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Abstract
We study the problem of identifying correlations in multivariate data, under information constraints:
Either on the amount of memory that can be used by the algorithm, or the amount of communi-
cation when the data is distributed across several machines. We prove a tight trade-off between
the memory/communication complexity and the sample complexity, implying (for example) that
to detect pairwise correlations with optimal sample complexity, the number of required mem-
ory/communication bits is at least quadratic in the dimension. Our results substantially improve
those of Shamir (2014), which studied a similar question in a much more restricted setting. To
the best of our knowledge, these are the first provable sample/memory/communication trade-offs
for a practical estimation problem, using standard distributions, and in the natural regime where
the memory/communication budget is larger than the size of a single data point. To derive our
theorems, we prove a new information-theoretic result, which may be relevant for studying other
information-constrained learning problems.

1. Introduction

Information constraints play a key role in statistical learning and estimation problems. One always-
present constraint is the sample size: We attempt to infer something about an underlying distribu-
tion, given only a finite amount of data sampled from that distribution. Indeed, the sample com-
plexity for tackling various statistical problems is a central area in learning theory and statistics.
However, in many situations, we are faced with additional information-based constraints, besides
the sample complexity. For example, in practice the amount of memory used by the learning algo-
rithm might be limited. In other cases, we might wish to solve a distributed version of the learning
problem, where the data is randomly partitioned across several machines. Since communication
between machines is invariably slow and expensive compared to internal processing, we might wish
to solve the problem using a bounded amount of communication.

In recent years, an emerging body of literature has attempted to formally study the effect of
such memory and communication constraints in learning problems. In many cases, it turns out that
one can still solve a given problem with less memory or communication, but at the cost of a larger
sample complexity. Thus, a fascinating question is whether such trade-offs are unavoidable, and
what is the optimal trade-off.

In this paper, we study memory, communication, and sample complexity trade-offs for detect-
ing correlations in multivariate data, one of the simplest and most common statistical estimation
problems. In this problem, we are given a sequence of i.i.d. samples x1,x2, . . . from some zero-
mean distribution over Rd, and our goal is to detect correlated coordinates. For simplicity, let
us focus for now on the case of pairwise correlations, and assume that for some pair of coordi-
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nates (i, j) ∈ {1, . . . , d}2, E [xixj ] = ρ > 0, whereas for any other pair of coordinates (i′, j′),
E
[
xi′xj′

]
= 0.

In the absence of memory or communication constraints, and given a sample x1, . . . ,xt, a sim-
ple approach is to compute the empirical average 1

t

∑t
l=1 xl,ixl,j for every possible coordinate pair,

use concentration of measure to bound the difference between this empirical average and the true
expectation with high probability, and thus determine which of these subsets is indeed correlated.
For example, Hoeffding’s inequality and a union bound implies that if all coordinates are bounded in
[−1,+1] almost surely, and t = Ω

(
log(d)/ρ2

)
, then with arbitrarily high constant probability over

the sample x1, . . . ,xt, there will be a unique coordinate pair (i, j) for which
∣∣1
t

∑t
l=1 xl,ixl,j

∣∣ ≥ ρ
2 ,

and this pair corresponds to the correlated coordinates.
Although this approach is quite reasonable in terms of the sample complexity, it requires us to

compute and maintain
(
d
2

)
≈ d2 averages, which can be problematic in memory/communication-

constrained variants of the problem: For an algorithm which streams over the data, we need at least
Ω(d2) memory to keep track of all the possible correlations. Similarly, when the data is distributed
across several machines, we need at least Ω(d2) bits of communication, to compute the empirical
averages of every pair of coordinates.

What can we do if our memory or communication budget is less than Ω(d2)? Considering the
case of streaming, memory-bounded algorithms first, a trivial solution is not to estimate all

(
d
2

)
averages at once, but rather a smaller group of averages at a time. For example, if we only have
enough memory to estimate one average, we can start with estimating the empirical correlation of
coordinates 1 and 2, until we are sufficiently confident whether they are correlated or not, then
move to coordinates 1 and 3, and so on. However, if we stream over the data, the price we pay is a
larger sample size: In general, if we have s bits of memory, the approach above requires a sample
size of t = Õ

(
d2/

(
ρ2s
))

to detect the correlation with any constant probability (where the Õ
notation hides factors logarithmic in d, ρ1). In other words, the approach we just described satisfies
ts = Õ

(
d2/ρ2

)
. More generally, if the algorithm is allowed to perform ` passes over the same data

x1, . . . ,xt, then with the same approach, we can detect the correlation assuming

ts` = Õ
(
d2/ρ2

)
.

A natural question is whether this naive approach is improvable. Can we have an algorithm where
the product of the memory size s and the total number of data points processed t` is smaller, perhaps
less than quadratic in the dimension d?

An analogous situation occurs in the context of distributed algorithms with communication con-
straints: If each machine has n i.i.d. data points, and can send s bits of communication, we can split
the m machines to Õ(d2/s) groups, and have the machines in each group broadcast the empirical
average of a different subset of Θ̃(s) coordinate pairs. Aggregating these averages and outputting
the pair with the highest empirical correlation, we will succeed with any constant probability as long
as m

d2/s
·n ≥ Ω̃

(
1
ρ2

)
(namely, as long as we can compute the empirical average of at least Ω̃(1/ρ2)

data points, for each and every coordinate pair).This implies that the protocol will succeed, with the
total number ms of bits communicated at most

Õ
(
d2/(nρ2)

)
.

1. For example, we need O(log(1/ρ)) bits of precision to determine if an average is above ρ, and O(log(d)) bits to
index coordinates. We note that sometimes such logarithmic factors can be reduced with various tricks (e.g., Luo
(2005)), but these are not the focus of our paper.
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Note that the non-trivial regime here is nρ2 � 1 (otherwise, any single machine can detect the
correlation based on its own data, without any communication). In this regime, we see that the
protocol above requires communication complexity quadratic in the dimension d. Again, it is natural
to ask whether this simple approach can be improved, and whether the quadratic dependence on d
is avoidable.

Perhaps surprisingly, we show in this paper that these approaches are in fact optimal (up to loga-
rithmic factors), and establish a tight trade-off between sample complexity and memory/communication
complexity for detecting correlations. Moreover, we show this for simple, natural data distributions;
under minimal algorithmic assumptions; and for both pairwise and higher-order correlations (see
below for a discussion of related results). In a nutshell, our contributions are the following:

• We prove that if the correlation ρ is sufficiently small (polynomially in d), then for any algorithm
with s bits of memory, which performs at most ` passes over a sample of size t, we must have
ts` = Ω̃(d2/ρ2) for it to detect the correlated coordinates. Also, in a distributed setting, a
communication of Ω̃

(
d2/

(
nρ2
))

bits is necessary in general. This matches the upper bounds
described above up to logarithmic factors. We prove these results for two families of natural
distributions: over binary vectors in {−1,+1}d, and for Gaussian distributions over Rd.

• For binary vectors, we actually provide a more general result, which applies also to higher-
order correlations. Specifically, we assume that there is some unique set I of indices such that
E
∏
i∈I Xi = ρ, and I comes from some known family of k possible subsets (the previous bullet

refers to the special case where |I| = 2, and the family of k =
(
d
2

)
coordinate pairs). Assuming ρ

is polynomially small in k, we show that in the memory-constrained setting, ts` = Ω̃(k/ρ2), and
in the communication-constrained setting, Ω̃

(
k/
(
nρ2
))

bits are required. This directly general-
ize the results from the previous bullet, and establishes that one cannot in general improve over
the naive approach of estimating the correlation separately for every candidate set I .

• To obtain our theorems, we develop a general information-theoretic result, which may be of in-
dependent interest and can be roughly stated as follows: Assume that µ0, µ1, . . . , µk are distribu-
tions over the same sample space, which are close to each other in the sense that for any 1 ≤ i ≤ k
and any event E, |µi(E)/µ0(E)− 1| ≤ ρ. Additionally, assume that µ1, . . . , µk are pairwise un-
correlated, in the sense that for any i 6= j,

∫ dµi
dµ0

dµj
dµ0

dµ0 =
∫ dµi
dµ0

dµ0

∫ dµj
dµ0

dµ0 = 1. Then
any algorithm for identifying the distribution µi given a sample requires either ts` = Ω̃(k/ρ2)
in the memory-constrained setting, or Ω̃(k/(nρ2)) bits of communication in a communication-
constrained setting. This can be seen as generalizing the main technical result of Braverman
et al. (2016) (Theorem 4.4), which proved a related lower bound in the context of communication
constraints, assuming that the k distributions are defined over a product space. Here, we essen-
tially replace independence assumptions by a weaker pairwise uncorrelation assumption, which
is crucial for proving our results.

Related Work

The question of proving lower bounds on learning under memory and communication constraints
has been receiving increasing attention recently, and related questions have long been studied in
theoretical computer science and other fields. Thus, it is important to emphasize the combination of
assumptions that place our setting apart from most other works:
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• The task is a statistical learning problem, based on i.i.d. examples from some underlying distri-
bution: For example, there is a large literature on memory lower bounds for streaming algorithms
(see for instance Alon et al. (1996); Bar-Yossef et al. (2002); Muthukrishnan (2005) and refer-
ences therein). However, these mostly focus on problems which are not standard learning prob-
lems, and/or that the data stream is adversarially generated rather than stochastically generated
(which makes proving lower bounds easier). Similarly, there are many results on communica-
tion complexity (see for instance Kushilevitz and Nisan (1997)), but most of them refer to non-
learning problems, or where the data is adversarially generated and distributed across machines
(rather than randomly, which again makes lower bounds easier to prove).

• Memory/communication budget is larger than the size of a single data point: This is arguably the
most common regime in practice. There are several works which studied the more constrained
setting, where the memory or communication budget is smaller than the size of a single data point
(but still larger than the required output), for problems such as sparse mean estimation, sparse
regression, detecting low-rank subspaces, and multi-armed bandits (Shamir, 2014; Steinhardt
and Duchi, 2015; Crouch et al., 2016; Braverman et al., 2016). Also, there has been a line of
works on hypothesis testing and statistical estimation with finite memory, in a regime where the
memory is insufficient to precisely express the required output (see Hellman and Cover (1970);
Leighton and Rivest (1986); Ertin and Potter (2003); Kontorovich (2012) and references therein).

• Results are for a standard, natural estimation problem, and where multiple communication rounds
/ passes over the data are allowed: A breakthrough line of recent works (Raz, 2016, 2017;
Moshkovitz and Moshkovitz, 2017a,b; Kol et al., 2017; Garg et al., 2017; Beame et al., 2017)
showed that for binary classification problems, which satisfy certain combinatorial or algebraic
conditions, any one-pass streaming algorithm would require either quadratic memory (in the di-
mension), or exponential sample size. So far, these conditions were shown to hold for learning
parities and variants thereof (all strongly involving Boolean computations over Z2). Although
such problems are very important in learning theory, they are arguably synthetic in nature and
not commonly encountered in practice. In this paper, we focus on detecting correlations, which
is a standard and common estimation problem. Moreover, whereas the results above apply to
memory-constrained, one-pass algorithms, our results apply to both memory and communication
constraints, and where multiple passes / communication rounds are allowed (building on tech-
niques developed in Braverman et al. (2016)). On the flip side, the gaps we show in the required
sample size (with and without information constraints) are polynomial in the dimension, whereas
the results above imply exponential gaps. We discuss the differences and the similarities in more
depth in Sec. C.

Perhaps the work closest to ours is Shamir (2014), which also studied the problem of detecting
correlations with memory/communication constraints, and showed trade-offs between the mem-
ory/communication complexity and the sample complexity. For example, in the context of memory
constraints, that paper showed that there exists a distribution over d-dimensional vectors, with a
particular correlation value ρ (depending on d), such that detecting the correlation is statistically
feasible given O(d2 log2(d)) examples, but any one-pass algorithm with only s � d2/ log2(d)
bits of memory requires a strictly larger sample size of at Ω(d4/s) examples. However, that re-
sult is weaker than ours in several respects: First, it applies to a much more restrictive family of
algorithms (where only one round of communication is allowed in the communication-constrained
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setting, and only one pass over the data in the memory-constrained setting). Second, it only ap-
plies to a certain carefully-tailored and unnatural family of data distributions, and does not imply
communication/memory/sample trade-offs in the context, say, of vectors with bounded or Gaussian
entries. Third, the result only holds for a particular choice of the correlation parameter ρ (depending
on the other problem parameters), rather than holding for any small enough correlation. Fourth, the
result is specific to pairwise correlations, whereas we prove more general results, applying to higher-
order correlations and (potentially) to other information-constrained learning problems. Moreover,
proving these results require fundamentally new ideas, which we develop in this paper.

Finally, for pairwise correlations, the problem we study is closely related to the light-bulb prob-
lem, proposed by Leslie Valiant at the very first COLT conference (Valiant, 1988). That problem is
equivalent to identifying a pairwise correlation in data drawn from the d-dimensional Boolean cube.
However, while we ask whether o(d2) memory/communication is possible, Valiant asked whether
o(d2) runtime is possible. For the light-bulb problem, the best algorithm we are aware of (Valiant,
2015) requires a runtime of only O(d1.62). However, a close inspection of the results indicates
that this only applies when the correlation parameter ρ is close to being an absolute constant (a
regime which also makes the communication/memory-constrained setting easier – see Remark 11).
Although communication/memory complexity and computational complexity are not the same, our
results suggest that no algorithm for the light-bulb problem can run in time o(d2) (as a function of
d), if the correlation to be detected is small enough.

Our paper is structured as follows: In Sec. 2, we introduce notation and necessary definitions.
In Sec. 3, we present our main results, and in Sec. 4, we sketch our main proof ideas and techniques.
Full proofs are provided in Appendix A, and some additional results are provided in Appendix B.

2. Preliminaries

For any integer k ≥ 1, the notation [k] denotes the set {1, . . . , k}. We use the standard O(),Ω()
big-O notation to hide constants, and Õ(), Ω̃() to hide constants as well as polylogarithmic factors.
For any distribution µ and any integer n ≥ 1, define by µn the distribution over n i.i.d samples from
µ.

2.1. Communication protocols and memory-limited algorithms

In the context of communication-constrained algorithms, we consider a multi-party setting where
there are m ≥ 1 parties/machines, and each party receives an input visible only to her (i.e. a sample
of data points). The parties communicate using broadcast messages with the goal of calculating
some function over all of the inputs. A protocol defines the communication between the parties:
which party is to speak next and which message she should send as a function of her input, the
message history and some randomness. The communication complexity of a protocol is the maximal
number of bits sent in this protocol, where the maximum is over all possible inputs and over the
randomness of the protocol2. The transcript of a protocol contains all the messages sent.

2. It is well-known that worst-case and average-case communication complexity are equivalent up to constants, so our
lower bounds also apply to the communication complexity in expectation over the inputs and the randomness of
the protocol. To see this, note that if there is a protocol π with expected communication complexity b, succeeding
with probability 9/10, then by Markov’s inequality, a protocol π′ which simulates π and stops after 10b bits of
communication still succeeds with probability 8/10, and has maximal communication complexity 10b.
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Definition 1 Let m,n ≥ 1 be integers, let k ≥ 2 be an integer and let µ1, . . . , µk be distributions
on the same sample space. An (m,n)-protocol identifying µ ∈ {µ1, . . . , µk} with error ε is an
m-party communication protocol where each party receives as an input an independent set of n
i.i.d. samples from the same distribution µi. Additionally, for any i ∈ [k], the protocol outputs the
index i of the distribution µi which generated the data, with probability at least 1− ε.

We emphasize that the protocols we consider are not restricted in terms of the number of mes-
sages sent or the number of communication rounds: We are only interested in the overall communi-
cation complexity, namely the total number of bits sent between machines.

In the memory-constrained setting, we consider an algorithm which is allowed to perform `
passes over t data points sampled i.i.d. from some distribution, with a memory limitation of s bits:

Definition 2 Let t, s, ` ≥ 1 be integers and let µ1, . . . , µk be distributions on the same sample
space. A (t, s, `)-algorithm identifying µ ∈ {µ1, . . . , µk} with error ε is an algorithm receiving t
i.i.d. samples from µi for some 1 ≤ i ≤ k. This algorithm goes over all samples sequentially in `
passes, using at most s bits of memory (formally, letting x1, x2, . . . , xt` be ` copies of the data set in
order, we assume the algorithm can be written recursively as ui+1 = fi(xi, ui), where ui ∈ {0, 1}s
for all i denotes the memory of the algorithm after handling example xi, fi is an arbitrary function,
and the output is a function of ut`+1). For any i ∈ [k], the algorithm outputs the index i of the
distribution µi generating the data, with probability at least 1− ε.

2.2. Centered families of distributions

For our results, we will consider families of distributions which are all close to one another, in the
following sense:

Definition 3 Let 0 < ρ < 1 be a number, let k ≥ 2 be an integer and let µ1, . . . , µk be distributions
on the same sample space Ω and the same set of events F . We say that {µ1, . . . , µk} is a ρ-centered
family of distributions (or CD(ρ) for brevity), if there exists a distribution µ0 on the same sample
space and the same set of events such that for any event E ∈ F and any i ∈ [k],

(1− ρ)µ0(E) ≤ µi(E) ≤ (1 + ρ)µ0(E).

We say that {µ1, . . . , µk} is centered around µ0.

3. Main results

Our results are based on two general theorems, which establish the difficulty of distinguishing
generic distributions under communication and memory constraints respectively. These theorems
are presented in Subsection 3.1. We then apply them to the problem of detecting correlations, for
distributions over binary vectors (Subsection 3.2) and for Gaussian distributions (Subsection 3.3).

3.1. A General Theorem

Let {µ1, . . . , µk} be a CD(ρ) family of probability distributions centered around µ0 (namely, |µi(E)/µ0(E)−
1| ≤ ρ for any i ∈ [k] and any event E). The following theorem establishes that under a certain
technical condition (Eq. (1)), any (m,n) protocol would require a lot of communication to identify
the distribution from which the input data is sampled:
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Theorem 4 There exist positive numerical constants C,C ′ such that the following holds. Let
{µ1, . . . , µk} be a CD(ρ) family of distributions centered around µ0, let m,n ≥ 1 be integers such
that ρ ≤ (n ln k)−1/2/C ′. If

∑
S⊆[k] : |S|≥2

n−|S|/2ρ−|S|

∣∣∣∣∣EA∼µ0 ∏
i∈S

(
µi(A)

µ0(A)
− 1

)∣∣∣∣∣ ≤ 1

n
, (1)

then any (m,n)-protocol identifying {µ1, . . . , µk} with error 1/3 has a communication complexity
of at least

k

Cρ2n log(k/(nρ2))
.

In particular, Eq. (1) holds if there exists an integer ` ≥ 2 such that all the terms in Eq. (1) corre-
sponding to |S| ≤ ` are zero, and n ≥ k2(`+1)/(`−1).

The proof appears in Subsection A.2, whereas Lemma 20 is its main ingredient. To explain the
intuition, let Bi (for i ∈ [k]) be the random variable µi(A)

µ0(A) , where A is sampled from µ0, and note
that its expectation is always 1. Eq. (1) corresponds to requiringBi to be approximately uncorrelated
when n is large enough, namely

∑
S⊆[k] : |S|≥2

n−|S|/2ρ−|S|

∣∣∣∣∣E∏
i∈S

(Bi − E[Bi])

∣∣∣∣∣ ≤ 1

n
.

The last part of the theorem simply states that this indeed holds, if the Bi random variables are
uncorrelated up to order `, and n is large enough. In particular, for large n, pairwise uncorrelation
(` = 2) is sufficient. The theorem implies that if the distributions are “uncorrelated” in this sense,
then the task of identifying µ ∈ {µ1, . . . , µk} requires a communication complexity of Ω̃(k/(nρ2)).
Crucially, the required communication scales linearly with the number of distributions k, and is no
better than what we would need for solving k completely independent problems, each involving
distinguishing only two such distributions.

We now turn from communication complexity to memory complexity. The following theorem
establishes a lower bound on the product of the sample size, memory, and number of data passes for
any memory-constrained algorithm which identifies µ1, . . . , µk:

Theorem 5 There exist positive numerical constants C(2), C(3) such that the following holds. Let
{µ1, . . . , µk} be a CD(ρ) family centered around µ0, and let t, s, ` ≥ 1 be integers. Assume that
there exists n ≤ C(2)/(ρ2 log k) such that the conditions of Theorem 4 hold, with respect to k, n
and ρ. Then any (t, s, `)-algorithm identifying µ1, . . . , µk with 1/3 error satisfies

ts` ≥ k

C(3)ρ2 log k
.

The proof of the theorem is a simple reduction to the communication complexity lower bound of
Thm. 4: Given a (t, s, `) algorithm, and any m,n such that mn ≥ t, one can create an (m,n)
protocol which simulates the algorithm in a distributed setting as follows: Fixing some arbitrary
order over the parties, each party in turn simulates the (t, s, `) algorithm over its data. Once the
party exhausts her data, the state of this algorithm (consisting of at most s bits) is transmitted to
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the next party, which continues to simulate the algorithm, and so on. Once t data points have been
processed in this manner, the current party transmits the algorithm’s state back to the first party,
which starts simulating the next pass of the (t, s, `) algorithm. This continues until ` such passes
are done. Then, the output of the protocol is set as the output of the simulated (t, s, `) algorithm.
The overall communication complexity is at most ts`/n, so by Thm. 4 (assuming its conditions are
fulfilled), we must have

ts`

n
≥ k

Cρ2n log(k/(nρ2))
. (2)

In particular, picking m = k and n = C(2)/(ρ2 log k) for any constant C(2) ≤ C ′−2 concludes the
proof.

We finish this subsection with two additional remarks:

Remark 6 (Identification vs. binary decision) In the results of this paper, we focus on the prob-
lem of identifying an underlying distribution, under the promise that it belongs to a certain family
of distributions µ1, . . . , µk (e.g., which pair of coordinates are correlated). An arguably easier task
is to decide whether the underlying distribution is either some fixed µ0 or one of µ1, . . . , µk (e.g.,
whether there exists a correlated pair of coordinates or not). However, our lower bounds apply to
that task as well, with an almost identical proof.

Remark 7 (Data access) Our memory-based bounds assume that the algorithm performs one or
more passes over the data. An even weaker assumption might be that the algorithm can access the
data in an arbitrary order (i.e. has random access). However, proving a super-linear (in dimen-
sion) memory lower bound in this setting would imply a super-linear lower bound on the runtime
of any random-access Turing machine, and unfortunately, this is related to difficult questions in
computational complexity (see Raz (2016, Section 1.2) for a related discussion).

3.2. Binary Vectors

Having establishes our main technical results, we now turn to derive concrete bounds in the context
of detecting correlations. In this subsection, we begin with the case of distributions over binary
vectors, where the goal is to detect some unique (pairwise or higher-order) correlation. Concretely,
fix some 0 < ρ < 1, and define the sample space as Ω = {−1, 1}d for some d ≥ 2. Let I be the set
of all nonempty subsets of {1, . . . , d}. For any I ∈ I, let µI,ρ be the distribution over Ω defined by

µI,ρ((x1, . . . , xd)) = 2−d(1 + ρ
∏
i∈I

xi).

Namely, µI,ρ samples with probability 1
2(1 + ρ) an element uniformly from all elements with an

even number of −1 values in the coordinates corresponding to I and with probability 1
2(1 − ρ)

it samples an element with an odd number of −1 values in I . Note that µI,ρ encodes a unique
correlated subset of indices in the following manner (the proof appears in Subsection A.3.2):

Lemma 8 For any set I ′ ∈ I, I ′ 6= ∅, it holds that EX∼µI,ρ
∏
i∈I′ Xi =

{
ρ I ′ = I

0 I ′ 6= I
.

For any subset U ⊆ I and 0 < ρ < 1, let PU ,ρ = {µI,ρ : I ∈ U}. We apply Theorems 4 and 5
on the problem of identifying an underlying distribution µ, promised to belong to the family PU ,ρ,
to get communication and memory lower bounds (the proof appears in Subsection A.3.1).
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Theorem 9 Fix some U ⊆ I which satisfies |U| ≥ 2. Fix integers m,n ≥ 1 such that n ≥ |U|6,
and a positive ρ ≤ n−1/2 ln−1/2|U|/C, where C is a numerical constant. Then any (m,n) protocol
identifying µ ∈ PU ,ρ with 1/3 error has a communication complexity of at least

|U|
Cρ2n log(|U|2 /(nρ2))

.

For example, the case of detecting pairwise correlations corresponds to choosing U = {I ∈
I : |I| = 2}. Since |U| =

(
d
2

)
= Ω(d2), this gives us a lower bound of Ω̃

(
d2

ρ2n
−m

)
, or

Ω̃
(
d2

ρ2n

)
. This is optimal up to logarithmic factors, as shown by the upper bound discussed in

the introduction. More generally, for order-r correlations (for some constant r ≥ 2), we simply
pick U = {I ∈ I : |I| = r}, and since |U| =

(
d
r

)
= Ω(dr) in this case, the theorem implies

a communication complexity of Ω̃
(
dr

ρ2n

)
. Again, this is tight up to logarithmic factors, using a

straightforward generalization of the protocol for the pairwise case.
Next, we state the analogue of Thm. 9 for the memory-constrained setting (derived from Thm. 9

by the same communication-to-memory reduction discussed earlier):

Theorem 10 There exist numerical constants C,C ′ > 0 such that the following holds. For any
U ⊆ I such that |U| ≥ C ′ , any ρ such that 0 ≤ ρ ≤ |U|−3 ln−1/2|U|C−1, and any integers
t, s, ` ≥ 1, it holds that any (t, s, `)-algorithm identifying µ ∈ PU ,ρ with 1/3 error satisfies

ts` ≥ |U|
C ln|U|ρ2

.

As a special case, the theorem implies that for detecting pairwise correlations, ts` = Ω(d2/ρ2),
and for order-r correlations, ts` = Ω(dr/ρ2). For example, assuming the number of passes ` is
constant, it implies that we cannot successfully detect the correlation, unless either the memory is
large (on order dr), or the number of samples used is much larger than what is required without
memory constraints (i.e. Ω(log(d)/ρ2)) for any constant r).

Remark 11 (Constraints on problem parameters) Theorem 10 requires the correlation ρ to be
sufficiently small compared to |U|. Such an assumption is necessary to get a strong lower bound:
To see this, consider the case of detecting a pairwise correlation in binary vectors with memory
constraints. If we can store Õ(d/ρ2) bits in memory, then we can simply collect and store Õ(1/ρ2)
data points, and the empirical correlations in this data will reveal the true correlated coordinates
with high probability. Thus, to prove an Ω̃(d2) memory lower bound (as we do here), the correlation
ρ must be smaller than Õ(d−1/2). Similarly, in a communication constrained setting, note that a
communication budget of Õ(d/ρ2) bits enables the players to exchange Õ(1/ρ2) data points and
find the correlation. Hence, in order to prove a communication lower bound of Ω̃

(
d2/

(
nρ2
))

, one
has to assume that n = Ω̃(d). That being said, in the theorems above we require a stronger bounds
on ρ and n than what these arguments imply. In Appendix B, we show that these requirements can
be weakened to some extent, for the case of U = {I ∈ I : |I| = r}, r ≥ 2. Precisely characterizing
the parameter regimes where non-trivial lower bounds are possible is left to future work.

9
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3.3. Gaussian Distribution

Having discussed distributions supported on binary vectors, we now turn to prove similar results for
another cannonical family of distributions, namely Gaussian distributions on Rd. In what follows,
we focus on pairwise correlations (since a multivariate Gaussian distribution is uniquely determined
by its mean and covariance matrix, there is no sense in discussing higher-order correlations as in the
binary case).

Define I2 = {S ⊆ [d] : |S| = 2}. Fix some d ≥ 3 and 0 < σ < 1. For any set I ∈ I2, let ηI,σ
denote the zero-mean Gaussian distribution on Rd, with covariance matrix ΣI,σ defined as follows:

ΣI,σ(i, j) =


1 i = j

σ I = {i, j}
0 otherwise.

In words, each individual coordinate has a variance of 1, and each pair of distinct coordinates are
uncorrelated, except for the pair (i, j) with a correlation σ. Let Gσ = {ηI,σ : I ∈ I2} be the set of
all
(
d
2

)
distributions defined this way. The following theorems are analogues of Theorems 9 and 10

for the case of pairwise correlations (the proof appears in Subsection A.4):

Theorem 12 Fix some n,m ≥ 1 and 0 < σ < 1, such that n ≥ Cd6 for some numerical constant
C > 0 and σ ≤ n−1/2 ln−1/2 d ln−1(dnm/σ)/C. Any (m,n)-protocol identifying η ∈ Gσ with 1/6
error has a communication complexity of at least

d2

Cσ2 ln2(nmd/σ) ln(d/(nσ2))n
.

Theorem 13 There exist numerical constants C,C ′ > 0 such that the following holds. If d ≥ C ′,

then for any σ such that 0 < σ ≤
(
Cd3 ln1/2 d ln(d/σ)

)−1
and any integers t, s, ` ≥ 1, it holds

that any (t, s, `)-algorithm identifying µ ∈ Gσ with 1/6 error satisfies

ts` ≥ d2

Cσ2 ln3 d ln2(1/σ)
.

Whereas for binary vectors, our results are a direct corollary of Theorem 4, the proofs in the
Gaussian case are more involved, because no family of distinct Gaussian distributions satisfy the
CD(ρ) property from Definition 3. Instead, we need to work with truncated Gaussian distributions
(which do satisfy this property), with some determinant calculations required to verify the condi-
tions of Theorem 4. We then reduce the resulting bound on truncated distributions to non-truncated
ones, to get Thm. 12. Thm. 13 is derived from Thm. 12 by the same communication-to-memory
reduction discussed earlier.

4. Proof Ideas

In this section, we sketch the main ideas in the proof of Thm. 4, on which all our other results are
based, and ignoring various technical issues. For simplicity, we discuss it in terms of the simpler
problem of deciding whether the underlying distribution is µ0 or one of µ1, . . . , µk (as described

10
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in Remark 6). In particular, a successfull protocol for this problem should allow us to distinguish
between µ0 and µi, for all i, without knowing i beforehand. The crux of our proof lies in showing
that these k tasks are “essentially” independent, in the sense that any protocol which solves all
of them requires a communication of Ω̃(k) times the required communication for solving a single
task. Formally, let Π be the transcript (the aggregation of all messages sent) of the protocol; let
X =

(
X(1), . . . , X(m)

)
denote the m (i.i.d.) sample sets given to the m parties in the protocol,

where X(j) is the input of party j; and let PΠ|X∼µmnb denote the distribution of the transcript Π
conditioned on the inputs being distributed µmni , for i ∈ [k]. It is easy to show that any protocol

which successfully distinguishes between µ0 and µi must satisfy dTV
(
PΠ|X∼µmn0

, PΠ|X∼µmni

)
=

Ω(1), where dTV is total variation distance3. In particular, this implies that

k∑
i=1

dTV

(
PΠ|X∼µmn0

, PΠ|X∼µmni

)2
= Ω(k) . (3)

The proof proceeds by showing that the communication complexity (times an Õ(nρ2) factor) upper
bounds the left-hand side above, namely the sum of total variations over all k individual tasks. This
implies that the communication complexity is Ω̃(k/(nρ2)) as required.

Intuitively, this assertion is true if the tasks are independent, so that information about one
task does not convey information on another task. A concrete example (studied in Shamir (2014);
Steinhardt and Duchi (2015); Braverman et al. (2016)) is sparse mean estimation, where the goal
is to distinguish a zero-mean product distribution on Rk, from similar product distributions where
a few of the coordinates are slightly biased. Here, we can think of µi as the distribution where
coordinate i is slightly biased. Since this is a product distribution, statistics about one coordinate
reveals no information about the statistics of other coordinates, so any single party has to send
some information on all coordinates in order for a protocol to succeed – hence the communication
complexity must scale linearly with k. This idea lies at the heart of the papers mentioned above,
and works well when the communication/budget is smaller than the dimension.

Unfortunately, this idea cannot be used as-is for showing lower bounds larger than the dimen-
sion. For example, in the context of pairwise correlations on d-dimensional data, an Ω(d2) lower
bound would require constructing a distribution over inputs x, so that if we consider the d×dmatrix
xx′, at least Ω(d2) of its entries has a joint product distribution. But this is impossible, since this
matrix is always of rank 1, so no subset of more than O(d) entries can be mutually independent.
Shamir (2014), which also studied correlations, circumvented this difficulty with an ad-hoc con-
struction involving extremely sparse vectors, but as discussed in the introduction, the end result has
several deficiencies.

Our main technical contribution is to show how one can circumvent this hurdle, by relaxing the
independence assumption to the milder technical assumption stated in Thm. 4, which only involves
approximate uncorrelation and does apply to our problem.

The proof proceeds by fixing a party j, and constructing a Markov chain Π→ X(j) → Y → Z,
where Π is the transcript of the protocol; X(j) is the data of party j, and Z = (Z1, . . . , Zk), Y =
(Y1, . . . , Yk) are carefully-constructed binary random vectors, defined as follows:

• The transcript Π is distributed as if the inputs of all players are drawn from µ0, and the inputX(j)

of player j is distributed µn0 .

3. The total variation distance between two distributions with densities p and q is 1
2

∫
|p(x)− q(x)| dx.

11
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• The probability for each Yi to equal 1 is a certain function of µni (X(j))/µn0 (X(j)).

• Zi equals Yi after flipping it with probability 1
2 − Θ̃ (ρ

√
n). Additionally, X(j) is distributed

roughly µni conditioned onZi = 1 (recall thatX(j) ∼ µn0 unconditionally). Such a construction is
possible from Bayes rule and the fact that µn0 (X(j)) and µni (X(j)) are close up to a multiplicative
factor of 1± Õ (

√
nρ) for most values of X(j).

These random variables are constructed so that the following properties are satisfied:

• Y1, . . . , Yk are approximately independent, in the sense that
∑k

i=1 I(Π;Yi) ≤ Õ(1) · I(Π;Y ),
where I() denotes mutual information. Intuitively, this is due to a central limit phenomenon:

If we consider the k random variables 1√
n

log
µni (X(j))
µn0 (X(j))

for i ∈ k, they have an asymptotically

Gaussian distribution as n → ∞. Moreover, Eq. (1) in the theorem statement ensures that they
are almost pairwise uncorrelated, but for Gaussian random variables, uncorrelation is equivalent
to independence. Since each Yi is a function of the corresponding random variable, it follows that
Y1, . . . , Yk are approximately independent for large enough n.

• Since Zi equals Yi after a nearly-unbiased random coin flip, and these are both binary random
variables, one can show the strong data processing inequality4 I(Π;Zi) ≤ O(nρ2) · I(Π;Yi).
Combined with the previous item and the fact that I(Π;Y ) ≤ I

(
Π;X(j)

)
by the data processing

inequality, we get that
k∑
i=1

I(Π;Zi) ≤ Õ(nρ2) · I(Π;X(j)) .

• The construction of the Markov chain as defined above implies that the distribution of the tran-
script Π, conditioned on Zi = 1, is close to the distribution of Π conditioned on the input of party
j being drawn from µni . In particular, h2(PΠ, PΠ|X(j)∼µni

) ≈ h2(PΠ, PΠ|Zi=1), where h2 de-
notes the squared Hellinger distance5. Recall that unconditionally, Π is distributed as if all input
comes from µ0. By existing results (Bar-Yossef et al. (2004, Lemma 6.2), Braverman et al. (2016,
Lemma 2) and Jayram (2009)), we have that h2(PΠ, PΠ|X∼µnmi ) ≤ O(1)

∑m
j=1 h2(PΠ, PΠ|X(j)∼µni

)

as well as h2(PΠ, PΠ|Zi=1) ≤ O(1)I(Π;Zi). Together with the previous item, we get that

k∑
i=1

h2(PΠ, PΠ|X∼µnmi ) ≤ Õ(nρ2)

m∑
j=1

I(Π, X(j)). (4)

Since X(1), . . . , X(m) are independent, the right-hand side of Eq. (4) is at most Õ(nρ2)I(Π,X),
which is at most Õ(nρ2) times the communication complexity of the protocol. Also, the left-
hand side of Eq. (4) can be shown to be at least

∑k
i=1 dTV (PΠ, PΠ|X∼µnmi )2/2, which by Eq. (3),

is at least Ω(k). Combining everything, we get that the communication complexity is at least
Ω̃
(
k/
(
nρ2
))

as required.

4. The data processing inequality states that for any Markov chain U → V →W , I(U ;W ) ≤ I(U ;V ). In some cases,
one can show a strong (strict) inequality, as the inequality used here.

5. The squared Hellinger distance between random variables with densities p and q is 1
2

∫ (√
p(x)−

√
q(x)

)2
dx.
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Appendix A. Proofs

A.1. Proof Preliminaries

For any integers 0 ≤ a ≤ b, define
(
b
≤a
)

=
∑a

i=0

(
b
i

)
.

A.1.1. PROBABILITY DISTANCES

We will use two distance functions between probability distributions.

Definition 14 The total variation distance between two probability measures with densities p, q on
the same sample space Ω is defined as

dTV (p, q) =
1

2

∫
x∈Ω
|p(x)− q(x)|dx = sup

F
|P (F )−Q(F )|

where the supremum is over all events.

Definition 15 The squared Hellinger distance between two probability measures with densities p
and q on the same sample space Ω is defined as

h2(p, q) =
1

2

∫
x∈Ω

(√
p(x)−

√
q(x)

)2
dx.

The Hellinger distance is defined as h(p, q) =
√

h2(p, q).

These distances are defined for discrete random variables in a similar manner. Both the total
variation distance and the (non squared) Hellinger distance are f -divergences6 which satisfy the
triangle inequality. Additionally, these distances are polynomially equivalent:

Proposition 16 For any distributions p and q,

h2(p, q) ≤ dTV (p, q) ≤
√

2h(p, q). (5)

6. An f -divergence: a function of two distributions p and q which can be written as
∫
f(dp/dq)dq for a convex function

f with f(1) = 0
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A.1.2. DATA PROCESSING INEQUALITY

We will frequently use the notation PX to denote the distribution of a random variable X , where
PX(x) denotes Pr[X = x]. Additionally, define a channel PY |X as a random function which gets
as an input a member x of some sample space and outputs a random Y according to the distribution
PY |X=x. We can compose a channel PY |X over a distribution PX to get a new distribution, PY |X ◦
PX , the distribution over the output of the channel given that its input is distributed PX . Similarly,
we can compose channels together.

Definition 17 A Markov chainX0 → X1 → · · · → Xn consists of a distribution PX0 and channels
PX1|X0

, . . . , PXn|Xn−1
. It induces a joint distribution PX0···Xn = PX0(X1|X0)···(Xn|Xn−1) accord-

ingly.

The entropy of a random variable X is denoted H(X) and the mutual information between the
random variables X and Y is defined as

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X).

The data processing inequality states that an information cannot increase while being transfered
across a channel. It has two formulations: one in terms of mutual information and one in terms of
f -divergence.

Proposition 18 (Data processing inequality) The following hold:

1. For any Markov chain W → X → Y , I(W ;Y ) ≤ I(W ;X).

2. Let PX1 and PX2 be distributions on the same sample space Ω and let PY |X be a channel
getting its input from Ω. Then for any f -divergence df ,

df (PY |X ◦ PX1 , PY |X ◦ PX2) ≤ df (PX1 , PX2).

A.2. Proof of Theorem 4

Assume a sample space Ω ⊆ {−1, 1}k, and assume a distribution µ0 over Ω which satisfies that for
any i ∈ {1, . . . .k}, the probability for an element x = (x1, . . . , xk) to satisfy xi = 1 equals 1/2.
Given 0 < ρ < 1, one can define the distributions µ1, . . . , µk, where µi(x) = (1+ρxi)µ0(x) for all
x. We say that {µ1, . . . , µk} is a binary centered familiy of distributions (or BCD(ρ) for brevity),
centered around µ0.

We prove Theorem 4 for all CD(ρ) families of distributions, however, it is sufficient to prove this
theorem under a weaker condition on the distributions, namely, that the distributions are BCD(ρ): if
Theorem 4 is correct for all BCD(ρ) distributions then it is correct for all CD(ρ) distributions. This
can be shown using a reduction: for every CD(ρ) family {η1, . . . , ηk}, there is a BCD(ρ) family
{µ1, . . . , µk} and a transformation Pη|µ transforming each µi to ηi, namely, ηi = Pη|µ ◦ µi for all
1 ≤ i ≤ k. This transformation does not change the high order correlations: for all S ⊆ [k],

EX∼µ0
∏
i∈S

(
µi(X)

µ0(X)
− 1

)
= EY∼η0

∏
i∈S

(
ηi(Y )

η0(Y )
− 1

)
, (6)

hence the condition Eq. (1) applies for {µ1, . . . , µk} if and only if it applies for {η1, . . . , ηk}. Given
an input to the µ-problem the parties can privately transform it to an η-input and simulate an η-
protocol.
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Lemma 19 Let {η1, . . . , ηk} be a CD(ρ) family. There exists a BCD(ρ) family {µ1, . . . , µk} and
a channel Pη|µ : Ωµ → Ωη such that for all 1 ≤ i ≤ k, ηi = Pη|µ ◦ µi, where Ωµ and Ωη are
the sample spaces of the µ-family and the η-family respectively. Additionally, Eq. (6) holds for all
S ⊆ [k].

Lemma 19 is prooved in Subsection A.2.3. Assume for the rest of the proof that {µ1, . . . , µk}
is a BCD(ρ) family of distributions. We present two main lemmas. In the first lemma, we assume
a setting that there is just one party which gets some input X ∈ Ωn and outputs Π. We bound the
distance between the distribution of Π conditioned onX being distributed µn0 or µni . The distance is
bounded in terms of the amount of information that Π reveals on X . This lemma contains the main
technical contribution of this paper.

Lemma 20 Let {µ1, . . . , µk} be a BCD(ρ) family on a sample space Ω ⊆ {−1, 1}k centered
around µ0. Let PΠ|X be some channel getting an input X ∈ Ωn. Under the assumptions of Theo-
rem 4 on n, ρ and k,

k∑
i=1

h2(PΠ|X∼µn0 , PΠ|X∼µni ) ≤ Cnρ2 log(k2/(nρ2))(IX∼µn0 (Π;X) + 1),

for some numerical constant C > 0.

Lemma 20 is proved in Subsection A.2.1. The next lemma utilizes results of Jayram (2009) and
Braverman et al. (2016) to show that Lemma 20 implies Thm. 4. The tools developed in the prior
work derive bounds on settings where there is just a single party who sends some output to settings
with multiple communicating parties.

Lemma 21 Let µ0, . . . , µk be probability distributions on the sample space Ω such that for every
channel PΠ|X with input in Ωn:

k∑
i=1

h2(PΠ|X∼µn0 , PΠ|X∼µni ) ≤ β(IX∼µn0 (Π;X) + 1),

for some β > 0. Then any 1/3-error (m,n) protocol identifying µ ∈ {µ1, . . . , µk} has a communi-
cation complexity of at least Ck/β for some numerical constant C > 0.

Lemma 21 is proved in Subsection A.2.2. Combining Lemma 20 and Lemma 21 gives us the
lower bound on the communication complexity in Theorem 4 . To conclude the proof, it remains to
prove that the condition stated at the end of the theorem is indeed sufficient for Eq. (1) to hold. This
is shown in the following lemma:

Lemma 22 For any integer ` ≥ 2, if n ≥ k2(`+1)/(`−1) then the sum of all terms in Eq. (1)
corresponding to |S| > ` is at most 1/(2n).

Proof Under the assumptions of the lemma,∑
S⊆[k] : |S|≥`+1

n−|S|/2ρ−|S|

∣∣∣∣∣EA∼µ0∏
i∈S

(µi(A)/µ0(A)− 1)

∣∣∣∣∣
≤

∑
S⊆[k] : |S|≥`+1

n−|S|/2 =

k∑
r=`+1

(
k

r

)
n−r/2 ≤

k∑
r=`+1

kr

r!
n−r/2 ≤ 1

n

k∑
r=`+1

1

r!
≤ 1

2n
, (7)
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where the LHS of Eq. (7) follows from the definition of a CD(ρ) family: it always holds that
|µi(A)/µ0(A)− 1| ≤ ρ.

Subsection A.2.1 contains the proof of Lemma 20, Subsection A.2.2 contains the proof of
Lemma 21 and Subsection A.2.3 contains the proof of Lemma 19.

A.2.1. PROOF OF LEMMA 20

For the majority of our calculations we will assume that some high probability event holds. In
what follows we give intuitive explanation about this event and why it holds and then more preceise
definition and proof. Recall that the input x ∈ Ωn contains n samples from Ω = {−1, 1}k and
define xj,i to be bit i of sample j, for 1 ≤ i ≤ k and 1 ≤ j ≤ n. Note that xj,i ∈ {−1, 1}, hence,
for any i, any distribution µ over Ω and any t > 0, Hoeffding’s bound implies that

Pr
x∼µn

∣∣∣∣∣∣
n∑
j=1

xj,i − Ex∼µn

 n∑
j=1

xj,i

∣∣∣∣∣∣ > √nt
 ≤ 2e−t

2/2. (8)

In particular, taking t =
√

2 ln(k2) and performing a union bound over i = 1, . . . , n, one obtaines
that with probability at least 1− 2/k, Eq. (8) holds for all i = 1, . . . , k. We would like to replace µ
by µi′ for i′ = 0, 1, . . . , k. Note that for any i′ = 0, 1, . . . , k, it holds that∣∣∣∣∣∣Ex∼µni′

 n∑
j=1

xj,i

∣∣∣∣∣∣ =
∣∣nEy∼µi′ [yi]∣∣ ≤ nρ ≤ √n,

by definition of a BCD(σ) family of distributions and by the requrement ρ ≤
√
n. This implies that

for any i′ = 0, 1, . . . , k,
Pr
x∼µn

i′

[
x ∈ T ′′

]
≥ 1− 2/k, (9)

where T ′′ is the set of all x ∈ Ωn which satisfies that for all i ∈ {1, . . . , k},
∣∣∣∑n

j=1 xj,i

∣∣∣ ≤
√
n
√

2 ln(k2) +
√
n.

If x ∈ T ′′ then for any i′, µni′(x) close to µn0 (x). Indeed, recall that for any y ∈ Ω, µi(y)/µ0(y) =
1 + yiρ. Hence,

µni (x)/µn0 (x) =
n∏
j=1

(1 + ρxj,i) ≈ 1 +
n∑
j=1

ρxj,i = 1±O(ρ
√
n log k),

and recall that ρ = O(1/
√
n log k). To conclude, there exists some set T ′′ such that for any i′ ∈

{0, 1, . . . , k}, µi′(x ∈ T ′′) ≥ 1− 2/k and for any x ∈ T ′′ and any i ∈ {1, . . . , k}, µni (x)/µn0 (x) =
1±O(

√
n log kρ).

Next, we formalize the above intuition and prove a result which holds with a slightly higher
probability. First, we can assume that the constant C ′ in the statement of Theorem 4 is sufficiently
large such that

ρ ≤ 1

2
√
n
(

2
√

2 ln(8k2) + 3
) . (10)
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Denote by T the set of all samples x ∈ Ωn such that for all 1 ≤ i ≤ n,∣∣∣∣µni (x)

µn0 (x)
− 1

∣∣∣∣ ≤ α,
where α is a positive number which satisfies the equation

α =
(

2
√

2 ln(2k2/α2) + 3
)
ρ
√
n. (11)

In the next two lemmas, we will show that α = Θ̃(
√
nρ) and that additionally, for all 0 ≤ i′ ≤ k,

µni′(T c) ≤ α2/k. Hence, we change the above claim by replacing 1− 2/k with 1− α2/k.

Lemma 23 There is a unique positive number α which satisfies this equation and

3
√
nρ ≤ α ≤ min

{
1/2, ρ

√
n
(

2
√

2 ln(2k2/(9nρ2)) + 3
)}

.

Proof Such an α exists: if α → 0 then the RHS of Eq. (11) goes to ∞. If α = 1/2 then, from
Eq. (10), the RHS of Eq. (11) equals(

2
√

2 ln(2k2/α2) + 3
)
ρ
√
n =

(
2
√

2 ln(8k2) + 3
)
ρ
√
n ≤ 1/2.

Hence, by the intermediate value theorem, there exists a value of 0 < α ≤ 1/2 which satisfies
the equation. Since the RHS is monotonically decreasing in α whenever α > 0, there is just one
solution for α > 0.

For the last inequalities, it holds from definition that α ≥ 3ρ
√
n and substituting α with 3ρ

√
n

in its definition implies that

α =
(

2
√

2 ln(2k2/α2) + 3
)
ρ
√
n ≤ ρ

√
n
(

2
√

2 ln(2k2/(9nρ2) + 3
)
.

Lemma 24 For all 0 ≤ i′ ≤ k, µni′(T c) ≤ α2/k.

Proof Define p = α2

k and a =
√

2 ln(2k/p) + 1 and let T ′ be the set of all x ∈ Ωn such that for all
1 ≤ i ≤ k, ∣∣∣∣∣∣

n∑
j=1

xj,i

∣∣∣∣∣∣ ≤ √na.
The proof is divided into two main claims:

1. For all 0 ≤ i′ ≤ k, µni′ ((T ′)
c) ≤ p.

2. It holds that T ′ ⊆ T .
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This two claims suffice to conclude the proof. We start by proving the first claim. Note that from
definition of a BCD(ρ) family of distributions, for any j ∈ [n] and i ∈ [k], PrA∼µn0 [Aj,i = 1] =
PrA∼µn0 [Aj,i = −1] = 1/2. Next, note that for any i ∈ [k], if A ∼ µni′ , then by the definition of a
BCD(ρ) family, PrA∼µn

i′
[Aj,i = 1] ≤ (1 + ρ) PrA∼µn0 [Aj,i = 1] ≤ 1

2(1 + ρ), hence EA∼µn
i′

[Aj,i] ≤
ρ, and similarly, EA∼µn

i′
[Aj,i] ≥ −ρ. We conclude that for any 0 ≤ i′ ≤ k, j ∈ [n] and i ∈

[k],
∣∣∣EA∼µn

i′
[Aj,i]

∣∣∣ ≤ ρ. Hoeffding’s inequality states that if A1, . . . , An are independent random
variables getting values in [−1, 1], then for any β > 0,

Pr

∣∣∣∣∣∣
n∑
j=1

Aj − E
n∑
j=1

Aj

∣∣∣∣∣∣ > √nβ
 ≤ 2e−β

2/2.

Fix 0 ≤ i′ ≤ k and i ∈ [k], and let A be a random variable distributed µni′ . Then,

Pr

∣∣∣∣∣∣
n∑
j=1

Aj,i

∣∣∣∣∣∣ > √na
 ≤ Pr

∣∣∣∣∣∣
n∑
j=1

Aj,i − E
n∑
j=1

Aj,i

∣∣∣∣∣∣+

∣∣∣∣∣∣E
n∑
j=1

Aj,i

∣∣∣∣∣∣ > √na


≤ Pr

∣∣∣∣∣∣
n∑
j=1

Aj,i − E
n∑
j=1

Aj,i

∣∣∣∣∣∣ > √n√2 ln(2k/p)

 (12)

=
p

k
, (13)

where Eq. (12) follows from ρ ≤ n−1/2 (see Eq. (10)) which implies that
∣∣∣E∑n

j=1Aj,i

∣∣∣ ≤ nρ ≤
√
n; and Eq. (13) follows from Hoeffding’s inequality. A union bound over i ∈ [k] implies that

µni′
((
T ′
)c) ≤ k∑

i=1

Pr

∣∣∣∣∣∣
n∑
j=1

Aj,i

∣∣∣∣∣∣ > √na
 ≤ p.

Next, we show that T ′ ⊆ T . Fix x ∈ T ′ and i ∈ [k], and we will show that |µni (x)/µn0 (x)− 1| ≤
α to conclude the proof. Note that

ρ
√
na ≤

(√
2 ln(2k2/α2) + 1

)
ρ
√
n ≤ α/2 ≤ 1/4, (14)

where the second inequality follows from the definition of α and the third inequality follows from
the bound α ≤ 1/2 which Let ` =

∣∣∣∑n
j=1 xj,i

∣∣∣ and b ∈ {−1, 1} be the sign of
∑n

j=1 xj,i (b = 1 if

the sum equals zero). By definition of T ′, ` ≤
√
na. There are n+`

2 values of j for which xj,i = b

and n−`
2 values for which xj,i = −b. It holds that

µni (x)

µn0 (x)
= (1 + bρ)(n+`)/2(1− bρ)(n−`)/2 (15)

= (1− ρ2)(n−`)/2(1 + bρ)`

≤ (1 + ρ)` ≤ (1 + ρ)
√
na ≤ eρ

√
na ≤ 1 + 2ρ

√
na,
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where Eq. (15) follows from the fact that by definition of a BCD(ρ) family, for any x ∈ Ω,
µi(x)/µ0(x) = 1 + ρxi; one before the last inequality follows from 1 + s ≤ es for all s ∈ R;
and the last inequality follows from es ≤ 1 + 2s for all 0 ≤ s ≤ 1 and the from Eq. (14). Bounding
from below,

µni (x)

µn0 (x)
= (1− ρ2)(n−`)/2(1 + bρ)` ≥ (1− ρ2)n/2(1− ρ)

√
na

≥ 1− ρ2n/2− ρ
√
na ≥ 1− ρ

√
n(a+ 1/2), (16)

where the last inequality follows from ρ ≤ n−1/2 which follows from Eq. (10). In conclusion,
Eq. (14) and Eq. (16) imply that ∣∣∣∣µni (x)

µn0 (x)
− 1

∣∣∣∣ ≤ 2aρ
√
n ≤ α, (17)

where the last inequality follows from Eq. (14). This confirms that T ′ ⊆ T as required.

To give intuition for the next part of the proof, assume the false assumption that |µni (x)/µn0 (x)− 1| ≤
α for all x ∈ Ωn (instead of only when x ∈ T ). Define a Markov chain X → Y → Z as follows:
first, X is drawn from µn0 . Then, given X , Y = (Y1, . . . , Yk) ∈ {−1, 1}k is drawn such that

Pr [Yi = 1 | X] =
1

2
+
µni (X)/µn0 (X)− 1

4α

and each bit of Y is distributed independently conditioned on X . Note that due to the assumption
|µni (X)/µn0 (x) − 1| ≤ α it holds that 0 ≤ Pr[Yi = 1 | X] ≤ 1 as required. Next, we define
Z = (Z1, . . . , Zk) ∈ {−1, 1}n as follows: conditioned on Y , each bit Zi equals Yi with probability
1
2(1 + 2α) and otherwise Zi = −Yi; additionally, the bits of Z are independent conditioned on Y .
A simple calculation shows that for any X , Pr[Zi = 1, X] = µni (X)/2. Summing over X , one
obtains that Pr[Zi = 1] = 1/2. Using Bayes’ rule, Pr[X | Zi = 1] = µni (X). To sum up, one
obtains the following properties:

• The random variable X is distributed µn0 . Conditioned on Zi = 1, X is distributed µni .

• The random variable Z is uniform.

• The random variable Zi is a noisy version of Yi.

Due to the fact that |µni (x)/µn0 (x)− 1| ≤ α only for X ∈ T , one cannot define the channel
Y | X as defined above, or otherwise it will not hold that 0 ≤ Pr[Yi = 1 | X] ≤ 1. Hence, we
change the definition of PY |X . Define the function ψ : R→ R by

ψ(s) =


−1 s ≤ −1

s −1 ≤ s ≤ 1

1 s ≥ 1

. (18)

The function ψ should be viewed as “the identity except for some exceptional cases”, where the
exceptional cases correspond to X /∈ T , as will be clear next. Define the channel PY |X as follows:
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given X , each coordinate of Y is set independently to −1 or 1, where for any coordinate i 7,

PY |X(Yi | X) =
1

2
+

1

4
Yiψ

(
µni (X)/µn0 (X)− 1

α

)
. (19)

Note that for X ∈ T , the function ψ behaves as the identity and we obtain the previous defini-
tion of PY |X . The following lemma characterizes the joint distribution PXY Z , which satisfies an
approximate version of the desired properties listed above.

Lemma 25 The following holds for the distribution PXY Z:

1. PXY (X,Y ) = 2−kµn0 (X)
∏k
i=1

(
1 + 1

2Yiψ
(
µni (X)/µn0 (X)−1

α

))
.

2. PXZ(X,Z) = 2−kµn0 (X)
∏k
i=1

(
1 + αZiψ

(
µni (X)/µn0 (X)−1

α

))
.

3. For all x ∈ T , PXZi(X, 1) = µni (x)/2.

4. For all 1 ≤ i ≤ k: ∣∣∣∣PZi(1)− 1

2

∣∣∣∣ ≤ max
0≤i≤k

µni (T c) ≤ α2

k
.

5. For all 1 ≤ i ≤ k: ∣∣∣∣PYi(1)− 1

2

∣∣∣∣ =

∣∣∣∣PZi(1)− 1

2

∣∣∣∣ /(2α) ≤ α

2k
.

Before proving this lemma we will prove an auxiliary lemma.

Lemma 26 Let A → B be a Markov chain, where A,B ∈ {−1, 1} are binary random vari-
ables. Assume that PA(1) = (1 + a)/2 and assume that PB|A is a channel that flips its input with
probability (1− b)/2 for some a, b ∈ [−1, 1]. Then PB(B) = (1 +Bab)/2.

Proof The proof is by calculation:

PB(1) = PAB(1, 1) + PAB(−1, 1) = (1 + a)(1 + b)/4 + (1− a)(1− b)/4 = (1 + ab)/2.

Additionally, PB(−1) = 1− PB(1) = (1− ab)/2.

Proof [Proof of Lemma 25]
We will prove the lemma items one by one. The first item follows from definition of X →

Y . For proving the second item, fix some x ∈ Ωn, and note that conditioned on X = x, each
Yi is binary as defined in Eq. (19). It holds that PZi|Yi is a channel that flips its input Yi with
probability (1 − 2α)/2, therefore applying Lemma 26 with PA = PYi|X=x, PB|A = PZi|Yi , a =
1
2ψ
(
µni (X)/µn0 (X)−1

α

)
and b = 2α, we get that

PZi|X(Zi | x) =
1

2

(
1 + αZiψ

(
µni (x)/µn0 (x)− 1

α

))
. (20)

7. We assume µ0 has full support, otherwise we can remove from Ω all elements x with µ0(x) = 0: by definition of a
BCD(ρ) family, for all 1 ≤ i ≤ k it also holds that µi(x) = 0.

22



DETECTING CORRELATIONS WITH LITTLE MEMORY AND COMMUNICATION

Note that the bits of Z are independent conditioned on X: bits of Yi are independent conditioned
on X and each Zi depends only on Yi. Hence,

PXZ(X,Z) = PX(X)PZ|X(Z | X) = PX(X)

k∏
i=1

PZi|X(Zi | X), (21)

and the second item follows from Eq. (20), Eq. (21) and the fact that PX(X) = µn0 (X) by definition.
The third item is proved as follows:

PXZi(x, 1) = PX(x)PZi|X(1|x)

= µn0 (x)
1

2

(
1 + αψ

(
µni (x)/µn0 (x)− 1

α

))
(22)

= µn0 (x)
1

2

(
1 + α

(
µni (x)/µn0 (x)− 1

α

))
(23)

=
1

2
µni (x),

where Eq. (22) follows from the fact thatX ∼ µn0 by definition ofX and from Eq. (20); and Eq. (23)
follows from the fact that whenever X ∈ T , |µni (X)/µn0 (X)− 1| ≤ α by definition of T , hence by
definition of ψ,

ψ

(
µni (X)/µn0 (X)− 1

α

)
=
µni (X)/µn0 (X)− 1

α
.

To prove the fourth item,

PZi(1) ≥
∑
x∈T

PZiX(1, x) =
1

2
µni (T ) =

1

2
− 1

2
µni (T c), (24)

where the first equation follows from the third item. Additionally,

PZi(1) =
∑
x∈T

PZiX(1, x) +
∑
x/∈T

PZiX(1, x)

≤
∑
x∈T

1

2
µni (x) +

∑
x/∈T

PX(x) (25)

=
1

2
µi(T ) +

∑
x/∈T

µn0 (x) (26)

≤ 1

2
+ µn0 (T c), (27)

where Eq. (25) follows from the third item and Eq. (26) follows from the fact that X ∼ µn0 by
definition. Eq. (24) and Eq. (27) imply that |PZi(1)− 1/2| ≤ max0≤i≤k µ

n
i (T c), and the fourth

item follow from Lemma 24.
The fifth item follows from Lemma 26 and the fact that PZi|Yi flips its input with probability

(1 − 2α)/2: substitute A = Yi, B = Zi, PYi(1) = 1
2(1 + a) and b = 2α. The lemma implies that

PZi(1) = 1
2(1 + ab). Hence,

PYi(1)− 1

2
=
a

2
=
ab

2

1

b
=

(
PZi −

1

2

)
1

2α
.
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Next, we claim that the coordinates of Y are almost independent. An intuitive explanation was
given in Section 4, using the central limit theorem. However, due to the slow convergence guarantees
of the central limit theorem, we did not find how to apply it without requiring ρ to be exponentially
small in k. Hence, we have an ad-hoc proof. It defines two auxiliary random variables, X ′ and
Y ′. The variable X ′ is uniform on {−1, 1}k, and in particular, its coordinates are independent. The
random variable Y ′ is constructed from X ′ the same way that Y is constructed from X . Due to
the fact that Y ′i depends only on X ′i, the coordinates of Y ′ are also independent. We compare the
distribution of Y with the distribution of Y ′ and show that if the high-order correlations between the
coordinates of X are low, then the distribution of Y is similar to the distribution of Y ′. Assumption
Eq. (1) of Theorem 4 assures that these higher order correlations are low. These claims are stated
formally in the next lemma, where we prove that the entropy of Y is almost the entropy of a random
variable uniform over {−1, 1}k.

Lemma 27 There exists some absolute constant C such that

H(Y ) ≥ k − C.

Proof We will show that for all y ∈ {−1, 1}k, PY (y) ≤ C′

2k
for some numerical constant C ′ > 0.

This will imply that

H(Y ) =
∑

y∈{−1,1}k
PY (y) log

1

PY (y)
≥

∑
y∈{−1,1}k

PY (y) log
2k

C ′
= log

2k

C ′
= k − logC ′ (28)

and complete the proof.
First, we give an equivalent definition to the channel PY |X (note the original definition is in

Eq. (19)):

PYi|X(yi|x) =
1

2

1 +
yi
2
ψ

 1

α

 n∏
j=1

(1 + xj,iρ)− 1

 , (29)

where all bits of Y are drawn independently given X . This definition is obtained from the
original definition by substituting µni (x)/µn0 (x) with

∏n
j=1(1 + xj,iρ). Indeed,

µni (x)/µn0 (x) =
n∏
j=1

µi(xj)/µ0(xj) =
n∏
j=1

(1 + xj,iρ),

where the last inequality follows from the definition of a BCD(ρ) family, which requires that if
w = (w1, . . . , wk) ∈ Ω then µi(w)/µ0(w) = 1 + ρwi. We will use this definition of PY |X in this
lemma since it depends only on X and does not depend on µ0, . . . , µk.

Fix some y = (y1, . . . , yk) ∈ {−1, 1}k. Let {µ′1, . . . , µ′k} be the BCD(ρ) family of distri-
butions such that µ′0, its corresponding µ0 distribution, is uniform over {−1, 1}k and µ′1, . . . , µ

′
k

are derived from µ′0 as in the definition of a BCD(ρ) family: for all 1 ≤ i ≤ k and for all
(w1, . . . , wk) ∈ {−1, 1}k,

µi((w1, . . . , wk)) = µ′0((w1, . . . , wk))(1 + wiρ) = 2−k(1 + wiρ).
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Define X ′ and Y ′ to be analogous to X and Y with respect to this family: X ′ ∼ (µ′0)n and
PY ′ = PY |X ◦ PX′ , using the new definition of PY |X from Eq. (29). Since Y ′i is a function of
the i’th column of X ′ and the columns of X ′ are independent, Y ′1 , . . . , Y

′
k are independent. Item 5

of Lemma 25 and Lemma 23 show that |PY ′i (1)− 1/2| ≤ α
2k ≤

1
2k for all 1 ≤ i ≤ k 8, therefore

PY ′(y) =

k∏
i=1

PY ′i (yi) ≤
1

2k

(
1 +

1

k

)k
≤ e

2k
. (30)

We will bound PY (y)/PY ′(y) to complete the proof.
Recall that each row of X is a vector distributed according to µ0 and each row of X ′ is a

vector distributed according to µ′0. Define intermediate random variables X(0), X(1), . . . , X(n)

such that for all 0 ≤ j ≤ n, rows 1 to j of X(j) are distributed according to µ0 and rows j + 1
to n are distributed according to µ′0, where all rows are independent. Define the random variables
Y (0), . . . , Y (n) ∈ {−1, 1}k accordingly, namely Y (j) ∼ PY |X ◦ PX(j) . It holds that Y (0) has the
same distribution as Y ′ and Y (n) is distributed the same as Y .

Fix some 1 ≤ ` ≤ n and we will bound PY (`)(y)/PY (`−1)(y). Let X(`)
` be column ` of

X(`), let X(`)
−` be X(`) without column ` and define X

(`−1)
` and X

(`−1)
−` similarly. Fix some

x−` ∈ {−1, 1}(n−1)×k. For all i ∈ [k], let

pi = Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`

]
=

∑
b∈{−1,1}

Pr
[
X

(`)
`,i = b

∣∣∣X(`)
−` = x−`

]
Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`, X

(`)
`,i = b

]
=

∑
b∈{−1,1}

Pr
[
X

(`)
`,i = b

]
Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`, X

(`)
`,i = b

]
(31)

=
1

2
Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`, X

(`)
`,i = −1

]
+

1

2
Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`, X

(`)
`,i = 1

]
,

(32)

where Eq. (31) follows from the fact that the rows of X(`) are independent, and Eq. (32) follows
from the fact that X(`)

` is distributed µ0, and by definition of a BCD(ρ) family, each bit is uniform

under µ0. Recall that Y (`) = PY |X ◦X(`). It holds that pi = Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`

]
> 0 by

definition of PY |X . Hence, one can define

δi = Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`, X

(`)
`,i = 1

]
/pi − 1,

which implies that

Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`, X

(`)
`,i = 1

]
= pi (1 + δi) . (33)

8. Note that this item proves a corresponding statement on Yi, however, we can also substitute it with Y ′i : if we substitute
µ1, . . . , µk with µ′1, . . . , µ′k, all the requirements of Theorem 4 are satisfied: the only assumption on the family of
distributions is Eq. (1), which the new family µ′1, . . . , µ′k satisfies, but since we haven’t used this assumption yet,
Lemma 25 applies to Y ′i even without requiring the new family to satisfy Eq. (1).

25



DETECTING CORRELATIONS WITH LITTLE MEMORY AND COMMUNICATION

By Eq. (33) and by Eq. (32), for any value of X(`)
`,i ∈ {−1, 1},

Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`, X

(`)
`,i

]
= pi

(
1 +X

(`)
`,i δi

)
. (34)

Furthermore, since Y (`)
i depends only on column i of X(`), for any value of X(`)

` ∈ {−1, 1}k,

Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`, X

(`)
`

]
= pi

(
1 +X

(`)
`,i δi

)
.

Since the bits of Y (`) are independent conditioned on X(`),

Pr
[
Y (`) = y

∣∣∣X(`)
−` = x−`, X

(`)
`

]
=

k∏
i=1

pi

(
1 +X

(`)
`,i δi

)
. (35)

Hence,

Pr
[
Y (`) = y

∣∣∣X(`)
−` = x−`

]
= E

X
(`)
`

[
Pr
[
Y (`) = y

∣∣∣X(`)
−` = x−`, X

(`)
`

]]
= E

X
(`)
`

k∏
i=1

(pi(1 +X
(`)
`,i δi)) (36)

=

(
k∏
i=1

pi

)
EA=(A1,...,Ak)∼µ0

k∏
i=1

(1 +Aiδi) (37)

=

(
k∏
i=1

pi

) ∑
S⊆[k]

EA=(A1,...,Ak)∼µ0

[∏
i∈S

Aiδi

]

=

(
k∏
i=1

pi

) ∑
S⊆[k]

EA=(A1,...,Ak)∼µ0

[∏
i∈S

(µi(A)/µ0(A)− 1) δi/ρ

]
.

(38)

where Eq. (36) follows from Eq. (35), Eq. (37) follows from the fact that X(`)
` ∼ µ0 by definition of

X(`), and Eq. (38) follows from the fact that by definition of a BCD(ρ) family, µi(A) = µ0(A)(1+
Aiρ). It holds that

|δipi| =
1

2

∣∣∣Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`, X

(`)
`,i = 1

]
− Pr

[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`, X

(`)
`,i = −1

]∣∣∣
(39)

=
1

8

∣∣∣∣∣∣ψ
 1

α

(1 + ρ)
∏

1≤j≤n,j 6=`
(1 + (x−`)j,iρ)− 1

− ψ
 1

α

(1− ρ)
∏

1≤j≤n,j 6=`
(1 + (x−`)j,iρ)− 1

∣∣∣∣∣∣ .
(40)

where Eq. (39) follows from Eq. (34) and Eq. (40) follows from the fact that Y (`) = PY |X ◦X(`)

and from the definition of PY |X . If

1

α

(1− ρ)
∏

1≤j≤n,j 6=`
(1 + (x−`)j,iρ)− 1

 ≥ 1
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then by Eq. (40) and by definition of ψ in Eq. (18),

|δipi| =
1

8
|1− 1| = 0. (41)

Otherwise, ∏
1≤j≤n,j 6=`

(1 + (x−`)j,iρ) ≤ α+ 1

1− ρ
≤ 3,

since ρ ≤ α ≤ 1/2 by Lemma 23. Since ψ is 1-Lipschitz, Eq. (40) is at most

1

8α
((1 + ρ)− (1− ρ))

∏
1≤j≤n,j 6=`

(1 + (x−`)j,iρ) ≤ 6ρ

8α
. (42)

By Eq. (41) and Eq. (42), we conclude that |δipi| ≤ 3ρ/(4α). It holds that pi = Pr
[
Y

(`)
i = yi

∣∣∣X(`)
−` = x−`

]
≥

1/4 by definitions of pi and PY |X , and α ≥ 3
√
nρ by Lemma 23, hence

|δi| ≤
3ρ

4αpi
≤ 3ρ

α
≤ 1√

n
.

Hence, Eq. (38) is at most(
k∏
i=1

pi

) ∑
S⊆[k]

n−|S|/2ρ−|S|

∣∣∣∣∣EA∼µ0 ∏
i∈S

(µi(A)/µ0(A)− 1)

∣∣∣∣∣ ≤
(

k∏
i=1

pi

)(
1 +

1

n

)
,

where the last step follows from Eq. (1) and the fact that all terms corresponding to |S| = 1 equal
zero. This concludes that

Pr
[
Y (`) = y

∣∣∣X(`)
−` = x−`

]
≤

(
k∏
i=1

pi

)(
1 +

1

n

)
. (43)

Since Y (`−1) is obtained from X(`−1) the same Y (`) is obtained from X(`) (using the conditioned
probabilities of PY |X ), it holds that

Pr
[
Y (`−1) = y

∣∣∣X(`−1)
−` = x−`, X

(`−1)
`

]
= Pr

[
Y (`) = y

∣∣∣X(`)
−` = x−`, X

(`)
`

]
=

k∏
i=1

pi

(
1 +X

(`)
`,i δi

)
(44)

where the last equation follows from Eq. (35). Since the entries of X(`−1)
` are distributed µ′0, they

are independent, hence

Pr
[
Y (`−1) = y

∣∣∣X(`−1)
−` = x−`

]
= E

X
(`−1)
`

Pr
[
Y (`−1) = y

∣∣∣X(`−1)
−` = x−`, X

(`−1)
`

]
= E

X
(`−1)
`

[
k∏
i=1

pi

(
1 +X

(`)
`,i δi

)]
(45)

=

k∏
i=1

E
X

(`−1)
`

[
pi

(
1 +X

(`)
`,i δi

)]
(46)

=

k∏
i=1

pi (47)
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where Eq. (45) follows from Eq. (44), Eq. (46) follows from the fact that entries of X(`−1)
` are

independent, and Eq. (47) follows from the fact that X(`−1)
` is distributed µ′0 and by definition of

µ′0, each bit of X(`−1)
` is distributed uniformly. Eq. (47) and Eq. (43) imply that

Pr
[
Y (`−1) = y

∣∣∣X(`−1)
−` = x−`

]
=

k∏
i=1

pi ≥
(

1 +
1

n

)−1

Pr
[
Y (`) = y

∣∣∣X(`)
−` = x−`

]
. (48)

Since X(`)
−` and X(`−1)

−` have the same distribution, we can take an expectation over X(`−1)
−` in the

LHS of Eq. (48) and over X(`)
−` in the RHS, and obtain that

PY (`−1)(y) ≥
(

1 +
1

n

)−1

PY (`)(y).

Therefore,

PY (y) = PY (n)(y) ≤
(

1 +
1

n

)n
PY (0)(y) ≤ ePY (0)(y) = ePY ′(y) ≤ e2

2k
,

where the last inequality follows from Eq. (30). Eq. (28) implies that this concludes the proof.

Next, we show a chain of inequalities to conclude the proof. Fix some channel PΠ|X . Using this
channel and PX = µn0 we can define the joint distribution PΠX = PX,(Π|X) and obtain the inverse
channel PX|Π from this joint distribution. We can extend our Markov chain to Π→ X → Y → Z,
where the conditional probability of X conditioned on Π is obtained from the channel PX|Π. The
data processing inequality (Proposition 18) implies that

I(Π;Y ) ≤ I(Π;X). (49)

Lemma 27 enables us to bound
∑k

i=1 I(Π;Yi) in terms of I(Π;Y ). Formally, we obtain the follow-
ing:

k∑
i=1

I(Π;Yi) =
k∑
i=1

(H(Yi)−H(Yi | Π)) (50)

≤ k −
k∑
i=1

(H(Yi | Π)) (51)

≤ k −H(Y | Π) (52)

= k −H(Y ) + I(Π;Y ) (53)

≤ I(Π;Y ) + C (54)

where Eq. (50) is by definition of the mutual entropy9, Eq. (51) follows from the fact that each Yi
is binary hence its entropy is at most 1, Eq. (52) follows from the inequality H(AB | C) ≤ H(A |
C)+H(B | C) for all random variablesA,B,C, Eq. (53) follows from the definition of the mutual
entropy, Eq. (54) follows from Lemma 27 where C is the numeric constant from the lemma.

9. The mutual entropy between two random variablesA andB equals I(A;B) = H(A)−H(A | B) = H(B)−H(B |
A).
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Next, we utilize the structure of the channel PZi|Yi to strongly bound I(Π;Zi) in terms of
I(Π;Yi). Recall that Zi is a noisy version of Yi. There exists a strong data processing for this
channel (Ahlswede and Gács, 1976):

Proposition 28 Let A → B → C be a Markov chain such that B and C are binary random
variables getting values in {−1, 1}. Let 0 ≤ q ≤ 1 be a number and assume that the transition
B → C is defined by C = B with probability (1 + q)/2. Then I(A;C) ≤ q2I(A;B).

Since Π→ Yi → Zi is a Markov chain, applying Proposition 28 with q = 2α we get that

I(Π;Zi) ≤ 4α2I(Π;Yi). (55)

The following lemma by Bar-Yossef et al. (2004, Lemma 6.2), relates the Hellinger distance with
the mutual information.

Lemma 29 Let A and B be random variables such that A is uniform over {−1, 1}. Then

h2(PB|A=−1, PB|A=1) ≤ I(A;B).

We would like to use this lemma in order to bound h2(PΠ|Zi=−1, PΠ|Zi=1) in terms of I(Π;Zi),
however, Zi is not necessarily uniform. On the other hand, Zi is not very biased, hence one can
reduce the case that Zi is not very biased to the case that Zi is uniform, as done in the following
lemma.

Lemma 30 Let A and B be random variables such that A ∈ {−1, 1}. Then

h2(PB|A=−1, PB|A=1) ≤ I(A;B)

2 min(Pr[A = −1],Pr[A = 1])
.

Proof Assume without loss of generality that Pr[A = 1] ≥ Pr[A = −1]. Let D ∈ {0, 1} be a
random variable and we will define a Markov chain D → A → B, extending A → B 10. Define
the distribution of D and the conditional distribution of A (conditioned on D) as follows:

Pr[D = 0] = 2 Pr[A = −1] = 2 min(Pr[A = −1],Pr[A = 1])

Pr[A = 1 | D = 0] = 1/2

Pr[A = 1 | D = 1] = 1.

Note that PA|D ◦ PD = PA as required. Since A is deterministic when D = 1,

I(A;B | D = 1) = H(A | D = 1)−H(A | B,D = 1) = 0− 0 = 0.

Since D → A→ B is a Markov chain, B is independent of D conditioned on A, hence

Pr[D = 0]I(A;B | D = 0) = I(A;B | D) = H(B | D)−H(B | AD)

≤ H(B)−H(B | AD) = H(B)−H(B | A)

= I(A;B), (56)

10. For any two random variablesX and Y one can define a Markov chainX → Y by first drawing X and then drawing
Y conditioned on X .
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using the inequality H(X | Y ) ≤ H(X) for all random variables X,Y . Hence,

h2(PB|A=−1, PB|A=1) = h2(PB|A=−1,D=0, PB|A=1,D=0) (57)

≤ I(A;B | D = 0) (58)

≤ I(A;B)/Pr[D = 0]. (59)

where Eq. (57) follows from the fact that B → Zi → Π is a Markov chain hence Π is independent
of B conditioned on Zi, Eq. (58) follows from Lemma 29 and Eq. (59) follows from Eq. (56).

We apply Lemma 30 by setting A = Zi and B = Π. Lemma 25 and Lemma 23 imply that

1/2−min(Pr[Zi = 1],Pr[Zi = −1]) = |1/2− Pr[Zi = 1]| ≤ α2/k ≤ 1/(4k) ≤ 1/4,

hence, Lemma 30 implies that

h2(PΠ|Zi=1, PΠ|Zi=−1) ≤ 2I(Π;Zi). (60)

Next, we claim that

h2(PΠ, PΠ|Zi=1) ≤ h2(PΠ|Zi=−1, PΠ|Zi=1). (61)

Indeed, PΠ is a convex combination of PΠ|Zi=1 and PΠ|Zi=−1, and one can verify that the following
holds:

Proposition 31 Let µ and ν be two probability distributions. Then, for any 0 ≤ λ ≤ 1,

h((1− λ)µ+ λν, ν) ≤ h(µ, ν).

In the following lemma we use the fact that conditioned on Zi = 1, X is distributed similarly to
µni , to bound h2

(
PΠ, PΠ|X∼µni

)
in terms of h2

(
PΠ, PΠ|Zi=1

)
.

Lemma 32 It holds that

h2
(
PΠ, PΠ|X∼µni

)
≤ 2h2

(
PΠ, PΠ|Zi=1

)
+ 5

α2

k
.

Proof We inform the reader that any Markov chain can be reversed to get a new Markov chain:
if X1 → · · · → X` is a Markov chain then the joint distribution of X1 · · ·X` can be viewed as
a Markov chain X` → · · · → X1. Since Zi → Yi → X → Π is a Markov chain, PΠ|Zi=1 =
PΠ|X ◦ PX|Zi=1 and PΠ|X∼µni = PΠ|X ◦ µni . It holds that

h2
(
PΠ|X∼µni , PΠ|Zi=1

)
= h2

(
PΠ|X ◦ µni , PΠ|X ◦ PX|Zi=1

)
≤ h2

(
µni , PX|Zi=1

)
(62)

≤ dTV
(
µni , PX|Zi=1

)
(63)

=
1

2

∑
x

∣∣µni (x)− PX|Zi=1(x)
∣∣

≤ 1

2

∑
x

∣∣µni (x)− 2PZi(1)PX|Zi=1(x)
∣∣+

1

2

∑
x

∣∣2PZi(1)PX|Zi=1(x)− PX|Zi=1(x)
∣∣ , (64)
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where Eq. (62) follows from the data processing inequality (Proposition 18) for the channelX → Π
and Eq. (63) follows from Proposition 16. We will bound the two terms in Eq. (64) separately. First,

1

2

∑
x

∣∣µni (x)− 2PZi(1)PX|Zi=1(x)
∣∣ =

1

2

∑
x

|µni (x)− 2PXZi(x, 1)|

=
1

2

∑
x/∈T

|µni (x)− 2PXZi(x, 1)| (65)

≤ 1

2

∑
x/∈T

µni (x) +
1

2

∑
x/∈T

2PXZi(x, 1)

≤ 1

2

∑
x/∈T

µni (x) +
∑
x/∈T

PX(x)

=
1

2

∑
x/∈T

µni (x) +
∑
x/∈T

µn0 (x) (66)

=
1

2
µni (X /∈ T ) + µn0 (X /∈ T )

≤ 3

2
α2/k. (67)

where Eq. (65) follows from item 3 of Lemma 25, Eq. (66) follows from the definition of PX and
Eq. (67) follows from Lemma 24. Bounding the second term of Eq. (64), we get:

1

2

∑
x

∣∣2PZi(1)PX|Zi=1(x)− PX|Zi=1(x)
∣∣ = |PZi(1)− 1/2|

∑
x

PX|Zi=1(x) = |PZi(1)− 1/2| ≤ α2

k
,

(68)
where the last inequality follows from the fourth item of Lemma 25. Eq. (68), Eq. (67) and Eq. (64)
imply that

h2
(
PΠ|X∼µni , PΠ|Zi=1

)
≤ 5α2

2k
.

Since the (non-squared) Hellinger distance satisfies the triangle inequality, and (a + b)2 = a2 +
2ab+ b2 ≤ 2a2 + 2b2 for all a, b ∈ R,

h2(PΠ, PΠ|X∼µni ) ≤
(

h(PΠ, PΠ|Zi=1) + h(PΠ|Zi=1, PΠ|X∼µni )
)2

≤ 2h2(PΠ, PΠ|Zi=1) + 2h2(PΠ|Zi=1, PΠ|X∼µni )

≤ 2h2(PΠ, PΠ|Zi=1) + 5
α2

k
.
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To conclude the proof:

k∑
i=1

h2
(
PΠ, PΠ|X∼µni

)
≤ 2

k∑
i=1

h2
(
PΠ, PΠ|Zi=1

)
+ 5α2 (69)

≤ 2
k∑
i=1

h2(PΠ|Zi=−1, PΠ|Zi=1) + 5α2 (70)

≤ 4
k∑
i=1

I(Π;Zi) + 5α2 (71)

≤ 16α2
k∑
i=1

I(Π;Yi) + 5α2 (72)

≤ 16α2I(Π;Y ) + (5 + 16C)α2 (73)

≤ 16α2I(Π;X) + (5 + 16C)α2 (74)

≤ ρ
√
n
(

2
√

2 ln(2k2/(9nρ2)) + 3
)

(16C + 5)(I(Π;X) + 1), (75)

where C is the constant from Lemma 27, Eq. (69) follows from Lemma 32, Eq. (70) follows from
Eq. (61), Eq. (71) follows from Eq. (60), Eq. (72) follows from Eq. (55), Eq. (73) follows from
Eq. (54), Eq. (74) follows from Eq. (49), and Eq. (75) follows from Lemma 23. Note that by
definition X ∼ µn0 , hence PΠ = PΠ|X∼µn0 , which concludes the proof.

A.2.2. PROOF OF LEMMA 21

The core of the proof follows results of Braverman et al. (2016) and Jayram (2009). Let X =(
X(1), . . . , X(m)

)
be a random vector distributed (µn0 )m where for all j ∈ [m], X(j) ∈ Ωn is

the input of player j. Let Π be the transcript of a 1/3-error (m,n) protocol identifying µ ∈
{µ1, . . . , µk}, distributed PΠ|X conditioned on the input of the players being X. Given a vector a =
(a1, . . . , am) ∈ {0, 1, . . . , k}m, let Πa be the random variable denoting the transcript Π when every
player j ∈ [m] receives an independent input distributed µnaj . Formally, Πa ∼ PΠ|X∼(µna1 ,...,µ

n
am).

For any j ∈ [m] and i ∈ [k], let ej,i be the m-entry vector that equals i on coordinate j and all other
coordinates are zero, and let i be the all-i vector.

Since X ∼ µmn0 , for any j ∈ [m], PΠ|X(j) is the distribution of Π conditioned on player j getting
the input X(j) ∈ Ωn while all other players get an independent input distributed µn0 . Note that for
all j ∈ [m], Π0 ∼ PΠ|X(j)∼µn0

, and for all i ∈ [n], Πej,i ∼ PΠ|X(j)∼µni
. Hence, the conditions of

this lemma imply that

m∑
j=1

k∑
i=1

h2(Π0,Πej,i) =
m∑
j=1

k∑
i=1

h2(PΠ|X(j)∼µn0
, PΠ|X(j)∼µni

)

≤
m∑
j=1

β(I(Π;X(j)) + 1). (76)

In order to bound the last term we present a known inequality in information theory.
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Proposition 33 If X(1), . . . , X(m) are independent random variables and Π is a random variable
then

m∑
j=1

I
(

Π;X(j)
)
≤ I

(
Π;X(1) · · ·X(m)

)
.

Proof

I
(

Π;X(1) · · ·X(m)
)

=

m∑
j=1

I
(

Π;X(j) | X(1) · · ·X(j−1)
)

=
m∑
j=1

H
(
X(j) | X(1) · · ·X(j−1)

)
−H

(
X(j) | ΠX(1) · · ·X(j−1)

)
≥

m∑
j=1

H
(
X(j)

)
−H

(
X(j)

∣∣∣Π)
=

m∑
j=1

I
(

Π;X(j)
)
.

where the first equation follows from the chain rule for mutual entropy and the first inequality
follows from the independence of X(1) · · ·X(m) and the fact that H(A | BC) ≤ H(A | B) for any
random variables A,B,C.

Hence, Eq. (76) implies that

m∑
j=1

k∑
i=1

h2(Π0,Πej,i) ≤ β(I(Π;X) +m) ≤ β(H(Π) +m) ≤ β(|Π|+m), (77)

where |Π| is the communication complexity of the protocol. The following Lemma, Braverman
et al. (2016, Lemma 2) lower bounds

∑m
j=1 h2(Π0,Πej,i).

Lemma 34 For any 1 ≤ i ≤ m,

h2(Π0,Πi) ≤ C
m∑
j=1

h2(Π0,Πej,i)

for some numerical constant C > 0.

This and Eq. (77) implies that

k∑
i=1

h2(Π0,Πi) ≤ Cβ(|Π|+m). (78)

The next lemma states that for any protocol error ε < 1/2, the LHS of Eq. (78) is Ω(k).
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Lemma 35 Assume Π is a transcript of a protocol with a worst-case error (over µi) of at most
ε < 1/2. Then there exists a subset S ⊆ [k] of size |S| = k − 1 such that for all i ∈ S,

h2(Π0,Πi) ≥
(1− 2ε)2

8
.

In particular,
k∑
i=1

h2(Π0,Πi) ≥
(k − 1)(1− 2ε)2

8
.

Proof First, note that for any i 6= i′ ∈ [k], dTV (Πi,Πi′) ≥ 1− 2ε. Indeed, fix some i 6= i′ and let
A be the set of all values of Π such that the protocol outputs i given these values. Since the protocol
has ε-error, Pr [Πi ∈ A] ≥ 1 − ε and Pr [Πi′ ∈ A] ≤ ε. Hence, by definition of the total variation
distance,

dTV (Πi,Πi′) ≥ Pr [Πi ∈ A]− Pr [Πi′ ∈ A] ≥ 1− 2ε. (79)

Assume for contradiction that there are i 6= i′ ∈ [k] such that

h2(Π0,Πi),h
2(Π0,Πi′) <

(1− 2ε)2

8
.

Then, since the Hellinger distance h() obeys the triangle inequality and by Proposition 16,

dTV (Πi,Πi′) ≤
√

2h(Πi,Πi′) ≤
√

2h(Π0,Πi) +
√

2h(Π0,Πi′) < 1− 2ε,

in contradiction to Eq. (79).

Lemma 35 and Eq. (78) conclude that any 1/3-error protocol has a communication complexity
of at least Ck/β − m, for some numerical constant C > 0. We conclude by showing that the
communication complexity is at least Ck/(2β). Assume for contradiction that the communication
complexity is less than Ck/(2β). Denote the parties in the protocol by 1, . . . ,m and assuming
without loss of generality that party 1 is always the first to talk, party 2 is the first party to talk
among parties 2, . . . ,m, party 3 talks first among parties 3, . . . ,m etc.11, then only a subset of
parties 1, . . . , bCk/(2β)c participates in the protocol, hence we can assume that m ≤ Ck/(2β).
The communication complexity is at least Ck/β −m ≥ Ck/(2β), which concludes the proof.

A.2.3. PROOF OF LEMMA 19

We start by defining an opposite channel Pµ|η : Ωη → {−1, 1}k: given some y ∈ Ωη, the channel
sends it to x = (x1, . . . , xk) ∈ {−1, 1}k, where each bit of x is set independently, such that:

(1 + ρ)Pµ|η(xi = 1 | y) + (1− ρ)Pµ|η(xi = −1|y) = ηi(y)/η0(y).12 (80)

11. The symmetries between the parties imply that if at some point in the protocol a new party is speaking, one can
assume that this party has the lowest index among all parties that have not spoken yet.

12. To avoid issues of devision by 0, assume that η0 has full support. Indeed, one can remove from Ωη all elements y for
which η0(y) = 0 to obtain Ω′η and use Ω′η as the joint sample space of η0, . . . , ηk. By definition of a CD(ρ) family,
ηi(y) = 0 for any y ∈ Ωη \ Ω′η and for all i ∈ [k], hence η1, . . . , ηk can be viewed as probability distributions over
Ω′η .
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Such a definition is possible since, by the definition of a CD(ρ) family, 1−ρ ≤ ηi(y)/η0(y) ≤ 1+ρ.
Define µ0 = Pµ|η ◦ η0 and define Ωµ as the support of µ0. Note that taking an expectation over
y ∼ η0 in Eq. (80), one obtains that

(1 + ρ)µ0(xi = 1) + (1− ρ)µ0(xi = −1) = 1.

Hence, µ0(xi = 1) = µ0(xi = −1) = 1/2 for all i ∈ [k], as required by the definition of a
BCD(ρ) family. For i = 1, . . . , k, define the distribution µi as in the definition of a BCD(ρ)
family: µi(x) = µ0(x)(1 + ρxi). It holds that {µ1, . . . , µk} is a BCD(ρ) family, as required.

Define the channel Pη|µ : Ωµ → Ωη as the channel sending µ0 to η0, namely,

Pη|µ(y | x) =
Pµ|η(x | y)η0(y)

µ0(x)

We will show that ηi = Pη|µ ◦ µi for any 1 ≤ i ≤ k. Indeed,

(Pη|µ ◦ µi)(y) =
∑
x∈Ωµ

µi(x)Pη|µ(y | x)

=
∑
x∈Ωµ

µi(x)
Pµ|η(x | y)η0(y)

µ0(x)

=
∑
x∈Ωµ

(1 + ρxi)Pµ|η(x | y)η0(y) (81)

= η0(y)
∑

b∈{−1,1}

(1 + bρ)Pµ|η(xi = b | y)

= η0(y)
ηi(y)

η0(y)
, (82)

where Eq. (81) follows from the definition of µi and Eq. (82) follows from Eq. (80). In order to
conclude the proof of this lemma, it remains to prove Eq. (6). Here is an auxiliary lemma:

Lemma 36 Let U = (U1, . . . , Uk), V = (V1, . . . , Vk) ∈ Rk be random vectors. If for any possible
value u of U , E[V | U = u] = u and V1, . . . , Vk are independent conditioned U = u, then for any
subset S ⊆ [k],

E

[∏
i∈S

Ui

]
= E

[∏
i∈S

Vi

]
.

Proof Fix some set S ⊆ [k]. It holds that:

E

[∏
i∈S

Vi

]
= E

[
E

[∏
i∈S

Vi

∣∣∣∣∣ U
]]

= E

[∏
i∈S

E [Vi | U ]

]
= E

[∏
i∈S

Ui

]
.

Let X ∼ µ0 and Y ∼ η0. We conclude the proof of Eq. (6) by applying Lemma 36 with
Ui = ηi(Y )/η0(Y ) − 1 and Vi = µi(X)/µ0(X) − 1. Eq. (80) implies that the condition E[V |
U = u] = u holds. By definition of Pµ|η, the bits of X are independent conditioned on U . By
definition of µi, Vi = ρXi, hence V1 · · ·Vk are independent conditioned on U , which implies that
all conditions of Lemma 36 hold.
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A.3. Proofs from Subsection 3.2

Fix some 0 < ρ < 1 and define Ω = {−1, 1}d for some d ≥ 2. Let I be the set of all nonempty
subsets of {1, . . . , d}. For any I ∈ I and 0 < ρ < 1, let µI,ρ be the distribution over Ω defined by

µI,ρ((x1, . . . , xd)) = 2−d(1 + ρ
∏
i∈I

xi).

We will write µI whenever ρ is implied from the context. Note that µI is almost uniform, with a
small bias towards inputs that contain an even number of 1-values on I . For any subset U ⊆ I and
0 < ρ < 1, let PU ,ρ = {µI,ρ : I ∈ U}. Note that PU ,ρ is a CD(ρ) family and the corresponding µ0

distribution is the uniform distribution over Ω.

A.3.1. PROOF OF THEOREM 9

Let A = (A1, . . . , Ad) ∼ µ0 and for any I ∈ I, define the random variable BI as a function of A:

BI =
∏
i∈I

Ai. (83)

Note that for all 0 < ρ < 1,
BI = (µI,ρ(A)/µ0(A)− 1)/ρ, (84)

a term which appears in Eq. (1) of Theorem 4. The next lemma states what are the correlations
between these random variables BI .

Lemma 37 Let J ⊆ I. Then

E

[∏
I∈J

BI

]
=

{
1 4J = ∅
0 otherwise

,

where 4J is the symmetric difference between all sets in J which contain all elements i ∈
{1, . . . , d} which appear in an odd number of sets from J . In particular, if I1, I2 ∈ I are dis-
tinct sets then EBI1BI2 = 0.

Proof Note that

E
∏
I∈J

BI = E
∏
I∈J

∏
i∈I

Ai = E
∏
i∈4J

Ai =
∏
i∈4J

EAi =

{
1 4J = ∅
0 otherwise

where the first equation follows from the definition of BI , the third equation follows from the fact
that the coordinates of A are independent and and the empty product is regarded as 1.

Lemma 37 states that theBI are pairwise independent, hence, for any subset U ⊆ I and suitable
values of n and ρ one can apply Theorem 4 on the family of distributions PU ,ρ: Lemma 37 imply
that all the terms in Eq. (1) corresponding to |S| = 2 are zero, hence Thm. 4 can be applied for any
n ≥ k6 (and a suitable ρ). This proves Theorem 9.
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A.3.2. PROOF OF LEMMA 8

By definition of µI ,

Ex∼µI
∏
i∈I′

xi =
∑

x∈{−1,1}d
µI(x)

∏
i∈I′

xi

=
∑

x∈{−1,1}d
2−d(1 + ρ

∏
i∈I

xi)
∏
i∈I′

xi

= EX∼µ0(1 + ρ
∏
i∈I

Xi)
∏
i∈I′

Xi (85)

=
∏
i∈I′

EX∼Uniform({−1,1}) [Xi] + ρ
∏

i∈I4I′
EX∼Uniform({−1,1}) [Xi] (86)

= ρ
∏

i∈I4I′
EX∼Uniform({−1,1}) [Xi] (87)

=

{
ρ I = I ′

0 I 6= I ′

where Eq. (85) and Eq. (86) follow from the fact that µ0 is the uniform measure over {−1, 1}d and
Eq. (87) follows from the fact that I ′ 6= ∅.

A.4. Proof of Theorem 12

First, we give an outline to the proof. Recall that ηI,σ is defined as the Gaussian distribution over Rd
with mean zero and its covariance matrix, ΣI,σ, is almost the identity, except for two coordinates,
i and j, with a covariance of σ. These coordinates satisfy I = {i, j}. Denote by η0 the Gaussian
distribution over Rd with zero mean and its covariance, Σ0, is the identity matrix. For any x ∈ Rn,
let ηI,σ(x) denote the density of ηI,σ on x.

We start with some preliminaries in Subsection A.4.1. Then, we show that for any I 6= I ′, ηI,σ
and ηI′,σ are pairwise uncorrelated with respect to η0 in the following way:

EX∼η0
[(

ηI,σ(X)

η0(X)
− 1

)(
ηI′,σ(X)

η0(X)
− 1

)]
= 0,

which is equivalent to

EX∼η0
[
ηI,σ(X)

η0(X)

ηI′,σ(X)

η0(X)

]
= 1.
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This is proved by taking an integral and calculating a determinant. We denote Σ−1
I,I′ = Σ−1

I,σ +

Σ−1
I′,σ − Σ−1

0 . The following holds:

EX∼η0
[
ηI,σ(X)

η0(X)

ηI′,σ(X)

η0(X)

]
=

∫
x∈Rd

ηI(x)ηI′(x)

η0(x)
dx

=

∫
x∈Rd

1

(2π)d/2
√

det(ΣI,σ) det(ΣI′,σ)
exp

(
−1

2
xtΣ−1

I,I′x

)
dx

=

√
det(ΣI,I′)√

det(ΣI,σ) det(ΣI′,σ)

∫
x∈Rd

1

(2π)d/2
√

det(ΣI,I′)
exp

(
−1

2
xtΣ−1

I,I′x

)
dx

(88)

=

√
det(ΣI,I′)√

det(ΣI,σ) det(ΣI′,σ)
, (89)

where Eq. (89) follows from the fact that the integrand in Eq. (88) is a density function of a normal
distribution with mean zero and covariance ΣI,I′ . The term in Eq. (89) equals 1 for any I 6= I ′, as
required. In the proof we also calculate higher order correlations, namely,

EX∼η0

[(
r∏
i=1

ηIi,σ(X)

η0(X)
− 1

)]
, (90)

for distinct I1, . . . , Ir. In order to calculate this expectation, we define the matrix Σ−1
I1,...,Ir

in Eq. (93)
similarly to Σ−1

I,I′ . In Lemma 43 we prove some properties of Σ−1
I1,...,Ir

and in Lemma 44 we show
that Eq. (90) equals zero for some collections I1, . . . , Ir. These two lemmas and other auxiliaries
appear in Subsection A.4.2.

Note that we cannot apply Thm. 4 directly on the family of Gaussian distributions: the theorem
requires that for any x ∈ Rd, |ηI,σ(x)/η0(x) − 1| ≤ ρ for some ρ > 0, which is incorrect for
the Gaussian distributions. Hence, we apply it on a family of truncated normal distributions, in
Subsection A.4.3. The truncated Gaussian, ηI,σ,R, is defined as a truncation of ηI,σ to [−R,R]d,
where R is logarithmic in the problem parameters. Indeed, it holds that |ηI,σ(x)/η0(x)−1| ≤ ρ for
some ρ = Õ(σ). Additionally, we show that due to the fact that the truncated Gaussians are almost
identical to the Gaussian distributions, their higher order correlations (Eq. (90)) are almost identical
to those of Gaussian distributions. Hence, one can apply Thm. 4 as required.

Lastly, in Subsection A.4.4 we show that a communication lower bound on learning a truncated
Gaussian implies a lower bound on learning a non-truncated Gaussian: due to the fact that high
deviations in normal distributions are rare, with high probability all samples fall within [−R,R]d.
In that case, one cannot learn with little communication.

A.4.1. PRELIMINARIES

The next proposition states some basic properties of the determinant (denoted det).

Proposition 38 The following hold for any matrix M ∈ Rn×n:

1. det(cM) = cn detM for any c ∈ R.
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2. If the matrix M can be written as M =

(
A C
0 B

)
, where A ∈ Rn1×n1 , B ∈ Rn2×n2 ,

C ∈ Rn1×n2 and the 0-block is of size n2 × n1 for some integers n1 and n2 satisfying
n1 + n2 = n, then detM = detAdetB.

3. Assume that M , M1 and M2 are n× n matrices which are identical except for column i (for
some 1 ≤ i ≤ n), such that column i of M1 + M2 equals column i of M . Then detM =
detM1 + detM2.

4. If A and B are squared matrices with the same dimension, then det(AB) = detAdetB. In
particular, if A is invertible then detAdetA−1 = det(AA−1) = det I = 1.

5.

detM =

{∑n
i=1(−1)i−1M1i detM−1,−i n > 1

M11 n = 1

where M−1,−i is the (n− 1)× (n− 1) matrix obtained from M by removing its first row and
column i.

Next, we define a positive definite matrix:

Definition 39 Fix an integer ` ≥ 1. A squared matrix M ∈ R`×` is positive definite if one of the
equivalent conditions hold:

1. For any nonzero vector v ∈ R`, vtMv > 0.

2. All the eigenvalues of M are positive.

Note that any positive definite matrix does not have the eigenvalue 0, hence it is invertible. Note
that applying the same permutation on the rows and the columns of a matrix keeps many of its
properties:

Proposition 40 Fix an integer ` ≥ 1, a matrix M ∈ R`×` and a permutation π : [`] → [`]. Let
π(M) be the matrix obtained after applying π on both the rows and columns ofM : (π(M))π(i),π(j) =
Mi,j . The following hold:

1. detπ(M) = detM .

2. π(M) is positive definite if and only if M is positive definite.

3. If M is invertible then π(M) is invertible and π(M−1) = (π(M))−1.

Next, we define a multivariate normal distribution:

Definition 41 For any integer ` ≥ 1 and a symmetric positive definite matrix Σ ∈ R`×`, the `-
variate normal distribution with mean 0 and covariance Σ is defined by the density function

1√
det(2πΣ)

exp
(
−xtΣ−1x/2

)
as a function of x ∈ R`.

For any ` ≥ 1, let I` be the identity matrix of dimension `× `.
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A.4.2. AUXILIARY TECHNICAL RESULTS

Let η0 be the normal distribution in Rd with zero mean and its covariance matrix Σ0 is the identity
matrix. Recall the definition of ΣI,σ and ηI,σ from Subsection 3.3. They will be written as ΣI and
ηI when σ is clear from context.

Lemma 42 For any I ∈ I2 and 0 < σ < 1, ΣI,σ is symmetric, positive definite, det(ΣI,σ) = 1−σ2

and

Σ−1
I,σ =

1

1− σ2


1 i = j, i ∈ I
1− σ2 i = j, i /∈ I
−σ i 6= j, I = {i, j}
0 i 6= j, I 6= {i, j}

. (91)

In particular, there exists a random vector with mean 0 and covariance ΣI,σ.

Proof By proposition 40 it is sufficient to assume that I = {1, 2}. Then, ΣI is a block matrix

ΣI =

(
A 0
0 Id−2

)
,

where

A =

(
1 σ
σ 1

)
.

It holds that

Σ−1
I =

(
A−1 0

0 I−1
d−2

)
where

A−1 =
1

1− σ2

(
1 −σ
−σ 1

)
,

which concludes the proof for the formula of A−1. To calculate the determinant, note that det ΣI =
detAdet Id−2 = 1− σ2. Lastly, ΣI,σ is positive definite because it is strictly diagonally dominant
with positive diagonal entries and symmetric.

Fix b = 5, and assume that the constant C in Theorem 12 is sufficiently small to ensure that

4b2σ

1− σ2
≤ 1/2. (92)

For any integer 2 ≤ r ≤ b and any distinct sets I1, . . . , Ir ∈ I2, define

ΣI1,...,Ir :=

(
Id +

r∑
i=1

(
Σ−1
Ii
− Id

))−1

. (93)

The following lemma shows that ΣI1,...,Ir exists and estimates some of its properties. Given a matrix
M let max|M | denote the maximal absolute value of an element of M .

Lemma 43 Fix distinct pairs I1, . . . , Ir ∈ I2 for some 2 ≤ r ≤ b. The matrix ΣI1,...,Ir defined in
Eq. (93) exists and satisfies:
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1. ΣI1,...,Ir is symmetric and positive definite.

2. det (ΣI1,...,Ir) ≤ 2.

3. max |ΣI1,...,Ir | ≤ 2.

In particular, there exists a multivariate normal distribution with mean 0 and covariance ΣI1,...,Ir .

Proof Since each Ii is a set of two elements, |∪ri=1Ii| ≤ 2r. By Proposition 40, one can assume
that

⋃r
i=1 Ii ⊆ [2r]. Define

Σ−1
I1,...Ir

= Id +
r∑
i=1

(
Σ−1
Ii
− Id

)
.

By Lemma 42, for any I ∈ I2,

(Σ−1
I − Id)(i, j) =

1

1− σ2


σ2 i = j ∈ I
−σ {i, j} = I

0 otherwise

. (94)

Hence,

Σ−1
I1,...,Ir

(i, j) =


1 + σ2

1−σ2

∑r
i=1|{i} ∩ Ii| i = j

− σ
1−σ2 {i, j} = Ii for some 1 ≤ i ≤ r

0 otherwise

. (95)

By the assumption
⋃r
i=1 Ii ⊆ [2r],

Σ−1
I1,...,Ir

=

(
A 0
0 Id−2r

)
(96)

where A ∈ R(2r)×(2r), Id−2r is the identity matrix of size (d − 2r) × (d − 2r) and the two zero
blocks are of sizes (2r) × (d − 2r) and (d − 2r) × (2r). We will start by showing that Σ−1

I1,...,Ir
is

positive definite. Fix some nonzero v ∈ Rd. Let vA be the vector containing the first 2d coordinates
of v and let vI be the vector containing its remaining coordinates. It holds that

vtΣ−1
I1,...,Ir

v = vtAAvA + vtIId−2rvI

=

2r∑
i=1

2r∑
j=1

Ai,jvivj + ‖vI‖22

=
2r∑
i=1

Ai,iv
2
i +

∑
i,j∈{1,...,2r}

i 6=j

Ai,jvivj + ‖vI‖22

≥
2r∑
i=1

v2
i −

σ

1− σ2

2r∑
i=1

2r∑
j=1

|vivj |+ ‖vI‖22

= ‖vA‖22 −
σ

1− σ2
‖vA‖21 + ‖vI‖22

≥
(

1− 2rσ

1− σ2

)
‖vA‖22 + ‖vI‖22 (97)
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where Eq. (97) follows from the fact that for any vector v in R`, ‖v‖1 ≤
√
`‖v‖2. By the assumption

of this lemma, 1 − 2rσ/(1 − σ2) > 0. Since v is nonzero, either ‖vA‖2 > 0 or ‖vI‖2 > 0, which
implies that the term in Eq. (97) is positive. By definition of positive definiteness (Definition 39),
this implies that Σ−1

I1,...,Ir
is positive definite. In particular, this implies that Σ−1

I1,...,Ir
is invertible.

The positive definiteness of ΣI1,...,Ir follows from the positive definiteness of Σ−1
I1,...,Ir

: a matrix
M is positive definite if and only if M−1 is positive definite.

Note that the calculation in Eq. (97) implies that lowest eigenvalue ofA is at least 1−2rσ/
(
1− σ2

)
.

Since the determinant is the multiplication of all eigenvalues, and using Eq. (96), it holds that

det Σ−1
I1,...,Ir

= detA ≥
(
1− 2rσ/

(
1− σ2

))2r ≥ 1− 4r2/
(
1− σ2

)
≥ 1/2,

where the last inequality follows from Eq. (92) and the assumption of this lemma that r ≤ b. This

concludes the bound on det ΣI1,...,Ir =
(

det Σ−1
I1,...,Ir

)−1
.

The matrix ΣI1,...,Ir is symmetric due to the fact that Σ−1
I1,...,Ir

is symmetric (see Eq. (96) and
Eq. (95)) and the fact that for any symmetric invertible matrix M , M−1 is symmetric.

Equation Eq. (95) implies that

|(A− I2r) (i, j)| ≤

{
σ2

1−σ2 r ≤ σ
1−σ2 i = j

σ
1−σ2 i 6= j

(98)

using the assumption using Eq. (92) and the assumption r ≤ b which imply σr ≤ σb ≤ 1. By
induction on ` = 1, 2, . . . , one obtains that

max|(A− I2r)
`| ≤ σ

1− σ2

(
2rσ

1− σ2

)`−1

. (99)

For ` = 1 it follows from Eq. (98) and for ` > 1:

max
∣∣∣(A− I2r)

`
∣∣∣ = max

∣∣∣(A− I2r)
`−1(A− I2r)

∣∣∣ ≤
2rmax

∣∣∣(A− I2r)
`−1
∣∣∣max |A− I2r| ≤

σ

1− σ2

(
2rσ

1− σ2

)`−1

where the first inequality follows from the formula for matrix multiplication. Given a squared matrix
M its Neumann series is defined as

∞∑
`=0

M `.

If the Neumann series of M converges then (I−M)−1 exists and equals the Neumann series of M
(I is the identity matrix). Substituting M = I2r −A, inequality Eq. (99) implies that

∞∑
`=0

max
∣∣∣(I2r −A)`

∣∣∣
∞
≤
∞∑
`=0

(
2rσ

1− σ2

)`
≤ 1

1− 2rσ/(1− σ2)
≤ 2, (100)

hence, the series converges in absolute value, therefore it converges and equals (I2r−(I2r−A))−1 =
A−1. In particular, max|A−1| ≤ 2. Using Eq. (96) one can verify that

ΣI1,...,Ir =

(
A−1 0

0 Id−2r

)
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which concludes the proof.

Fix I1, . . . , Ir ∈ I2 for some r ≤ b. It holds that

η0(x)
r∏
i=1

ηIi(x)

η0(x)
=

1√
det(2πΣ0)

exp

(
−1

2
xtΣ−1

0 x

) r∏
i=1

1√
1− σ2

exp

(
−1

2
xt
(
Σ−1
I − Σ−1

0

)
x

)
(101)

= (2π)−d/2(1− σ2)−r/2 exp

(
−1

2
xt

(
r∑
i=1

Σ−1
Ii
− (r − 1)Σ−1

0

)
x

)

=

√
det ΣI1,...,Ir

(1− σ2)r
1√

det(2πΣI1,...,Ir)
exp

(
−1

2
xtΣ−1

I1,...,Ir
x

)
(102)

using det ΣIi = 1 − σ2 from Lemma 42. In particular, the RHS of Eq. (101) is the density of a
d-variate normal distribution with mean 0 and covariance ΣI1,...,Ir , multiplied by a constant. Hence,

EX∼η0
r∏
i=1

ηIi(X)

η0(X)
=

∫
x∈Rd

η0(x)
r∏
i=1

ηIi(x)

η0(x)

=

√
det ΣI1,...,Ir

(1− σ2)r

∫
x∈Rd

1√
det(2πΣI1,...,Ir)

exp
(
−xtΣ−1

I1,...,Ir
x/2
)

(103)

=

√
det ΣI1,...,Ir

(1− σ2)r
, (104)

where the last equation holds since the integral in Eq. (103) is over the density function of a proba-
bility distribution.

Lemma 44 Assume that I1, . . . , Ir ∈ I2 for some r ≤ b such that there exists j ∈ {1, . . . , d}
which satisfies j /∈

⋃r−1
i=1 Ii and j ∈ Ir. Then

EX∼η0
r∏
i=1

(
ηIi(X)

η0(X)
− 1

)
= 0. (105)

Proof We will start by showing that det Σ−1
I1,...,Ir

= 1
1−σ2 det Σ−1

I1,...,Ir−1
. By Proposition 40 one

can assume that the element j unique to Ir is 1 and that Ir = {1, 2}. Then, Eq. (95) implies that

Σ−1
I1,...,Ir−1

=
1

1− σ2

(
1− σ2 0

0 A

)
where A ∈ Rd×d and the two 0-blocks contain d− 1 zeros. From items 1 and 2 of Proposition 38,

det Σ−1
I1,...,Ir−1

= (1− σ2)−d(1− σ2) detA. (106)

Additionally, from Eq. (93) and Eq. (94),
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Σ−1
I1,...,Ir

= Σ−1
I1,...,Ir−1

+ Σ−1
Ir
− Σ−1

0 =
1

1− σ2

 1 −σ 0
−σ A00 + σ2 A01

0 A10 A11

 , (107)

where

A =

(
A00 A01

A10 A11

)
such that A00 ∈ R, A11 ∈ R(d−2)×(d−2), A01 ∈ R1×(d−2) and A10 ∈ R(d−2)×1. Additionally,
the two zero blocks in Eq. (107) contain d − 2 zeros and the 1 and −σ blocks contain one entry.
Proposition 38 imply that

(1− σ2)r det Σ−1
I1,...,Ir

= det

 1 −σ 0
−σ A00 + σ2 A01

0 A10 A11

 (108)

= det

(
A00 + σ2 A01

A10 A11

)
− (−σ) det

(
−σ A01

0 A11

)
(109)

= det

(
A00 A01

A10 A11

)
+ det

(
σ2 A01

0 A11

)
− σ2 detA11 (110)

= detA. (111)

where Eq. (108) follows from item 1 of Proposition 38, Eq. (109) follows from item 5, Eq. (110)
follows from items 3 and 2 and Eq. (111) follows from item 2. Equations Eq. (106) and Eq. (111)
imply that

det Σ−1
I1,...,Ir

= (1− σ2)−1 det Σ−1
I1,...,Ir−1

,

hence
det ΣI1,...,Ir = (1− σ2) det ΣI1,...,Ir−1 ,

therefore Eq. (104) implies that

EX∼η0
r∏
i=1

ηIi(X)

η0(X)
= EX∼η0

r−1∏
i=1

ηIi(X)

η0(X)
. (112)

Note that Eq. (112) can be applied when substituting {1, . . . , r − 1} with any subset, namely, for
any S ⊆ {1, . . . , r − 1},

EX∼η0
∏

i∈S∪{r}

ηIi(X)

η0(X)
= EX∼η0

∏
i∈S

ηIi(X)

η0(X)
. (113)

Indeed, for any such S, {Ii}i∈S∪{r} satisfy the conditions of Lemma 44. To conclude the proof,
note that

EX∼η0
r∏
i=1

(
ηIi(X)

η0(X)
− 1

)
=

∑
S⊆{1,...,r}

(−1)r−|S|
∏
i∈S

ηIi(X)

η0(X)

=
∑

S⊆{1,...,r−1}

(−1)r−|S|

∏
i∈S

ηIi(X)

η0(X)
−

∏
i∈S∪{r}

ηIi(X)

η0(X)


= 0,
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where the last equation follows from Eq. (113).

A.4.3. APPLYING THEOREM 4 FOR TRUNCATED GAUSSIANS

We apply Theorem 4 on a family of truncated normal distributions, which is a CD(ρ) family for
some small value of ρ. Recall that b is a constant integer defined above (b = 5). Define

p = σb
(

64bn

(
n

≤ b

)
2b
)−1

(114)

and

R = max

(√
2 ln(2dmn),

√
4 ln

2d

p
,
√

2 ln(d/σ), 1

)
. (115)

For all 0 < σ < 1 and I ∈ I2 ∪ {0}, let ηI,σ,R be the truncation of ηI,σ to [−R,R]d, namely,

ηI,σ,R(x) =
1

ηI,σ ([−R,R]d)

{
ηI,σ(x) x ∈ [−R,R]d

0 x /∈ [−R,R]d.

We write shortly ηI,R when σ is implied from context. Define Gσ,R = {ηI,σ,R : I ∈ I2}.
Here is a well known tail bound for the normal distribution.

Proposition 45 Let W be a random variable distributed normally with mean 0 and variance σ2.
Then, for any w > 0,

Pr[|W | ≥ w] ≤ 2e−w
2/(2σ2)

(w/σ)
√

2π
. (116)

Proof Start by assuming that σ = 1. Then,

Pr[|W | ≥ w] = 2

∫ ∞
t=w

1√
2π
e−t

2/2 ≤ 2

∫ ∞
t=w

t

w

1√
2π
e−t

2/2 =
2e−w

2/2

w
√

2π
.

Assuming that σ 6= 1, one can apply Eq. (116) on W/σ which is distributed normally with mean 0
and variance 1 and obtain

Pr[|W | ≥ w] = Pr

[∣∣∣∣Wσ
∣∣∣∣ ≥ w

σ

]
≤ 2e−w

2/(2σ2)

(w/σ)
√

2π
.

By substituting w = R, and recalling that R ≥ 1 by definition, we get that for any normally
distributed W with zero mean,

Pr[|W | ≥ R] ≤ Var(W )1/2e−
1
2
R2/Var(W ). (117)

In particular, this implies that if X = (X1, . . . , Xd) ∼ ηI for some I ∈ I2 ∪ {0},

Pr
[
X /∈ [−R,R]d

]
≤

d∑
i=1

Pr [|Xi| ≥ R] ≤ de−R2/2 ≤ min

(
1

2mn
, p, σ

)
. (118)
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Lemma 46 Let 1 ≤ r ≤ b be an integer and let I1, . . . , Ir ∈ I2 be distinct sets. Then∣∣∣∣∣EX∼η0
r∏
i=1

(
ηIi(X)

η0(X)
− 1

)
− EX∼η0,R

r∏
i=1

(
ηIi,R(X)

η0,R(X)
− 1

)∣∣∣∣∣ ≤ σb

4n
(
n
≤b
) .

Proof We start by showing that∣∣∣∣∣EX∼η0
r∏
i=1

ηIi(X)

η0(X)
− EX∼η0,R

r∏
i=1

ηIi,R(X)

η0,R(X)

∣∣∣∣∣ ≤ σb

4n
(
n
≤b
)
2b
. (119)

Note that∣∣∣∣∣EX∼η0
r∏
i=1

ηIi(X)

η0(X)
− EX∼η0,R

r∏
i=1

ηIi,R(X)

η0,R(X)

∣∣∣∣∣ (120)

≤

∣∣∣∣∣EX∼η0
[

r∏
i=1

ηIi(X)

η0(X)

∣∣∣∣∣X ∈ [−R,R]d

]
Pr
X∼η0

[
X ∈ [−R,R]d

]
− EX∼η0,R

r∏
i=1

ηIi,R(X)

η0,R(X)

∣∣∣∣∣ (121)

+

∣∣∣∣∣EX∼η0
[

r∏
i=1

ηIi(X)

η0(X)

∣∣∣∣∣X /∈ [−R,R]d

]
Pr
X∼η0

[
X /∈ [−R,R]d

]∣∣∣∣∣ . (122)

We will bound the terms Eq. (121) and Eq. (122) separately. Let W = (W1, . . . ,Wd) be a random
variable distributed normally with mean 0 and covariance ΣI1,...,Ir and let PW denote its density
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function.

Eq. (121) =

∣∣∣∣∣
∏r
i=1 ηIi

(
[−R,R]d

)
η0 ([−R,R]d)

r−1 EX∼η0

[
r∏
i=1

ηIi(X)/ηIi
(
[−R,R]d

)
η0(X)/η0 ([−R,R]d)

∣∣∣∣∣X ∈ [−R,R]d

]
− EX∼η0,R

r∏
i=1

ηIi,R(X)

η0,R(X)

∣∣∣∣∣
(123)

=

∣∣∣∣∣EX∼η0
[

r∏
i=1

ηIi(X)/ηIi
(
[−R,R]d

)
η0(X)/η0 ([−R,R]d)

∣∣∣∣∣X ∈ [−R,R]d

]
− EX∼η0,R

r∏
i=1

ηIi,R(X)

η0,R(X)

+

(∏r
i=1 ηIi

(
[−R,R]d

)
η0 ([−R,R]d)

r−1 − 1

)
η0

(
[−R,R]d

)r∏r
i=1 ηIi ([−R,R]d)

EX∼η0

[
r∏
i=1

ηIi(X)

η0(X)

∣∣∣∣∣X ∈ [−R,R]d

]∣∣∣∣∣
=

∣∣∣∣∣
(∏r

i=1 ηIi
(
[−R,R]d

)
η0 ([−R,R]d)

r−1 − 1

)
η0

(
[−R,R]d

)r∏r
i=1 ηIi ([−R,R]d)

EX∼η0

[
r∏
i=1

ηIi(X)

η0(X)

∣∣∣∣∣X ∈ [−R,R]d

]∣∣∣∣∣
=

∣∣∣∣∣
(∏r

i=1 ηIi
(
[−R,R]d

)
η0 ([−R,R]d)

r−1 − 1

)
η0

(
[−R,R]d

)r∏r
i=1 ηIi ([−R,R]d)

∫
x∈[−R,R]d

η0(x)

η0 ([−R,R]d)

r∏
i=1

ηIi(x)

η0(x)

∣∣∣∣∣
=

∣∣∣∣∣
(∏r

i=1 ηIi
(
[−R,R]d

)
η0 ([−R,R]d)

r−1 − 1

)
η0

(
[−R,R]d

)r−1∏r
i=1 ηIi ([−R,R]d)

√
det ΣI1,...,Ir

(1− σ2)r

∫
x∈[−R,R]d

PW (x)

∣∣∣∣∣
(124)

≤

∣∣∣∣∣
(

1−
η0

(
[−R,R]d

)r−1∏r
i=1 ηIi ([−R,R]d)

)√
det ΣI1,...,Ir

(1− σ2)r

∣∣∣∣∣
≤

∣∣∣∣∣
(

1−
η0

(
[−R,R]d

)r−1∏r
i=1 ηIi ([−R,R]d)

)√
2

1− σ2r

∣∣∣∣∣ (125)

≤ 2∏r
i=1 ηIi ([−R,R]d)

∣∣∣∣∣
r∏
i=1

ηIi

(
[−R,R]d

)
− η0

(
[−R,R]d

)r−1
∣∣∣∣∣ (126)

≤ 2

(1− p)r

∣∣∣∣∣
r∏
i=1

ηIi

(
[−R,R]d

)
− η0

(
[−R,R]d

)r−1
∣∣∣∣∣ (127)

≤ 4

∣∣∣∣∣
r∏
i=1

ηIi

(
[−R,R]d

)
− η0

(
[−R,R]d

)r−1
∣∣∣∣∣ . (128)

where Eq. (124) follows from Eq. (102), Eq. (125) follows from Lemma 43, Eq. (126) follows
Eq. (92) which implies that σ2r ≤ σr ≤ σb ≤ 1/2 ,Eq. (127) follows from Eq. (118) and Eq. (128)
follows from (1 − p)r ≥ 1 − rp ≥ 1 − bp ≥ 1/2. We will estimate the term in Eq. (128). From
Eq. (118),
r∏
i=1

ηIi

(
[−R,R]d

)
− η0

(
[−R,R]d

)r−1
≤ 1− (1− p)r−1 ≤ 1− (1− p)b ≤ 1− (1− bp) = bp.

Additionally,
r∏
i=1

ηIi

(
[−R,R]d

)
− η0

(
[−R,R]d

)r−1
≥ (1− p)r − 1 ≥ (1− p)b − 1 ≥ (1− bp)− 1 = −bp.
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Hence, by definition of p in Eq. (114),

Eq. (121) ≤ Eq. (128) ≤ 4bp ≤ σb

8n
(
n
≤b
)
2b
. (129)

Next, we will bound Eq. (122).
It follows from Lemma 43 that max|ΣI1,...,Ir | ≤ 2 hence the variance of each coordinate of W

(the d-variate normally distributed random variable with mean 0 and covariance ΣI1,...,Ir ) is at most
2. Hence,

Pr
[
W /∈ [−R,R]d

]
≤

d∑
i=1

Pr [|Wi| > d] ≤ p, (130)

using Eq. (117) and R ≥
√

4 ln 2
dp . Therefore,

Eq. (122) =
(

1− η0

(
[−R,R]d

))∫
x∈Rd\[−R,R]d

η0(x)

1− η0 ([−R,R]d)

r∏
i=1

ηIi(X)

η0(X)

=

√
det ΣI1,...,Ir

(1− σ2)r

∫
x∈Rd\[−R,R]d

PW (x) (131)

≤ 4 Pr
[
W /∈ [−R,R]d

]
(132)

≤ 4p (133)

≤ σb

8n
(
n
≤b
)
2b

(134)

where Eq. (131) follow from Eq. (102), Eq. (132) follows from the same calculation as in Eq. (125)
and Eq. (126), Eq. (133) follows from Eq. (130) and Eq. (134) follows from the definition of p in
Eq. (114).

Note that Eq. (120), Eq. (129) and Eq. (134) imply Eq. (119). To conclude the proof,∣∣∣∣∣EX∼η0
r∏
i=1

(
ηIi(X)

η0(X)
− 1

)
− EX∼η0,R

r∏
i=1

(
ηIi,R(X)

η0,R(X)
− 1

)∣∣∣∣∣
≤

∑
S⊆{1,...,r}

∣∣∣∣∣EX∼η0 ∏
i∈S

ηIi(X)

η0(X)
− EX∼η0,R

r∏
i=1

ηIi,R(X)

η0,R(X)

∣∣∣∣∣ ≤ σb

4n
(
n
≤b
) ,

where the last inequality follows from Eq. (119).

Define

ρ =
2σ2

1− σ2
+

4σR2

(1− σ2)2 + 2σ. (135)

We will show that Gσ,R, the family of truncated distributions, is CD(ρ) for the value of ρ presented
in the following lemma.
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Lemma 47 For any x ∈ [−R,R]d and any I ∈ I2,∣∣∣∣ηI,R(x)

η0,R(x)
− 1

∣∣∣∣ ≤ ρ.
Proof Fix some I = {i, j} and x ∈ [−R,R]d.

ηI,σ(x)

η0,σ(x)
=

√
det Σ0

det ΣI
exp

(
−1

2
xt
(
Σ−1
I − Id

)
x

)
=

1

1− σ2
exp

(
−
x2
iσ

2 − 2σxixj + x2
jσ

2

2 (1− σ2)

)
(136)

≤ 1

1− σ2
exp

(
σR2

1− σ2

)
≤ 1

1− σ2

(
1 +

2σR2

1− σ2

)
(137)

= 1 +
σ2

1− σ2
+

2σR2

(1− σ2)2 (138)

where Eq. (136) follows from Eq. (94) and from det ΣI = 1 − σ2 which is proved in Lemma 42,
Eq. (137) follows from σR2/

(
1− σ2

)
≤ 1 which holds if the constant C in Theorem 12 is suffi-

ciently large and the fact that ex ≤ 1 + 2x for all 0 ≤ x ≤ 1. Additionally,

ηI,σ
η0,σ

=
1

1− σ2
exp

(
−
x2
iσ

2 − 2σxixj + x2
jσ

2

2 (1− σ2)

)
(139)

≥ 1

1− σ2

(
1−

x2
iσ

2 − 2σxixj + x2
jσ

2

2 (1− σ2)

)
(140)

≥ 1− R2σ2

(1− σ2)2 (141)

where Eq. (139) is Eq. (136) and Eq. (140) follows from e−x ≥ 1 − x for all x ∈ R. Together,
Eq. (138) and Eq. (141) imply that∣∣∣∣ηI,ση0,σ

− 1

∣∣∣∣ ≤ ρ′ := σ2

1− σ2
+

2σR2

(1− σ2)2 . (142)
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Hence, ∣∣∣∣ηI,R(x)

η0,R(x)
− 1

∣∣∣∣ ≤ ∣∣∣∣ηI,R(x)

η0,R(x)
− ηI(x)

η0(x)

∣∣∣∣+

∣∣∣∣ηI(x)

η0(x)
− 1

∣∣∣∣ (143)

=
ηI(x)

η0(x)

∣∣∣∣∣η0

(
[−R,R]d

)
ηI ([−R,R]d)

− 1

∣∣∣∣∣+

∣∣∣∣ηI(x)

η0(x)
− 1

∣∣∣∣
≤ (1 + ρ′)

∣∣∣∣∣η0

(
[−R,R]d

)
ηI ([−R,R]d)

− 1

∣∣∣∣∣+ ρ′ (144)

= (1 + ρ′)

∣∣η0

(
[−R,R]d

)
− ηI

(
[−R,R]d

)∣∣
ηI ([−R,R]d)

+ ρ′

≤ (1 + ρ′)
σ

1− σ
+ ρ′ (145)

≤ (1 + ρ′)2σ + ρ′ (146)

≤ 2σ + 2ρ′ (147)

= ρ (148)

where Eq. (144) follows from Eq. (142), Eq. (145) follows from Eq. (118) and Eq. (146) and
Eq. (147) hold if the constant C from Theorem 12 is sufficiently large such that σ ≤ 1/2.

Next, we show that Eq. (1) holds. We start with an auxiliary lemma.

Lemma 48 For any 3 ≤ ` ≤ d, 2 ≤ r ≤ d, the number of collections of sets J ⊆ Ir, |J | = `, for
which no element of {1, . . . , d} appears in exactly one set is at most d`r/2C(`, r), where

C(`, r) =

{
1

(`r/2)!

((`r/2r )
`

)
`r is even

0 `r is odd
.

Proof For any J satisfying the condition of the lemma, every index i ∈
⋃
J is a member of at

least 2 sets I ∈ J . Therefore, ∣∣∣⋃J ∣∣∣ ≤ 1

2

∑
I∈J
|I| = 1

2
`r,

since J contains ` sets, each of size r. Hence, each such J satisfies that
⋃
J is contained in some

set J of size r`/2. There are
(
d

r`/2

)
sets J of size r`/2. Each such J is a super-set of

(|J |
r

)
sets of

size r, hence there are ((|J |
r

)
`

)
=

((`r/2
r

)
`

)
collections of ` subsets of J of size r. In total, there can be no more than(

d

`r/2

)((`r/2
r

)
`

)
≤ d`r/2

(`r/2)!

((`r/2
r

)
`

)
collections J ⊆ Ir of size ` for which 4J = ∅. This completes the proof for the case that `r is
even. If r` is odd, there is no collection J ⊆ Ir of ` sets which satisfies 4J = ∅: at least one of
the elements in

⋃
J has to appear in an odd number of sets.
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Lemma 49 The following holds:

∑
S⊆I2 : |S|≥2

n−|S|/2ρ−|S|

∣∣∣∣∣EA∼η0 ∏
i∈S

(ηI,σ,R(A)/η0(A)− 1)

∣∣∣∣∣ ≤ 1

n
. (149)

Proof First, Lemma 22 implies that the sum of terms corresponding to |S| > 5 is at most 1/(2n),
assuming that the constant C of Theorem 12 is sufficiently large. Recall that b = 5 by definition
and we will bound the sum of terms corresponding to 2 ≤ |S| ≤ b. For any 2 ≤ ` ≤ b, let U` be the
set of all collections of pairs S ⊆ I2 of size |S| = ` for which no element i ∈ [d] appears in exactly
one pair I ∈ S. We will bound the sum of terms corresponding to S /∈

⋃b
`=2 U`, 2 ≤ |S| ≤ b:

Lemma 44 and Lemma 46 imply that each such S contributes to the LHS of Eq. (149) at most

n−|S|/2ρ−|S|
ρb

4n
(
n
≤b
) ≤ 1

4n
(
n
≤b
) ,

where the inequality follows from |S| ≤ b and ρ ≤ 1, assuming that the constant C from Theo-
rem 12 is sufficiently large. The number of such sets is at most

(
n
≤b
)
, hence the total contribution

of these sets is at most 1/(4n). Lastly, we bound the contribution of sets S ∈
⋃b
`=2 U`. It follows

from Lemma 48 that there is a numerical constant C ′ such that |U`| ≤ C ′d` for all 2 ≤ ` ≤ b.
Furthermore, it trivially holds that |U2| = 0. Each set S contributes to the sum at most n−|S|/2,
from Lemma 47. Hence, the total contribution of sets S ∈

⋃b
`=2 U` is at most

b∑
`=3

|U`|n−`/2 ≤
1

n

b∑
`=3

C ′d`n−`/2−1 ≤ 1

n

b∑
`=3

C ′d`n−`/6 ≤ 1

n

b∑
`=3

C ′

C
≤ 1

4n
,

where C is the constant from Theorem 4 and the last inequality holds if C is sufficiently large.

We apply Thm. 4 on GR,σ. Lemma 47 implies that Gσ,R is a CD(ρ) family. Lemma 49 im-
plies that Eq. (1) holds. Additionally, the definition of ρ in Eq. (135) and the definition of R in
Eq. (115) imply that if the constant C from Thm. 12 is sufficiently large then the requirement that ρ
is sufficiently small with respect to n and k holds.

A.4.4. FROM TRUNCATED TO STANDARD GAUSSIANS

To conclude the proof, we reduce the hardness of identifying a truncated normal distribution to the
hardness of identifying a normal distribution, using the fact that with high probability, if we draw
mn samples from a normal distribution η ∈ Gσ, they are all in [−R,R]d.

Lemma 50 For any 0 < σ < 1 and 0 < ε < 1, if a protocol identifies η ∈ Gσ with a worst case
error of ε then it identifies η ∈ Gσ,R with a worst case error of at most 2ε.

Proof Let π be a protocol for identifying η ∈ Gσ with a worst case error of ε. Given an input
containing the samples x(1), . . . , x(mn) distributed by the m parties, let Π(x(1), . . . , x(mn)) ∈ I2

be the random variable denoting the output of π when the input is x(1), . . . , x(mn). Then, for any
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I ∈ I2,

ε ≥ Pr
(X(1),...,X(mn))∼ηmnI,σ

[
Π(X(1), . . . , X(mn)) 6= I

]
≥ Pr

(X(1),...,X(mn))∼ηmnI,σ

[
Π(X(1), . . . , X(mn)) 6= I, (X(1), . . . , X(mn)) ∈

(
[−R,R]d

)mn]
= Pr

(X(1),...,X(mn))∼ηmnI,σ

[(
X(1), . . . , X(mn)

)
∈
(

[−R,R]d
)mn]

·

Pr
(X(1),...,X(mn))∼ηmnI,σ

[
Π(X(1), . . . , X(mn)) 6= I | (X(1), . . . , X(mn)) ∈

(
[−R,R]d

)mn]
≥1

2
Pr

(X(1),...,X(mn))∼ηmnI,σ

[
Π(X(1), . . . , X(mn)) 6= I | (X(1), . . . , X(mn)) ∈

(
[−R,R]d

)mn]
(150)

=
1

2
Pr

(X(1),...,X(mn))∼ηmnI,σ,R

[
Π(X(1), . . . , X(mn)) 6= I

]
. (151)

where Eq. (150) follows from Eq. (118).

Appendix B. Improved Results for Identifying Order-r Correlations

As discussed in Subsection 3.2, Theorems 9 and 10 assume that the correlation ρ is sufficiently
small compared to the other problem parameters (and in the communication-constrained case, that
n is sufficiently large). The following two theorems show that the assumptions can be somewhat
relaxed, if we consider specifically the case of detecting order-r correlations (that is, the family of
coordinate subsets we consider are U = {I ∈ I : |I| = r}, for some r ≥ 2). In that case, we only
require n = Ω(d3r) for r even and n = Ω(d2r+ε) for r odd in the communication-constrained case
(whereas Thm. 9 requires n = Ω(d6r)), and in the memory-constrained case, only ρ = O(d−3r/2)
for r even or even ρ = O(d−(1+ε)r) for r odd (whereas Thm. 10 requires ρ = O(d−3r)).

Theorem 51 There exist numerical constants C ′, C ′′ and a positive function C(r) : N→ R+ such
that the following holds. Fix 2 ≤ r ≤ d − 1, and let k =

(
d
r

)
. Let n be an integer such that

n ≥ d3rC(r). Fix a number 0 < ρ ≤ (n ln k)−1/2/C ′. Let m ≥ 1 be an integer. Then, any (m,n)
protocol identifying µ ∈ PIr,ρ has a communication complexity of at least

k

C ′′ρ2n log(k2/(nρ2))
. (152)

Furthermore, if r is odd then for any 0 < ε < 1 there exists a number C(r, ε) which depends only
on r and ε such that Eq. (152) holds whenever n ≥ d(2+ε)rC(r, ε).

Theorem 52 There exist a numerical constant C ′ and a positive function C(r) : N → R+ such
that the following holds. Fix 2 ≤ r ≤ d − 1 and fix a number 0 < ρ ≤ d−3r/2 ln−1/2 d/C(r). For
any integers t, s ≥ 1, any (t, s)-algorithm identifying µ ∈ PIr,ρ satisfies

ts ≥
(
d
r

)
C ′ρ2 ln

(
d
r

) .
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Furthermore, if r is odd then for any 0 < ε < 1 there exists a number C(r, ε) ≥ 1 which depends
only on r and ε such that Eq. (152) holds whenever ρ ≤ d−(1+ε)r/C(r, ε).

Thm. 51 is derived from our general result (Thm. 4), by more delicately bounding the expression
in Eq. (1), allowing us to use larger values of ρ and smaller values of n. A full proof is presented
below. Thm. 52 is derived as a direct corollary of Thm. 51, using the same communication-to-
memory reduction that we used for proving Thm. 5 based on Thm. 4.

B.1. Proof of Thm. 51

Lemma 48 implies that: ∑
J⊆I∇ : |J |=`

∣∣∣∣∣E∏
I∈J

BI

∣∣∣∣∣ ≤ k`r/2C(`, r), (153)

for the value C(`, r) appearing in this lemma. Indeed, from Lemma 37, the LHS of Eq. (153) equals
the number of collections of sets J ⊆ Ir of size |J | = ` for which 4J = ∅. For any such J ,
every index i ∈

⋃
J is a member of an even number of sets I ∈ J , hence there is no element in

{1, . . . , d} appearing in exactly one set from J . This implies that the LHS of Eq. (153) is at most
the term bounded in Lemma 48, hence Eq. (153) holds.

To prove Theorem 51, it is sufficient to show that Eq. (1) holds. Under the conditions of The-
orem 51, the requirement that n ≥ d3r ≥

(
d
r

)3
= k3 = k2(5+1)/(5−1) and Lemma 22 imply that

the sum of all terms in Eq. (1) corresponding to |S| > 5 is at most 1/(2n). From Eq. (84) and
Lemma 37 it holds that the sum of terms in Eq. (1) corresponding to |S| = 2 is zero, and by Eq. (84)
and Eq. (153) the sum of terms corresponding to |S| = ` is at most n−`/2C(`, r)d`r/2, whereC(`, r)
is the number from Lemma 48 . Hence, the sum of terms corresponding to 3 ≤ |S| ≤ 5 is at most

5∑
`=3

n−`/2d`r/2C(`, r) =
1

n

5∑
`=3

n−`/2+1d`r/2C(`, r)

≤ 1

n

5∑
`=3

d−3`r/2+3rC(r)−`/2+1d`r/2C(`, r)

=
1

n

5∑
`=3

d−`r+3rC(r)−`/2+1C(`, r)

≤ 1

n

5∑
`=3

C(r)−`/2+1C(`, r)

≤ 1

2n
,

where the last inequality holds whenever C(r) is sufficiently large as a function of C(`, r), for
3 ≤ ` ≤ 5. Whenever this holds, Eq. (1) holds.

Next, assume that r is odd, fix 0 < ε < 1, and let `(ε) be the smallest integer which satisfies

2(`(ε) + 1)/(`(ε) − 1) ≤ 2 + ε. Since n ≥ d(2+ε)r ≥
(
d
r

)2+ε ≥
(
d
r

)2(`(ε)+1)/(`(ε)−1)
, Lemma 22

implies that the sum of all terms in Eq. (1) corresponding to |S| > `(ε) is at most 1/(2n). As in the
case of a general r, all terms corresponding to |S| = 2 are zero. Inequalities Eq. (153) and Eq. (84)
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imply that the sum of terms corresponding to |S| = 3 is zero. Similarly to the calculation in the
case of a general r, the sum of terms corresponding to 4 ≤ |S| ≤ `(ε) is at most

1

n

`(ε)∑
`=4

n−`/2+1d`r/2C(`, r) ≤ 1

n

`(ε)∑
`=4

d−`r+2rC(r, ε)−`/2+1d`r/2C(`, r)

=
1

n

`(ε)∑
`=4

d−`r/2+2rC(r, ε)−`/2+1C(`, r)

≤ 1

n

`(ε)∑
`=4

C(r, ε)−`/2+1C(`, r)

≤ 1

2n
,

where the last inequality holds whenever C(r, ε) is sufficiently large, which concludes the proof.

Appendix C. Comparison to Raz (2016)

Raz (2016) studied the problem of learning a linear function over Zd2 (namely, d dimensional vectors
of integers modulo 2): given samples (x, y), where x is picked uniformly at random from Zd2 and
y = 〈w, x〉( mod 2) for some unknown w ∈ Zd2, the goal is learn w. He showed that with less
than d2/10 bits of memory, exponentially many samples are required. Intuitively, this memory
requirement follows from the fact that one has to store Ω(d) samples in memory in order to learn w.

One can view this problem as a problem of learning a distribution over (x1, . . . , xd+1) ∈ Zd+1
2 ,

where x = (x1, . . . , xd) and y = xd+1. There are 2d possible distributions, each distribution
corresponding to some w ∈ Zd2. Furthermore, each distribution is µI,ρ for some I ⊆ {1, 2, . . . , d+
1} and 13 ρ = 1. Moreover, the memory requirement is Θ(d2) and d+ O(1) samples are required.
In contrast, we use different techniques to study a very different regime: There are k distributions
for some k ∈ {2, 3, . . . , 2d}, ρ is polynomially small in k, the memory requirement is Θ̃(k) and
Θ̃(1/ε2) samples are required. Additionally, our threshold is soft: one can learn with less memory
and more samples, as opposed to requiring exponentially many samples already for d2/10.

13. Given w = (w1, . . . , wd), let I = {i : wi = 1} ∪ {d + 1}. The distribution corresponding to w is uniform over
all (x1, . . . , xd+1) ∈ Zd+1

2 for which
∑
i∈I xi = 0, which is equivalent to µI,ρ with ρ = 1 (the only difference

is that in our setting, the elements are from {−1, 1} instead of {0, 1} and the operation is multiplication instead of
addition).
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