Y € BN A

Since P[Y € BNA] <P[Y € A9 =1 —P[Y € Aland P[Y € B|Y € A] € [0,1], we have that
the quantity above is between —P[Y € A€| and P[Y € A¢|. Therefore, by the definition of total
variation distance

dry (L(Y]A), L(Y)) = S IP[Y € B|Y € A] — P[Y € B]| = P[Y € A°]

where the equality case is achieved by setting B = A. This proves the lemma. |
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Appendix C. Densifying Planted Clique and Planted Independent Set

In this section, we give a reduction increasing the ambient edge density in planted clique and
showing tight hardness for the planted independent set problem. This reduction, which we term
PC-LIFTING, serves as an introduction to the general distributional lifting procedure in the next
section. Distributional lifting will subsequently be specialized to produce Poisson and Gaussian
variants of the procedure, which will be used to prove hardness for biclustering and different regimes
of planted dense subgraph.

C.1. Detecting Planted Generalized Diagonals

We first prove a technical lemma that will be used in all of our cloning procedures. Given a matrix
M, let M°?2 denote the matrix formed by permuting rows according to ¢; and columns according
to o2. Let id denote the identity permutation.

Lemma 8 Let P and Q be two distributions such that () dominates P and x*(P, Q) < 1. Suppose
that M is an n x n matrix with all of its non-diagonal entries i.i.d. sampled from Q and all of its
diagonal entries i.i.d. sampled from P. Suppose that o is a permutation on [n] chosen uniformly at
random. Then
. 2(P
dry (L(M7),Q%™") < Xf(igcg)

Proof Let o’ be a permutation of [n] chosen uniformly at random and independent of o. Note that
by Fubini’s theorem we have that

: Eq [Pysia.e (X|0)]? Pysiao (X|0)P, a0 (X]0”)
2 id,o RNnXn _ o |Y M o M Mid,
LMoY, +1_/ dX_EUU// dx
X ( ( )Q ) PQ@an(X) ’ ]PQ@an(X)

Now note that conditioned on o, the entries of M4 are independent with distribution

Ppsiao (X‘U) = H w(z H Q
i=1

j#o (i)

Therefore we have that

Prsits (X|0)Py oot (X0 l/ P (Xio()
dX = | | —_— | | P (Xis(i
/ ]P)Q®n><n (X) i:U(i)ZU/(i) Q (X’LO'(Z)) i:U(i)#U’(i) ( ( ))

X H P (Xia/(i)) H Q (le> dX
it (i) %0’ (i) J#o(i),570’ (i)

()

:O+X(PQ»hvno@H

If 7 = 0/ o 071, then 7 is a uniformly at random chosen permutation and Y = |{i : (i) = o/ (i)}
is the number of fixed points of 7. As in Pitman (1997), the ith moment of Y is the ith Bell number
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for ©+ < n and for ¢ > n, the ¢th moment of Y is at most the ith Bell number. Since a Poisson
distribution with rate 1 has its ¢th moment given by the ith Bell number for all 7, it follows that for
each t > 0 the MGF E[e"Y] is at most that of a Poisson with rate 1, which is exp(e’ — 1). Setting
t =log(1 + x%(P,Q)) > 0 yields that

X2 (LM7), Q%™ ™) =E[(L+x*(P,Q) ] —1<exp (x*(P,Q)) — 1 <2 x*(P,Q)

since e” < 1+ 2z for x € [0, 1]. Now by Cauchy-Schwarz we have that

XA(P,Q)

dTV (»C(Mld’U)u Q®n><n) < 5\/)(2 (E(M1d70)7 Q®n><n) < 5

which completes the proof of the lemma. |

C.2. Planted Clique Lifting

In this section, we analyze the reduction PC-LIFTING, which is given in Figure 6. This reduction
will be shown to approximately take an instance of PC(n,n'/?7¢,1/2) to PC(N, k,1 — ¢) where
N = 0(n't®), k = O(n!/?**/2=¢) and ¢ = ©(n~?). By taking the complement of the resulting
graph, this shows planted clique lower bounds for PISp (N, k, ¢) up to the boundary ]Z—f > q,
exactly matching the computational boundary stated in Theorem 1. The reduction PC-LIFTING
proceeds iteratively, with PC(n, k, p) approximately mapped at each step to PC(2n, 2k, p'/4).

Given a labelled graph G on n vertices and a permutation o on [n], let G denote the labelled
graph formed by permuting the vertex labels of G according to o. Given disjoint subsets S, 7" C [n],
let G[S] denote the induced subgraph on the set S and G[S x T] denote the induced bipartite
subgraph between S and T'. Also let B(m,n,p) denote the random bipartite graph with parts of
sizes m and n, respectively, where each edge is included independently with probability p. Let
G(n,p, S) where S is a k-subset of [n] denote an instance of G(n, k, p) where the planted clique is
conditioned to be on S.

Lemma 9 (Planted Clique Lifting) Suppose that n and ¢ are such that ¢ = O(logn) and are
sufficiently large. Let w(n) > 2 be an increasing function with w(n) — oo as n — oo. Then

¢ = PC-LIFTING is a randomized polynomial time computable map ¢ : G, — Gae,, such that
under both Hy and H, it holds that

dry <¢ (PC(n, k,1/2)),PC (2‘%, 2k, (1— w(n)—l)ﬁ» < j(n)

Proof If { = O(logn), this algorithm runs in randomized polynomial time. Let ¢, be the algorithm
that outputs the value of H in ¢ after ¢ iterations of Step 3. Note that ¢y outputs H after Steps 1
and 2.

We first consider a single iteration of Step 3 applied to G ~ G(n,p, S), where G(n,p, S) is
the distribution of Erdés-Renyi graphs with a planted clique on a fixed vertex set S C [n] of size
|S| = k and p > 1/2. For each pair of distinct {7, j} & (g), it holds that 1y; jyep(e) ~ Bern(p)
and by the probability in Step 3a that 2% ~ Bern(pl/ 4)®4, Therefore the graph H' constructed in
Step 3b satisfies that:
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Algorithm PC-LIFTING

Inputs: Planted clique instance G € G,,, number of iterations ¢, function w with w(n) — oo

1. For each pair of vertices {7,j} ¢ E(G), add the edge {7, j} to E(G) independently with
probability 1 — 2 - w(n)~?

2. Initialize H < G, m <~ nandp < 1 —w(n)~!
3. Fori =0,1,...,/ — 1do:

a. For each pair {4, j} of distinct vertices in [m], sample 2%/ € {0, 1}* such that
o If {i,j} € E(H), then ¥/ = (1,1,1,1)
e If {i,j} & E(H), then ¥/ = v with probability

4—|v]y
Pt = o) = 20 (11—_19;/ o
for each v € {0,1}* with v # (1,1,1,1)

b. Construct the graph H' on the vertex set [2m] such that for distinct 4, j € [m]

o {i,jle E(H)ifz"? =1

e 2m+1—ijte BE(H)ifzy =1

o {i,2m+1—j}e E(H)ifzd =1

o 2m+1—i2m+1—j}eEBH)ifz? =1

and for each ¢ € [m], add the edge {i,2m + 1 — i} € E(H’)

c. Generate a permutation o on [2m] uniformly at random

d. Update H < (H')?,p + p'/* and m « 2m

4. Output H

Figure 6: Planted clique lifting procedure in Lemma 9.

e ' =SU{2n+1—1i:i€ S} forms a clique of size 2k;
e {2n+1—14,i} € E(H’) for each i € [n]; and
e each other edge is in E(H') independently with probability p'/4.

Now consider the graph ¢1(G) = H = (H')? conditioned on the set o(S’). We will show that
this graph is close in total variation to G'(2n, p'/* o(S’)). Let T} = [n]\S and T = [2n]\{2n +
1—14: 1 € S} Note that every pair of vertices of the form {2n + 1 — 4,4} in H' are either
both in S’ or between T} and T5. This implies that every pair of distinct vertices not in o (S’ )2 or
o(Ty) x o(T) is in E(H) independent with probability p'/*, exactly matching the corresponding

33



REDUCIBILITY AND COMPUTATIONAL LOWER BOUNDS

edges in G(2n,p'/*,0(S")). Coupling these corresponding edges yields only the edges between
o(T) and o(7T3) uncoupled. Therefore we have that

drv (ﬁ(Hya(s')), G <2n,p1/4,0(5/))> — drv (.c (H[o(T})  o(T»)]), B (n k- k,p1/4)>

Now let the (n—k) x (n—k) matrix M have 1’s on its main diagonal and each other entry distributed
sampled i.i.d. from Bern(p'/*). If 7 is a random permutation on [ — k], then the adjacency matrix
of H[o(T1) x o(T3)] conditioned on ¢ (S’) is distributed as £ (M'47), since T} and T5 are disjoint.
Therefore it follows that

dry (c (H[o(T)) x o(T»)]), B (n —kyn—k, p1/4)) = dry (c (M) ,Bern(p1/4)®("_k)x("_k)>

x2(Bern(1), Bern(p'/4))
e

<y/1-pl/t
by Lemma 8 and since p > 1/2. It follows by the triangle inequality that
drv (61(G(n,p", ), G20, 2k,pM")) < By |dry (L(H#(5).C (2.9, 0(5) ) |

Letting S be chosen uniformly at random over all subsets of [n] of size k, applying the triangle
inequality again and combining the inequalities above yields that

drv (¢1(G(n’k7p))7G(2”v 27?7171/4)) <Eg [dTV <¢1(G(n,p, S))7G(2n,2k,p1/4))}

< /1 —pt/

A nearly identical but slightly simpler argument shows that

drv (61(G(n,p)), G2, ")) < /1 - pi/t

1
For each ¢ > 0, let p, = (1 - w(n)_l) 4t be the value of p after £ iterations of Step 2. Now note
that for each ¢ > 0, we have by triangle inequality and data processing inequality that

dry (601 (Gn,k,1/2)), G (27,25 ke pea ) )
< drv (61 (66 (G(n. b, 1/2))) 1 (G (2, 2k ) ))
+ dry (¢1 (G (2%, 2£k‘,p4)> Ne (2‘f+1n, 2€+1k,p5+1>)
< dry (qsg (G(n,k,1/2)),G (2%, sz,pf))

+ V1 —=pr

and an identical inequality for ¢,(G(n,1/2)). Noting that this total variation is zero when ¢ = 0
and applying these inequalities inductively yields that

L

dry (00 (G(n,k,1/2)), G (2, 2%,p0) ) < 30V =1

i=1
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and an identical inequality for ¢;(G(n, 1/2)). Now note that if z < 1/2 then (1 —z)"/* > 1 —2/3.
Iterating this inequality yields that 1 — p; < 3~%w(n)~!. Therefore

~

VI—pi< 3-i/2 _

w(n)

s.
I MN
1§

This completes the proof of the lemma. |

The next theorem formally gives the hardness result guaranteed by the reduction analyzed above
together with the PC conjecture. There will be many theorems of this form throughout the paper,
which will typically resolve to applying a total variation bound guaranteed in a previous lemma with
Lemma 4, and analyzing the asymptotic regime of several parameters.

Theorem 10 Let o € [0,2) and 5 € (0,1) be such that < % + . There is a sequence
{(Ny, Kn, qn) }nen of parameters such that:

1. The parameters are in the regime ¢ = O(N~%) and K = ©(N?) or equivalently,

log g, * log K,
im =a and lim
n—oo log Ny, n—oo log N,

=P

2. For any sequence of randomized polynomial-time tests ¢, : Gy, — {0, 1}, the asymptotic
Type I+II error of ¢y, on the problems PISp(N,, Ky, qn) is at least 1 assuming the PC
conjecture holds with density p = 1/2.

Therefore the computational boundary for P1S p(n, k, q) in the parameter regime q = O(n~®) and
k=0m)ispr =1+

Proof If 8 < « then PIS is information-theoretically impossible. Thus we may assume that 5 > a.

Lety = 2,8 — and note that y € (0, 1/2). Now set
1 n
by, = F;ngn—‘ , k, = [n"], N, = 2'n K, =2k, Gn = 1—(1—w(n)*1)1/4Z
-«

where w(n) is any sub-polynomial increasing function tending to infinity. By Lemma 9, there is
a randomized polynomial time algorithm mapping PCp(n, k,, 1/2) to PCp(N,, Ky, 1 — ¢,) with
total variation converging to zero as n — co. Now note that flipping every edge to a non- edge and
non-edge to an edge maps PCp(N,, K,,1 — gy) to PISp(N,,, Ky, ¢n). This map with Lemma 1
now implies that property 2 above holds. We now verify property 1. Note that

I 2 _
og K, || los2+ (352 ) logn a2
im = lim ; = - =5
n—00 log Nn n—oo ’7a2()_g2n—| . 10g2 + logn o +1

Note that as n — 00, it follows that since 4~ log(1 — w(n)™!) — 0,

gn =1 — (1 —w(n) HY" =1 — M los-wm)™) | 4=tujog(1 — w(n) ")
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Now it follows that

l —
. loggt 2 [%W log 2 —log(1 — w(n)~") 2o
lim = lim 1 S .
n—oo log N, n—00 {%—‘ -log2 +logn 52—+ 1
which completes the proof. -

Appendix D. Rejection Kernels and Distributional Lifting

In this section, we generalize the idea in PC-LIFTING to apply to any distribution with a natural
cloning operation, analogous to Step 3a in PC-LIFTING. Before describing this general distribu-
tional lifting procedure, we first will establish several results on applying rejection kernels, a general
method for changes of measure such as from Bernoulli edge indicators to Gaussians, that we will
need throughout our reductions.

D.1. Rejection Kernels

All of our remaining reductions will involve approximately mapping from a pair of Bernoulli ran-
dom variables, typically edge indicators in random graphs, to a given pair of random variables.
Similar entry-wise transformations of measure were used in Ma and Wu (2015) and Gao et al.
(2017) for mapping from Bernoulli random variables to Gaussian random variables. We generalize
these maps to arbitrary distributions and give a simple algorithm using rejection sampling to imple-
ment them. The general objective is to construct a single randomized function RK : {0, 1} — R that
simultaneously maps Bern(p) to the distribution fx and Bern(q) to gx, approximately in total vari-
ation distance. For maps from instances G of planted clique, such a map with p = 1 and ¢ = 1/2
approximately sends the edge indicators 1; e () to fx if ¢ and j are in the planted clique and to
gx otherwise.

We first describe the general structure of the maps RK and their precise total variation guarantees
in the following lemma. Then we give particular rejection kernels that we will use in our reductions.

Lemma 11 Ler fx and gx be probability mass or density functions supported on subsets of R such
that gx dominates fx. Let p,q € [0, 1] be such that p > q and let

dper. 1o @ b
S—{ eR.l_ ggX(x)gq}

Q

Suppose that fx () and gx (x) can be computed in O(T}) time and samples from fx and gx can be
generated in randomized O(Ty) time. Then there is a randomized O(N (T} + T%)) time computable
map RK : {0,1} — R such that dyy (RK(Bern(p)), fx) < A and dry (RK(Bern(q)),g9x) < A
where

N
A:maX{ZPXNfX[X # 5] + (PX~gx[X ¢5]+q> ;

p—q b
2 Pxogy [X ¢ 5] 1-p\"
e + (Bl X 28]+ 727
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Algorithm RK(x)

Parameters: Input x € {0, 1}, a pair of PMFs or PDFs fx and gx that can be efficiently computed
and sampled, Bernoulli probabilities p, g € [0, 1], number of iterations N

1. Initialize Y < 0
2. For N iterations do:
a. If x =0, sample Z ~ gx and if
p 9x(Z2) > q- fx(Z)
afx(Z)

p9x(2)
b. If x = 1, sample Z ~ fx and if

then with probability 1 — , update Y < Z and break

(1—q) - fx(Z2)>(1-p) gx(2)

(1-p)-9x(2)

then with probability 1 — =777

update Y < Z and break
3. Output Y

Figure 7: Rejection kernel in Lemma 11

Proof Let RK be implemented as shown in Figure 11 and note that RK runs in randomized O (N (71 +
T3)) time. Define Sy and S; by

SOZ{ZUERIfX(x)<p} and Slz{xERzl_p<fX(x)}

gx(z) ~ ¢ 1-q~ gx(z)

Now define the distributions by the densities or mass functions

_ P gx(@) —q fx(@)
po(r) =
p- PXNgX [X € S()] —q- ]P)XNfX [X S So]
(1—¢q)- fx(z) = (1 —p)-gx(z)
1—q) Pxopy[X €51 = (1= p) - Pxagy[X € 51
Note that these are both well-defined PDFs or PMFs since they are nonnegative by the definitions of

So and S and normalized. First consider the case when x = 0. Let A; be the event that the update
Y + Z occurs in the ith iteration of Step 2a. The probability of A; is

for x € Sy

p1(z) = ( forz € Sy

1 o (1o e fx@N _q.
]P’[AZ] = /SO gx( ) (1 p~gX(a:)) d ]P)XNgx[X S S()] » PXNfX[X S S()]

The density of Y given the event A; is therefore given by

g fx(@)

fY\Ai (z) = P[Ai]_l ’ fX|X€SO (z) - <1 p-gx(v)

) = ¢o(z)
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If A= A UAyU---U Ap is the event that the update Y < Z occurs in an iteration of Step 2a,
then it follows by independence that

N N
P [AC] = H (1-PlA;]) = (1 —Px~gy [X € So] + % Px~py (X € So]>
=1

N
< (Pxenrlx 51+ 1)
since S C Sp. Note that fy|4(z) = wo(z) and RK(0) is Y if z = 0. Therefore it follows by Lemma
7 that

N
drv (RK(0), o) = P [A°] < <PX~9X [X ¢S]+ q)
A symmetric argument shows that when x = 1,

1— N
drv (RK(1), ¢1) < (PX~fX [X & 5]+ 1_2>
Now note that

H pPgx —q- fx
po— ——— =

p—q
Jr/ p-gx(z) —q- fx(z) _pgx(@)—q- fx(z)
So p'IPXNgX[X S So] —Q'PXNfX[X S So} p—q
_ ‘1_p'PX~gX[X S So] —q-PXNfX[X S S(]]
p—q
4 0 Pxe g [X 7 S0 = p-Pxogy [X ¢ S
pP—q
_ 2(q-Pxopy [X & S0l —p- Pxagy [X ¢ Sol)
pP—4q
< 2'IP)XNfX[AX ¢ S|
p—q

_ / ¢ fx(z) —p-gx(2)
1 s§

p—q

dx

since Sp C S. A similar computation shows that

H%_ (1-9¢)-fx—(1-p)-gx

_2((A=p) Pxagy [X € 51] = (1 —q) - Pxyy [X & S1])
p—q 1 pP—q
< 2 Pxrgy [X & 5]
p—q
Now note that
fx=p- (1—Q)'fX—(1—p)'9X+(1_p).p'gx—Q'fX
p—q pP—q
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Therefore by the triangle inequality, we have that

drv (RK(Bern(p)), fx) < drv (RK(Bern(p)),p - 1 + (1 —p) - ¢o)
+drv (p- o1+ (1 =p) - o, fx)
(1-q) - fx—(1—-p)gx

<p-drv(RK(1),¢1)+p- ‘

w1 —
P—q .
+ (1 —=p) - drv (RK(0), o) + (1 —p) - H% _ P'ﬂ);:(j'ﬁ(
1
2-Pxor [X &S N
§p.< X fx[ ¢ ]+<PX~9X[X€S]—I—(]> )
pb—q P
+(1-p) < P + IPXNfX[ngHl_q
<A
Similarly, note that
1—aq) fx —(1—p)- o
gx =g L0 Ix=U=p)gx |, Prax =0 fx

p—q p—q

The same triangle inequality applications as above show that

N
drv (RK(Bern(q)), gx) < ¢- (2 ' PX;ff[;IX 25, (IP’X~9X (X ¢S]+ ;) )

N
+(1—q)- (ZPX;gf[(‘JX 25, (IP’XNfX[X ¢ S| +1:Z> )

<A
completing the proof of the lemma. |

We will denote RK as defined with the parameters in the lemma above as RK(p — fx,q —
gx,N) from this point forward. We now give the particular rejection kernels we will need in
our reductions and their total variation guarantees. The first rejection kernel maps from the edge
indicators in planted clique to Poisson random variables and will be essential in Poisson lifting.

Lemma 12 Let n be a parameter and let € > 0,¢ > 1 and p € (0, 1) be fixed constants satisfying
that 3¢~ < log.p~ L. If \ = \(n) satisfies that 0 < \ < n™¢, then the map

RKp; = RK(1 — Pois(c\),p — Pois(\), N)
where N = [6log,-1 n| can be computed in O(log n) time and satisfies that

dry (RKp; (1), Pois(c))) = Op(n™2) and dry (RKp;(Bern(p)), Pois()\)) = Op(n™?)
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Proof Let fx(m) and gx(m) be the PMFs of Pois(cA) and Pois(\), respectively. Note that

e—c)\ cA)m
fx(m) = n(z'/\) and gx(m)=

e—/\ ( )\)m
m)!
can be computed and sampled in O(1) operations. Therefore Lemma 11 implies that RKp; can

be computed in O(N) = O(logn) time. Let the set S be as defined in Lemma 11, let M =
log,(2p)~! > 3¢~ ! and define the set S’ = {m € Z>o : m < M }. Now note that if m € S’ then

fX(m) e—c/\(c)\)m

— m! _ (=X m M —1

gx(m) ey =eTem < et <p
m!

and therefore it follows that S’ C S. For sufficiently large n, we have that M = log,p~! > cn=¢ >
cA > ) and therefore a standard Poisson tail bound yields that

_a[ e M e\M 5.1 e\M 4
Pxngy[X & 8] < Pxegy[X > M] <e (M) <(5;) M =(5) n
since A < n~¢. Similarly, we have that Px ¢, [X & S| < (Ce)M n—3. Now note that for suffi-

M
ciently large n, we have that

) ce\M 3 N
R B ()

1—p 1—p M
M

2 (e —3 N

< (M) n +<p1/2)
I—p

< <2(1 —p)? (%)M + 1> n3

By similar reasoning, we have that for sufficiently large n

2']PX~9X[X QS]
1-p

FPxep X S)Y < (2007 ()" #1) 0

Therefore A < (2(1 —p)t (C—]\f[)M + 1) n~3 for sufficiently large n and applying Lemma 11
proves the lemma. |

The next lemma gives another approximate map to Poisson random variables from Bernoulli
random variables corresponding to the edge indicators in the edge-dense regime of planted dense
subgraph. We use the following lemma to apply Poisson lifting after Gaussian lifting in order to
deduce hardness in the general regime of PDS. The proof is very similar to that of Lemma 12.

Lemma 13 Ler e € (0, 1) be a fixed constant and let n be a parameter. Suppose that:
e )\ = \(n) satisfies that 0 < A < n™¢;

e ¢ = c¢(n) > 1 satisfies that ¢ = O, (1); and
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e p = p(n) € (0,1/2) satisfies that p > n~X for sufficiently large n where K = 0,,(1) is
positive and
(K +3) < log,(1+2p) = On(1)

Then the map
1 1
RKp; = RK <2 + p — Pois(c)), 3™ Pois(\), N>

where N = [6/)*1 log n] can be computed in poly(n) time and satisfies

dry (RKp2(Bern(1/2 4 p)), Pois(c\)) = On(n™3), and
dTV (RKpg(Bern(l/Q)), POl'S(A)) = On(n_3)

Proof As in Lemma 12, let fx(m) and gx(m) be the PMFs of Pois(c\) and Pois(\) and note
that they can be computed and sampled in O(1) operations. Lemma 11 implies that RKp, can be
computed in O(N) = O(nf logn) = poly(n) time. Let the set S be as defined in Lemma 11, let
M =log.(1+2p) > (K + 3)e ! and define the set S’ = {m € Zx( : m < M }. Now note that if
n > 1,then A < n~¢ < 1 and it follows that

eI > 1 (c—DA>2—¢c>2—(1+20)/EH) 519
since € € (0,1). Therefore if m € S’, then

—(e= o fx(m)

< :ef(cfl))\cm < M <1+2p
gx(m)

1-2p<e

and it follows that S’ C S. By the same Poisson tail bounds as in Lemma 12, we have that for
sufficiently large n

e M k- ce\NM _
PXNQx[Xi/S]S(M) n K73 and IP’XNfX[Xg,gS]S(M) n K3

Now note that for sufficiently large n, we have that p~! < n® and ( ﬁ)M n~K=3 < %n_K < % p
since M = O,(1). Therefore

1 N ce\M
_1_ < — _ —K—3
207 gy X 281+ (Progn X #5814 1150 ) <207 (7)o

By similar reasoning, we have that for sufficiently large n,

20 Pxogy [X &S]+ (Pxaye[X €8]+ 1—2p)"

INA
Y
(\]
/N
Sl
N—
S
+
—_
N~—
S
d
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Therefore A < (2 (C—Af[)M + 1) n~3 for sufficiently large n and applying Lemma 11 proves the
lemma. |

The next lemma of this section approximately maps from Bernoulli to discretized Gaussian
random variables. Gaussian random variables appear in two different contexts in our reductions:
(1) the problems ROS, SPCA and BC have observations sampled from multivariate Gaussians; and
(2) random matrices with Gaussian entries are used as intermediate in our reductions to PDS in the
general regime and SSBM. In both cases, we will need the map in the following lemma. As in the
proofs of the previous two lemmas, this next lemma also verifies the conditions of Lemma 11 for
Gaussians and derives an upper bound on A.

Lemma 14 Let n be a parameter and suppose that p = p(n) and q = q(n) satisfy that p > q,

— —Op(1 — 1—
p,q € [0,1], max(¢q,1 — q) = Q,(1) and p — g > n=9(). Ler § = min {log (%) ,log (ﬁ) }
Suppose that ;v = p(n) € (0, 1) is such that

p= 0
24/6logn + 2log(p — )1

Then the map
RKG:RK(p%N(/%l)aq_)N(071)7N)

where N = {65 ~llog n} can be computed in poly(n) time and satisfies
drv (RKG(Bern(p)), N (i, 1)) = On(n™®) and dry (RKG(Bern(q)), N(0,1)) = On(n™?)

Proof Let fx(z) and gx(x) be the PDFs of N(u,1) and N (0, 1), respectively, where

1 |
fX(‘T) = \/ﬁe (2=n)/2 and gx(ﬂ?) = me °/2

which can be computed and sampled in O(1) operations in the given computational model. Now
note that since log(1 4+ =) > /2 for x € (0, 1), we have that

P p—q _ 1
1 )l > = > _(p— >
0g(q>_ 5 _2(p q) >

1
1 -onm
2

and similarly that log (}%Z) > Qaiqp) > 1(p—q) > In92(). Therefore N = poly(n) and

Lemma 11 implies that RKg can be computed in poly(n) time. Let the set S be as defined in
Lemma 11, let M = \/6logn + 2log(p — ¢)~! and define the set S’ = {z € R : || < M}. Note
that if € S’ then we have that since My = §/2,

L exp (—2Mpu) < exp <—M,U, _ “2) < Ix(@)

p p
< =expl|lazpy—— ) <exp(Mp) <=
1—gq 2 9x () < S > (M) q

for sufficiently large n since M — oo as n — oo and p € (0, 1). This implies that S C S. Using
the bound 1 — ®(¢t) < \/% e /2 for t > 1, we have that

Pxegy [X &S] < Pxgy[X € 81 =2(1 - ®(M)) < —=- Ml M/

5~
3
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Similarly, it follows that for sufficiently large n we have that M /(M — u) < 2 and thus

Pxpx [X &S] < Pxpy [X ¢ 5= (1= (M = p)) + (1 = (M + p))

1 2
< (M= ) e M =p)?/2
< 5 (M —p)
1 2
L (M) tem(MAw?/2
or (M + p)
< L yre e [M CMu g

S

M —p

1 p —1_—M2/2
<—(1+2,/8) M te M/
—\/2w< \/;)

Now note that M ~te=M?/2 < ¢=M?/2 < (p — q)n=3 for sufficiently large n. If n is large enough
-3 1/2 .
< p(pl/qQJrql/z) -

7 4 T il
\/; > This implies that

2-Pxr [ X N
prf[q §ZS]+<JP>XN9X[X<7-5S]+§) < 2 <1+2 p)n_3

then \/% n 0,,(1) since ¢ = 2,,(1). Rearranging yields that \/%(p—q)n_3 <

. _ —p)t/2 .
Now note that if \/% (1 + 2\/@ n3 > (l_q)((li)lz’/)QJr(l_p)l/g) then it follows that

S (2 () o o

for some constant C' > 0 if n is sufficiently large, since 1 — ¢ = €,(1). Otherwise, the same

: : : : 1 P\ -3 1-p _1-p i
manipulation as above implies that VT (1 + 2\/; > n"t <\ 19 T 1Tog- Therefore we have in

either case that

1 P\ _5 1-— { I-p 1 ( p) -3 3}
—— (1425 )n P+ —F <max{/—, — (14+2,/Z | n >+ Cn
\/27r< \fq) l—q~ 1—q" 2n q
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For sufficiently large n, the second term in the maximum above is at most n~2. Therefore

2 Pxgy [X & 5] 1-p\ " 4 _
pg—q +(PXNfX[X¢S]+H> <<m>n 3

(o)

()

= Op(n?)

Therefore A = O,,(n~3) for sufficiently large n since ¢ = €2,,(1). Now applying Lemma 11 proves
the lemma. u

D.2. Distributional Lifting

The general distributional lifting procedure begins with an instance G € G, of a planted dense
subgraph problem such as planted clique and applies a rejection kernel element-wise to its adjacency
matrix. This yields a symmetric matrix M with zeros on its main diagonal, i.i.d. entries sampled
from Py, on entries corresponding to clique edges and i.i.d. entries sampled from @), elsewhere.
As an input to the procedure, we assume a random cloning map f; that exactly satisfies

fa(Py) ~ Pﬁé) and  fa(Qx) ~ Q?ﬁ‘(k)

for some parameter update function g.. Applying this cloning map entry-wise to M and arranging
the resulting entries correctly yields a matrix M of size 2n x 2n with a planted submatrix of size
2k x 2k. The only distributional issue that arises are the anti-diagonal entries, which are now all from
di( » although some should be from P, . We handle these approximately in total variation by
randomly permuting the rows and columns and applying Lemma 8. Iterating this procedure ¢ times
yields a matrix M’ of size 2n x 2n with a planted submatrix of size 2k x 2k, If Ait1 = ga( M),
then M’ has all i.i.d. entries from @), under Hj and a planted submatrix with i.i.d. entries from P},
under Hy. We then truncate the entries of M’ to produce the adjacency matrix of a graph with i.i.d.
edge indicators, conditioned on the vertices in the planted subgraph. This yields a general procedure
to reduce from an instance of planted clique to subgraph problems with larger planted subgraphs.

A natural question is: what is the purpose of the distributions Py and (),? If the initial and
final distributions are both graph distributions with Bernoulli edge indicators, it a priori seems un-
necessary to use matrix distributions without Bernoulli entries as intermediates. Our main reason
for introducing these intermediate distributions is that they achieve the right parameter tradeoffs to
match the best known algorithms for PDS where cloning procedures that stay within the set of graph
distributions do not. Consider the target planted dense subgraph instance of PDS(n, k, p, ¢) where
p=2qandq = é(n_o‘). To produce lower bounds tight with the computational barrier in Theorem
3, a lifting procedure mapping n — 2n and k — 2k at each step would need its cloning map to
satisfy

fa(Bern(q)) ~ Q = Bern(¢/4)®* and fq(Bern(p)) ~ P = Bern(p/4)®*
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where p = 2q. It is not difficult to verify that for any random map f; : {0,1} — {0, 1}*, it would
need to hold that

L-p _ Pl

1-q~ Q(x)
However, P(1,1,1,1)/Q(1,1,1,1) = 16 > 2 = p/q, so no such map can exist. Another approach
is to relax f to be an approximate map like a rejection kernel. However, this seems to induce a large
loss in total variation from the target distribution on M’. Our solution is to use a rejection kernel
to map to distributions with natural cloning maps f], such as a Poisson or Gaussian distribution, to
front-load the total variation loss to this approximate mapping step and induce no entry-wise total
variation loss later in the cloning procedure. We choose the precise distributions Py and Q) to
match the parameter tradeoff along the computational barrier. Note that this general distributional
lifting procedure can also be used to map to problems other than variants of subgraph detection,
such as biclustering, by not truncating in Step 4.

We remark that the PC-LIFTING reduction presented in the previous section is almost an in-
stance of distributional lifting with P, = Bern(1) for all A and @, = Bern(\), with the parameter
update g (\) = A/4. However in PC-LIFTING, the planted anti-diagonal entries between the
vertices ¢ and 2m + 1 — ¢ in Step 3b are from the planted distribution Py, rather than () as in
distributional lifting. This requires a slightly different analysis of the planted anti-diagonal entries
with Lemma 8.

We now proceed to describe distributional lifting and prove its guarantees. Given two dis-
tributions P and @, let M, (Q) denote the distribution on n x n symmetric matrices with zero
diagonal entries and every entry below the diagonal sampled independently from (). Similarly, let
M, (S, P, Q) denote the distribution on random n x n symmetric matrices formed by:

p

<% forallz € {0,1}*

1. sampling the entries of the principal submatrix with indices in .S below its main diagonal
independently from P;

2. sampling all other entries below the main diagonal independently from (); and

3. placing zeros on the diagonal.

Let M, (k, P, Q) denote the distribution of matrices M,, (S, P, Q) where S is a size k subset of [n]
selected uniformly at random. Given a matrix /M € R™*" and index sets S,7" C [n], let M[S x T
denote the |S| x |T'| submatrix of M with row indices in .S and column indices in 7. Also let
G(n,p,q,S) where S is a k-subset of [n] denote an instance of G(n, k,p, q) where the planted
dense subgraph is conditioned to be on S. The guarantees of distributional lifting are as follows.

Theorem 15 (Distributional Lifting) Suppose that n and ¢ are such that ¢ = O(logn) and are
sufficiently large. Let p', q' € [0, 1] and define the parameters:

o target planted and noise distribution families Py and Q) parameterized by \;

® a rejection kernel RK that can be computed in randomized poly(n) time and parameter \
such that RK(Bern(p')) ~ Py, and RK(Bern(q')) ~ Qx,s

e a cloning map f. that can be computed in randomized poly(n) time and parameter map g
such that

fcl(P)\) ~ Pf;(l/\) and fcl(Q)\) ~ Q?ﬁt,\)

for each parameter \;
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Algorithm DISTRIBUTIONAL-LIFTING

Inputs: Graph G € G,,, number of iterations ¢, parameterized families of target planted and noise
distributions Py and @, a TV-approximation Q' to @, that can be efficiently sampled, rejection
kernel RK approximately mapping Bern(p’) — P, and Bern(¢') — @, threshold ¢, cloning
map f, and corresponding parameter map g

1. Form the symmetric matrix M € R™*™ with M;; = 0 and off-diagonal terms
Mij = RK (14 jyen(0))

2. Initialize W < M and m < n

3. Fori =0,1,...,/ — 1do:
a. For each pair of distinct i, j € [m], let (a:%j, 1:12]-, x%, xfj) = fa(Wij)
b. Let W' € R?™*2™ be the symmetric matrix with W/, = 0 and

A |

/ .2
W(2m+1—i)j = Ty
3

!
i(2m+1—7) — Lij
/ 4
W(2m+1fi)(2m+1fj) = Ty
for all distinct ¢, 7 € [m] and
! /
iom1—i ~iid Q)

forall i € [m]
c. Generate a permutation o on [2m/| uniformly at random

d. Update W « (W')??, m <= 2m and X < ga(\)

4. Output the graph H with {4, j} € E(H) if W;; > t

Figure 8: Distributional lifting procedure in Theorem 15.

e a randomized poly(n) time algorithm for sampling from Q’)\i for each 1 < i < { where the
sequence of parameters \; are such that i1 = ge(\;) for each i; and

e a thresholdt € R.
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Then ¢ = DISTRIBUTIONAL-LIFTING with these parameters is a randomized polynomial time
computable map ¢ : Gy, — Goe,, such that under both Hy and Hy, it holds that

dry (6PDS (0. ko' ). PDS (¥ 2kpa)) < () o {ay (P Py e (@000 0) }

L

2 2
+ ; (2171 cdry (Qx,, Q) + X(Q/;NPM))

where p = PX~PM [X > t]and q = IF’XNQM [X >t

Proof If ¢ = O(logn), the algorithm DISTRIBUTIONAL-LIFTING runs in randomized polynomial
time. Let ¢; (W) be the algorithm that outputs the value of W after i iterations of Step 4 given the
original value of W and Let ¢/(G) be the algorithm that outputs the value of W after ¢ iterations of
Step 4 given the original graph G. Note that ¢, outputs the value of M after Step 1.

We first consider an iteration of Step 3 applied to M ~ M,, (S, P,\, @») where |S| = k. By the
definition of f, if 4, j are distinct and both in S, then (x)., 2., 23, z4) ~ P®% »- Similarly, if at

2]7 ’Lj’ 7,]’ ’L]

a2, 23, at) ~ Q%

least one of 7 or j is not in S, then (x” s L5y Tyjs Ty (V)" Therefore the symmetric matrix W’

constructed in Step 4b has independent entries below its main diagonal and satisfies that:

o W/~ Py foralldistinctd,j € S'=SU{2m+1—i:i€ S} withi+j#2m+1;

o W/~ Qg forall distinct (i, j) & S" x S';
o W/ ~ qudw with i + j = 2m + 1; and
o W/ =0.

Let W/ be the matrix with each of its entries identically distributed to those of W' except (W));; ~
Qgq(n) if i +j = 2m + 1. Coupling entries individually yields that

dry (L), £0V)) < m- drv Qi Q)

Now consider the matrix W, = (W) conditioned on the two sets o(S) and o(S’\S) where o
is a uniformly at random chosen permutation on [2m]. We will show that this matrix is close in
total variation to Moy, (0(S"), Py, (x), Qga(x))- Note that fully conditioned on o, the entries of W,
below the main diagonal are 1ndependent and identically distributed to Ma,, ((S"), Py, (r)s Qgu(n))
other than the entries with indices (o (i),0(2m + 1 — 4)) where i € S’. These entrles are dlS-
tributed as Qg (n) in Wy|o and as P,y in the target distribution Ma;, (0 (S"), Py, (n)s Qgu(n))-
Marginalizing to only condition on the sets o(S) and o (5, S), yields that all entries (W,.);; with
(i,7) € 0(S) x a(S",S)Ua (S, S) x o(S) are identically distributed in W,.|{c(S), o(S"\S)} and
the target distribution. Coupling these corresponding entries yields that the total variation between
W, |{o(S),o(S’\S)} and the target distribution satisfies that

dry (L(Wr|a(S),a(S'\S));, Mam(a(S"), Pyyn)s Qaun))
= dry (L(W,[0(S) x a(S"\S)]), Mi(Py,(n))
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Now observe that W,.[o(S) x o(S’\S)] is distributed as £(A%7) where 7 is permutation of [£]
selected uniformly at random and A is a matrix with its diagonal entries i.i.d. Qg (x) and its other
entries i.i.d. P (). By Lemma 8, we therefore have that

drv (LW, [ (S) x a(S'\S)]), Mi(Pyy(n))) = drv (L(AYT), My(Pyy )

< \/ % X (Qaa: Poav))
Now consider the matrix ¢1 (M) = W = (W')??. By the data processing inequality, we have that
dry (L(Wy]o(S),0(S"\S)), LW o (S),0(S\S)) < drv(LV'), L(W;))
<m-drv <Qgcl(/\)7 Q;C,(A)>

The triangle inequality now implies that

dry (L(Wo(S),0(S'\S)), Mam(a(S), Py, Qua(n)))

1
< m-dry (Quu Qpy) + \/ 5 X (Quun): Poav)

Letting .S be chosen uniformly at random over all subsets of [n] of size k and the triangle inequality
now imply that

drv (¢1 (Mm(ka Py, Q)\))’ MQm(2ka chl()\)a Qgcl()\)))
< EsEq(s),.0(51\8) [dTv (L(W|o(S),0(S\S)), Mo (0(S"), Pyyr)> Qua(n)) ]

1
<m-dry (dim, Q;clm) + \/ 3 X (Qaan) Paa)

For each 7 > 0, combining this inequality with the triangle inequality and data processing inequality
yields that

drv (Pis1 (M (k, Prg, Qo)) Maivy, (2777k, Py, Qs )
< drv (¢1 0 ¢i(Mm(k, Pry, Qxo))s b1 (Mairy, (2, Py, Q)
+drv (61 (Myi, (2, Priy Q) s Maivry, (277, Py, Qs )
< drvy (¢i(Mm(k, Prg, Qo))s Mo, (2K, Pr,u Q)

~ 1
+ sz : dTV (Q)\i+17Q/,\i+1> + \/2 : X2 (Q)\i+1ap)\i+1)

Now note that the adjacency matrix A;;(G) = 1y; j1epq) of G ~ G(n,p', ¢, S) is distributed as
M, (S,Bern(p’), Bern(¢')). Note that ¢, applies RK element-wise to the entries below the main di-
agonal of A;;(G). Coupling each of the independent entries below the diagonals of ¢(,(G(n, p', ¢, S))
and M, (S, Py,, Q»,) separately, we have that if |S| = k then

dTV (QZ){)(G(n?p/’q/’ S)), Mn(S, P)\O, Q)\O)) S (g) . dTV (15>\07 P)\o)

() (e)) (@)
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Taking S to be uniformly distributed over all k element subsets of [n] yields by triangle inequality,

drv (QZ)B(G(”’ kvp,’q/))v Mn(kv P)xoa Q)\o))
< ES [dTV (qbé(G(n,p’, qlv S))? Mn(S, P)\m Q)\O))]

< <Z> -max{dTV (P,\O,P/\O) ,dtv (QAQ>Q/\0)}

Applying the bounds above iteratively, the triangle inequality and the data processing inequality
now yields that

drv (64(Gn, k. d)), Moz 2k Pay, Q1))
< dTV (sz o ¢6(G(7’L, k7p))a ¢€ (Mn(kv P)\m Q/\o)))
+ dTV <¢Z(Mn(ka P)\oa Q)xo))v M2Zn(2ek7 PAea QM))

¢
S dTV (¢6(G(n7 kvp))7 Mn(kv P)\Q? Q)\o)) + Z (22171 . dTV (Q)\i, Qg\l) +

i=1

< <Z> - max {dTV (PAO,P/\U) ydrv (Q)\o, QAO)}

14
+ (2“171 cdry (Qa, @),) + XQ(QA“PM)>
i=1

XQ(QM’ P)\i)
2

2

By the same reasoning, we have that

drv (¢0(G(n,q)), Mn(Qn,)) < (Z) -dry (QAWQ,\(J)

Now note that if M ~ M,,(Q),). every entry of WZ-’]- in Step 3b below the main diagonal is i.i.d.
sampled from @), other than those with ¢ + j = 2m + 1, which are sampled from Q’/\l. Coupling
entries individually implies that

drv (¢1(M)7 MQm(QM)) <m-dry (Q)\l ’ Ql)q)

By induction we have that the data processing and triangle inequalities imply that

¢
drv (¢e(M), M2, (Q»,)) < Z 27 m - drv (Qx, Q)

i=1
Therefore it follows that

drv (¢2(G(n7 q/))v M2‘5n<Q/\4)) < dry (‘bf o ¢6(G(Tl, q/))v o, (MR(QAO)))
+ drv (G (Mn(@xo)), Mo, (@,))

L
<dyy (¢6(G(n, q,))7 Mn(Qko)) + Z 2i71m -dry (Q/\” Ql)\l)

=1
< n d A ‘ i—1 d /
< (2> -dry (Q,\O,QA()) + ;2 m - drv (Q,, Q4,)
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Algorithm POISSON-LIFTING
1

Inputs: Graph G € G,,, iterations /, parameters v, ¢ € (0,1) and ¢ > 1 with 3¢ ! < log, v~
Return the output of DISTRIBUTIONAL-LIFTING applied to G with £ iterations and parameters:
e initial densities p' = 1 and ¢’ =~

e target families Py = Pois(cA) and Q) = Q' = Pois(\)

e rejection kernel RKp; = RK (1 — Pois(cAg),y — Pois(Ag), [61og, -1 n]) and A\g = n~

cloning map f(z) = (21,22, 3, x4) computed as follows:

1. Generate  numbers in [4] uniformly at random

2. Let x; be the number of i’s generated for each i € [4]

parameter map gq(A) = A/4

threshold ¢t = 0

Figure 9: Poisson lifting procedure in Lemma 16.

If W ~ My, (2°, Py,,Q),), then the graph with adjacency matrix A;; = 1 (Wi, >ty 1 distributed
as G(2'n,2°k,p,q) where p = Px.p, [X > t] and ¢ = Px~q, [X > t]. Similarly if W ~
Mye,, (Qn,) then the graph with adjacency matrix A;; = 1y, -y is distributed as G (2n, q). Now

combining the total variation bounds above with the data processing inequality proves the theorem.
|

Appendix E. Planted Dense Subgraph and Biclustering
E.1. Poisson Lifting and Lower Bounds for Low-Density PDS

In this section, we introduce Poisson lifting to give a reduction from planted clique to PDS(n, k, p, q)
in the regime where % — cas n — oo for some fixed ¢ > 1 and ¢ = ©(n %) for some fixed o > 0.
Poisson lifting is a specific instance of DISTRIBUTIONAL-LIFTING with Poisson target distribu-
tions. The guarantees of Poisson lifting are captured in the following lemma.

Lemma 16 (Poisson Lifting) Suppose that n and ¢ are such that ¢ = O(log n) and are sufficiently
large. Fix arbitrary constants € € (0,1) and ¢ > 1 and let Ay = n™°. Suppose that vy is a small
enough constant satisfying that log,y~' > 3e¢~!. Then ¢ = POISSON-LIFTING is a randomized
polynomial time computable map ¢ : G, — Goe,, such that under both Hy and H,, it holds that

dry (qb(PC(n, k,~)), PDS (2%, 2k, p, q)) —0 (n—em)
wherep =1 — et gnd g=1-— et o,
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Proof Let POISSON-LIFTING be the algorithm DISTRIBUTIONAL-LIFTING applied with the pa-
rameters in Figure 9. Let A\j1+1 = ga(Ai) = A;/4 for each 0 < ¢ < ¢ — 1. Note that the cloning
map f¢(x) can be computed in O(1) operations. Furthermore, if = ~ Pois()) then Poisson thinning
implies that if f¢(z) = (21, z2, x3, x4) then the z; are independent and satisfy that x; ~ Pois(A/4).
Therefore it follows that

fa(Py) = fa(Pois(cA)) ~ Pois(cA/4)®4 = Pﬁ%)\) and

fa(Qx) = fa(Pois(\)) ~ Pois(A/4)%* = Q%4

Furthermore, note that Py = Pois(cA) and Q@ = Q) = Pois(\) can be sampled in O(1) time. Note
that the y? divergence between these distributions is

0 l—)\ t)

[e.9]
X2 (Qx, Py) _—1-1-211”_6/\ =—1+exp( “He—1)? Z

t=0 1€ =0
=exp (¢! (c— 1)2)\) —1<2cHe—1)%A

e*’\/c /\/c

as long as ¢~ !(c — 1)2)\ < 1 since e* < 1+ 2z for z € [0, 1]. By Lemma 12, the rejection kernel
RKp; can be computed in O(log n) time and satisfies that

drv (RKpl(l), PAO) = O(nﬁg) and dyy (RKpl (Bern('y)), Q)\O) e O(niB)

Now note that Py, = Pois(4~“cAo) and Qy, = Pois(4~“Ag) which implies that p = Px.p, [X >
0] =1—¢* "M andg = Pxq,,[X >0 =1 — 420 Since PDS(n, k, 1,7) is the same problem
as PC(n, k, ), applying Theorem 15 yields that under both Hy and H;, we have

drv <¢>(PC(n, k7)), PDS (2%, 2%k, p, q>)

n , P
< (2> - max {dry (RKpi (1), Py,) , drv (RKp; (Bern(v)), Qx, ) }+Z QAI )

n ¢

. -3 -1/2(. _ .
< (3) -0+ 1)2@
)4
= O~V +V2(c n—¢/2 Zz— < -1y n—s/?)
which completes the proof of the lemma. |

We now use the reduction based on Poisson lifting analyzed above to prove hardness for the
sparsest regime of PDS.

Theorem 17 Fix some ¢ > 1. Let a € [0,2) and 8 € (0,1) be such that B < 1 + %. There is a
sequence {(Ny, Ky, Pn, qn) }nen of parameters such that:

1. The parameters are in the regime ¢ = O(N~) and K = ©(N?) or equivalently,

=p and lim 22 — ¢

m o8 @' lim 108 Kn
ngrolo log N, n—0o qp,

7L~>oo log N,
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2. For any sequence of randomized polynomial-time tests ¢, : Gn, — {0, 1}, the asymptotic
Type I+11 error of ¢y, on the problems PDS p(N,,, K, P, qn) is at least 1 assuming the PC
conjecture holds for each fixed density p < 1/2.

Therefore the corfzputational boundary for PDS p(n, k, p, q) in the parameter regime q = (:)(n—a),
%%candkz@(nﬁ)isﬂ*:%_F%.

Proof If 5 < « then PDS in this regime is information-theoretically impossible. Thus we may
assume that 8 > «a. Take € > 0 to be a small enough constant so that

1 «
1-8)< -+~
Now let v = 25_0‘2%&1_5) Rearranging the inequality above yields that v € (0, 1/2). Now set
—¢€)l
by = PO‘;_)Zg?ﬂ . ka=[nY],  Ny=2n K, =20k,
pp=1—e" T g =t

Take p to be a small enough constant so that p < %c_?’e*l. By Lemma 16, there is a randomized

polynomial time algorithm mapping PCp(n, ky,, p) to PDSp(Ny,, Ky, Pn, qn) With total variation
converging to zero as n — oo. This map with Lemma 4 now implies that property 2 above holds.
We now verify property 1. Note that

(a—¢)logyn 2B8—a+e(1—P) . B -
log K), i {foﬁ—"log2+<T>lOgH_73_a+w‘?’fw_
e logN,, s (a—e)logyn - a—e 4 1 =0
n—o0 10g [Ny, n—o0 lrng—‘ -log2 + logn o +

Note that as n — oo, it follows that since 4" — (),

—Lln gy —€ — —
qn:1_64 n ~ 4 énne

Similarly p,, ~ 4=%*¢n ¢ and thus 7;—: — ¢. Note that

log g1 2 (a—;)%—‘ log2 +elogn  2—9 , .
lim = lim 1 =22 = a
n—00 log N, n—00 [(afg)_ZgQ n-‘ ) log 24 logn — 41
which completes the proof. |

In this section, we gave a planted clique lower bound for PDSp(n, k, p, q) with % — c as
opposed to p = cq exactly. We now will describe a simple reduction from PDSp(n, k, p, q) with
g — ¢1 where ¢; > cto PDSp(n, k,p1,q1) where p; = cq; and ¢; = ©O(q). Given an instance of

PDSp(n, k,p,q), add in every non-edge independently with probability p = % which is in

(0,1) since ¢; > c implies that p > cq for large enough n. This yields an instance of PDSp with
p=1-(1-p(1-p)=p+p—ppandq =1—(1-p)(1—q)=q+p— pg. The choice
of p implies that p; = cq; exactly and p = O(q) since g — ¢1 > c. Applying this reduction after
POISSON-LIFTING yields that PDS p(n, k, ¢q, ) has the same planted clique lower bound as in the
previous theorem.
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Algorithm GAUSSIAN-LIFTING
Inputs: Graph G € G, iterations ¢
Return the output of DISTRIBUTIONAL-LIFTING applied to G with £ iterations and parameters:
e initial densities p’ = 1 and ¢’ = 1/2
e target families Py = N(\, 1) and Q) = Q) = N(0,1)
e rejection kernel RKg = RK (1 — N (Ao, 1),1/2 — N(0,1), N) where N = [6log, n] and
N = 5 g 7o
e cloning map f(z) = (x1,x2, 3, x4) computed as follows:
1. Generate G, G2, G3 ~jjq. N(0,1)

2. Compute (x1,x2,x3,24) as

z1 == (z+ Gy + G2+ Gs)

— o =

$2:f($—G1+G2—G4)

2

1
x3:§($+G1—G2—G3)

1
$4:§($—G1—G2+G3)

e parameter map gj(A) = /2

e thresholdt =0

Figure 10: Gaussian lifting procedure in Lemma 18.

E.2. Gaussian Lifting and Lower Bounds for High-Density PDS and BC

In parallel to the previous section, here we introduce Gaussian lifting to give a reduction from
planted clique to the dense regime of PDS(n, k,p,q) where ¢ = ©(1) and p — ¢ = (:)(n*a) for
some fixed o > 0.

The next lemma we prove is an analogue of Lemma 16 for GAUSSIAN-LIFTING and follows

the same structure of verifying the preconditions for and applying Lemma 15.

Lemma 18 (Gaussian Lifting) Suppose that n and { are such that ¢ = O(logn) and are suffi-
ciently large and let

B log 2

~ 2/6logn + 2log 2

1
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Then ¢ = GAUSSIAN-LIFTING is a randomized polynomial time computable map ¢ : G, — Goe,,
such that under both Hy and H1, it holds that

1
drv (6(PC(n,k,1/2)),PDS (2n,2'k, @ (271) ,1/2) ) = O
Proof Let GAUSSIAN-LIFTING be the algorithm DISTRIBUTIONAL-LIFTING applied with the
parameters in Figure 10. Let Ajy; = ga(\;) = \;/2 foreach 0 < @ < ¢ — 1. Note that the
cloning map f(x) can be computed in O(1) operations. Now suppose that z ~ N(A,1). If
fa(z) = (z1, 29, x3, 24), then it follows that

1 1 11 1 1 T — A
x| A1, 1|1 -1 1 -1 Gy
= — + —_ . 3
4 1 1 -1 -1 1 G3;
Since © — p, G G2 and G3 are zero-mean and jointly Gaussian with covariance matrix [y, it

R
follows that the entrles of (1:1, x9,x3,x4) are also jointly Gaussian. Furthermore, the coefficient

matrix above is orthonormal, implying that the covariance matrix of (x1,x2,x3,x4) remains I4.
Therefore it follows that fq(N(), 1)) ~ N()\/2,1)®4. Applying this identity with A\ = 0 yields
that fi(N(0,1)) ~ N(0,1)®*. Thus f is a valid cloning map for P and @y with parameter map
ga(A) = A/2.

Observe that Py = N (A, 1) and Q) = Q) = N(0, 1) can be sampled in O(1) time in the given
computational model. Note that the y? divergence between these distributions is

= ()
XQ(Q)HP)\):—l‘{‘/ Wdl‘_ \/7/ —(@+A) /2d$—e 1<4)\2

—00 z¢

as long as 4\? < 1 since e® < 1+ 2z for € [0, 1], which is the case for all A\ = \;. By Lemma
14, the rejection kernel RKg can be computed in poly(n) time and satisfies that

dTV (RKG(l), P/\O) = O(n_3) and dTV (RKg(Bern(l/Q)), Q)\O) = O(?’L—3)

Now note that Py, = N(27u,1) and Q,, = N(0, 1) which implies that p = Pxop, [X > 0] =
® (27p) and ¢ = Px~q,,[X > 0] = 1/2. Since PDS(n,k,1,1/2) is the same problem as
PC(n, k,1/2), applying Theorem 15 yields that under both Hy and Hy, we have

drv (¢(PC(n, k,1/2)),PDS (2%, 2k p, q))

XQ(Q)\N P)\Z)
2

IN

l
(Z) - max {drv (RKG(1), Py, ) , drv (RKg(Bern(1/2)), Qo) } + Y
=1
l
< (2> -0(n~3%) + ﬁ;AZ

¢
n1 . —i _ nl 1
=0(n™ ")+ uv2 ;:12 O( - logn>
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which completes the proof of the lemma. |

We now use this GAUSSIAN-LIFTING reduction to deduce hardness for the dense variant of
planted dense subgraph, which has a slightly different computational boundary than the sparsest
variant.

Theorem 19 Let o € [0,2) and B € (0,1) be such that B < % + . There is a sequence
{(Nn, Kp, Pn, qn) tnen of parameters such that:

1. The parameters are in the regime ¢ = ©(1), p — g = O(N~) and K = O(N?) or equiva-
lently,
log(pn — an) " log K, _

nlgglo log N, =a and nl;ngo log N, a

2. For any sequence of randomized polynomial-time tests ¢, : Gn, — {0, 1}, the asymptotic
Type I+11 error of ¢, on the problems PDS p(N,,, K, pn, qn) is at least 1 assuming the PC
conjecture holds with density p = 1/2.

Therefore the computational boundary for PDSp(n, k,p, q) in the parameter regime ¢ = ©(1),
p—qg=0(Mn"andk=0(n")is p* = 5 + 2.

Proof If 8 < 2« then PDS is information-theoretically impossible. Thus we may assume that
B > 2a. Let v = = and note that v € (0,1/2). Now set

1
0, = [al(igzn-‘ . ka=[n"], Ny=2%n K, =2k,
log 2
=d (27
P < 2\/610gn+210g2)

By Lemma 16, there is a randomized polynomial time algorithm mapping PCp(n, ky,, 1/2) to the
detection problem PDS p(N,,, Ky, pp, 1/2) with total variation converging to zero as n — oo. This
map with Lemma 4 now implies that property 2 above holds. We now verify property 1. Note that

1 _
{%gfyﬂ-log2+(%>logn i

1
lim 08 2n _ lim : === 1—a =3
nooo log Ny oo [%g;n} -log2 +logn Tatl
log 2

Let p =5 and note that as n — oo, we have that

v/6logn+2log2

O (27 tny) — 4 1 T 1
lim %")2 ~ fim < / e‘”Q/de> _
n—00 27y T—0 0 2

—tn S
Therefore p,, — g, ~ 2 m“ as n — oo. This implies

alogyn
. 10g(pn - Qn)_l . 2 lrﬁ-‘ -log2 —log 12_7040(
lim —oPn ) gy _ e,

n—00 log N, n—00 [%1 -log2 +logn Tatl
—a
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Algorithm BC-REDUCTION

Inputs: Graph G € G, iterations ¢

1. Set W to be the output of GAUSSIAN-LIFTING applied to G with ¢ iterations without the
thresholding in Step 4 of DISTRIBUTIONAL-LIFTING

2. Replace the diagonal entries with W;; ~;;q4. N(0,2)

3. Generate an antisymmetric 2'n x 2‘n matrix A of with i.i.d. N(0,1) random variables
below its main diagonal and set

W<—\}§(W+A)

4. Generate a permutation o of [2‘n] uniformly at random and output Wi

Figure 11: Reduction to biclustering in Lemma 20.

which completes the proof. |

Note that to prove this theorem, it was only necessary to map to instances with ambient density
g = 1/2. We remark that it is possible to map from ¢ = 1/2 to any constant g by removing edges
with a constant probability p < 1 or removing non-edges with probability p. Note that this still
preserves the asymptotic regime p — ¢ = (:)(n_a). We now use GAUSSIAN-LIFTING to give a
reduction from planted clique to biclustering.

Lemma 20 Suppose that n and { are such that { = O(logn) and are sufficiently large and

_ log 2
~ 2/6logn + 2log 2

L

Then there is a randomized polynomial time computable map ¢ = BC-REDUCTION with ¢ : G, —
¥4 13
RZ X2 gych that under Hy and Hq, it holds that

dry (qS(PC(n, k,1/2)),BC (2%, 2'E, 2*“/%)) =0 (ﬂi@)

Proof Let ¢ = BC-REDUCTION be as in Figure 13. Let ¢, denote GAUSSIAN-LIFTING applied to
G that outputs W after ¢ iterations without the thresholding in Step 4 of DISTRIBUTIONAL-LIFTING.
Lemmas 15 and 18 imply GAUSSIAN-LIFTING ensures that

drv (¢2(G(n, 1/2))7M2Zn(N(0’ 1))) =0 <\/];E>
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Now suppose that W ~ My, (N (0, 1)) and let W’ = ¢, 3(W') denote the value of W after applying
Steps 2 and 3 in Figure 13 to TW. Note that the diagonal entries of W are i.i.d. N(0,1) since the
diagonal entries of A are zero. If ¢ < j, then it follows that
! 1 ! 1
Wi = 7 (Wij + Gij)  and W = 7 (Wij — Gij)

Since W;; and G;; are independent and distributed as N (0, 1), it follows that Wl’] and W]/z are
jointly Gaussian and uncorrelated, which implies that they are independent. Furthermore, Wi'j and
W, are both in the o-algebra o{W;;, Gi;} and collection of o-algebras o{W;;, G;;} with i < j
is independent. Thus it follows that both W’ and (W')i4° are distributed as N (0, 1)®22”X25”. It
follows by the data processing inequality that

dry (¢(G(n, 1/2)), N(0, 1)®2"‘"X2‘2”) < drv (¢4(G(n,1/2)),L(W)) = O (@)

Now consider G ~ G(n, k, 1/2) and note that GAUSSIAN-LIFTING ensures that

dry (94(G), My, (2%, N(27,1), N(0,1))) = O <¢11@>

Now let W’ ~ My, (S, N(27%u,1), N(0,1)) where S is a subset of [2‘n] of size 2°k and let W
be the matrix formed by applying Steps 1 and 2 above to W’ in place of ¢;,(G). By the same
jointly Gaussian independence argument above, it follows that the entries of WW are independent
and distributed as:

o Wij~ N(2_Z_1/2:“71) if (i,7) € S x Sandi # j; and
o Wi~ N(0,1)if (i,§) ¢ S x Sori = .

Now consider the matrix (W')!4 conditioned on the permutation o. Its entries are independent and
identically distributed to the corresponding entries of 27¢~1/2, . 151] 4+ N(0,1)®2X2n where
T = o(5) other than at the indices (¢, (7)) fori € S. Marglnahzmg to conditiononlyon o (S) =T’
and coupling all entries with indices outside of S x 7" yields that

drv (L(W) 47 |o(S) =T), £ (24‘1/2 61T + N(0, )82 nx2n )

=drv (ﬁ (Wh4o[S x T|o(S) = T) N2y, 1)@24kx2fk>

< \/; X2 (N(0,1), N(2=1/2,1))

<9 log 2 _0 1
e 20+1 /6log n + 21og 2 2 /Tog n

by applying Lemma 8 and the x? upper bound shown in Lemma 18. Note that Lemma 8 applies
because (W')147[S x T conditioned only on o(S) = T is distributed as a 2°k x 2’k matrix with
i.id. entries N(27¢~1/24, 1), other than its diagonal entries which are i.i.d. N(0,1), and with its
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columns randomly permuted. Letting o(S) = T be chosen uniformly at random over all ordered
pairs of size 2°k subsets of [2¢n] yields by the triangle inequality that

i 1
iy (£, [ £ (2 1s0f + N0 an'0)) = 0 ()

where 7/ is the uniform distribution on all size 2°k subsets of [2‘n]. Let 7(S,T') be the uniform
distribution on all pairs of subsets of size 2°k of [2‘n]. Taking S to be also chosen uniformly at
random yields by the data processing and triangle inequalities that

drv (L ((Q)) ,/c (2—“/2# 151} + N(0, 1)®2£”X22”) dn (S, T))
< dry (4(G), My 2k, N(27p1,1), N (0, 1))

+Eg [dw <£((W’)idv“),/£ (2—“/2# 151} + N(0, 1)®2é”“é”) dyr’(T)ﬂ

=0 (o)

which completes the proof of the lemma. |

Note that Lemma 20 provides a randomized polynomial time map that exactly reduces from
PCp(n, k,1/2) to BCp(2'n, 2k, 2==1/211). This reduction yields tight computational lower bounds
for a simple vs. simple hypothesis testing variant of biclustering as stated in Theorem 21. This fol-
lows from setting ¢y, k,,, IV, and K, as in Theorem 19 and u, = 2=tn=1/2; then applying an
identical analysis as in Theorem 19. Note that when § < %, this choice sets ¢, = 0 and deduces
that BCp is hard when @ > 0.

Theorem 21 Let o > Oand 8 € (0,1) be such that 3 < £+%. There is a sequence {(Ny, Ky, fin) }nen
of parameters such that:

1. The parameters are in the regime ;1 = O(N~*) and K = O(NP) or equivalently,

. log,ufb1 . log K,
nlgrolo log N, o and nlggo log N, f
2. For any sequence of randomized polynomial-time tests ¢, : RN»*Nn — {0, 1}, the asymp-
totic Type I+11 error of ¢y, on the problems BC p(N,,, Ky, i) is at least 1 assuming the PC
conjecture holds with density p = 1/2.

Therefore the computational boundary for BCp(n, k, j1) in the parameter regime j = O(n~%) and
k=0(m")isp* =1+ % and a* =0 when B < 3.

We now deduce the computational barrier for the biclustering recovery problem from the PDS
recovery conjecture. The obtained boundary of g* = % + « is stronger than the detection boundary
B* = % + § in the previous theorem. First we will need the following lemma, which gives the
necessary total variation guarantees for our reduction. We omit details that are identical to the proof

of Lemma 20.
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Algorithm BC-RECOVERY

Inputs: Graph G € G, density bias p
1 1 log(142
1. Let RKg = RK (3 +p = N(p,1),3 — N(0,1), N) where u = % and N =
[61og; 5,7 | and compute the symmetric matrix W € R™*" with
Wij = RK¢ (i jyen@))
for all i # j and Wy; ~ji4. N(0,2)

2. Generate an antisymmetric matrix A € R™*" of with i.i.d. NV (0, 1) random variables below
its main diagonal and set

W<—\}§(W+A)

3. Generate a permutation ¢ of [n] uniformly at random and output ¢

Figure 12: Reduction to biclustering recovery in Lemma 22.

Lemma 22 Suppose that n, uand p > n~' are such that

B log(1 + 2p)
~ 2/6logn + 2log 2

Then there is a randomized polynomial time computable map ¢ = BC-RECOVERY with ¢ : G, —
R™ ™ such that for any subset S C [n| with |S| = k, it holds that

drv <¢ (G(n,1/2+ p,1/2,5)) ,/[, (u 1g17 + N(0, 1)®"X") dW(T)> =0 (\/12@)

where T is the uniform distribution on subsets of [n] of size k.

Proof Let = BC-RECOVERY be as in Figure 12. Applying Lemma 14, it holds that RK can be
computed in poly(n) time and that

dry (RKg(Bern(1/2 4+ p)), N(u,1)) = O(n™®) and dry (RKg(Bern(1/2)), N(0,1)) = O(n™?)

Let W1 and W5 be the values of W after Steps 1 and 2, respectively, applied to an input graph
G~ G(n,1/2+ p,1/2,5). Let M be a sample from M, (S, N(p, 1), N(0,1)) with i.i.d. N(0,2)
random variables on its diagonal. Coupling entries individually yields that

e (6(92),£0) < () - dry (kK (Bern(1/2-+ 7). N (1)

i ((g) - (’;)) - dry (RK (Bern(1/2)), N (0, 1))

- (;) 0(n~3) =0
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An identical argument as in Lemma 20 now shows that W5 is at total variation distance O(n~!)
from p - 1511 + N(0,1)®"*" with all of its diagonal entries replaced with i.i.d. samples from
N(0,1). The same permutation argument applying Lemma 8 now yields that

; 1
drv (£ W"d’”,/ﬁ( 1415 N0,1®”X”)d )=0
w (L3, [ £ (e 1517+ ¥0.07 ) an(1)) = 0 (s
Applying the triangle and data processing inequalities as in the conclusion of Lemma 20 completes
the proof of the lemma. |

With this lemma, we now deduce the recovery barrier for biclustering from the PDS and PC
conjectures. Note that the recovery barrier of 5* = % + « and detection barrier of §* = % + 5
indicates that recovery is conjectured to be strictly harder than detection for the formulations we
consider in the regime 3 > %

Theorem 23 Let o« > 0 and € (0,1). There is a sequence {(Ny,, Ky, lin) }nen of parameters
such that:

1. The parameters are in the regime j = O(N~%) and K = ©(N?) or equivalently,

2. If g > % and B < % + «, then the following holds. Let ¢ > 0 be fixed and let M, be
an instance of BCg(Ny,, Ky, pin). There is no sequence of randomized polynomial-time com-
2
putable functions ¢, : RN»*Nn (U\,;”]) such that for all sufficiently large n the probability
that ¢y, (M,,) is exactly the pair of latent row and column supports of M, is at least €, assum-
ing the PDS recovery conjecture.

3 IfB < % and o« > 0, then the following holds. There is no sequence of randomized

2
polynomial-time computable functions ¢,, : RN»>*Nn ([Ali”}) such that for all sufficiently
large n the probability that ¢, (M,,) is exactly the pair of latent row and column supports of
M, is at least €, assuming the PC conjecture.

Therefore, given the PDS recovery conjecture, the computational boundary for BC r(n, k, p) in the

parameter regime ju = O(n~) and k = ©(n®) is B* = £ + o when B > % and o* = 0 when
B< i

Proof First we consider the case when 8 > 1/2 and 5 < % + a. Now set

o

_ log(1 + 2py)
k, = [n?], = , N, = K, = ky, =
n =[] =10 n=n e Him 2y/6logn + 2log 2

Assume for contradiction that there is a sequence of randomized polynomial-time computable func-
tions ¢, as described above and let ¢/ denote the restriction of ¢,, to output latent row support
only. Let ,, = BC-RECOVERY be the reduction in Lemma 22, let G,, ~ G(n,S,1/2 + pp,1/2)
and let M,, = ¢, (G,) where S is a ky-subset of [n]. Let £, g7 = £ (tn1s1ly + N(0,1)%m%")
and let £, 5 = f Ly, srdn(T) where 7 is the uniform distribution over k,-subsets of [n] be the
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distribution of an instance of BCr(N,,, Ky, ft,,) conditioned on the event that the row support of its
planted submatrix is S. Now observe that

Parvciar,) [60(M) = S] = Pass, s [64,(M) = S| < drv (L(My), Ln,s) = O (\/13@)

because of Lemma 22. Now note that Psz, o [0, (M) = S| = ErnPrnr, s 4 (07 (M) = S] >
e for sufficiently large n by assumption. Therefore it follows that

Pl¢r, 0 pu(Gn) = 5] 2 €= O <\/1<1W>

which is at least €/2 for sufficiently large n. Now observe that
2 2
nrn

k

i i )-—2/6’—2a<1
2

i

log &y,

lim =0 and lim log, (
n—00 ]ogn n—00
Since the sequence of functions ¢], o ¢, can be computed in randomized polynomial time, this
contradicts the PDS recovery conjecture. Therefore no such sequence of functions ¢,, exists for the
parameter sequence { (N, Ky, itn) }nen defined above. Now note that as n — oo,

log(1 + 2pp) Pn n_“

:2\/610gn+210g2 V6logn  /Glogn

n

Therefore it follows that

log put 1 Log(61 log K.
lim OB fn limaogn—f—Qog( ogn):a and lim 08 n _

n—oo log N, n—0o0 logn n—oo log N, N

B

This completes the proof in the case that 5 > 1/2. Now consider the case where 5 < 1/2.
Set p, = 1/2 and all other parameters as above. Let G,, ~ G(n,ky,S) and repeat the same
argument as above to obtain that P[¢], o ¢, (G,) = S] > € — o(1). Now consider the algorithm
@, : Gn — {0, 1} that computes S” = ¢!, o v,,(G,,) and checks if S’ is a clique, outputting a 1 if it
is and 0 or 1 uniformly at random otherwise. If G, ~ G(n, 1/2), then with probability 1 — o(1) the
largest clique of G, is less than (2 + €) log, n for any fixed e > 0. It follows by the definition of ¢,
that |S'| = k, = ©(n®) = w(logn) and thus with probability 1 — o(1), ¢/, outputs a random bit.
Therefore Pg, ~ci(n,1/2)[¢n(Gn) = 1] = 1/2 + o(1). If G, ~ G(n,k,1/2), then with probability
at least € — o(1), S’ is the support of the planted clique and ¢!, outputs a 1. Otherwise, ¢!, outputs a
random bit. Therefore Py, c(n k,1/2)[¢0(Gn) = 0] = (1 — €)/2 4 o(1). Therefore it follows that
the Type I+1I error of ¢, is

PmGn,1/2)[00(Gn) = 1] + Pa cGnp1/2) [0 (Gn) = 0] =1 — % +o(1)

which contradicts the PC conjecture. This completes the proof of the theorem. |

Since the reduction BC-RECOVERY exactly preserves the latent support S of the instance of
PDSpr when mapping to BCp, the same reduction shows hardness of partial recovery if the PDS
conjecture is strengthened to hold for partial recovery. The same is true for weak recovery.
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Algorithm GENERAL-PDS-REDUCTION
Inputs: Graph G € G, iterations {1, {5
1. Let H be the output of GAUSSIAN-LIFTING applied to G with /; iterations
2. Update H to be the output of POISSON-LIFTING applied to H with /5 iterations where the

rejection kernel is replaced with

1 1
RKpy = RK <2 + p — Pois(c)), 3 Pois(\), N)

where the rejection kernel has natural parameter 217 and satisfies A = (2€1n)*6, N =
[6p~ 1 log(2%n)], p= ®(27“p) — 1/2 and ¢ = (2@ (2*51/1))6/4

3. Output H

Figure 13: Reduction to the general regime of planted dense subgraph in Lemma 24.

E.3. Lower Bounds for General PDS

In this section we give a reduction to the general regime of PDS where ¢ = (:)(n_a) and p — q =
O(n~?) where 8 > a. Note that in order to completely characterize PDS when p — ¢ = O(q), we
also need the computational lower bound shown in Appendix E.1 when o = 3. We now give this
reduction, which applies GAUSSIAN-LIFTING and POISSON-LIFTING in sequence.

Lemma 24 Fix some arbitrary ¢ € (0,1). Suppose that n, {1 and {5 are such that {1,0s =
O(logn) and are sufficiently large. Let { = {1 + {5 and

B log 2
~ 2/6logn + 2log 2

1

Then there is a randomized polynomial time computable map ¢ = GENERAL-PDS-REDUCTION
with ¢ : G, — Goe,, such that under both Hy and H,, it holds that

1
dTV (gb(PC(n,k‘, 1/2)),PDS (2671, 241{371%1,527‘”1/2)) =0 (\/@)

where py, ¢, and qu, ¢, are defined to be

- /4 _
Pey e, = 1—exp (4Z2 (28171) - (2‘13 (24%))6 > and  qp, o, = 1—exp <442 (25171) 6)

Proof Let » = GENERAL-PDS-REDUCTION be as in Figure 13. Let ¢4 (G) denote the map in Step
1 applying GAUSSIAN-LIFTING for ¢ iterations and let ¢2(G) denote the map in Step 2 applying
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the modified version of POISSON-LIFTING for /5 iterations. If G ~ G(n, k,1/2) then Lemma 18
implies that

drv <¢1(G)7G (261”’ 2k, @ (241@ ’1/2>) =0 <\/1(1W>

For the values of ), p and ¢ in Step 2, we have that ¢ < 2/% and log,(1 + 2p) = 4! = O(1).
Also observe that as n — oo,

1 1 1
=0 (27) —1/2~ — 270 =Q( ——x ) =w | 0—
P ( H) / V2r a <2K1\/10gn> v <2£1n>

Therefore the values K = 1, ¢, \, p, ¢ and natural parameter 2/ satisfy the preconditions to apply
Lemma 14. It follows that

drv (RKpa(Bern(1/2 + p)),Pois(cA)) < O (273@17173) , and
drv (RKp>(Bern(1/2)), Pois())) < O (2—341n—3)

Now let H' be a sample from G (2£1n, 20k, @ (2_61;1) , 1/2). The argument in Lemma 16 applied
with these total variation bounds yields that

drv (@(H,)a G (267% 2k, Dy s %7@)) =0 (2_516/271_6/2)

Applying the triangle inequality and data processing inequality yields that

dry (#(G(n.k.1/2)),G (2. 2%, pes s 0. ))
< drv (¢2 0 ¢1(G), ¢2 (H')) + drv <¢2(HI), G (2471, 2k, pey s qgl,zg))

1 1
_ O 27316/2 76/2 _ O
<\/logn + " Viogn
By the same argument, if G ~ G(n, 1/2) then

dry <¢(G(n, 1/2)),G (2271,%,42)) ~0 < @)

which completes the proof of the lemma. |

We now use this reduction combining GAUSSIAN-LIFTING and POISSON-LIFTING to identify
the computational barrier in the general PDS problem.

Theorem 25 Let o,y € [0,2) and 3 € (0,1) be such that v > « and < % +3 -9 Thereisa
sequence {(Ny, Ky, Pn, qn) }nen of parameters such that:

1. The parameters are in the regime p — q = O(N~7), ¢ = O(N~) and K = O(N”) or

equivalently,
log q'rjl . log(pn — Qn)_l . log K,
nlﬁnolo log N, =& nhanc}o log N, =7 and 1“}31010 log N, =5
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2. For any sequence of randomized polynomial-time tests ¢, : Gn, — {0, 1}, the asymptotic
Type I+I11 error of ¢y, on the problems PDS p(N,,, Ky, ¢qn, qn) is at least 1 assuming the PC
conjecture holds for p = 1/2.

Therefore the computational boundary for PDS p(n,k,p,q) in the parameter regime p — q =
O(n™), ¢ =0(n") and k = O(n”) where y > avis f* = 5 + 1 — <.

Proof If 8 < 27 — « then PDS in this regime is information-theoretically impossible. Thus we
may assume that 1 > 3 > 2y — a. Now let

n=1-(1-7)- .

2-a-(2-¢(y-q)

Note that the given condition on «, 3 and 7y rearranges to #@,a) > i. Therefore taking € > 0

to be small enough ensures that 2 — o — (2 — €)(y — @) > 0,1 € (0,1/2) and o > €. Now set

e = = IR P

1.2 1.2
kp = Mﬂ, N, = 2£"+£"na K, = 2€n+enkn7

- /4 _
pn=1—exp (4_5% <2€%n> ‘. <2<I> <2_£}l,u>)e ) , qn =1 —exp <4_£% <2£$Ln> e)

log 2
2v/6logn+2log2”
ping PCp(n, ky, 1/2) to PDSp(Ny,, Ky, pn, gn) With total variation converging to zero as n — oo.

This map with Lemma 4 now implies that property 2 above holds. We now verify property 1. Note
that

where 1 = By Lemma 24, there is a randomized polynomial time algorithm map-

(r-a)(2—¢) a—c (1-5)(2—<)
O O e[ ) e ) Rt O [
n—00 —a)(2-e —
o0 log Ny, e s e R e (2 e I
- _ (-B)e-9
_ ZaR-gh-a) — Za-(2-90-a) _ 4
2—e

2—a—(2—€)(y—a)
Using the approximations in the proof of Theorem 19, we obtain as n — oo

Qn ~ 4= <2£}Ln)

—€

Now it follows that

- (y=a)(2—¢)
lim log ¢, ! . 2 2—a—(g—e€)(v—a) te 2—07—(;—6)(7—04) te N
- 2—e
nvoo log N o= (2-9(—a)
. - 1) (2—€)
e S 2 rapana t 1) samana € =7
- 2—e -
n=oo log N a0 )
which completes the proof. |
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Appendix F. Reflection Cloning and Subgraph Stochastic Block Model
F.1. Reflecting Cloning and Rank-1 Submatrix

Suppose that n is even and fixed. Let R denote the linear operator on R™*™ matrices that reflects
a matrix horizontally about its vertical axis of symmetry. Let F denote the linear operator that
multiplies each entry on the right half of a matrix by —1. The reflection cloning reduction is to
iteratively update the matrix W to

W« — (RW + FW?)

1
V2
where o is chosen uniformly at random and then to update W similarly with vertical analogues of
‘R and F. This achieves the same scaling of it as GAUSSIAN-LIFTING but does not increase n. This
ends up tightly achieving the right parameter scaling to deduce the sharper hardness of ROS p and,
indirectly, SPCA p over problems that admit sum-tests such as PIS p, PDSp, BCp and BSPCAp.
The parameter scaling in these problems is captured exactly by the cloning methods in the previous
two sections. Note that even without Step 3, REFLECTION-CLONING necessarily causes 7’ and
¢’ to have negative entries and hence cannot show hardness of BCp. We remark that all previous
cloning methods are in some sense lossy, introducing independent sources of randomness at each
entry of the input matrix. In contrast, the only randomness introduced in REFLECTION-CLONING
are random permutations of rows and columns, and ends up achieving a much sharper scaling in p.

We remark that if 7,¢ € {—1,0,1} then »' and ¢’ have most of their entries in {—1,0,1}.
However, those that are not are information-theoretically detectable. We note that if it were possible
to reduce from r,¢ € {—1,0,1} to 7’ and ¢’ with this property, then this would strengthen our
hardness results for SSBM p, SSWp, ROSp and SPCA p. Given a vector v € R” and permutation
o of [n], let 7 denote the vector formed by permuting the indices of r according to o.

Lemma 26 (Reflection Cloning) Suppose n is even and { = O(logn). There is a randomized
polynomial-time computable map ¢ = REFLECTION-CLONING with ¢ : R™*™ — R"™"*™ gnd

1. It holds that
¢ (N(0,1)®™") ~ N(0,1)%""

2. Consider any \ > 0 and any pair of vectors r,c € Z". Then there is a distribution T over
vectors v/, € 2" with ||’ |3 = 2/||rll3 and |¢|3 = 2/||cl}3 such that

¢ ()\ crel + N(O, 1)®n><n> ~ /,C (2)\5 T + N(O, 1)®n><n> dﬂ_(rl’cl)

where it holds with probability at least 1 — 4|7y " — 4]|c||y* over 7 that

201 - log(2¢(|r]lo) 2¢|r
2£HTH0 > HT/HO > 2KHTHO <1 B max( g( H ”0)7 H ”0)>

I llo n
201 - log (2 2¢
2£||CHO > HCIHO > 2ZHCHO (1 — max < ﬁgﬁ HCHO)’ Hc”0>>
cllo n

for some constant C' if |r||o and ||c||o are sufficiently large and at most 2~*"'n. Furthermore,
if r = cthen v’ = ¢ holds almost surely.
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Algorithm REFLECTION-CLONING

Inputs: Matrix M € R"*"™ where n is even, number of iterations £
1. Initialize W < M
2. Fori=0,1,...,¢/ —1do:

a. Generate a permutation o of [n] uniformly at random

a. Let W/ € R™™™ have entries

Wh =5 (Wg7 W s H W0 o+ W% g )
Wint1-iy; = % (Wi?g —Weisn Y Wati—omei—y — Wosi—ime1—)) )
fn1—f) = % (Wi?g + Wt — Wodicimri—i) — Wit —iymt1—j) )
Wint1—iyni1—j) = % (Wz’?’a Wt~ Witicomi—y T Winticimi— )
foreach 1 <i,7 <n/2
b. Set W <+ W’
3. Output W

Figure 14: Reflection cloning procedure in Lemma 26.

Proof Let ¢(M ) be implemented by the procedure REFLECTION-CLONING(M, ¢) as in Figure 6.
If ¢ = O(logn), this algorithm runs in randomized polynomial time. Let ¢ (V) denote the map
that takes the value W prior to an iteration of Step 2 as its input and outputs the value of W after
this iteration.

If W ~ N(0,1)®"*" then it follows by a similar argument as in Lemma 7 that ¢1 (W) ~
N(0,1)®™%"_ Specifically, for each 1 < 7,7 < n/2 we have that

0,0
/Wi/j 1 1 1 1 Wi
Winsr1—iy; _p1r -1 1 -1 W(;};ki)j
/ - )
Wi(n+1—j) 1 L -1 1 Wz(n+1—j)
w! 1 -1 -1 1 wee°

(nt+1-0) (n+1-7) (nt1—) (n-+15)

where o is the random permutation generated in Step 2a. It holds that W7 ~ N(0,1)®m*n
and therefore that the vector of entries on the right hand side above is distributed as N (0, 1)®4.
Since the coefficient matrix is orthogonal, it follows that the vector on the left hand side is also
distributed as N (0,1)®%. Since the o-algebras U{WZU, W(C;il iy W;E;H iy W(‘;frl 1)(n+17j)}
are independent as (i, j) ranges over [n/2]?, it follows that W' = ¢1 (W) ~ N(0,1)®"*", Iterating,
it now follows that (N (0, 1)®"*™) ~ N (0, 1)®"*" establishing Property 1.
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Now consider the case when W = X\ -r¢” + U where U ~ N(0,1)®"*", Note that W' can be
expressed in terms of W27 as

1 A 1
W= (A+ B) W (A+B)" = 5 (Ar7 + Br) (Ac” + BCU)T+§ (A+B)' U’ (A+ B)
where B is the n X n matrix with ones on its anti-diagonal and zeros elsewhere, and A is given by

ety )
0 —in/2

Note that 1 (A + B)T U%7 (A+ B) is distributed as ¢1(U) ~ N(0,1)®"*". Since A + B is
symmetric and satisfies that (A + B)? = 2 - I,,, we have that

1A77 + Bre||3 = 2|r7|3 = 2|[r[|3 and [ Ac” + Be? |3 = 2[|c7 |3 = 2l|c]l3
Let rg = r and r;11 = Ar? + Br? where o; is the permutation generated in the ith iteration of
Step 2. It follows by induction that 7, € Z" and ||r¢||3 = 2¢||7||2 hold almost surely. Analogously
define ¢; for each 0 < ¢ < ¢ and note that

A
P <)\ e’ + N(O, 1)®”X”) ~L (24 “recf + N0, 1)®"m)

Furthermore note that if ro = r = ¢ = ¢g, then r; = ¢; for all ¢ holds almost surely. Thus it suffices
to show that the desired bounds on ||r¢||o and ||¢¢||o hold with high probability in order to establish
Property 2.

Note that since A + B has two nonzero entries per row and column, it follows that 2||r;||o >
||7i+1||o for all 7. Now consider the set

SZ:{{],n—i—l—j}],n+1—j€supp(7“f)}

Note that if j € supp (77 ), then j is only not in the support of 7 if it is in some unordered pair in
S;. Also note that (7541); + (Tit1)nt1—j = 2rg = 0if j is in some unordered pair in S;. Therefore
at most one element per unordered pair of S; can be absent from the support of r;41. This implies
that 2||7;|lo — ||7541]|o < |S;i] for each i. For each 1 < j < n/2, let X; be the indicator for the event
that {j,n+1—j} € S;. Lett = [|r;||o and note that [S;| = X1 + Xo +--- + X,, /5. For any subset
T C [n/2], it follows that if |T'| < n/2 then

ot 1)- 2T+ 1) ()27
E jellXj —n(n_l)...(n_2|T|—|—1)§<n>

and if |T'| > n/2, then this expectation is zero. Let Y ~ Bin(n/2,t2/n?) and note that the above
inequality implies that E[|.S;|*] < E[Y*] for all j > 0. This implies that if § > 0, then

2\ n/2 2
Elexp(6]S;])] < Elexp(0Y)] = (1 +(e? —1)- ;) < exp <(e" —1)- ;n)

A Chernoff bound now yields that

2
PlIsi 2 ] < exp (!~ 1) - -~ ok )
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Setting k = t2/n and § = In 2 yields that
2 e % 1
PS> —]| < (7) < —
[‘ iz n] —\4 —t

if £2/2n > logy /e t. If t2/2n < logy/e t, setting @ = In2 and k = s (log4/et + lnt) = Clogt

yields
P[Si| > Clog] < E o) = -
il > <exp|——(In ==
8 P 2n t

Therefore with probability at least 1 — 1/||r;]|o, it follows that |\S;| < max(Clog ||7i]|o, ||7i]|3/n).
Note that this inequality implies that

lmiv1llo = 2||rsllo — [Si] = 2[rillo (1 — max < o8 ”T’HO, ”T’HO>>

[I7illo n

We now will show by induction on 0 < j < / that as long as ||7||o is sufficiently large, we have

<2Cj-log(2j||7“llo) 2j!\rllo)>

I7{lo Ton

HTjHO > 2j||7”Ho <1 — max 1

holds with probability at least 4
4(1—-277)
[I7{lo
The claim is vacuously true when 5 = 0. Now assume that this holds for a particular j. Now note
that since j < £ and ||r||o is sufficiently large but at most 2~¢~1n, we have that

<2Cj'10g(2j||7°|o) 2jl!?“llo) <1
=2

1—

I7llo Lo

Therefore ||7;]jo > 277 !||r|lo. We now condition on the value of ||7;||o and the event (7.1) holds.
Under this conditioning, it follows by the induction hypothesis that with probability at least 1 —
/|lrjllo > 1 — 21_j||r|]61, we have that

A 207 - log(27 27 C1 » »
H%‘OWH,T”O(1_max< J - Jog(2|rllo) ”T”O))(l_mx< Og’TJHo,H?“yHo))

lI7]lo n 75110 n
, 2C0(5 4 1) - log(27+1 2i+1
24 o (1_max( (J +1) - log(2*!|[r]o) HTIIo))

[17[lo Lo

since 27717l < ||I7j]| < 27||7||o. Marginalizing over ||7;||o and whether or not (7.1) holds yields
that the above inequality holds with probability at least

(1_4(1—2j)> <1 21j>21_4(1_2j) 2171_1_4(1_7271'71)

7 llo Irllg ™t I7llo Irflo I7llo

which completes the induction. Obtaining symmetric results for ¢ and taking 5 = ¢ completes the
proof of the lemma. n

Combining this reflection cloning procedure with the reduction from planted clique to biclus-
tering yields a reduction from planted clique to rank-1 submatrix.
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Algorithm ROS-REDUCTION

Inputs: Graph G € G,,, number of iterations ¢
1. Compute the output W of BC-REDUCTION applied to GG with zero iterations

2. Return the output of REFLECTION-CLONING applied to W with ¢ iterations

Figure 15: Reduction to rank-1 submatrix in Lemma 27.

Lemma 27 Suppose that n is even and 2k < @ where n is sufficiently large. Let

B log 2
~ 2/6logn + 2log 2

L

There is a randomized polynomial time computable map ¢ = ROS-REDUCTION with ¢ : G,, —
R™ ™ such that if G is an instance of PC(n, k, 1/2) then under Hy, it holds that

drv (L (6(G)), N(0,1)™") = O (w%)

and, under Hy, there is a prior T on pairs of unit vectors in V, o, such that

i (Lm(o(@). [ £ (L5 w4 N O™ b)) =0 ( =tk

Proof Let ¢ = ROS-REDUCTION be as in Figure 15. Let ¢ : G, — R™ ™ and ¢ : R"*" —
R™*™ denote the maps in Steps 1 and 2, respectively. By Lemma 20, it holds that

drv (¢1(G(n,1/2)), N(0,1)®"*") = O ( 1 >

VIogn
dry <¢1(G(n,k, 1/2)),/5 (2 1517+ N(0, 1)®"X”> dr'(8, T>) =0 (@)

where 7’ is the uniform distribution over pairs of k-subsets S, 7" C [n]. By Lemma 26, it holds that
¢ (N(0,1)®m>7) ~ N(0,1)®"*" By the data processing inequality, we have that

dry (EHO (Qb(G)), N(O, 1)®n><n) =drvy (¢2 o ¢ (G(n7 1/2))7 b9 (N(O, 1)®n><n))

< drv (61(G(n,1/2)), N(0,1)5™") = O (\/11@)

Let M be a the matrix distributed as % 1514 +N(0,1)®™"*" where S and T are k-element subsets

of [n] chosen uniformly at random. It follows that the distribution of ¢2(M) conditioned on the sets
S and T is given by

L (¢ (M)|S,T) ~ /z: (2:& -reT 4+ N(0, 1)®W"> dr(r, c)
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where 7 is the prior in Lemma 26. As shown in Lemma 26, it follows that each pair (r, ¢) in the
support of  satisfies that ||r||2 = 2¢||1¢]|3 = 2°k and ||c||2 = 2¢||17||2 = 2%k and that |||, ||c[jo <
2k. Now consider the prior mg 1 which is m conditioned on the event that the following inequalities

hold K E
207 - log(2°k) 2%k

I7llo. lello = 2% (1 -~ max <Ckg<> ))
n

As shown in Lemma 26, this event occurs with probability at least 1 — 8/k. Since 2k < @, it
1

follows that if u = \/ﬁ -rand v = - ¢ then mg 7 induces a prior over pairs (u, v) in V, gty

2k
This follows from the fact that r, ¢ € Z™ implies that u and v have nonzero entries with magnitudes
at least 1/v/2¢k. Applying Lemma 7 yields that since 2~ - r¢” = pk - uv’,

dry (5 (¢2 (M) |S,T) >/13 (/f/]; cuv! + N(0, 1)®W"> d?TS,T(U,U)> < %

Let 7(u,v) = Egr[rsr(u, v)] be the prior formed by marginalizing over .S and 7'. Note that 7 is
also supported on pairs of unit vectors in V,, 5¢;,. By the triangle inequality, it follows that

dry (c (¢2 (M)) ,/L <i‘/’; ~uv! + N(0, 1)®”X”> dr(u, u))

<Esr [dw <£ (62 (M) |S.T), / c <f/’;m; LN, 1)®w> P m)] s %

By the triangle inequality and data processing inequality, we now have that

dry <£H1(¢>(G)), / c (f/’; T + N0, 1)®"X"> dw(u,v))

< drv (L, (920 91(G)), L(¢2(M)))

+ dry <£ (62 (M) ,/E (\“/]; cuv! + N(0, 1)®"X”) dw(u,v))

1 8 1
=0 —=0 kot
<\/logn> + k <\/logn * )

since M is a sample from the mixture [ £ <L2 151, + N(0, 1)®"X"> dn'(S,T). This completes

the proof of the lemma. |

S

This lemma provides a polynomial time map from an instance of PC p(n, k, 1/2) to N (0, 1)®">"
under Hj and to a distribution in the composite hypothesis H; of ROS p(n, 2k, 271/2 ) under H;.
Now we deduce the hard regime of ROSp given the planted clique conjecture as in the next theo-
rem. Here, we consider the asymptotic regime ; = C:)(n*“) to be consistent with Figure 4. The
purpose of this parameterization is to focus on the factor £ required to normalize entries in the
planted submatrix to have magnitude approximately 1. This enables a valid comparison between
the hardness of ROSp and BCp.

Theorem 28 Letov > 0and 3 € (0,1) be such that < L+c. There is a sequence {(Ny, K, fin) }nen
of parameters such that:
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1. The parameters are in the regime £ = O(N~%) and K = ©(NP) or equivalently,

log (Kt log K.
lim 7og( i) =a and lim 08 8n _
n—oo  log Ny n—oo log Ny,

8

2. For any sequence of randomized polynomial-time tests ¢, : Gy, — {0, 1}, the asymptotic
Type I+11 error of ¢y, on the problems ROSp(Ny,, Ky, ) is at least 1 assuming the PC
conjecture holds with density p = 1/2.

Therefore the computational boundary for ROSp(n, k, i) in the parameter regime & = O(n)
and k = ©(nP) is B* = 3 +aand a* =0 when 3 < 3.

Proof If 5 < 2« then ROSp is information-theoretically impossible. Thus we may assume that
B > 2a. Lety = 8 — v and note that v € (0,1/2). Now set

_ ks
V2

By Lemma 27, there is a randomized polynomial time algorithm map-

L, = [alogyn], kn = [n"], N,, = 2n, K, = 2£”kn, Ln

log 2

2v/6logn+2log2”
ping PCp(2n, ky,, 1/2) to the detection problem ROSp(N,,, Ky, 11,,) under Hy and to a prior over

H; with total variation converging to zero as n — oo. This map with Lemma 4 now implies that
property 2 above holds. We now verify property 1. Note that

where 1 =

log (K piy ! 1 log2 —1 2
g 108Enpnt) _ . [alogyn] -log2 — log(p/v2) _
n—o00 log N, n—o0 logn + log 2
log K, . [alogyn] -log2 + logk,
= 1 — - -
30 log N, n00 logn + log 2 at(f-a)=5
which completes the proof. |

F.2. Sparse Spiked Wigner Matrix

We now show a computational lower bound for sparse spiked Wigner matrix detection given the
planted clique conjecture. As observed in Section 2, it suffices to reduce from planted clique to

SROS p. This is because if M is an instance of SROS p(n, k, 1), then %(M + M) is an instance

of SSWp(n, k, 11/+/2). This transformation implies that any computational lower bound that ap-
plies to SROS p(n, k, ) also applies to SSWp(n, k, 11/+/2). The rest of this section is devoted to
giving a reduction to SROS p(n, k, ).

Our reduction uses the symmetry preserving property of reflection cloning and yields the same
computational barrier as for ROS p. However, there are two subtle differences between this reduc-
tion and that in Lemma 27. In order to show hardness for SROS p, it is important to preserve the
symmetry of the planted sparse structure. This requires planting the hidden entries along the diag-
onal of the adjacency matrix of the input graph G, which we do by an averaging trick. However,
this induces an arbitrarily small polynomial loss in the size of the spike, unlike in the reduction to
ROSp. Although this does not affect our main theorem statement for SROS p, which only consid-
ers poly(n) size factors, it yields a weaker lower bound than that in Theorem 28 when examined up
to sub-polynomial factors. This reduction to SROS p will also serve as the main sub-routine in our
reduction to SSBMp.
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Algorithm SROS-REDUCTION

Inputs: Planted clique instance G € G,, with clique size k& where n is even, iterations ¢

1. Let RKg = RK(1— N(y,1),1/2— N(0,1),N) where N = [6logyn]| and p =

log 2 : . NXN (53 L ; j
PN AR and form the symmetric matrix W € R with W;; = 0 and for all ¢ < j,

Wij = RKa (14 j1ep(@))

2. Sample an antisymmetric matrix A € R™ " with i.i.d. N(0,1) entries below its main
diagonal and sample two matrices B, C' € R™*" with i.i.d. N(0, 1) off-diagonal and zero
diagonal entries

3. Form the matrix M € R™*" with

My = 2L (W Ay 4 By VE) 4 Oy 1

1 (k—1)2
2v/n —1

n—1
for all ¢ # j and

1 n
My = ———— (Wz A;i — By - 2)
9 T—1; g+ Aij J V2

4. Update M to be the output of REFLECTION-CLONING applied with ¢ iterations to M

5. Output M7 where o is a permutation of [n] chosen uniformly at random

Figure 16: Reduction to sparse sp