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Abstract
Different risk-related criteria have received recent interest in learning problems, where typically
each case is treated in a customized manner. In this paper we provide a more systematic approach to
analyzing such risk criteria within a stochastic multi-armed bandit (MAB) formulation. We identify
a set of general conditions that yield a simple characterization of the oracle rule (which serves as
the regret benchmark), and facilitate the design of upper confidence bound (UCB) learning policies.
The conditions are derived from problem primitives, primarily focusing on the relation between the
arm reward distributions and the (risk criteria) performance metric. Among other things, the work
highlights some (possibly non-intuitive) subtleties that differentiate various criteria in conjunction
with statistical properties of the arms. Our main findings are illustrated on several widely used
objectives such as conditional value-at-risk, mean-variance, Sharpe-ratio, and more.
Keywords: Multi-Armed Bandit, risk, planning, reinforcement learning, Upper Confidence Bound

1. Introduction

Background and motivation. Consider a sequential decision making problem where at each stage
one of K independent alternatives is to be selected. When choosing alternative i at stage t (also
referred to as time t), the decision maker receives a reward Xt that is distributed according to
some unknown distribution F (i), i = 1, . . . ,K and is independent of t. (To ease notation, we avoid
indexingXt with i, and leave that implicit; the information will be encoded in the policy that governs
said choices, which will be detailed in what follows.) At time t, the decision maker has accumulated
a vector of rewards (X1, . . . , Xt). In our setting, performance criteria are defined by a function Ũ
that maps the reward vector to a real-valued number. As Ũ (X1, . . . , Xt) is a random quantity, we
consider the accepted notion of expected performance, i.e., EŨ (X1, . . . , Xt). An oracle, with full
knowledge of the arms’ distributions, will make a sequence of selections based on this information
so as to maximize the expected performance criterion. This serves as a benchmark for any other
policy which does not have such information a priori, and hence needs to learn it on the fly. The gap
between the former (performance of the oracle) and the latter represents the usual notion of regret
in the learning problem.

The most widely used performance criterion in the literature concerns the long run average
reward, which involves the empirical mean, Ũave(X1, . . . , Xt) = 1

t

∑t
s=1Xs. In this case, the
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RISK CRITERIA IN MULTI-ARMED BANDITS

oracle rule, that maximizes the expected value of the above, just samples from the distribution with
the highest mean value, namely, it selects i∗ ∈ arg max{

∫
xdF (i)(x)}. Learning algorithms for

such problems date back to Robbins’ paper Robbins (1952) and were extensively studied subsequent
to that. In particular, the seminal work of Lai and Robbins (1985) establishes that the regret in this
problem cannot be made smaller thanO(log T ) and there exist learning algorithms that achieve this
regret by maximizing a confidence bound modification of the empirical mean (since then, this class
of policies has been come to known as UCB, or upper confidence bound policies); some strands of
literature that have emerged from this include Auer et al. (2002) (non-asymptotic analysis of UCB-
policies), Maillard et al. (2011) (empirical confidence bounds or KL-UCB), Agrawal and Goyal
(2012) (Thompson sampling based algorithms), and various works which consider an adversarial
formulation (see, e.g., Auer et al. (1995)).

In this paper we are interested in studying the above problem for more general path dependent
criteria that are of interest beyond the average. Many of these objectives bear an interpretation as
“risk criteria” insofar as they focus on a finer probabilistic nature of the primitive distributions than
the mean, such as viewed through the lens of the observations collected from the arms, and typically
relate to the spread or tail behavior. Examples include: the so-called Sharpe ratio, which is the ratio
between the mean and standard deviation; value-at-risk (V aRα) which focuses on the α percentile
of the distribution (with α small); or a close counterpart that integrates (averages) the values out in
the tail beyond that point known as the expected shortfall (or conditional value at risk; CV aRα).
The last example is of further interest as it belongs to the class of coherent risk measures which
has various attractive properties from the risk theory perspective; a discussion thereof is beyond the
scope of this paper. (cf. Artzner et al. (1999) for further details.) In our problem setting, the above
criteria are applied via the function Ũ to the empirical observations, and then the decision maker
seeks, as before, to optimize the expected value. A typical example where such criteria may be
of interest is that of medical trials. More specifically, suppose several new drugs are sequentially
tested on individuals who share similar characteristics. If we consider average performance, we
may conclude that the best choice is a drug with a non-negligible fatality rate but a high success
rate. If we wish to control the fatality rate then using CV aRα for example may be appropriate.

While some of the above mentioned criteria have been examined in the decision making and
learning literature (see references and more precise discussion below), the analysis tends to be
driven by very case-specific properties of the criterion in question. Unlike the standard mean
criterion, various subtleties may arise. To see this, consider the CV aRα example, which we will
reference repeatedly to communicate salient features of our analysis. In terms of Ũ , it is given
by ŨCV aRα(X1, . . . , Xt) = 1

dtαe
∑dtαe

s=1 X
∗
s , where X∗s is the sth order statistic of (X1, . . . , Xt).

Now, for horizon t = 2 and α < 0.5, an oracle will at first select the arm that maximizes the
mean value, just as it would under the traditional mean-criterion. But in step 2 it would seek the
arm that maximizes the expected value of the minimum of the first two observations, namely,
Emin {X1, X2}. It is easy to see that this results in a rule that need not select the same arm
throughout the horizon of the problem. This presents a further obstacle in characterizing a learning
policy that seeks to minimize regret by mimicking the oracle rule. However, as our analysis will
flesh out, the oracle policy can be approximated asymptotically by a simple policy, that is, one that
does select a single arm throughout the horizon. This simplification can be leveraged to address the
learning problem which becomes much more tractable. It is therefore of interest to understand in
what instances does this simplified structure exist. This is one of the main thrusts of the paper.
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Main contributions of this paper. In this paper we consider a general approach to the analysis
of performance criteria of the type outlined above. We identify the aforementioned examples, as
well as others, as part of a wider class that we term Empirical Distribution Performance Measures
(EDPM). In particular, let F̂ be the empirical distribution of the vector (X1, . . . , Xt), i.e., F̂ (y) is
the fraction of rewards less or equal to real valued y. An EDPM evaluates performance by means of
a function U , which maps F̂ to R, i.e., U (F̂ ) = Ũ (X1, . . . , Xt). Alternatively, U may also serve
to evaluate the distributions of the random variables Xs (s = 1, . . . , t). These evaluations may be
aggregated to form a different type of performance criteria that we term proxy regret and consider
as an intermediate learning goal. The construct U plays a central role in the framework we develop,
and while it may seem somewhat vague at this stage, it will be illustrated shortly by revisiting the
CV aRα example.

Our main results provide easy to verify explicit conditions which characterize the asymptotic
behavior of the oracle rule, and culminate in a UCB-type learning algorithm with O(log T ) regret.
To make matters more concrete, we summarize our results for CV aRα. First, its form as an EDPM
is essentially given by UCV aRα (F ) ≈ 1

α

∫ F−1(α)
−∞ xdF (x) (see (7) for exact definition). Our

framework will establish that for arm distributions with integrable lower tails, choosing a single
arm (simple policies) is asymptotically optimal. This, together with the above characterization
of CV aRα yield the desired simplification in identifying its oracle rule, and subsequently this is
leveraged and incorporated in a UCB-type learning algorithm that emulates the oracle policy. More
concretely, if ci,t ∝

√
log t
τi(T ) is the typical UCB upper confidence bound, then a CV aRα version

of UCB requires max{ci,t, c2
i,t} upper confidence bounds for i = 1, . . . ,K and all t, where the

power of 2 is a criterion dependent parameter. The implication for learning is that more exploration
is required in the initial problem stages. Assuming sub-Gaussian arm distributions, the algorithm
obtains O(

√
T ) regret, and under a further mild assumption yields the familiar O(log T ) regret

which, in the traditional MAB objective, corresponds to the case where the means of the arms
are “well separated.” Our framework allows for this analysis, and the results just mentioned for
CV aRα, to be easily derived for any admissible EDPM.

Previous works on bandits that concern path-dependent and risk criteria. To the best of
our knowledge, the only works that consider path dependent criteria of the form presented here
are Sani et al. (2012), which consider the mean-variance criterion and present the MV-UCB, and
MV-DSEE algorithms, and Vakili and Zhao (2016), which complete the regret analysis of said
algorithms. Other works consider criteria which are more in line with our intermediate learning goal
(proxy regret), and lead to a different notion of regret. Galichet et al. (2013) present the MaRaB
algorithm which uses CV aRα in its implementation, however, they analyze the average reward
performance, and do so under the assumptions that α = 0, and the CV aRα and average optimal
arms coincide. Maillard (2013) presents and analyzes the RA-UCB algorithm which considers the
measure of entropic risk with a parameter λ. Zimin et al. (2014) consider criteria based on the mean
and variance of distributions, and present and analyze the ϕ− LCB algorithm. We note that these
criteria correspond to a much narrower class of problems than the ones considered here.

Paper structure. For brevity, all proofs are deferred to the full version of the paper. In Section
2 we formulate the problem setting, oracle, and regret. In Section 3 characterize the asymptotic
behavior of the oracle rule. In Sections 4 we provide the flavor main results deferring rigorous
statements to the full version of the paper, and in Section 5 we demonstrate them on well-known
risk criteria.
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2. Problem Formulation

Model and admissible policies. Consider a standard MAB withK = {1, . . . ,K}, the set of arms.
Arm i ∈ K is associated with a sequence X(i)

t (t ≥ 1) of i.i.d random variables with distribution
F (i) ∈ D, the set of all distributions on the real line. When pulling arm i for the tth time, the
decision maker receives rewardX(i)

t , which is independent of the remaining arms, i.e., the variables
X

(i)
t (for all i ∈ K, t ≥ 1) are mutually independent.

We define the set of admissible policies (strategies) of the decision maker in the following way.
Let τi (t) be the number of times arm i was pulled up to time t. Let V be a random variable
over a probability space (V,V, Pv) which is independent of the rewards. An admissible policy
π = (π1, π2, . . .) is a random process recursively defined by

πt := πt
(
V, π1, . . . , πt−1, X

π
1 , . . . , X

π
t−1

)
(1)

τi (t) =

t∑
s=1

1{πs = i} (2)

Xπ
t := X

(i)
τi(t)

, given the event {πt = i} . (3)

We denote the set of admissible policies by Π, and note that admissible policies π are non anticipating,
i.e., depend only on the past history of actions and observations, and allow for randomized strategies
via their dependence on V . Formally, let {Ht}∞t=0 be the filtration defined byHt = σ (V, π1, X

π
1 , . . . , πt, X

π
t ),

then πt isHt−1 measurable.

Empirical Distribution Performance Measures (EDPM). The classical bandit optimization criterion
centers on the empirical mean i.e. 1

t

∑t
s=1X

π
s . We generalize this by considering criteria that are

based on the empirical distribution. Formally, the empirical distribution of a real number sequence
x1, . . . , xt is obtained through the mapping F̂t : Rt → D, given by,

F̂t (x1, . . . , xt; ·) =
1

t

t∑
s=1

I[xs,∞](·), (4)

where I[a,b](·) is the indicator function of the interval [a, b] defined on the extended real line, i.e.

I[a,b] (y) =

{
1 , y ∈ [a, b]

0 , y /∈ [a, b].

Of particular interest to this work are the empirical distributions of the reward sequence under policy
π , and of arm i. We denote these respectively by,

F̂ πt (·) := F̂t (Xπ
1 , . . . , X

π
t ; ·) (5)

F̂
(i)
t (·) := F̂t

(
X

(i)
1 , . . . , X

(i)
t ; ·

)
. (6)

The decision maker possesses a functionU : D → R, which measures the “quality” of a distribution.
The resulting criterion is called EDPM, and the decision maker aims to maximize EU

(
F̂ πT

)
. In

section 5 we provide further examples (including the classic empirical mean), but for now, we
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continue to consider the CV aRα (Rockafellar and Uryasev (2000)) as our canonical example. This
criterion measures the average reward below percentile level α ∈ (0, 1), and for distribution F is
given by

UCV aRα (F ) = UV aRα (F )− 1

α

∫ UV aRα (F )

−∞
F (y)dy, (7)

where UV aRα (F ) = infy∈R
{
y
∣∣ F (y) ≥ α

}
, is the reward at percentile level α ∈ (0, 1), which

is also known as Value at Risk. For further motivation regarding EDPMs and their relation to
permutation invariant criteria we refer the reader to the full version of the paper.

When defining an objective, it was sufficient to consider U as a mapping from D (a set) to R.
Moving forward, our analysis relies on properties such as continuity and differentiability, which
require that we consider U as a mapping between Banach spaces. To that end D is a subset of
an infinite dimensional vector space for which norm equivalence does not hold. This hints at the
importance of using the “correct” norm for each U . As a result, our analysis is done with respect
to a general norm ‖·‖ and its matching Banach space L‖·‖, which will always be a subspace of L∞,
the space of all bounded functions f : R → R, (i.e., supx∈R |f(x)| < ∞). We therefore consider
EDPMs as mappings U : L‖·‖ → R.

Oracle and regret. For given horizon T , the oracle policy π∗ (T ) = (π∗1 (T ) , π∗2 (T ) , . . .) is
one that achieves optimal performance given full knowledge of the arm distributions F (i) (i ∈ K).
Formally, it satisfies

π∗ (T ) ∈ arg max
π∈Π

E
[
U
(
F̂ πT

)]
. (8)

Similarly to the classic bandit setting, we define a notion of regret that compares the performance
of policy π to that of π∗ (T ). The expected regret of policy π ∈ Π at time T is given by,

Rπ (T ) := E
[
U
(
F̂
π∗(T )
T

)
− U

(
F̂ πT

)]
, (9)

where we note that this definition is normalized with respect to the horizon T , thus transforming
familiar regret bounds such asO(log T ) intoO( log T

T ). The goal of this work is to provide a generic
analysis of this regret, similar to that of the classic bandit setting. However, unlike the latter, the
oracle policy π∗ (T ) here need not choose a single arm. Since the typical learning algorithms are
structured to emulate the oracle rule, we need to first understand the structure of the oracle policy
before we can analyze Rπ (T ).

3. The Infinite Horizon Oracle

Infinite horizon oracle. The oracle problem in (8) does not admit a tractable solution, in the
absence of further structural assumptions. In this section we consider a relaxation of the oracle
problem which examines asymptotic behavior. We provide conditions under which this behavior
is “simple” thus suggesting it as a proxy for the finite time performance. More concretely, let
Uπ = lim inft→∞ U

(
F̂ πt

)
be the worst case asymptotic performance of policy π , then the infinite

horizon oracle π∗ (∞) = (π∗1 (∞) , π∗2 (∞) , . . .) satisfies

π∗ (∞) ∈ arg max
π∈Π

E [Uπ ] . (10)

Note that Uπ is well defined as the limit inferior of a sequence of random variables, however we
require that its expectation exist for (10) to be well defined.
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Simple policies. In the traditional Multi-Armed Bandit problem, the oracle policy, which selects
a single arm throughout the horizon, is clearly simple. In this work, we consider “simple” to
mean stationary policies whose actions are mutually independent and independent of the observed
rewards. Such policies may differ from the single arm policy in that they allow for a specific type
of randomization. The following defines this notion formally.

Definition 1 (Simple policy) A policy π ∈ Π is simple if (π1, π2, . . .) are σ (V ) measurable i.i.d
random variables. Such policies satisfy

P (πt = i) = P (π1 = i) , ∀t ≥ 1, i ∈ K.

A deterministic simple policy further satisfies that P (π1 = i) = 1 for some i ∈ K.

Denote the set of all simple policies by Πs ⊂ Π, and the K − 1 dimensional simplex by,

∆K−1 =

{
p = (p1, . . . , pK) ∈ RK

∣∣∣∣ K∑
i=1

pi = 1, pi ≥ 0 ∀i ∈ K
}
.

Note that there is a one to one correspondence between Πs and ∆K−1, we thus associate each
p ∈ ∆K−1 with the simple policy πp defined by, P (πp1 = i) = pi, for i = 1, . . . ,K.

Stability. It may seem intuitive that EDPMs always admit a simple infinite horizon oracle policy.
In the full version of the paper we provide counter examples to this claim, however, these are
fabricated edge cases that exploit certain forms of discontinuity that are still allowed by this objective.
The following condition is sufficient for capturing the “good behavior” exhibited by typical EDPMs.
We denote the convex combinations of the arms’ reward distributions by

D∆ =

{
Fp =

K∑
i=1

piF
(i)

∣∣∣∣ p ∈ ∆K−1

}
, (11)

and use this in the following definition.

Definition 2 (Stable EDPM) We say that U : L‖·‖ → R is a stable EDPM if:

1. U is continuous on D∆;

2. limt→∞

∥∥∥F̂ (i)
t − F (i)

∥∥∥ = 0 almost surely for all i ∈ K.

Note that stability depends not only on U but also on the given distributions F (i). Meaning, a given
U could possibly be stable for some distributions and not stable for others. Moreover, the choice of
a norm is important in order to get sharp conditions on the viable reward distributions. For example,
consider the supremum norm given by ‖f‖∞ = supx∈R |f(x)|. By the Glivenko-Cantelli theorem
(Van der Vaart (2000)), it satisfies requirement 2 for any given distributions F (i), i ∈ K. However,
in most cases, requirement 1 holds only if the distributions have bounded support.

Remark 1 Stability has the advantage of being relatively easy to verify. This is due in part to
the fact that continuity is preserved by composition. This facilitates the analysis and creation of
complicated rewards by representing them as a composition of simpler ones.
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Theorem 1 (Stable EDPM admits a simple oracle policy) A stable EDPM has a simple infinite
horizon oracle policy π∗ (∞). Further assuming that U is quasiconvex, a deterministic simple
π∗ (∞) exists, i.e., choosing a single arm throughout the horizon is asymptotically optimal.

The main proof idea of Theorem 1 is as follows. We use requirement 2 of stability to show that with
probability one and regardless of policy, any subsequence of the empirical distribution has a further
subsequence that converges to an element of D∆. Applying the continuity of U , we conclude that
asymptotic empirical performance is (almost surely) equivalent to that of elements inD∆. However,
similar claims show that such performance can also be achieved by a simple policy.

Example (CVaRα). We summarize how the presented framework applies to CV aRα. First and
foremost, we need to define the “correct” norm. We notice thatCV aRα, as defined in (7), integrates
only the lower tail of the distribution. This leads us to define the following norm

‖F‖ = max

{
‖F‖∞ ,

∣∣∣∣∫ 0

−∞
xdF

∣∣∣∣} . (12)

Verifying requirement 1 (continuity) of stability is a simple technical task. As for requirement 2,
using the Glivenko-Cantelli theorem (Van der Vaart (2000)), and the Strong Law of Large Numbers
(Simonnet (1996)), it holds when

∣∣∣∫ 0
−∞ xdF

(i)
∣∣∣ < ∞ (∀i ∈ K). Further noticing that U is convex

over D, we may use Theorem 1 to conclude that the single arm solution is asymptotically optimal.

4. Proxy Regret and Regret

Preliminaries. Having gained some understanding of the infinite horizon oracle, we consider an
intermediate learning goal that uses the infinite horizon performance as a benchmark. We refer
to this goal as the proxy regret and dedicate this section to the design and analysis of a learning
algorithm that seeks to minimize it. Formally, let

F πT =
1

T

T∑
t=1

F (πt) =
1

T

K∑
i=1

τi (T )F (i), (13)

be the proxy distribution, where we recall that F (i) is the distribution associated with arm i ∈ K.
The proxy regret is then defined as,

R̄π (T ) := E [U (Fp∗)− U (F πT )] , (14)

where Fp is defined in (11), and p∗ ∈ arg maxp∈∆K−1
U (Fp).

Section 3 presented stability as a means of understanding the asymptotic behavior of performance.
As we now seek a finite time analysis (of the proxy regret), it stands to reason to employ a stronger
notion of stability which quantifies the rate of convergence. For that purpose, denote the set of
empirical distributions created from sequences of any length t ≥ 1 by

D̂ =
{
F̂t (x1, . . . , xt; ·)

∣∣ x1, . . . , xt ∈ R, for all t ≥ 1
}
.

7
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Definition 3 (Strongly stable EDPM) We say that U : L‖·‖ → R is a strongly stable EDPM if:

1. There exist b > 0, q ≥ 1 such that the restriction of U to D∆ ∪ D̂ admits ω (x) = b (x+ xq)
as a local modulus of continuity for all F ∈ D∆, i.e.,

|U (F )− U (G)| ≤ ω (‖F −G‖) , ∀F ∈ D∆, G ∈ D∆ ∪ D̂.

2. There exists a constant a > 0 (which depends only on F (i)), such that for all i ∈ K,

P
(∥∥∥F̂ (i)

t − F (i)
∥∥∥ ≥ x) ≤ 2 exp

(
−atx2

)
, ∀x > 0, t ≥ 1.

One can easily verify that a strongly stable EDPM is indeed a stable EDPM. The first requirement
quantifies the continuity of U , and the second gives a rate of concentration for

∥∥∥F̂ (i)
t − F (i)

∥∥∥, thus
refining Definition 2.

Proxy regret decomposition. In the traditional bandit setting, which considers the average reward,
the analysis of the regret is well understood. The same analysis extends to any linear EDPM,
i.e., when U is linear. This follows straightforwardly as such rewards can be formulated as the
usual average criterion with augmented arm distributions. Linearity facilitates the regret analysis by
providing a decomposition of contributions from each sub-optimal arm. Let

∆i = U (Fp∗)− U
(
F (i)

)
,

be the performance gap for arm i ∈ K. Defining i∗ ∈ arg maxU
(
F (i)

)
, we have that the regret

of a linear EDPM is given by, Rπ (T ) = 1
T

∑
i 6=i∗ E [τi (T )] ∆i. Departing from the pleasant

realm of linearity, we seek a similar decomposition of the proxy regret. Indeed, provided that U is
quasiconvex and strongly stable, we have that

R̄π (T ) ≤ L

T

∑
i 6=i∗

E [τi (T )]
∥∥∥F (i∗) − F (i)

∥∥∥ , (15)

where L is a problem dependent parameter. The proof of this argument as well as an explicit
expression for L appear in the full version of the paper.

Learning algorithm. We present U −UCB, a natural adaptation of (α,ψ)−UCB (see Bubeck
and Cesa-Bianchi (2012)) to a strongly stable EDPM. Let,

φ (y) = min

{
a
( y

2b

)2
, a
( y

2b

)2/q
}

φ−1 (x) = max

{
2b
(x
a

)1/2
, 2b
(x
a

)q/2}
,

where a, b, q are the parameters of Definition 3. The U − UCB policy is given by,

πU−UCBt ∈ arg max
i∈K

[
U
(
F̂

(i)
τi(t−1)

)
+ φ−1

(
α log t

τi (t− 1)

)]
, t ≥ K + 1, (16)

where for 1 ≤ t ≤ K, it samples each arm once as initialization.

8
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Theorem 2 (U −UCB Proxy Regret) Suppose that ∆i > 0 for all i 6= i∗, andU is a quasiconvex
and strongly stable EDPM. Then for α > 2 and L taken from (15) we have that

R̄U−UCB (T ) ≤ L

T

∑
i 6=i∗

(
α log T

φ (∆i/2)
+
α+ 6

α− 2

)∥∥∥F (i∗) − F (i)
∥∥∥ .

Example (CVaRα). Unlike stability, strong stability of CV aRα, requires control of both upper
and lower tails of the distribution. This leads us to consider the norm

‖F‖ = max

{
‖F‖∞ ,

∣∣∣∣∫ 0

−∞
xdF

∣∣∣∣ , ∣∣∣∣∫ ∞
0

xdF

∣∣∣∣} .
Similarly to stability, verifying requirement 1 becomes mostly technical, and results with q = 2,
and a value of b which depends on an upper bound of the CV aRα and V aRα values of the arm
distributions. Requirement 2 then follows by Dvoretzky-Kiefer-Wolfowitz (Massart (1990)), and a
sub-Gaussian assumption on the arm distributions (F (i), i ∈ K). We conclude that, for sub-Gaussian
arms, CV aRα incurs O( log T

T ) proxy regret.

Discussion: from proxy regret to regret The proxy regret is a relatively easy metric to analyze
but leaves open the question of its relationship to the regret. We refer to the difference between
regret and proxy regret as “the gap,” and by analyzing it we obtain regret bounds. The framework
developed thus far plays a major role in quantifying the gap. More specifically, we find that a
strongly stable EDPM has a gap of O( 1√

T
) (up to logarithmic factors). As seen in Theorem 2 and

its application to CV aRα, the proxy regret is of order O( log T
T ), and as such we obtain O( 1√

T
) as

the regret upper bound. Thus it is not clear whether this analysis is tight. For example, consider
the classic bandit average reward which is essentially equivalent to a linear EDPM, i.e., when U is
linear. In this case the definitions of regret and proxy regret coincide and the gap is clearly zero.

In light of the above, we pursue the needed structural assumptions for obtaining a smaller
gap. The salient structural element here is smoothness, and it essentially requires that EDPM U
have a good (local) linear approximation. When satisfied this additional requirement provides a
gap of O( log T

T ), and as an immediate consequence, a similar regret bound. Finally, we note that
smoothness typically imposes little to no constraints on admissible arm distributions. This implies
that strongly stable EDPMs are typically smooth and as such enjoy logarithmic regret.

5. Illustrative Examples

The purpose of this section, first and foremost, is to illustrate how various performance criteria can
be analyzed within the framework developed in the previous sections. To make the exposition more
accessible, we forego detailed introductions of the various criteria as well as various other technical
details. We refer the interested reader to the full version of the paper for the complete details.

Differentiable EDPMs. Assuming that the “correct” norm is chosen, typical EDPMs are differentiable,
a fact that essentially implies smoothness. Table 1 introduces some well-known criteria that are
compositions of linear functionals, and as such differentiable. Table 2 presents the associated
choice of norm and the constraints on arm distributions (F (i)) under which our framework yields
logarithmic regret. As the emerging pattern in Table 2 suggests, “well behaved” EDPMs only
require sub-Gaussian type assumptions to satisfy our framework. Furthermore, it is worth noting
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Empirical reward EDPM Definition Description

Mean Uave (F ) =
∫∞
−∞ xdF The traditional MAB average reward.

Second moment UE
2

(F ) =
∫∞
−∞ x2dF An average of the squared reward.

Below target
semi-variance

U−TSV r (F ) =−
∫∞
−∞ (x− r)2 1{x ≤ r}dF Measures the negative variation from a threshold r ∈

R.

Entropic Risk Uent (F ) = − 1
θ

log
(∫∞
−∞ exp (−θx) dF

)
A risk assessment using an exponential utility function
with risk aversion parameter θ > 0.

Negative
variance

U−σ
2

(F ) = −
[
UE

2
(F )− [Uave (F )]2

]
Empirical variance of the reward.

Mean-variance
(Markowitz)

UMV (F ) = Uave (F ) + ρU−σ
2

(F ) A weighted sum (using ρ ≥ 0) of the empirical mean
and variance.

Sharpe ratio UShr (F ) =
Uave(F )−r√
εσ−U−σ

2
(F )

A ratio between the empirical mean and variance,
where r is a minimum average reward, and εσ > 0
is a regularization factor.

Sortino ratio USor (F ) =
Uave(F )−r√

εσ−U−TSV r (F )
Sharpe ratio with variance replaced by the below target
semi-variance measure.

Table 1: Differentiable EDPMs

Empirical reward
The function g (F ) in

‖F‖ = max
{
‖F‖L∞ , |g (F )|

} Constraints on the random rewards X(i) ∼ F (i)

for all i ∈ K

linear/
convex/
quasi
-convex

Mean Uave (F ) X(i) are sub-Gaussian linear
Second moment UE

2
(F ) X(i)2 are sub-Gaussian linear

Below target
semivariance

UTSV r (F ) max
{

0,−X(i)
}2

are sub-Gaussian linear

Entropic Risk θ exp
(
Uent (F )

)
exp

(
−θX(i)

)
are sub-Gaussian convex

Variance max
{
|Uave (F )| ,

∣∣∣UE2
(F )
∣∣∣} X(i)2 are sub-Gaussian convex

Mean-variance
(Markowitz)

max
{
|Uave (F )| ,

∣∣∣UE2
(F )
∣∣∣} X(i)2 are sub-Gaussian convex

Sharpe ratio max
{
|Uave (F )| ,

∣∣∣UE2
(F )
∣∣∣} X(i)2 are sub-Gaussian quasi-

convex
Sortino ratio max

{
|Uave (F )| ,

∣∣U−TSV r (F )
∣∣} X(i) and max

{
0,−X(i)

}2
are sub-Gaussian quasi-

convex

Table 2: EDPM properties

that we did not find any known examples of risk criteria that are not either linear, convex, or
quasiconvex.

Non-differentiable EDPMs. We conclude with two examples of non-differentiable criteria. The
first, CV aRα, is found to be smooth and strongly stable under appropriate conditions. The second,
V aRα, is strongly stable but appears to be non-smooth. In both cases, our analysis yields particular
conditions that are beyond the sub-Gaussian requirements observed thus far. In particular, these
relate to the behavior of the arm distributions around the α percentile. Focusing our attention on
CV aRα, we observe two types of behavior. First, unlike previous examples, requiring only sub-
Gaussian arm distributions may lead to CV aRα being strongly stable yet non-smooth. In such a
case our framework predicts that the gap between regret and proxy regret is of O( 1√

T
). This is

further supported by a simulation result. This observation indicates the necessity of the smoothness
condition to achieve a logarithmic gap. Second, further requiring that all F ∈ D∆ have positive
density around their α percentile, we obtain smoothness and thus logarithmic regret.
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6. Open Problems and Future Directions

One main question that we leave open is the dependence of the regret on problem parameters such
as the number of arms K, and the sub-optimality gaps ∆i. As our regret analysis passes through
the proxy regret, the optimal order of the regret remains open as well. This will likely be resolved
by means of a matching lower bound. Future directions may include a more complete taxonomy
of performance criteria, or an extension of this framework to different settings (e.g., adversarial
or contextual). Additionally, we note that the majority of our proof techniques also apply to non-
quasiconvex criteria. If such criteria are found to be of interest then extending the framework to this
case may be appealing.
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