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Abstract
This paper concerns computation of optimal policies in which the one-step reward function

contains a cost term that models Kullback-Leibler divergence with respect to nominal dynamics.
This technique was introduced by Todorov in 2007, where it was shown under general conditions
that the solution to the average-reward optimality equations reduce to a simple eigenvector problem.
Since then many authors have sought to apply this technique to control problems and models of
bounded rationality in economics.

A crucial assumption is that the input process is essentially unconstrained. For example, if the
nominal dynamics include randomness from nature (e.g., the impact of wind on a moving vehicle),
then the optimal control solution does not respect the exogenous nature of this disturbance.

This paper introduces a technique to solve a more general class of action-constrained MDPs.
The main idea is to solve an entire parameterized family of MDPs, in which the parameter is a
scalar weighting the one-step reward function. The approach is new and practical even in the
original unconstrained formulation.
Keywords: Markov decision processes, Computational methods.

1. Introduction

Consider a Markov Decision Process (MDP) with finite state space X, general action space U, and
one-step reward function w : Xˆ UÑ R. Two standard optimal control criteria are finite-horizon:

W˚
T pxq “ max

T
ÿ

t“0

ErwpXptq, Uptqq | Xp0q “ xs (1)

where T ě 0 is fixed, and average reward:

η˚pxq “ max
!

lim inf
TÑ8

1

T
ErwpXptq, Uptqq | Xp0q “ xs

)

. (2)

where X “ tXptq : t ě 0u, U “ tUptq : t ě 0u denote the state and input sequences.
In either case, the maximum is over all admissible input sequences; it is obtained as deterministic

state feedback under general conditions. In the average-reward framework the optimal policy is
typically stationary: Uptq “ φ˚pXptqq for a mapping φ˚ : XÑ U, and η˚pxq does not depend upon
the initial condition x (see Puterman (2014); Bertsekas and Shreve (1996)).
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MDPS WITH K-L COST

A special class of MDP models was introduced by Todorov (2007), for which either optimal
control problem has an attractive solution. The reward function is assumed to be the sum of two
terms: the first is a function U : X Ñ R that is completely unstructured. The second term is a
“control cost”, defined using Kullback–Leibler (K-L) divergence (also known as relative entropy).
The control cost is based on deviation from nominal (control-free) behavior; modeled by a nominal
transition matrix P0.

It is shown that the solution with respect to the average reward criterion is obtained as the
solution to the following eigenvector problem: let pλ, vq denote the Perron-Frobenius eigenvalue-
eigenvector pair for the positive matrix with entries pP px, x1q “ exppUpxqqP0px, x

1q, x, x1 P X. The
eigenvector property pPv “ λv implies that the “twisted” matrix

P̌ px, x1q “
1

λ

vpx1q

vpxq
pP px, x1q , x, x1 P X . (3)

is a transition matrix on X. This transition matrix defines the dynamics of the model under optimal
control. A similar model was introduced in the earlier work of Kárný (1996), but without the
complete solution reviewed here.

P

Figure 1: Optimal hill climb

Since the publication of Todorov (2007) there has been significant
theoretical advancement, with proposed applications to economics
Guan et al. (2014), distributed control Meyn et al. (2015), and neuro-
science Doya (2009).

It is appealing to imagine that rational economic agents are solv-
ing an eigenvector problem to maximize their utility. However, a
careful look at the controlled dynamics (3) suggests a limitation of
this MDP formulation: how can this transformation respect exoge-

nous disturbances from nature? An essential assumption in this prior work is that for each x, and
any pmf µ, it is possible to choose the action so that P px, x1q “ µpx1q. This is equivalent to the as-
sumption that the action space U consists of all probability mass functions on X, and the controlled
transition matrix is entirely determined by the input as follows:

PtXpt` 1q “ x1 | Xptq “ x, Uptq “ µu “ µpx1q , x, x P X, µ P U . (4)

This modeling assumption presents a significant limitation, as pointed out in Todorov (2009): “It
prevents us from modeling systems subject to disturbances outside the actuation space”.

Fig. 1 is based on an example of Todorov (2009). Reaching the parking spot at the top of the hill
in minimum time (or minimal fuel) is formulated as a total cost problem, similar to (1). The figure
has been modified to indicate that wind and rain influence the behavior of the car on the track. The
optimal solution cannot take the form (3) when this additional randomness is included in the model,
since this would mean our control action would modify the weather.

Contributions In this paper the K-L cost framework is broadened to include constraints on the
pmf µ appearing in (4). The new approach to computation is based on the solution of an entire
family of MDP problems, parameterized by a scalar ζ appearing as a weighting factor in the one-
step reward function. Letting Xt denote the state, and Rt denote the randomized policy at time t,
this one-step reward is of the form

wpXt, Rtq “ ζUpXtq ´ cKLpXt, Rtq (5)
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in which cKL denotes relative entropy with respect to nominal dynamics (see (13)).
The main results of the paper are contained in Theorems 1 and 4, with parallel results for the

total- and average-reward control problems. In each case, it is shown that the solution to an entire
family of MDPs can be obtained through the solution of a single ordinary differential equation
(ODE).

The ODE solution is most elegant in the average-reward setting. For each ζ, the solution to the
average-reward optimization problem is based on a relative value function h˚ζ : X Ñ R. For the
MDP with d states, each function is viewed as a vector in Rd with entries th˚ζ px

iq : 1 ď i ď du. A
vector field V : Rd Ñ Rd is constructed so that these functions solve the ODE

d
dζh

˚
ζ “ Vph˚ζ q , with boundary condition h˚0 ” 0.

One step in the construction of V is differentiating each side of the dynamic programming
equations; a starting point of the 50 year old sensitivity theory of Schweitzer (1968), and more recent
Sutton et al. (1999). More closely related is the sensitivity theory surrounding Perron-Frobenius
eigenvectors that appears in the theory of large deviations (Kontoyiannis and Meyn, 2003, Prop. 4.9).
The goals of this prior work are different, and we are not aware of comparable algorithms that
simultaneously solve the family of control problems.

The optimal control formulation is far more general than in the aforementioned work Todorov
(2007); Guan et al. (2014); Meyn et al. (2015), as it allows for inclusion of exogenous randomness
in the MDP model. The dynamic programming equations become significantly more complex in
this generality, so that in particular, the Perron-Frobenious computational approach used in prior
work is no longer applicable.

In addition to its value as a computational tool, there is a significant benefit to solve the entire
collection of optimal control problems for a range of the parameter ζ. For example, this provides a
means to understand the tradeoff between state cost and control effort. Simultaneous computation of
the optimal policies is also an essential ingredient of the distributed control architecture introduced
in Meyn et al. (2015).

The ODE algorithm is easily implemented for problems of moderate size. In this paper an
example is provided in which the the size of the state space d is greater than 1,000; the action
space is an open subset Rd´1 since actions correspond to randomized decision rules. The optimal
solutions for the desired range of ζ were obtained in less than one hour using a standard laptop
running Matlab.

The remainder of the paper is organized as follows. Section 2 describes the new Kullback–
Leibler cost criterion and numerical techniques for the MDP solutions. This is applied to a path-
finding problem in Section 3. Conclusions and topics for future research are contained in Section 4.

2. MDPs with Kullback–Leibler Cost

2.1. MDP model

The dynamics of the MDP are assumed of the form (4), where the action space consists of a convex
subset of probability mass functions (pmf) on X. An explanation of the one-step reward (5) will be
provided after a few preliminaries.

A transition matrix P0 is given that describes nominal (control-free) behavior. It is assumed to
be irreducible and aperiodic. It follows that P0 admits a unique invariant pmf, denoted π0. For any
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other transition matrix, with unique invariant pmf π, the Donsker-Varadhan rate function is denoted,

KpP }P0q “
ÿ

x,x1

πpxqP px, x1q log
´ P px, x1q

P0px, x1q

¯

(6)

under the usual convention that “0 logp0q “ 0”. It is called a “rate function” because it defines the
relative entropy rate between two stationary Markov chains, see Dembo and Zeitouni (1998).

As in Todorov (2007); Guan et al. (2014); Meyn et al. (2015), the rate function is used here
to model the cost of deviation from the nominal transition matrix P0. The two control objectives
surveyed in the introduction will be specialized as follows, based on the utility function U : XÑ R
and a scaling parameter ζ ě 0. For the finite-horizon optimal control problem,

W˚
T px, ζq “ max

T
ÿ

t“0

 

ζExrUpXptqqs ´KpPt}P0q
(

, (7)

where the expectation is conditional on Xp0q “ x. The average reward optimization problem is
analogous:

η˚pζq “ max
´

lim inf
TÑ8

1

T

 

ζExrUpXptqqs ´KpPt}P0q
(

¯

. (8)

In each case, the maximum is over all transition matrices tPtu. In this context, the one-step reward
appearing in (1, 2) is a function of pairs px, P q:

wpx, P q :“ ζUpxq ´
ÿ

x1

P px, x1q log
´ P px, x1q

P0px, x1q

¯

(9)

for any x P X and transition matrix P .
There is practical value to considering a parameterized family of reward functions. For one, it is

useful to understand the sensitivity of the control solution to the relative weight given to utility and
the penalty on control action. This is well understood in classical linear control theory – consider
for example the celebrated symmetric root locus in linear optimal control Franklin et al. (1997).

Nature & nurture Exogenous randomness from nature imposes additional constraints in the op-
timal control problem (7) or (8).

It is assumed that the state space is the cartesian product of two finite sets: X “ XuˆXn, and the
state is similarly expressed Xptq “ pXuptq, Xnptqq. At a given time t it is assumed that Xnpt` 1q
is conditionally independent of the input at time t, given the value of Xptq. This is formalized by
the following conditional-independence assumption:

P px, x1q “ Rpx, x1uqQ0px, x
1
nq, x “ pxu, xnq P X, x

1
u P Xu, x

1
n P Xn (10)

The matrix R defines the randomized decision rule for Xupt ` 1q given Xptq. The matrix Q0 is
fixed and models the distribution of Xnpt ` 1q given Xptq “ x, and each are subject to the pmf
constraint:

ř

x1u
Rpx, x1uq “

ř

x1n
Q0px, x

1
nq “ 1 for each x.

Subject to the constraint (10), the two optimal control problems (8, 9) are transformed to the
final forms considered in this paper:

W˚
T px, ζq “ max

T
ÿ

t“0

ExrwpXptq, Rptqqs (11)

η˚pζq “ max
!

lim inf
TÑ8

ExrwpXptq, Rptqqs
)

(12)
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where in each case the maximum is over sequences of randomized decision rules tRp0q, . . . , RpT qu,

wpx,Rq :“ ζUpxq ´ cKLpx,Rq

and cKLpx,Rq :“
ÿ

x1

P px, x1q log
´ P px, x1q

P0px, x1q

¯

“
ÿ

x1u

Rpx, x1uq log
´ Rpx, x1uq

R0px, x1uq

¯ (13)

2.2. Notation

For any transition matrix P , an invariant pmf is interpreted as a row vector, so that invariance can
be expressed πP “ π. Any function f : X Ñ R is interpreted as a d-dimensional column vector,
and we use the standard notation Pf pxq “

ř

x1 P px, x
1qfpx1q, x P X. The fundamental matrix is

the inverse,
Z “ rI ´ P ` 1b πs´1 (14)

where 1 b π is a matrix in which each row is identical, and equal to π. If P is irreducible and
aperiodic, then it can be expressed as the power seriesZ “

ř8
n“0rP´1bπsn, with rP´1bπs0 :“I

(the dˆ d identity matrix), and rP ´ 1b πsn “ Pn ´ 1b π for n ě 1.
Any function g : X ˆ X Ñ R is regarded as an unnormalized log-likelihood ratio: Denote for

x, x1 P X,
Pgpx, x

1q :“ P0px, x
1q exp

`

gpx1 | xq ´ Λgpxq
˘

, (15)

in which gpx1 | xq is the value of g at px, x1q P Xˆ X, and Λgpxq is the normalization constant,

Λgpxq :“ log
´

ÿ

x1

P0px, x
1q exp

`

gpx1 | xq
˘

¯

(16)

The rate function can be expressed in terms of its invariant pmf πg, the bivariate pmf Πgpx, x
1q “

πgpxqPgpx, x
1q, and the log moment generating function (16):

KpPg}P0q “
ÿ

x,x1

Πgpx, x
1q
“

gpx1 | xq ´ Λgpxq
‰

“
ÿ

x,x1

Πgpx, x
1qgpx1 | xq ´

ÿ

x

πgpxqΛgpxq
(17)

The unusual notation is introduced because gpx1 | xq will take the form of a conditional expec-
tation in all of the results that follow: given any function h : XÑ R we denote

hpx1u | xq “
ÿ

x1n

Q0px, x
1
nqhpx

1
u, x

1
nq . (18)

In this case the transformation only transforms the dynamics of Xu:

Phpx, x
1q “ Rhpx, x

1
uqQ0px, x

1
nq , Rhpx, x

1
uq :“R0px, x

1
uq exp

`

hpx1u | xq ´ Λgpxq
˘

.
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2.3. ODE for finite time horizon

Here an ODE is constructed to compute the value functions tW˚
τ px, ζq : 1 ď τ ď T , ζ ě 0u. To

aide exposition it is helpful to first look at the general problem: Assume that the state space X is
finite, the action space U is general, and let tPupx, x1qu denote the controlled transition matrix. The
one-step reward on state-action pairs is of the form wpx, uq “ ζUpxq ´ cpx, uq, where c : XˆUÑ
R`. Assume that cpx, uq ” 0 for a unique value u “ u0.

For each 1 ď τ ď T denote, as in (1),

W˚
τ px, ζq “ max

τ
ÿ

t“0

ExrwpXptq, Uptqqs (19)

where the maximum is over all admissible inputs tUptq “ φtpXp0q, . . . , Xptqqu. Each value func-
tion can be regarded as the maximum over functions tφtu (subject to measurability conditions and
hard constraints on the input). It is assumed that the maximum (19) is finite for each px, ζq.

The dynamic programming equation (principle of optimality) holds: for τ ě 1,

W˚
τ px, ζq “ max

u

!

ζUpxq ´ cpx, uq `
ÿ

x1

Pupx, x
1qW˚

τ´1px
1q

)

(20)

Assume that a maximizer φ˚τ´1,ζpxq exits for each τ ,ζ, and x.
A crucial observation is that for each x, the value function appearing in (19) is the maximum of

functions that are affine in ζ. It follows that W˚
τ px, ζq is convex as a function of ζ, and hence abso-

lutely continuous. Consequently, the right derivative H˚τ px, ζq :“ d`

dζW˚
τ px, ζq exists everywhere.

A recursive equation follows from (20):

H˚τ px, ζq “ Upxq `
ÿ

x1

P̌τ´1,ζpx, x
1qH˚τ´1px

1, ζq (21)

where P̌τ´1,ζpx, x1q “ Pu˚px, x
1q with u˚ “ φ˚τ´1,ζpxq.

In matrix notation this becomes H˚τ “ Žτ´1,ζU , where Ž0,ζ “ I , and for any 1 ď τ ď T ,

Žτ´1,ζ “ I ` P̌τ´1,ζ ` P̌τ´1,ζP̌τ´2,ζ ` P̌τ´1,ζP̌τ´2,ζ ¨ ¨ ¨ P̌0,ζ (22)

This is similar to a truncation of the power series representation of the fundamental matrix (14).
Denote W˚

ζ pxq “ tW˚
k px, ζq : 0 ď k ď T u, regarded as a vector in R|X|ˆpT`1q, parameterized

by the non-negative constant ζ. The following result follows from the preceding arguments:

Theorem 1 The family of functions tW˚
ζ u solves the ODE d`

dζW˚
ζ “ VpW˚

ζ q, ζ ě 0, with boundary
condition W˚

0 “ 0. The vector field can be described in block-form as follows, with T ` 1 blocks:
d`

dζW˚
k p ¨ , ζq “ VkpW˚

ζ q , 0 ď k ď T .

The identity V0pWq “ U holds for any W . For k ě 1, the right hand side depends on its argument
only through the associated policy: for any sequence of functions W˚ “ pW˚

0 , . . . ,W˚
T q,

VkpWq “ Zk´1U
where Zk´1 “ I ` Pk´1 ` Pk´1Pk´2 ` Pk´1Pk´2 ¨ ¨ ¨P0

Pipx, x
1q “ Pφipxqpx, x

1q , all i, x, x1,

φipxq “ arg max
u

!

´cpx, uq `
ÿ

x1

Pupx, x
1qW˚

i px
1q

)

, 1 ď i, k ď T.

[\
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The theorem provides valuable computational tools for models of moderate cardinality and mod-
erate time-horizon. Two questions remain:

(i) What is φi for the problem under study in this paper?

(ii) Can a tractable ODE be constructed in infinite-horizon optimal control problems?

The answer to the second question is the focus of Section 2.4. The answer to (i) is contained in the
following. For any function W : XÑ R, denote

RWpx, ¨ q “ arg max
R

!

wpx,Rq `
ÿ

x1

P px, x1qWpx1q
)

, x P X ,

subject to the constraint that P depends on R via (10), and with w defined in (13).

Proposition 2 For any function W the maximizer RW is unique and can be expressed

RWpx, x
1
nq “ R0px, x

1
nq exp

`

Wpx1u | xq ´ Λpxq
˘

where Wpx1u | xq “
ř

x1n
Q0px, x

1
nqWpx1u, x1nq for each x P X, x1u P Xu, and Λpxq is a normalizing

constant, defined so that RWpx, ¨ q is a pmf for each x.

Proof Given the form of the reward w and the constraint on P , the optimization problem of interest
here can be written, for each x, as

RWpx, ¨ q “ arg max
µ

 

µpxWq ´Dpµ}µ0q
(

where the variable µp ¨ q represents Rpx, ¨ q, µ0 “ R0px, ¨ q, and

µpxWq “
ÿ

x1“px1u,x
1
nq

Rpx, x1uqQ0px, x
1
nqWpx1u, x1nq “

ÿ

x1u

µpx1uqWpx1u | xq

The proposition is a consequence of this combined with Theorem 3.1.2 of Dembo and Zeitouni
(1998) (i.e., convex duality between relative entropy and the log moment generating function).

It follows from the proposition that the vector field is smooth in a neighborhood of the optimal
solution tW˚

ζ : ζ ě 0u. These results are central to the average-reward case considered next.

2.4. Average reward formulation

We consider now the case of average reward (12), subject to the structural constraint (10). The
associated average reward optimization equation (AROE) is expressed as follows:

max
R

!

wpx,Rq `
ÿ

x1

P px, x1qh˚ζ px
1q

)

“ h˚ζ pxq ` η
˚pζq (23)

In which η˚pζq is the optimal average reward, and h˚ζ is the relative value function. The maximizer
defines a transition matrix:

P̌ζ “ arg max
P

 

ζπpUq ´KpP }P0q : πP “ π
(

(24)

Recall that the relative value function is not unique, since a new solution is obtained by adding a
non-zero constant; the normalization h˚ζ px

˝q “ 0 is imposed, where x˝ P X is a fixed state.
The proof of Theorem 3 (i) is a consequence of Prop. 2. The second result is obtained on

combining Lemmas B.2–B.4 of Bušić and Meyn (2018).

7



MDPS WITH K-L COST

Theorem 3 There exist optimizers tπ̌ζ , P̌ζ : ζ P Ru, and solutions to the AROE th˚ζ , η
˚pζq : ζ P Ru

with the following properties:

(i) The optimizer P̌ζ can be obtained from the relative value function h˚ζ as follows:

P̌ζpx, x
1q :“ P0px, x

1q exp
`

hζpx
1
u | xq ´ Λhζ pxq

˘

(25)

where for x P X, x1u P Xu,

hζpx
1
u | xq “

ÿ

x1n

Q0px, x
1
nqh

˚
ζ px

1
u, x

1
nq, (26)

and Λhζ pxq is the normalizing constant (16) with h “ hζ .

(ii) tπ̌ζ , P̌ζ , h˚ζ , η
˚pζq : ζ P Ru are continuously differentiable in the parameter ζ. [\

Representations for the derivatives in Theorem 3 (ii), in particular the derivative of Λh˚ζ
with

respect to ζ, lead to a representation for the ODE used to compute the transition matrices tP̌ζu.
It is convenient to generalize the problem slightly here: let th˝ζ : ζ P Ru denote a family of

functions on X, continuously differentiable in the parameter ζ. They are not necessarily relative
value functions, but we maintain the structure established in Theorem 3 for the family of transition
matrices. Denote,

hζpx
1
u | xq “

ÿ

x1n

Q0px, x
1
nqh

˝
ζpx

1
u, x

1
nq, x P X, x1u P Xu (27)

and then define as in (15),

Pζpx, x
1q :“ P0px, x

1q exp
`

hζpx
1
u | xq ´ Λhζ pxq

˘

(28)

The function Λhζ : XÑ R is a normalizing constant, exactly as in (16):

Λh˝ζ pxq :“ log
´

ÿ

x1

P0px, x
1q exp

`

hζpx
1
u | xq

˘

¯

We begin with a general method to construct a family of functions th˝ζ : ζ P Ru based on an
ODE. The ODE is expressed,

d
dζh

˝
ζ “ Vph˝ζq , ζ P R, (29)

with boundary condition h˝0 ” 0. A particular instance of the method will result in h˝ζ “ h˚ζ for
each ζ. Assumed given is a mapping H˝ from transition matrices to functions on X. Following this,
the vector field V is obtained through the following two steps: For a function h : XÑ R,

(i) Define a new transition matrix via (15),

Phpx, x
1q :“ P0px, x

1q exp
`

hpx1u | xq ´ Λhpxq
˘

, x, x1 P X, (30)

in which hpx1u | xq “
ř

x1n
Q0px, x

1
nqhpx

1
u, x

1
nq, and Λhpxq is a normalizing constant.

(ii) Compute H˝ “ H˝pPhq, and define Vphq “ H˝. It is assumed that the functional H˝ is
constructed so that H˝px˝q “ 0 for any h.
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We now specify the functional H˝, whose domain consists of transition matrices that are irre-
ducible and aperiodic. For any transition matrix P in this domain, the fundamental matrix Z is
obtained using (14), and then H˝ “ H˝pP q is defined as

H˝pxq “
ÿ

x1

rZpx, x1q ´ Zpx˝, x1qsUpx1q, x P X (31)

The function H˝ is a solution to Poisson’s equation,

PH˝ “ H˝ ´ U ` sU , where sU :“ πpUq :“
ÿ

x

πpxqUpxq. (32)

Theorem 4 Consider the ODE (29) with boundary condition h˝0 ” 0, and with H˝ “ H˝pP q
defined using (31) for each transition matrix P that is irreducible and aperiodic. The solution to
this ODE exists, and the resulting functions th˝ζ : ζ P Ru coincide with the relative value functions
th˚ζ : ζ P Ru. Consequently, P̌ζ “ Phζ for each ζ.

Proof The proof requires validation of the representation H˚ζ “ H˝pP̌ζq for each ζ, where h˚ζ is
the relative value function, P̌ζ is defined in (24), and

H˚ζ “
d
dζh

˚
ζ (33)

Substituting the maximizer P̌ζ in the form (25) into the AROE gives the fixed point equation ζU `
Λh˚ζ

“ h˚ζ ` η
˚pζq. Differentiating each side then gives,

U ` P̌ζH˚ζ “ H˚ζ `
d
dζ η

˚pζq. (34)

This is Poisson’s equation, and it follows that π̌ζpUq “ d
dζ η

˚pζq. Moreover, since h˚ζ px
˝q “ 0

for every ζ, we must have H˚ζ px
˝q “ 0 as well. Since the solution to Poisson’s equation with this

normalization is unique, we conclude that (33) holds, and hence H˚ζ “ H˝pP̌ζq as claimed.

3. Example

We consider a variant of the example of Al-Sabban et al. (2013) in which a UAV (unmanned aerial
vehicle) needs to reach a target subject to energy costs, and subject to disturbances from wind. The
location of the UAV at time t is denoted Lt, and evolves according to the controlled linear dynamics:

Lt`1 “ Lt `Wt ` Ut (35)

where U “ tUtu is the control sequence, and W “ tWtu models the impact of the wind. There
are dL locations across a two-dimensional grid.

Wind is location-dependent: It is assumed that the wind profile over the region is determined by
a stochastic process N “ tNtu and a function ω such that for each t,

Wt “ ωpLt, Ntq.

9
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The process N is assumed to be Markovian with finite state space t1, . . . , dNu, and state transition
matrix denoted Q0. This is the nature component of the MDP model, with state process Xt “

pLt, Ntq, t ě 0.
A nominal model is described by a randomized policy in which Ut “ 0 with high probability.

The specific form used in the experiments was constructed as follows. On denoting L`t “ Lt`Wt,
a transition matrix RL0 is constructed with the interpretation

RL0 pl
`, l1q “ PtLt`1 “ l1 | L`t “ l`u , t ě 0 .

The nominal randomized strategy is the dL ˆ dL matrix,

R0px, uq “ PtUt “ u | Xt “ xu “ RL0 pl ` ωpl, nq, l ` ωpl, nq ` uq, x “ pl, nq .

The overall transition matrix is the product:

P0px, x
1q “ RL0 pl ` wpn, lq, l

1qQ0pn, n
1q, x “ pn, lq, x1 “ pn1, l1q .
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Figure 2: Cost to go for two values of the initial value n “ N0, n “ 2, 4. Each surface plot indicates values
of J˚

ζ p ¨ , nq for ζ “ 1 and ζ “ 2. The one of larger magnitude corresponds to ζ “ 2. The plot at
the right shows J˚

ζ pl, nq as a function of ζ for these values of n, and l “ p1, 1q.

The goal of the control problem is to reach a target location l‚ and remain there. To ensure that
the set tpl‚, nq : 1 ď n ď dNu is absorbing, a separate rule is imposed on R0 for these states:
Wt ` Ut “ 0 if Lt “ l‚.

The reward function U is taken to be a scaled negative cost: U “ ´c, where c : XL Ñ R`, with
cpl‚q “ 0 and cplq ą 0 for l ‰ l‚. The optimal steady-state mean is zero in this model, and the
relative value function is the negative of the cost to go:

´ h˚pxq “ J˚pxq :“minEx

”

τ‚
ÿ

t“0

 

ζcpLtq ` cKLpXt, Rtq
(

ı

(36)

where τ‚ (unknown a-priori) is the first hitting time to l‚. An example is illustrated in Fig. 2 — the
details are provided in the following.

Details of the numerical experiment The set of locations XL is taken to be a rectangular grid of
the form XL “ tpi, jq : 1 ď i ď da, 1 ď j ď dou, in which da, do ě 2 and dL “ da ˆ do (the
subscripts are meant to suggest latitude and longitude). The function c appearing in (36) was taken
to be the indicator function, cplq “ Itl ‰ l‚u, with l‚ “ pda, doq.
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Figure 3: Vector field vpl, nq for two values of n, and ζ “ 0, 1, 2: see eqn. (37)

The values da “ do “ 15, and dN “ 5 are fixed throughout. The size of the state space is thus
da ˆ do ˆ dN “ 1, 125, and the action space is a subset of the simplex in R1,125.

The transition matrix for nominal control was taken of the following form:

RL0 pl, l
1q “ κplq exp

!

´
1

2σ2u
}l1 ´ l}2

)

, l, l1 P XL ,

where κplq ą 0 is chosen so that RL0 pl, ¨ q is a pmf on XL for each l P XL. The value σ2u “ 1{2 was
used in the numerical results that follow.

The Markov chain N was taken to be a skip-free symmetric random walk on the integers
t1, . . . , dNu. For a fixed δn P p0, 1q the probability of transition is Q0pn, n` 1q “ Q0pn, n´ 1q “
1
2δn, where addition is modulo dN , and Q0pn, nq “ 1´ δn for any n. Recall that this means

PtNt`1 “ n` 1 | Nt “ nu “ PtNt`1 “ n´ 1 | Nt “ nu “ 1
2δn.

The value δn “ 0.05 was chosen in these experiments.
Recall that ω : XL Ñ Z2 is used to defined the wind process W . For each value of n, the

function ωp ¨ , nq can be interpreted as a vector field on XL. For each n, a slowly varying continuous
function was constructed on the two-dimensional rectangle r1, das ˆ r1, dos. The function ωp ¨ , nq
was taken to be its quantization to the lattice XL. The values were restricted to the set of pairs
tpi, jq : |i| ď 1, |j| ď 1u.

The family of optimal policies was obtained using the ODE method, and the solution for three
values of ζ is illustrated in Fig. 3. Each of the arrows shown is proportional to the conditional
expectation:

vpl, nq :“ ErLt`1 ´ Lt | Lt “ l Nt “ ns (37)

11
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in which l P XL is the position on the grid. The figure shows only the values n “ 2 and n “ 4 (the
most interesting to view because of obvious spatial variability).

0 1
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Re

0.5

ζ = 0
ζ = 1
ζ = 2

λ(P̌ζ)

Figure 4: Eigenvalues of P̌ζ

If the position l “ pla, loq is far from the boundary of XL,
say, minpla, loq ě 4 and minpda ´ la, do ´ loq ě 4, then

ErUt | Lt “ l Nt “ ns « 0 and vpl, nq « ωpl, nq, ζ “ 0

For the case ζ “ 1 the vector field is transformed so that
vectors near the target state point in this direction; for ζ “ 2
this behavior is more apparent. For states far from the target
the control effort seems to be lower – most likely the optimal
policy waits for more favorable weather that will push the UAV
in the North-East direction.

The eigenvalues of P̌ζ are shown in Fig. 4 for ζ “ 0, 1, 2.
Most of the eigenvalues are driven near zero for ζ “ 2. Those

three that are independent of ζ are the three eigenvalues of Q0, t0.9095, 0.9655, 1u.
While the vector field and eigenvalues change significantly when ζ is doubled from 1 to 2, the

cost to go J˚ defined in (36) grows relatively slowly with ζ. Shown on the right hand side of Fig. 2
are comparisons for these two values of ζ. One plot with n “ 2 and the other n “ 4. The plot on
the far right shows J˚ζ pl, ζq for 0 ď ζ ď 1 and l “ p1, 1q (the location farthest from l‚).

These plots are easily obtained because of the nature of the algorithm: the optimal policy and
value function are generated for any range of ζ of interest.

4. Conclusions

The ODE approach for solving MDPs has simple structure for the class of models considered in this
paper. We are currently looking at approaches to approximate dynamic programming as has been
successful in the unconstrained model Todorov (2009).

It is likely that the ODE has special structure for other classes of MDPs, such as the “rational
inattention” framework of Sims (2006); Shafieepoorfard et al. (2016). The computational efficiency
of this approach will depend in part on numerical properties of the ODE, such as its sensitivity for
complex models. Applications to distributed control were the original motivation for this work, with
particular attention to “demand dispatch” Chen et al. (2017). It is believed that this paper will offer
new computational tools in this ongoing research.
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