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Abstract
Two-timescale Stochastic Approximation (SA) algorithms are widely used in Reinforcement Learn-
ing (RL). Their iterates have two parts that are updated using distinct stepsizes. In this work, we
develop a novel recipe for their finite sample analysis. Using this, we provide a concentration
bound, which is the first such result for a two-timescale SA. The type of bound we obtain is known
as “lock-in probability”. We also introduce a new projection scheme, in which the time between
successive projections increases exponentially. This scheme allows one to elegantly transform a
lock-in probability into a convergence rate result for projected two-timescale SA. From this lat-
ter result, we then extract key insights on stepsize selection. As an application, we finally obtain
convergence rates for the projected two-timescale RL algorithms GTD(0), GTD2, and TDC.

1. Introduction

Stochastic Approximation (SA) is the subject of a vast literature, both theoretical and applied (Kush-
ner and Yin, 1997). It is used for finding optimal points or zeros of a function for which only noisy
access is available. Consequently, SA lies at the core of machine learning; in particular, it is widely
used in Reinforcement Learning (RL) and, more so, when function approximation is used.

A powerful, commonly used analysis tool for SA algorithms is the Ordinary Differential Equa-
tion (ODE) method (Borkar and Meyn, 2000). Its underlying idea is that, under the right conditions,
the noise effects eventually average out and the SA iterates then closely track the trajectory of the
so-called “limiting ODE”. The ODE method is classically used as a convenient recipe for showing
asymptotic SA convergence. The RL literature, therefore, has several results of such type, especially
when the state-space is large and function approximation is used (Sutton et al., 2009a,b, 2015; Bhat-
nagar et al., 2009b). Contrarily, finite sample analyses for SA are scarce; in fact, they are nonexistent
in the case of two-timescale SA. This provides the motivation for our work.

1.1. Related Work

A broad, rigorous study of SA is given in (Borkar, 2008); in particular, it contains concentration
bounds for single-timescale methods. A more recent work (Thoppe and Borkar, 2015) obtains
tighter concentration bounds under weaker assumptions for single-timescale SA using a variational
∗ Equal contribution.
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methodology called Alekseev’s Formula. In the context of single-timescale RL, Konda (2002);
Korda and Prashanth (2015); Dalal et al. (2018) discuss convergence rates for TD(0).

Convergence rate results for two-timescale SA are, on the other hand, relatively scarce. Asymp-
totic convergence rates appear in (Spall, 1992; Gerencsér, 1997; Konda and Tsitsiklis, 2004; Mokka-
dem and Pelletier, 2006); these are of different nature than the finite-time analysis conducted in our
work. In the case of two-timescale RL methods, relevant literature can be partitioned into two prin-
cipal classes: actor-critic and gradient Temporal Difference (TD). In an actor-critic setting, a policy
is being evaluated by the critic in the fast timescale, and improved by the actor in the slow time-
scale; two asymptotic convergence guarantees appear in (Peters and Schaal, 2008; Bhatnagar et al.,
2009b). The second class, gradient TD methods, was introduced in (Sutton et al., 2009a). This
work presented the GTD(0) algorithm, which is a gradient descent variant of TD(0); being appli-
cable to the so-called off-policy setting, it has a clear advantage over TD(0). Later variants, GTD2
and TDC, were reported to be faster than GTD(0) while enjoying its benefits. These three methods
were shown to asymptotically converge in the case of linear and non-linear function approximation
(Sutton et al., 2009a,b; Bhatnagar et al., 2009a). Separately, there also exists a convergence rate
result for altered versions of the GTD family (Liu et al., 2015). There, projections are used and
the learning rates are set to a fixed ratio. The latter makes the altered algorithms single-timescale
variants of the original ones.

1.2. Our Contributions

Our main contributions are the following:

• Inspired by (Borkar, 2008), we develop a novel recipe for finite sample analysis of linear two-
timescale SA. An initial key step here is a transformation of the iterates (see Remark 3), which
we believe can be elevated to general (non-linear) two-timescale settings. Then, by employing
the Variation of Parameters method, we obtain a tighter bound on the distance between the
SA trajectories and suitable limiting ODE solutions than the one handled in (Borkar, 2008).

• Using the above recipe, we obtain a concentration bound for linear two-timescale SA (see
Theorem 4); this is the first such result for two-timescale SA of any kind. In literature, such
concentration bounds are also known as “lock-in probability”.

• Additionally, we introduce a novel projection scheme, in which the time between successive
projections progressively doubles; we refer to it as “sparse projection”. This scheme enables
one to elegantly transform a concentration bound, of the type we obtain, into a convergence
rate for projected two-timescale SA (see Theorem 6). We stress the strength of this tool
in bridging the gap between two research communities: those who are interested in lock-in
probabilities/concentration bounds, and those who care about convergence rates.

• As an application, we obtain convergence rates for the sparsely projected variants of two-
timescale RL algorithms: GTD(0), GTD2, and TDC. This is the first finite time result for the
above algorithms in their true two-timescale form (see Remark 1).

• Finally, we do away with the usual square summability assumption on stepsizes (see Re-
mark 2). Therefore, our tool is relevant for a broader family of stepsizes. An example of its
usefulness is Polyak-Ruppert-averaging with constant stepsizes (Défossez and Bach, 2014;
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Lakshminarayanan and Szepesvari, 2018), whose behavior, we believe, is similar to two-
timescale algorithms with slowly-decaying non-square-summable stepsizes (e.g., n−α with α
close to 0).

2. Preliminaries

Here we present the linear two-timescale SA paradigm, state our goal, and list our assumptions.
A generic linear two-timescale SA is

θn+1 = θn + αn[h1(θn, wn) +M
(1)
n+1] , (1)

wn+1 = wn + βn[h2(θn, wn) +M
(2)
n+1] , (2)

where αn, βn ∈ R are stepsizes, M (i)
n ∈ Rd denotes noise, and hi : Rd × Rd → Rd has the form

hi(θ, w) = vi − Γiθ −Wiw (3)

for a vector vi ∈ Rd and matrices Γi,Wi ∈ Rd×d.

Remark 1 In this work, we are interested in the analysis of a “true two-timescale process”. By
this, we mean that Γ2 ought to be invertible and that αn/βn → 0. The first condition couples the two
iterates together; nevertheless, all the results in this work hold even without this restriction. The
second condition is indeed assumed throughout (seeA2A2A2 below); we do not allow αn/βn to converge
to a positive constant, as that would then turn (1) and (2) into a single-timescale SA.

Our aim is to finite time behaviour of (1) and (2) under the following assumptions.

A1A1A1. W2 and X1 := Γ1 −W1W
−1
2 Γ2 are positive definite (not necessarily symmetric).

A2A2A2. Stepsize sequences {αn}, {βn}, and {ηn := αn/βn} satisfy

∞∑
n=0

αn =

∞∑
n=0

βn =∞, αn, βn, ηn ≤ 1, and lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

ηn = 0. (4)

A3A3A3. {M (1)
n }, {M (2)

n } are martingale difference sequences w.r.t. the family of σ−fields {Fn},
where Fn = σ(θ0, w0,M

(1)
1 ,M

(2)
1 , . . . ,M

(1)
n ,M

(2)
n ). There exist constants m1,m2 > 0 so

that
∥∥∥M (1)

n+1

∥∥∥ ≤ m1(1 + ‖θn‖+ ‖wn‖) and
∥∥∥M (2)

n+1

∥∥∥ ≤ m2(1 + ‖θn‖+ ‖wn‖) for all n ≥ 0.

Remark 2 Notice that, unlike most works,
∑

n≥0 α
2
n or

∑
n≥0 β

2
n need not be finite. Thus, our

analysis is applicable for a wider class of stepsizes; e.g., 1/nκ with κ ∈ (0, 1/2]. In (Borkar, 2008),
on which much of the existing RL literature is based on, the square summability assumption is due
to the Gronwall inequality based approach. In contrast, for the specific setting here, we do a tighter
analysis using the variation of parameters formula (Lakshmikantham and Deo, 1998).

We now briefly outline the ODE method from (Borkar, 2008, pp. 64-65) for the analysis of (1)
and (2), and also describe how our approach builds upon it. Since ηn → 0, {wn} is the fast transient
and {θn} is the slow component. Therefore, the ODE that (2) might be expected to track is

ẇ(t) = v2 − Γ2θ −W2w(t) (5)
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for some fixed θ, and the ODE that (1) might be expected to track is

θ̇(t) = h1(θ(t), λ(θ(t))) = b1 −X1θ(t), (6)

where b1 := v1 − W1W
−1
2 v2 and λ(θ) := W−12 [v2 − Γ2θ]. Due to A1A1A1, the function λ(·) and

b1 are well defined. Moreover, λ(θ) and θ∗ := X−11 b1 are unique globally asymptotically stable
equilibrium points of (5) and (6), respectively.

Lemma 1, (Borkar, 2008, p. 66), applied to (1) and (2) gives limn→∞ ‖wn − λ(θn)‖ = 0 under
suitable assumptions. Inspired by this, we work with {zn} here instead of {wn} directly, where

zn := wn − λ(θn) . (7)

Due to (2), {zn} satisfies the update rule

zn+1 = zn − βnW2zn + βnM
(2)
n+1 + λ(θn)− λ(θn+1) . (8)

Hence, and as {θn} is the slow component, the limiting ODE that (8) might be expected to track is

ż(s) = −W2z(s) . (9)

As W2 is positive definite (seeA1A1A1), z∗ = 0 is the globally asymptotically stable equilibrium of (9).

Remark 3 Using {zn} instead of {wn} is the main reason why our approach works. Observe that
the limiting ODE in (5) varies as θn evolves; in contrast, (9) remains unchanged. Hence, comparing
(8) with (9) is easier than comparing (2) with (5). While this idea is indeed inspired by (Borkar,
2008, Lemma 1, p. 66), there (8) and (9) are not required to be explicitly dealt with.

3. Main Results

In this section, we give our two main results on two-timescale stochastic approximation and also
introduce our projection scheme. The first result is a general concentration bound for any stepsizes
satisfying A2A2A2. This result concerns the behavior of a two-timescale SA from some time index n0
onwards and requires that the iterates be bounded at n0. This is in the spirit of most existing concen-
tration bounds/lock-in probability results for single-timescale methods (Borkar, 2008; Thoppe and
Borkar, 2015). By projecting the iterates of a two-timescale SA via our novel projection scheme,
we then transform our above concentration bound into a convergence rate result. This latter result
applies for all time indices and the boundedness assumption holds here due to projections.

3.1. A General Concentration Bound

Let q1, q2 > 0 be lower bounds on the real part of the eigenvalues of matrices X1 and W2, respec-
tively. For n ≥ 0, let an :=

∑n−1
k=0 α

2
ke
−2q1

∑n−1
i=k+1 αi and bn :=

∑n−1
k=0 β

2
ke
−2q2

∑n−1
i=k+1 βi . These

sums are obtained from the Azuma-Hoeffding concentration bound that we use later. Also, let

sn :=
n−1∑
k=0

βk, and tn :=
n−1∑
k=0

αk . (10)

Theorem 4 gives our concentration bound; the additional terms in it are defined in Tables 1 and 2.
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Constant Source Constant Source
K1, K2 (68), (70) Lte

1b = K1 ‖W1‖ ‖W2‖Rin
2 /q1 Lemma 20

q1, q2 above (10) Lte
1c = K1 ‖W1‖ /q1 Lemma 20

qmin = min{q1, q2} (71) Lmd
1 = K1m1[1 +R∗ +Rout

1 +Rw2 ] Lemma 20
q ∈ (0, qmin) (71) Lde

1 = K1‖X1‖Jθ
q1

Lemma 20

Rout
1 = Rin

1 +
4K1‖W1‖K2R

in
2

(qmin−q)e (56) Lθa = Lte
1a Lemma 21

R∗ =
∥∥X−11

∥∥ ‖b1‖ (63) Lθc = Lte
1c Lemma 21

Rw2 = Rout
2 +

∥∥W−12

∥∥ (65) Lθb = Lde
1 + Lmd

1 + ‖X1‖Rin
1 + Lte

1b Lemma 21
×
[
‖v2‖+ ‖Γ2‖ [R∗ +Rout

1 ]
]

Lmd
2 = K2m2[1 +R∗ +Rout

1 +Rw2 ] Lemma 18

Rgap
1 = Rout

1 −Rin
1 , Rgap

2 = Rout
2 −Rin

2 (57) Lsd
2 = K2

‖W−1
2 ‖‖Γ2‖Jθ
q2

Lemma 18
Jθ = ‖Γ1‖ [R∗ +Rout

1 ] + ‖W1‖Rw2 Lemma 17 Lde
2 = K2

‖W2‖Jz
q2

Lemma 18
+ ‖v1‖+m1[1 +R∗ +Rout

1 +Rw2 ] Lz = ‖W2‖Rin
2 + Lde

2 + Lsd
2 + Lmd

2 Lemma 19
Jz = ‖W2‖Rout

2 +
∥∥W−12

∥∥ ‖Γ2‖ Jθ Lemma 17 c1 = (16K2
1d

3[Lmd
1 ]2)−1 Theorem 4

+m2(1 +R∗ +Rout
1 +Rw2 ) c2 = (9K2

2d
3[Lmd

2 ]2)−1 Theorem 4
Lte
1a = K1 ‖W1‖K2R

in
2

1
(qmin−q)e Lemma 20 c3 = (64K2

2 [Lθc ]
2d3[Lmd

2 ]2)−1 Theorem 4

Table 1: A summary of constants and where they are defined. Here m1,m2 > 0 are as inA3A3A3, and
Rin

1 > 0 and Rout
2 > Rin

2 > 0 are constants chosen as in Theorems 4 and 6. Note that
constants in the left column do not depend on constants in the right column. Similarly, no
constant depends on constants below it in the same column, or on ε1, ε2, {αk} or {βk}.

Theorem 4 (Main Technical Result) Fix some constants Rin
1 , R

in
2 > 0 and Rout

2 > Rin
2 . Pick ε1 ∈(

0,min
{
Rin

1 , 4L
θ
a

})
and ε2 ∈ (0,min(Rin

2 , R
out
2 −Rin

2 )). Fix some n0 ≥ N0 and n1 ≥ N1, where
N0 ≡ N0(ε1, ε2, {αk}, {βk}) and N1 ≡ N1(n0, ε1, ε2, {αk}, {βk}) are as in Table 2. Consider the
process defined by (1) and (2) for n ≥ n0, initialized at arbitrary θn0 , wn0 ∈ Rd such that

‖θn0 − θ∗‖ ≤ Rin
1 and ‖zn0‖ ≤ Rin

2 , (11)

where zn0 is as in (7). Then,

Pr{‖θn − θ∗‖ ≤ ε1, ‖zn‖ ≤ ε2, ∀n ≥ n1}

≥ 1− 2d2
∑
n≥n0

[
exp
[
−c1ε21
an

]
+ exp

[
−c2ε21
bn

]
+ exp

[
−c3ε22
bn

]]
. (12)

where c1 = (16K2
1d

3[Lmd
1 ]2)−1, c2 = (9K2

2d
3[Lmd

2 ]2)−1, and c3 = (64K2
2 [Lθc ]

2d3[Lmd
2 ]2)−1 are

constants independent of ε1, ε2, {αk} and {βk}.

Proof See Section 4 for the outline of the proof, and Appendix D for the detailed proof.

Section 2 already discusses the close relation between the SA iterates {θn} and {zn} and the
corresponding ODE trajectories, which suggests that the analysis of the former should be based on
the latter. However, the sole fact that the ODE trajectories approach their respective solutions does
not guarantee the same for the SA trajectories. The latter may drift away due to several factors (e.g.,
martingale noise), as discussed in Subsection 4.2. However, Theorem 4 makes it clear that, w.h.p.,
this does not happen. These subtleties are discussed in more details in the following remark.
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Term Definition

N0,a ≡ N0,a(ε1, ε2, {αk}, {βk}) min

{
N : max

{
supk≥N βk, supk≥N ηk

}
≤ min {ε1/8, ε2/3}

Lz max{Lθc , 1}

}
N0,b ≡ N0,b(ε1, {βk}) min

{
N : supk≥N βk ≤ ε1/(4Lθb)

}
N0 ≡ N0(ε1, ε2, {αk}, {βk}) max{N0,a, N0,b}
N1,a ≡ N1,a(n0, ε1, {αk}) min{j ≥ n0 : [K1R

in
1 + Lθa]e−q(tj−tn0

) ≤ ε1/4}
N1,b ≡ N1,b(n0, ε2, {βk}) min{j ≥ n0 : K2R

in
2 e
−q2(sj−sn0

) ≤ ε2/3}
N1 ≡ N1(n0, ε1, ε2, {αk}, {βk}) max{N1,a, N1,b}

Table 2: A summary of terms depending on ε1, ε2, and the stepsize sequences, as appearing in the
main theorems. These terms are formally introduced in Lemmas 22 and 23.

Remark 5 Theorem 4 involves two key notions introduced in Table 2: N0 and N1.

1. A large N0 ensures the stepsizes are small enough to mitigate the factors that may cause the
SA trajectories to drift. In the case of martingale difference noise, this can be directly seen
from the terms αnM

(1)
n+1 and βnM

(2)
n+1 in (1) and (8).

2. The term N1 is an intrinsic property of the limiting ODEs. It quantifies the number of iter-
ations required by the two ODE trajectories to hit the ε-neighborhoods of their respective
solutions (and stay there) when started in Rin

1 and Rin
2 radii balls. As shown in Theorem 4,

N1 depends on n0. A larger n0 means smaller stepsizes, which implies that a longer time is
required for the trajectories to hit the ε-neighbourhoods, in turn making N1 larger.

3.2. A Bound for Sub-exponential Series

In order to make Theorem 4 more applicable, we derive closed form expressions for the r.h.s. of
(12) for the case of inverse polynomial stepsizes; see Appendix C. In particular, we obtain a bound
on the generic expression

∑∞
n=n0

exp[−Bnp], where B ≥ 0 and p ∈ (0, 1). Such expressions are
common in SA analyses. Thus, this result can be useful on its own.

3.3. Convergence Rate of Sparsely Projected Iterates

Here we first describe our projection scheme, following which we give our convergence rate result
in Theorem 6. In this latter result, we work with a specific family of stepsizes to obtain concrete
closed-form expressions for the rate of convergence.

For n that is a power of 2, let Πn,R denote the projection into the R-ball; for every other n, let
Πn,R denote the identity, where R > 0 is some arbitrary constant. We call this sparse projection as
we project only on indices which are powers of 2. With θ′0, w

′
0 ∈ Rd, let

θ′n+1 = Πn+1,Rin
1 /2

(
θ′n + αn[h1(θ

′
n, w

′
n) +M

(1′)
n+1]

)
, (13)

w′n+1 = Πn+1,Rin
2 /2

(
w′n + βn[h2(θ

′
n, w

′
n) +M

(2′)
n+1]

)
(14)

denote the sparsely projected variant of (1) and (2) , where {M (1′)
n } and {M (2′)

n } are martingale dif-
ference sequences satisfying assumptionA3A3A3, just like {M (1)

n } and {M (2)
n }. The idea of projection is
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indeed common (Borkar, 2008; Kushner, 1980); but, the novelty here is in doing only exponentially
infrequent projections. As seen in the proof of Theorem 6, this significantly simplifies our analysis.

We now introduce a carefully chosen instantiation of N0 (where N0 is as in Table 2) for the
stepsize choice in Theorem 6 below. This choice also regulates the N1 term in an appropriate way,
as we show later in the theorem’s analysis. For some 1 > α > β > 0 and ε ∈ (0, 1), let

N ′0(ε, α, β) := max

{[
8Lz

ε max
{
Lθc , 1

}] 1
min{β,α−β}

,
[
4Lθb
ε

]1/β
,

[
1−α

((1.5)1−α−1)q ln
4[K1Rin

1+L
θ
a]

ε

] 1
1−α

,
[

1−β
((1.5)1−β−1)q2

ln
3K2Rin

2
ε

] 1
1−β

, 3

}
. (15)

Theorem 6 (Finite Time Behavior of Sparsely Projected Iterates) Fix Rin
1 , R

in
2 > 0. Suppose

‖θ∗‖ ≤ Rin
1 /4 , and (16)

{θ ∈ Rd : ‖θ‖ ≤ Rin
1 /2} ⊆ {θ ∈ Rd : ‖λ(θ)‖ ≤ Rin

2 /4} . (17)

Let αn = (n+ 1)−α and βn = (n+ 1)−β with 1 > α > β > 0. Then the following hold.

1. For any Rout
2 > Rin

2 , ε ∈ (0,min{Rin
1 /4, R

in
2 /4, 4L

θ
a, R

out
2 −Rin

2 }), and n′0 ≥ N ′0(ε, α, β),

such that n′0 is a power of 2 and N ′0(ε, α, β) = O
(
ε
− 1

min{β,α−β}
)

is as in (15), we have

Pr{
∥∥θ′n − θ∗∥∥ ≤ ε, ∥∥z′n∥∥ ≤ ε,∀n ≥ 2n′0}

≥ 1− 2d2c7a

ε2/α
exp

[
c5aε

2 − c6aε2(n′0)α
]
− 4d2c7b

ε2/β
exp

[
c5bε

2 − c6b ε2(n′0)β
]
, (18)

where c4 := min{c2, c3}, c5a = c5(c1, κ, α, q1), c5b = c5(c4, κ, β, q2), and so on for c6a, c7a,
c6b, and c7b. The terms c5, c6, and c7 are as defined in Lemma 13. 1

2. There is some constant C > 0 such that, for all n > 3 and δ ∈ (0, 1), it holds that 2

Pr
{

max{‖θ′n − θ∗‖, ‖z′n‖} ≤ C max
[
n−β/2

√
ln(n/δ) , n−(α−β)

]}
≥ 1− δ . (19)

Proof See Appendix E.

Remark 7 To the best of our knowledge, the only other work that provides a high probability con-
vergence rate for projected SA algorithm is (Liu et al., 2015), and it also assumes (16). Without this
assumption, one would be required to study the convergence to the closest point to θ∗ within Rin

1 /4.
Assumption (17) can be easily seen to hold if Rin

2 is set to 4‖W−12 v2‖+ 2Rin
1 ‖Γ2‖ or greater.

Remark 8 In continuation of Remark 2, notice α and β are not constrained to lie in (1/2, 1). This
is, to the best of our knowledge, in contrast with any other two-timescale analysis in the literature.

1. Consult Table 1 for the rest of the constants, such as c1, c2 and c3.
2. An explicit expression for C can be derived from the proof of Theorem 6 which, for brevity, we haven’t introduced.
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Remark 9 Clearly, the tightest possible upper bound in (19) approaches O(n−1/3) as α and β
simultaneously approach 1 and 2/3, respectively. We now briefly discuss the origin of the two
limiting terms there. The n−β/2 term stems from the convergence of (14), and corresponds to the
known n−1/2 rate limit of any single-timescale SA. It is also in line with Theorem 3.1 in (Dalal et al.,
2018) for generic β. We note that a similar n−α/2 rate, stemming from the convergence of (13),
originally appears in the proof of Theorem 6; however, we drop it from the statement since α > β.
Separately, the n−(α−β) term stems from the interaction between the θ and z iterates, originating in
the last two terms in (8). As discussed above Remark 3, the slow component {θn} evolves in the αn
timescale; yet, it is part of zn update rule, which evolves in the βn timescale. Hence, the slow drift
error (see Subsection 4.2) is governed by the stepsize ratio αn/βn (yielding the α− β here).

In transforming Theorem 4 to Theorem 6, N ′0 (see (15)) inherits the properties of both N0 and
N1 from Theorem 4, whose roles we have portrayed in Remark 5. Theorem 6, along with (15),
relates the above roles to the choice of α and β; it suggests several valuable tradeoffs between
speeding up convergence of the noiseless ODE, and mitigating the martingale noise and other drift
factors (see Subsection 4.2) to aid the SA to follow this process. Namely, N ′0 explodes:

1. As α or β approach 0 (stepsizes approach constants); this stems from N0 blowing up. This
occurs since the stepsizes’ slow decay rate impairs i) their ability to mitigate the martingale
noise and other drift factors; and hence ii) the ability of the SA to track the ODE trajectories.

2. As α and β get close to each other; this is due to N0 blowing up. This occurs as the true
two-timescale nature is then nullified (see Remark 1). Our analysis suggests that convergence
of zn to z∗ must be faster than that of θn to θ∗, and a decaying stepsize ratio ηn ensures this.

3. As α or β approach 1, the largest value for which (4) holds; this stems from N1 blowing up.
This occurs as the stepsizes then decay too fast, impairing the speed of the ODE convergence;
more accurately,N1 (see Table 2) moves away from exponential nature to inverse polynomial.

4. Proof Outline of Theorem 4

In this section, we bring the essence of the proof of Theorem 4. For intermediate results and the
complete proof, see Appendix D. Naturally, throughout this section, we assume (11). Also, as
mentioned in Section 2, we work here with the iterates {zn} defined using (8) instead of {wn}
directly. As stated in Remark 3, our analysis follows through thanks to this choice.

The proof has two key steps. First, in Subsection 4.2, we use the Variation of Parameters (VoP)
formula (Lakshmikantham and Deo, 1998) to quantify the distance between the SA trajectories
generated with (1) and (8) and suitable solutions of their respective limiting ODEs (6) and (9).

As for the second step, note that the choice of N0 in Theorem 4 ensures that {βk}k≥N0 and
{ηk}k≥N0 are sufficiently small—i.e., of order O(max(ε1, ε2)). Exploiting this fact and using the
Azuma-Hoeffding inequality, in Subsection 4.3 we show that the bounds on the distances obtained
in the first step are small with very high probability. More explicitly, when the ODE solutions are
sufficiently close to θ∗ and z∗ respectively, we show that the same also holds for the sequences {θn}
and {zn} with high probability. A visualization of the process is given in Fig. 1.

Before discussing these two steps, we now introduce some notations and terminology.
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Rout
1 ball

θn0

θ∗

ε1

θn0+1

Rin
1 ball

θ(t)

θn0+2

θn0+3

Rout
2 ball

zn0
z∗

ε2

zn0+1

Rin
2 ballz(t)

zn0+2zn0+3

αn0+1
βn0+1

Figure 1: Visualization of the proof methodol-
ogy. The red SA trajectories {θn}
and {zn} are compared to their blue
respective limiting ODE trajectories
θ(t) and z(s). The three balls on
each side of the figure (from small
to large), are respectively the solu-
tion’s ε-neighborhood; the Rin ball
in which the SA trajectory and ODE
trajectory are initialized; and theRout

ball in which the SA trajectory is en-
sured to reside.

4.1. Analysis Preliminaries

To begin with, we define the linearly interpolated trajectories of the iterates {θn} and {zn}. Having
a continuous version of the discrete SA algorithm enables our analysis. Keeping (10) in mind, let
θ̄(·) be the linear interpolation of {θn} on {tn}; i.e., let θ̄(tn) = θn and, for τ ∈ (tn, tn+1), let

θ̄(τ) = θ̄(tn) + (τ−tn)
αn

[θ̄(tn+1)− θ̄(tn)]. (20)

Similarly, let z̄(·) be the linear interpolation of {zn}, but on {sn}. For τ ∈ [tn, tn+1), let

ξ(τ) := sn + βn
αn

(τ − tn). (21)

The mapping ξ(·) linearly interpolates {sn} on {tn}.
With the first parameter being time, the second being starting time, and the third being initial

point, let θ(t, tn0 , θn0), t ≥ tn0 , be the solution to (6) satisfying θ(tn0 , tn0 , θn0) = θn0 . Similarly,
define z(s, sn0 , zn0). From (6) and standard ODE results (see (Hirsch et al., 2012, p. 129)),

θ(t) ≡ θ(t, tn0 , θn0) = θ∗ + e−X1(t−tn0 )(θn0 − θ∗), ∀t ≥ tn0 . (22)

In the same way, it follows from (9) that

z(s) ≡ z(s, sn0 , zn0) = e−W2(s−sn0 )zn0 , ∀s ≥ sn0 . (23)

Remark 10 Since X1 is positive definite due toA1A1A1, (22) implies that limt→∞ θ(t, tn0 , θn0) = θ∗.
Further, d

dt‖θ(t) − θ∗‖2 = −2(θ(t) − θ∗)>X1(θ(t) − θ∗) < 0; hence, assuming (11) holds,
‖θ(t, tn0 , θn0)− θ∗‖ ≤ Rin

1 , ∀t ≥ tn0 . Likewise, we have lims→∞ z(s, sn0 , zn0) = z∗ and
‖z(s, sn0 , zn0)‖ ≤ Rin

2 for all s ≥ sn0 .

4.2. Comparing the SA and corresponding Limiting ODE Trajectories

Our aim here is to use the VoP formula to bound ‖z̄(s)− z(s)‖ and
∥∥θ̄(t)− θ(t)∥∥. Note that both

the SA trajectory θ̄(t) and the corresponding limiting ODE trajectory θ(t) equal θn0 at time t = tn0 .
Similarly, z̄(sn0) = z(sn0) = zn0 .

9
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Using (7), (1) translates to θn+1 = θn +αn[b1−X1θn] +αn[−W1zn] +αnM
(1)
n+1 . Iteratively

using the above update rule, we then have

θn+1 = θn0 +
n∑

k=n0

αk[b1 −X1θk −W1zk +M
(1)
k+1] .

From this and the definition of θ̄(·), it consequently follows that

θ̄(t) = θn0 +

∫ t

tn0

[b1 −X1θ̄(τ)]dτ +

∫ t

tn0

ζ(τ)dτ, ∀t ≥ tn0 , (24)

with ζ(τ) := ζde(τ)+ζ te(τ)+ζmd(τ), where, for τ ∈ [tk, tk+1), ζ
de(τ) := X1[θ̄(τ)−θk], ζ te(τ) :=

−W1zk, and ζmd(τ) := M
(1)
k+1 . Let Ede

1 (t) =
∫ t
tn0

e−X1(t−τ)ζde(τ)dτ . Define Ete
1 (t) and

Emd
1 (t) in the same spirit. We refer to these three terms as the discretization error, tracking error,

and martingale difference noise, respectively. The tracking error is called so, because it depends on
zk = wk − λ(θk) which, by (8), tells how close wk is to its ODE solution λ(θk). From (6), we have
θ(t) = θn0 +

∫ t
tn0

[b1 −X1θ(τ)]dτ, and thus (24) can be viewed as a perturbation of θ(t). Defining

then E1(t) := Ede
1 (t) + Ete

1 (t) + Emd
1 (t), and applying the VoP formula (see Appendix D.1), it

follows easily that
θ̄(t) = θ(t, tn0 , θn0) + E1(t) . (25)

Using (8), it is easy to see in the same way as above that

z̄(s) = zn0 +

∫ s

sn0

[−W2]z̄(µ)dµ+

∫ s

sn0

χ(µ)dµ, ∀s ≥ sn0 , (26)

with χ(µ) := χde(µ) + χsd(µ) + χmd(µ), where, for µ ∈ [sk, sk+1),

χde(µ) := W2[z̄(µ)− zk], χsd(µ) :=
λ(θk)− λ(θk+1)

βk
, χmd(µ) := M

(2)
k+1 . (27)

Let Ede
2 (s) =

∫ s
sn0

e−W2(s−µ)χde(µ)dµ. Define Esd
2 (t) and Emd

2 (t) in the same spirit. We refer
to these three terms as discretization error, slow drift in the equilibrium of (5), and martingale
difference noise. We refer to χsd(µ) as the slow drift error because as {θn} evolve, the ODE solution
{λ(θn)} drift, and it is slow since {θn} is updated on the slow time scale {tn} (recall that ηn → 0).
Finally, defining E2(t) := Ede

2 (t) + Esd
2 (t) + Emd

2 (t), it follows simlarly as above that

z̄(s) = z(s, sn0 , zn0) + E2(s) . (28)

The below result is now trivial to see.

Lemma 11 The following two statements hold:

1. For t ≥ tn0 ,
∥∥θ̄(t)− θ(t, tn0 , θn0)

∥∥ ≤ ∥∥Ede
1 (t)

∥∥+ ‖Ete
1 (t)‖+

∥∥Emd
1 (t)

∥∥ .

2. For s ≥ sn0 , ‖z̄(s)− z(s, sn0 , zn0)‖ ≤
∥∥Ede

2 (s)
∥∥+

∥∥Esd
2 (s)

∥∥+
∥∥Emd

2 (s)
∥∥ .

To stress the tightness of the above analysis, we compare it with that in (Borkar, 2008, p. 14).
There, the distance between the SA and ODE trajectories is bounded by the tail sum of the squared
stepsizes; this necessitates the usual square summability assumption. We do not require it here
thanks to the additional exponentials, e−X1(t−τ) and e−W2(s−µ), in the error terms Ede

1 (t), Ede
2 (s),

etc., which is a consequence of the VoP formula.

10
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4.3. Concentration Bounds for Two-Timescale SA

Next, with Lemma 11 bounding the distance of θ̄(t) and z̄(s) from their respective ODE trajectories
for all t and s, we consequently bound the distance of θ̄(t) and z̄(s) from the solutions θ∗ and z∗. To
do so, we break the convergence event into an incremental union using a novel inductive technique
(see Appendix D.2, Lemma 14). Each event in the union has the following structure: “good” up to
time n (ensured by an event Gn, where the iterates remain bounded in certain regions) and “bad”
in the subsequent interval (θ̄(tn+1) and z̄(sn+1) leave the bounded regions). By conditioning on
Gn, and using (11) with Lemma 11, we bound

∥∥θ̄(t)− θ∗∥∥ and ‖z̄(s)− z∗‖ . Each of the resulting
bounds consists of three kinds of terms (see Appendix D.4, Lemmas 19 and 21): i) sum of martingale
differences (originating in Emd

i ), ii) stepsize based term (originating in Ede
i , E

te
1 , E

sd
2 ), and iii)

exponentially decaying term (originating in the ODE trajectory convergence). Type i) terms are
small w.h.p. due to the Azuma-Hoeffding inequality; these terms give the r.h.s. in (12). Type ii)
terms are small since N0 is chosen sufficiently large (consult Table 1 for the definition of N0). Type
iii) terms are small for n sufficiently larger than N0 (in particular, for n > N1—consult Table 1 for
the definition ofN1). This summarizes the proof of Theorem 4, which is described in Appendix D.5.

5. Applications to Two-timescale Reinforcement Learning

Here we show how our Theorem 6 implies convergence rates of linear two-timescale methods
for policy evaluation in Markov Decision Processes (MDP). An MDP is defined by the 5-tuple
(S,A, P,R, γ) (Sutton, 1988), where these are respectively the state and action spaces, transition
kernel, reward function, and discount factor. Let policy π : S → A be a stationary mapping from
states to actions and V π(s) = Eπ[

∑∞
n=0 γ

nrn|s0 = s] be the value function at state s w.r.t π.
We consider the policy evaluation setting. In it, the goal is to estimate the value function V π(s)

with respect to a given π using linear regression, i.e., V π(s) ≈ θ>φ(s), where φ(s) ∈ Rd is a feature
vector at state s, and θ ∈ Rd is a parameter vector. For brevity, we omit the notation π and denote
φ(sn), φ(s′n) by φn, φ′n. Finally, let δn = rn+γθ>n φ

′
n−θ>n φn , A = E[φ(φ−γφ′)>] , C = E[φφ>],

and b = E[rφ], where the expectations are w.r.t. the stationary distribution of the induced chain 3.
We assume all rewards r(s) and feature vectors φ(s) are bounded: |r(s)| ≤ 1, ‖φ(s)‖ ≤ 1 ∀s ∈

S.Also, it is assumed that the feature matrix Φ is full rank, soA andC are full rank. This assumption
is standard (Maei et al., 2010; Sutton et al., 2009a). Therefore, due to its structure, A is also positive
definite (Bertsekas, 2012). Moreover, by construction, C is positive semi-definite; thus, by the
full-rank assumption, it is actually positive definite.

5.1. The GTD(0) Algorithm

We now present the GTD(0) algorithm (Sutton et al., 2009a), verify its required assumptions, and
obtain the necessary constants to apply Theorem 6 for it. GTD(0) is designed to minimize the
objective function JNEU(θ) = 1

2(b−Aθ)>(b−Aθ). Its update rule is

θn+1 = θn + αn
(
φn − γφ′n

)
φ>nwn, wn+1 = wn + βnrnφn + φn[γφ′n − φn]>θn.

3. The samples {(φn, φ′n)} are generated iid. This assumption is standard when dealing with convergence bounds in
reinforcement learning (Liu et al., 2015; Sutton et al., 2009a,b). In the few papers where this assumption is not made,
it is replaced with an exponentially-fast mixing time assumption (Korda and Prashanth, 2015; Tsitsiklis et al., 1997).
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Method X1 W2 m1 m2

GTD(0) A>A I (1 + γ + ‖A‖) 1 + max(‖b‖, γ + ‖A‖)
GTD2 A>C−1A C (1 + γ + ‖A‖) 1 + max(‖b‖, γ + ‖A‖, ‖C‖)
TDC A>C−1A C (2 + γ + ‖A‖+ ‖C‖) (2 + γ + ‖A‖+ ‖C‖)

Table 3: Translation of notations for relevant matrices and constants in the case of the GTD family
of algorithms. The parameters X1, W2, m1, m2 are defined in Section 2.

It thus takes the form of (1) and (2) with h1(θ, w) = A>w , h2(θ, w) = b − Aθ − w ,M
(1)
n+1 =

(φn − γφ′n)φ>nwn − A>wn ,M
(2)
n+1 = rnφn + φn[γφ′n − φn]>θn − (b−Aθn) . That is, in case

of GTD(0), the relevant matrices in the update rules take the form Γ1 = 0, W1 = −A>, v1 = 0, and
Γ2 = A, W2 = I, v2 = b. Additionally, X1 = Γ1 −W1W

−1
2 Γ2 = A>A. By our assumption above,

bothW2 andX1 are symmetric positive definite matrices, and thus the real parts of their eigenvalues
are also positive. Also, ‖M (1)

n+1‖ ≤ (1 +γ+ ‖A‖)‖wn‖, ‖M (2)
n+1‖ ≤ 1 + ‖b‖+ (1 +γ+ ‖A‖)‖θn‖.

Hence,A3A3A3 is satisfied with constants m1 = (1 + γ + ‖A‖) and m2 = 1 + max(‖b‖, γ + ‖A‖).
We now can apply Theorem 6 for a specific stepsize choice to obtain the following simplified re-

sult. A more detailed statement with all relevant constants can be directly derived from Theorem 6.

Corollary 12 (Convergence Rate for Sparsely Projected GTD(0)) Consider the Sparsely Pro-
jected variant of GTD(0) as in (13) and (14). Set some κ ∈ (0, 1). Then for αn = 1/n1−κ,
βn = 1/n(2/3)(1−κ), the algorithm converges at a rate of O(n−1/3+κ/3) w.h.p.

For GTD2 and TDC (Sutton et al., 2009b), the above result can be similarly be reproduced; see
Table 3 for the relevant parameters. The detailed derivation is provided in Appendix F.

A reviewer has pointed us to the fact that, unlike in the GTD(0) and GTD2 convergence results,
there exists a special condition on the stepsize ratio for TDC (Maei, 2011, Theorem 3). However,
we find that this condition to be unnecessary because A and C are positive definite.

6. Discussion

In this work, we conduct the first finite sample analysis for two-timescale SA algorithms. We
provide it as a general methodology that applies to all linear two-timescale SA algorithms.

A natural extension to our methodology is considering the non-linear function-approximation
case, in a similar fashion to (Thoppe and Borkar, 2015). Such a result can be of high interest
due to the recently growing attractiveness of neural networks in the RL community. An additional
direction for future research is to extend our results to actor-critic RL algorithms. Moreover, off-
policy extensions can be made for the results here; see Appendix A. Lastly, for a discussion on the
tightness of the results here and comparison to known asymptotic rates see Appendix B.
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László Gerencsér. Rate of convergence of moments of spall’s spsa method. In Control Conference
(ECC), 1997 European, pages 2192–2197. IEEE, 1997.

Morris W Hirsch, Stephen Smale, and Robert L Devaney. Differential equations, dynamical systems,
and an introduction to chaos. Academic press, 2012.

J Zico Kolter. The fixed points of off-policy td. In Advances in Neural Information Processing
Systems, pages 2169–2177, 2011.

Vijay R Konda and John N Tsitsiklis. Convergence rate of linear two-time-scale stochastic approx-
imation. Annals of applied probability, pages 796–819, 2004.

Vijaymohan Konda. Actor-Critic Algorithms. PhD thesis, Department of Electrical Engineering
and Computer Science, MIT, 6 2002.

Nathaniel Korda and LA Prashanth. On td (0) with function approximation: Concentration bounds
and a centered variant with exponential convergence. In ICML, pages 626–634, 2015.

H Kushner. A projected stochastic approximation method for adaptive filters and identifiers. IEEE
Transactions on Automatic Control, 25(4):836–838, 1980.

Harold J. Kushner and G. George Yin. Stochastic Approximation Algorithms and Applications.
1997.

Vangipuram Lakshmikantham and Sadashiv G Deo. Method of variation of parameters for dynamic
systems. CRC Press, 1998.

Chandrashekar Lakshminarayanan and Shalabh Bhatnagar. A stability criterion for two timescale
stochastic approximation schemes. Automatica, 79:108–114, 2017.

13



TWO-TIMESCALE STOCHASTIC APPROXIMATION

Chandrashekar Lakshminarayanan and Csaba Szepesvari. Linear stochastic approximation: How
far does constant step-size and iterate averaging go? In International Conference on Artificial
Intelligence and Statistics, pages 1347–1355, 2018.

Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik. Finite-sample
analysis of proximal gradient td algorithms. In UAI, pages 504–513. Citeseer, 2015.

Hamid Reza Maei. Gradient temporal-difference learning algorithms. 2011.
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algorithm for off-policy learning with linear function approximation. In Advances in neural
information processing systems, pages 1609–1616, 2009a.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
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Appendix A. Off-Policy Extensions

Off-policy results play a central role in reinforcement learning; however, we were focusing here
exclusively on the on-policy setting. Nonetheless, our results can be similarly extended as in (Liu
et al., 2015). Namely, we can repeat the elegant reduction conducted there, where the bound on
‖θn − θ∗‖ is transformed into one on the approximation error ‖V − v̄n‖ = ‖V − Φθ̄n‖. More
precisely, we can bound the second term on the RHS in (Liu et al., 2015, Appendix B, (42)) using
(Kolter, 2011, Theorem 2), and apply our result to bound the first one. Except for a slightly different
rescaling of the matrices (since we use L2 norm as opposed to ξ-weighted L2), we would then
obtain an off-policy result as in Proposition 5 there. Two benefits would then be: a result directly
consisting of θn (instead of its average), and a generic stepsize family n−α (instead of C/

√
n,

where C = f(‖A‖+‖b‖), as depicted above (Liu et al., 2015, Appendix B, (40)). Notice, also, that
transforming one type of bound to the other, as explained above, is a trick by (Liu et al., 2015) that
can be applied in general and not only in our case.

Appendix B. Tightness

Here, we compare our convergence rates with other existing works. To the best of our knowl-
edge, no other finite time results exist for two-timescale SA algorithms. However, there are a few
relevant works that deal with this question in an asymptotic sense. Before discussing them, we
highlight some key differences between finite-time rates and aysmptotic ones. In the latter, the con-
stants hidden in the order notations are often sample-path dependent and hence are less attractive
to practitioners. Contrarily, explicit constants in finite-time rates, as ours, often reveal intriguing
dependencies amongst system and stepsize parameters that crucially affect convergence rates (e.g.,
1/qi in Table 1; see also (Dalal et al., 2018, Section 6)). Moreover, trajectory-independent constants
help in obtaining stopping time theorems.

Following Remark 9, the best convergence rate possible according to our results is n−1/3. This
contrasts the single time-scale case, where the optimal rate is known to be n−1/2 under various
settings. In the context of asymptotic rates, there exist two works that deal with two-timescale
SA which achieve the optimal rate of n−α/2 for the slow-timescale iterate and n−β/2 for the fast-
timescale iterate (Konda and Tsitsiklis, 2004; Mokkadem and Pelletier, 2006). In (Konda and Tsit-
siklis, 2004), according to Assumption 2.1, the noise sequence is assumed to be independent of
itself, and their variance-covariance matrices are constant w.r.t. iteration index n. In our case, in con-
trast, the noise depends on (θn, wn), making the variance-covariance matrices of the noise sequence
explicitly depend on n. These differences make their results inapplicable for the RL algorithms we
consider in our paper; see Section 5.1. A later work (Mokkadem and Pelletier, 2006) improved
upon (Konda and Tsitsiklis, 2004) by removing the above assumption. There, in (A1), convergence
was posed as an assumption on its own. Such an assumption is not straighforward to verify in
general; it was only recently established for square-summable stepsizes (Lakshminarayanan and
Bhatnagar, 2017). However, in the case of non-square-summable stepsizes (which is not covered
in (Mokkadem and Pelletier, 2006)) this Assumption (A1) has not been shown to hold in general,
since converegence is an open question for such stepsizes.

Lastly, while we do not show our bound to be tight, we stress that our result coincides with
known results on a particular SA method of two-timescale nature, called Spall’s method (Spall,
1992, Proposition 2) and (Gerencsér, 1997, Theorem 5.1). Specifically, it was shown for the iterate
θn there that n−κθn converges in distribution to some normal distribution for various parameter
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settings that restrict κ to be at least 1/3. This raises the intriguing question whether the rates
achieved in our work and in (Spall, 1992; Gerencsér, 1997) are sub-optimal and stem from loose
analyses, or whether it is the problem setup itself that intrinsically limits the rate to n−1/3.

Appendix C. A Bound for Sub-exponential Series

Let p ∈ (0, 1) and q̂ > 0. Let i1 ≡ i1(p, q̂) ≥ 1 be such that e−q̂
∑n−1
k=1 (k+1)−p ≤ n−p for all n ≥ i1;

such an i1 exists as the l.h.s. is exponentially decaying. Let

Kg ≡ Kg(p, q̂) := max
1≤i≤i1

ipe−q̂
∑i−1
k=1(k+1)−p . (29)

Lemma 13 (Closed-form sub-exponential bounds) Let n0 ≥ 1, B > 0, and p ∈ (0, 1). Then,
for every κ ∈ (0, 1),

∞∑
n=n0

exp[−Bnp] ≤ 2

B(1− κ)p

[
(1− p)
Bκp

] 1−p
p

exp

[
B(2− κ)− (1− p)

p
−B(1− κ)n0

p

]
.

(30)
Further, for any c, q̂ > 0, and n0 ≥ 1, with cn :=

∑n−1
k=0 [k + 1]−2pe−2q̂

∑n−1
i=k+1[i+1]−p , we have∑

n≥n0

exp
[
−cε2
cn

]
≤ c7

ε2/p
ec5ε

2
e−c6ε

2np0 , (31)

where c7 ≡ c7(c, κ, p, q̂) = 2
[
Kg(p,q̂)eq̂

cq̂

]1/p
1

(1−κ)p1/p

[
1−p
eκ

] 1−p
p , c5 ≡ c5(c, κ, p, q̂) = cq̂(2−κ)

Kg(p,q̂)eq̂
,

and c6 ≡ c6(c, κ, p, q̂) = cq̂(1−κ)
Kg(p,q̂)eq̂

.

Proof Let b·c denote the floor operation. Then, for p ∈ (0, 1) and integers n, i ≥ 0, we have

|{n : bnpc = i}| (32)

=|{n : i ≤ np < i+ 1}|
=|{n : i1/p ≤ n < (i+ 1)1/p}|

≤(i+ 1)
1
p − i

1
p + 1

≤2
[
(i+ 1)

1
p − i

1
p

]
, (33)

where the last inequality follows since (i+ 1)
1
p − i

1
p ≥ 1.

From the concavity of xp, xp ≤ xp0 + d
dx(xp)

∣∣
x=x0

(x− x0) for all x, x0 ∈ R+. Equivalently,

x0 − x ≤ (xp0 − x
p)

[
d

dx
(xp)

∣∣
x=x0

]−1
.

16
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Setting x0 = (i+ 1)
1
p and x = i

1
p , it follows from (33) that

|{n : bnpc = i}|

≤2
[
(i+ 1)

1
p − i

1
p

]
≤2
[(

(i+ 1)
1
p

)p
−
(
i
1
p

)p] [
pxp−1

∣∣
x=(i+1)

1
p

]−1
=

2

p
(i+ 1)

1−p
p . (34)

For any κ ∈ (0, 1), observe that e−xBκ(x + 1)
1−p
p , restricted to x ≥ 0, has a global maximum

at x = (1−p)
Bκp − 1, and so

max
i≥0

e−iBκ(i+ 1)
1−p
p ≤

[
1− p
Bκp

] 1−p
p

e
[κB− (1−p)

p
]
. (35)

Fix an arbitrary κ ∈ (0, 1). From the above observations, we get

∞∑
n=n0

exp[−Bnp]

≤
∞∑

i=bnp0c

e−iB|{n : bnpc = i}|

≤ 2

p

∞∑
i=bnp0c

e−iB (i+ 1)
1−p
p (36)

=
2

p

∞∑
i=bnp0c

e−iB(1−κ) e−iBκ (i+ 1)
1−p
p

≤ 2

p

[
1− p
Bκp

] 1−p
p

e
[κB− (1−p)

p
]
∞∑

i=bnp0c

e−iB(1−κ) (37)

≤ 2

p

[
1− p
Bκp

] 1−p
p

e
[κB− (1−p)

p
]
∫ ∞
bnp0c−1

e−xB(1−κ)dx (38)

≤ 2

B(1− κ)p

[
1− p
Bκp

] 1−p
p

e
B(2−κ)− (1−p)

p e−B(1−κ)n0
p
,

where (36) follows from (34), (37) holds due to (35), and (38) is obtained by treating the sum as a
right Riemann sum and using bnp0c > np0 − 1. This completes the proof of (30).

We now prove (31). Let f(x) := (x + 1)p log[(x + 1)/x]. Notice that limx→∞ f(x) = 0 for
x ≥ 1, p ∈ (0, 1) because f(x) is positive for x > 0 and

(x+ 1)p log[(x+ 1)/x] ≤ (x+ 1)p/x,

17
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which goes to zero. Therefore, there is a i0 ≡ i0(p, q̂) ≥ 0 such that

(i+ 2)p log

[
i+ 2

i+ 1

]
≥ q̂

p
, if 0 ≤ i < i0 ,

(i+ 2)p log

[
i+ 2

i+ 1

]
≤ q̂

p
, if i ≥ i0 .

This is equivalent to saying that, for every n ≥ i+ 2, if 0 ≤ i < i0, then

(i+ 1)−pe−q̂
∑n−1
k=i+1(k+1)−p ≥ (i+ 2)−pe−q̂

∑n−1
k=i+2(k+1)−p ,

and if i0 ≤ i ≤ n− 2, then

(i+ 1)−pe−q̂
∑n−1
k=i+1(k+1)−p ≤ (i+ 2)−pe−q̂

∑n−1
k=i+2(k+1)−p .

Therefore, the maximum of (i + 1)−pe−q̂
∑n−1
k=i+1(k+1)−p is achieved in one of the terminal values,

i.e., at i = 0 or i = n− 1. Thus,

max
0≤i≤n−1

(i+ 1)−pe−q̂
∑n−1
k=i+1(k+1)−p

≤max{e−q̂
∑n−1
k=1 (k+1)−p , n−p} (39)

≤Kgn
−p , (40)

where Kg ≥ 1 (by its definition) is as defined in (29). The transition from (39) to (40) can
be seen as follows. First, consider the case n ≥ i1, where i1 is defined above (29). In this
case, by the definition of i1, the maximum in (39) is n−p, which is bounded by Kgn

−p. If

n < i1,max{n−p
(
npe−q̂

∑n−1
k=1 (k+1)−p

)
, n−p} ≤ Kgn

−p by the definition of Kg.

Now let un :=
∑n−1

k=0 [k + 1]−p. For n ≥ 1, we then have

cn =
n−1∑
i=0

[i+ 1]−2pe−2q̂
∑n−1
k=i+1[k+1]−p

≤Kgn
−p

n−1∑
i=0

[i+ 1]−pe−q̂
∑n−1
k=i+1[k+1]−p (41)

=Kgn
−p

n−1∑
i=0

[ui+1 − ui]e−q̂[un−ui+1] (42)

≤Kge
q̂n−pe−q̂un

n−1∑
i=0

[ui+1 − ui]eq̂ui (43)

≤Kge
q̂n−pe−q̂un

∫ un

u0

eq̂sds (44)

=Kge
q̂n−pe−q̂un

eq̂un − eq̂u0
q̂

≤Kge
q̂

q̂
n−p , (45)

18
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where (41) follows from (40), (42) follows using the definition of un, (43) holds since ui+1 =
ui + (i + 1)−p ≤ ui + 1 for i ≥ 0, (44) follows by treating the sum above as a left Riemann sum,
and, lastly, (45) holds as u0 = 0 and e−q̂un ≤ 1.

Consequently, for any c > 0 and n0 ≥ 1,∑
n≥n0

exp
[
−cε2
cn

]
≤
∑
n≥n0

exp

[
− cq̂ε2

Kgeq̂
np
]
.

The desired result now follows from (30). This completes the proof of the lemma.

Appendix D. Proof of Theorem 4

As the analysis in Section 4 is under assumption (11), the results in the corresponding Subsections
D.2, D.4 and D.5 here are under this assumption as well.

D.1. Application of VoP Formula in Subsection 4.2

Recall the definitions given below (24). On the interval [tk, tk+1), the functions ζ te(·) and ζmd(·)
are constant, while ζde(·) is linear. Therefore, the function ζ(t), t ≥ tn0 , is piecewise continuous;
specifically, it is continuous on the interval [tk, tk+1), for every k ≥ n0. Separately, owing to the
fact that it is a linear interpolation, the function θ̄(t), t ≥ tn0 , is continuous everywhere.

The evolution described in (24) can be viewed as a differential equation in integral form; further,
it can be looked at as a perturbation of the ODE in (6). It is then not difficult to see from (Laksh-
mikantham and Deo, 1998, Theorem 1.1.2) that (25) holds for any t ∈ [tn0 , tn0+1). Now, from the
continuity of θ̄(t), it follows that (25) holds even for t = tn0+1, i.e.,

θ̄(tn0+1) = θ(tn0+1, tn0 , θn0) + E1(tn0+1). (46)

Arguing in the same way as above, for any t ∈ [tn0+1, tn0+2), it is easy to see that

θ̄(t) = θ(t, tn0+1, θ̄(tn0+1)) +

∫ t

tn0+1

e−X1(t−τ)ζ(τ)dτ . (47)

Moreover, observe that

θ(t, tn0+1, θ̄(tn0+1)) (48)

= θ (t, tn0+1, θ(tn0+1, tn0 , θn0) + E1(tn0+1)) (49)

= θ∗ + e−X1(t−tn0+1)(θ(tn0+1, tn0 , θn0) + E1(tn0+1)− θ∗) (50)

= θ∗ + e−X1(t−tn0+1)(θ(tn0+1, tn0 , θn0)− θ∗) + e−X1(t−tn0+1)E1(tn0+1)

= θ∗ + e−X1(t−tn0+1)(θ(tn0+1, tn0 , θn0)− θ∗) +

∫ tn0+1

tn0

e−X1(t−τ)ζ(τ)dτ (51)

= θ(t, tn0+1, θ(tn0+1, tn0 , θn0)) +

∫ tn0+1

tn0

e−X1(t−τ)ζ(τ)dτ (52)

= θ(t, tn0 , θn0) +

∫ tn0+1

tn0

e−X1(t−τ)ζ(τ)dτ , (53)
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where (49) follows from (46); (50) and (52) hold as in (22); (51) follows from the definition of E1

given below (24); and, finally, (53) is true because of the uniqueness and existence of ODE solutions
(see Picard-Lindelöf theorem).

Substituting (53) in (47), it is easy to see that (25) holds for all t ∈ [tn0+1, tn0+2). Inductively
arguing this way, it follows that (25) holds for all t ≥ tn0 .

D.2. A Useful Decomposition of the Event of Interest

For any event E , let Ec be its complement. For all n0, T > 0, define the event

E(n0, T ) := {
∥∥θ̄(t)− θ∗∥∥ ≤ ε1 ∀t ≥ tn0 +T + 1}∩ {‖z̄(s)‖ ≤ ε2 ∀s ≥ sn0 + ξ(T ) + 1} , (54)

where ε1, ε2 are as in the statement of Theorem 4. Eventually, we shall use a bound on Pr{Ec(n0, T )}
to prove Theorem 4. Towards obtaining this bound, the aim here is to construct a well-structured
superset for Ec(n0, T ), assuming (11) holds, which is easier for analysis.

Fix some T > 0 so that

T ≤ tn1+1 − tn0 =

n1∑
k=n0

αk ≤ T + 1. (55)

By Remark 10, θ(t, tn0 , θn0) stays in the Rin
1 −radius ball around θ∗ for all t ≥ tn0 , and

z(s, sn0 , zn0) stays in the Rin
2 −radius ball around z∗ for all s ≥ sn0 . But the same cannot be said

for θ̄(t) and z̄(s) due to the presence of noise. We show instead that these lie with high probability
in bigger but fixed radii balls Rout

1 and Rout
2 , where Rout

2 > Rin
2 is an arbitrary constant, and

Rout
1 := Rin

1 +
4K1 ‖W1‖K2R

in
2

(qmin − q)e
. (56)

Note that, by the choice of ε1 and ε2

R
gap
1 := Rout

1 −Rin
1 ≥ ε1 , and Rgap

2 := Rout
2 −Rin

2 ≥ ε2 . (57)

For n ≥ n0, let

ρn+1 := sup
τ∈[tn,tn+1]

∥∥θ̄(τ)− θ(τ, tn0 , θn0)
∥∥ , ρ∗n+1 := sup

τ∈[tn,tn+1]

∥∥θ̄(τ)− θ∗
∥∥ , (58)

νn+1 := sup
µ∈[sn,sn+1]

‖z̄(µ)− z(µ, sn0 , zn0)‖ , ν∗n+1 := sup
µ∈[sn,sn+1]

‖z̄(µ)‖ , (59)

and define the (“good”) event

Gn := {
∥∥θ̄(τ)− θ∗

∥∥ ≤ Rout
1 ∀τ ∈ [tn0 , tn]} ∩ {‖z̄(µ)‖ ≤ Rout

2 ∀µ ∈ [sn0 , sn]}. (60)

Additionally, define the (“bad”) events Eafter :=
⋃
n>n1

[
{ρ∗n+1 > ε1} ∪ {ν∗n+1 > ε2}

]
and

Emid :=

{[
sup

n0≤n≤n1

ρn+1

]
≥ Rgap

1

}
∪
{[

sup
n0≤n≤n1

νn+1

]
≥ Rgap

2

}
.

The desired superset stated at the beginning of this subsection is given below.
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Lemma 14 (Decomposition of Event of Interest) Consider (54) and suppose that (11) holds. Then

Ec(n0, T ) ⊆
n1⋃

n=n0

{Gn ∩
[
{ρn+1 ≥ Rgap

1 }∪{νn+1 ≥ Rgap
2 }

]
}

∪
⋃
n>n1

[
Gn ∩

[
{ρ∗n+1 ≥ ε1} ∪ {ν∗n+1 ≥ ε2}

]]
.

Proof By (55), as tn1+1 ≤ T + 1, Ec(T ) ⊆ Eafter. For any two events E1 and E2, as

E1 = [E2 ∩ E1] ∪ [Ec2 ∩ E1] ⊆ E2 ∪ [Ec2 ∩ E1],

we have Eafter ⊆ Emid ∪ [Ecmid ∩ Eafter]. Using Remark 10 and since (11) holds,{[
sup

n0≤k<n
ρk+1

]
≤ Rgap

1

}
∩

{[
sup

n0≤k<n
νk+1

]
≤ Rgap

2

}
⊆ Gn.

for all n ≥ n0. Hence by simple manipulations, we have

Emid ⊆
n1⋃

n=n0

{Gn ∩
[
{ρn+1 ≥ Rgap

1 } ∪ {νn+1 ≥ Rgap
2 }

]
}.

Arguing similarly, one can see that

Ecmid ∩ Eafter

⊆ Gn1+1 ∩ Eafter

⊆
⋃
n>n1

[
Gn ∩

[
{ρ∗n+1 ≥ ε1} ∪ {ν∗n+1 ≥ ε2}

]]
,

where the last inequality follows as ε1 ≤ Rout
1 and ε2 ≤ Rout

2 . The desired result now follows.

D.3. Technical Lemmas for Subsection D.4

We now provide two technical lemmas that will be used in the proofs of Lemmas 18 and 20.

Lemma 15 Let 0 < r0 < r1 < · · · < r`, let γi = ri+1 − ri for i = 0, . . . , ` − 1, let U be some
d × d matrix, and let ρ : R → R be some mapping. Assume that for some constant J it holds that
‖ρ(σ)‖ ≤ γiJ for any σ ∈ [ri, ri+1] and i = 0, . . . , ` − 1. Assume, furthermore that for some
constants K > 0 and q0 > 0 it holds that ‖e−U(r−r0)‖ ≤ Ke−q0(r−r0) for any r > r0. Then∥∥∥∥∫ r`

r0

e−U(r`−σ)ρ(σ)dσ

∥∥∥∥ ≤ KJ

q0

[
sup

i=0,...,`−1
γi

]
.
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Proof The claim of the lemma follows easily as, due to the assumptions,∥∥∥∥∫ r`

r0

e−U(r`−σ)ρ(σ)dσ

∥∥∥∥ ≤ `−1∑
i=0

∫ ri+1

ri

∥∥∥e−U(r`−σ)
∥∥∥ ‖ρ(σ)‖ dσ

≤ KJ
`−1∑
i=0

γi

∫ ri+1

ri

e−q0(r`−σ)dσ

≤ KJ

[
sup

i=0,...,`−1
γi

]∫ r`

r0

e−q0(r`−σ)dσ

≤ KJ

q0

[
sup

i=0,...,`−1
γi

]
,

where, to get the last relation, we have used the fact that
∫ r`
r0
e−q0(r`−σ)dσ ≤ 1.

Lemma 16 (Dominating Decay Rate Bound) Fix q ∈ (0, qmin) where qmin := min{q1, q2}. Then
for n ≥ n0,

n−1∑
k=n0

∫ tk+1

tk

e−q1(tn−τ)e−q2(ξ(τ)−sn0 )dτ ≤ 1

(qmin − q)e
e−q(tn−tn0 ).

Proof From (4), βk ≥ αk ∀k ≥ 1. Using this and (21), ∀k ≥ 1 and τ ∈ [tk, tk+1], ξ(τ) − sk ≥
τ − tk. Hence for any τ ∈ [tn0 , tn],

−q1(tn − τ)− q2(ξ(τ)− sn0) ≤ −qmin(tn − tn0).

Now, since 1
αe is the maximum of xe−αx,

(tn − tn0)e−qmin(tn−tn0 ) = (tn − tn0)e−(qmin−q)(tn−tn0 )e−q(tn−tn0 )

≤ 1

(qmin − q)e
e−q(tn−tn0 ).

The desired result now follows.

D.4. Bounding the Error Terms Discussed in Subsection 4.3

For obtaining the bounds in this subsection, we first show worst-case bounds on the increments. For
k ≥ n0, let

Iθ(k) := ‖θk+1 − θk‖ /αk (61)

and
Iz(k) := ‖zk+1 − zk‖ /βk. (62)

Also, let
R∗ :=

∥∥X−11

∥∥ ‖b1‖ (63)
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so that
‖θ∗‖ ≤ R∗. (64)

On Gn, for k ∈ {n0, . . . , n},

‖wk‖ ≤ ‖zk‖+ ‖λ(θ∗)‖+ ‖λ(θk)− λ(θ∗)‖
≤ Rout

2 +
∥∥W−12

∥∥ [ ‖v2‖+ ‖Γ2‖ [R∗ +Rout
1 ]
]

=: Rw2 . (65)

Lemma 17 (Bounded Differences) Fix n0 ≥ 0 and n ≥ n0. Then on Gn, assuming (11),

sup
n0≤k≤n

Iθ(k) ≤ Jθ, sup
n0≤k≤n

Iz(k) ≤ Jz. (66)

where
Jθ = ‖v1‖+ ‖Γ1‖ [R∗ +Rout

1 ] + ‖W1‖Rw2 +m1[1 +R∗ +Rout
1 +Rw2 ]

and
Jz := ‖W2‖Rout

2 +
∥∥W−12

∥∥ ‖Γ2‖ Jθ +m2(1 +R∗ +Rout
1 +Rw2 ).

Proof Fix k ∈ {n0, . . . , n}. On Gn, using (1),A3A3A3, (64), (60), and (65), in that order,

Iθ(k) ≤ ‖v1 − Γ1θk −W1wk‖+
∥∥∥M (1)

k+1

∥∥∥
≤ ‖v1‖+ ‖Γ1‖ (‖θ∗‖+ ‖θk − θ∗‖)

+ ‖W1‖ ‖wk‖
+m1[1 + ‖θ∗‖+ ‖θk − θ∗‖+ ‖wk‖]

≤ Jθ. (67)

Similarly, on Gn, using (8),A3A3A3, (60), (4) fromA2A2A2 , (67), (64), and (65), in that order,

Iz(k) ≤ ‖W2‖ ‖zk‖+ ‖λ(θk)− λ(θk+1)‖ /βk
+
∥∥∥M (2)

k+1

∥∥∥
≤ ‖W2‖ ‖zk‖+

∥∥[W2]
−1∥∥ ‖Γ2‖ ηkIθ(k)

+m2(1 + ‖θ∗‖+ ‖θk − θ∗‖+ ‖wk‖)
≤ Jz.

Since k was arbitrary the result follows.

Let q(1)(W2), . . . , q
(d)(W2) be the eigenvalues of W2. Fix q2 ∈ (0, q′2), where

q′2 := min
i
{real(q(i)(W2))}.

Then from Corollary 3.6 (Teschl, 2004), there exists K2 ≥ 1 so that∥∥∥e−W2(s−µ)
∥∥∥ ≤ K2e

−q2(s−µ), ∀s ≥ µ. (68)

For the rest of the results in this subsection, we consider intermediate intervals [sn, sn+1]. The
next lemma gives bounds on the three error terms of the interpolated trajectory z̄(s) at the extremes
{sn, sn+1}. This suffices for bounding the deviation of z̄(s) from z(s) on the whole interval, as is
shown in the subsequent lemma.
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Lemma 18 (Perturbation Error Bounds for zn) Fix n0 ≥ 0 and n ≥ n0 Then on Gn, assuming
(11),

sup
`∈{n,n+1}

∥∥Ede
2 (s`)

∥∥ ≤ Lde
2

[
sup
k≥0

βk

]
,

sup
`∈{n,n+1}

∥∥Esd
2 (s`)

∥∥ ≤ Lsd
2

[
sup
k≥0

ηk

]
,∥∥Emd

2 (sn+1)
∥∥ ≤ K2

∥∥Emd
2 (sn)

∥∥+ Lmd
2 βn.

where Lde
2 := K2Jz‖W2‖

q2
, Lsd

2 :=
K2‖W−1

2 ‖‖Γ2‖Jθ
q2

, Lmd
2 := K2m2[1 +R∗ +Rout

1 +Rw2 ].

Proof Fix ` ∈ {n, n+ 1}.
For the first claim note that, by Lemma 17, on Gn,∥∥χde(µ)

∥∥ ≤ ‖W2‖ (µ− sk)Iz(k) ≤ ‖W2‖βkJz

for µ ∈ [sk, sk+1), where Iz(k) is as in (62). The claim then follows easily by recalling (68),
and applying Lemma 15 with ri = si, γi = βi, U = W2, ρ = χde, K = K2, q0 = −q2 and
J = ‖W2‖ Jz .

For the second claim, let k ∈ {n0, . . . , `− 1} and µ ∈ [sk, sk+1). With Iθ(k) as in (61),∥∥χsd(µ)
∥∥ ≤ ηk ∥∥W−12

∥∥ ‖Γ2‖ Iθ(k).

Hence by Lemma 17, on Gn, ∥∥χsd(µ)
∥∥ ≤ ηk ∥∥W−12

∥∥ ‖Γ2‖ Jθ.
The claim then follows again by (68) and Lemma 15.

For the third claim, by its definition and the triangle inequality,∥∥Emd
2 (sn+1)

∥∥
=

∥∥∥∥∥
∫ sn+1

sn0

e−W2(sn+1−µ)χmd(µ)dµ

∥∥∥∥∥
≤

∥∥∥∥∥e−W2βn

∫ sn

sn0

e−W2(sn−µ)χmd(µ)dµ

∥∥∥∥∥+

∥∥∥∥∫ sn+1

sn

e−W2(sn+1−µ)χmd(µ)dµ

∥∥∥∥ .
Applying (68) on both terms, we get that∥∥Emd

2 (sn+1)
∥∥ ≤ K2

∥∥Emd
2 (sn)

∥∥+K2βn

∥∥∥M (2)
n+1

∥∥∥ .
On Gn, using A3A3A3 with (60), (64), and (65), we have K2

∥∥∥M (2)
n+1

∥∥∥ ≤ Lmd
2 . The third claim is now

easy to see.

The next lemma shows that for τ ∈ [sn, sn+1], z̄(τ) cannot deviate much from the ODE trajec-
tory z(τ) if the stepsizes are small enough. In particular, it bounds the distance with decaying terms
using Lemma 18.
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Lemma 19 (ODE-SA Distance Bound for zn) Fix n0 ≥ 0 and n ≥ n0. Then on Gn and since
(11) holds,

νn+1 ≤K2

∥∥Emd
2 (sn)

∥∥+ Lz max

{
sup
k≥n0

βk, sup
k≥n0

ηk

}
,

ν∗n+1 ≤K2

∥∥Emd
2 (sn)

∥∥+K2R
in
2 e
−q2(sn−sn0 ) + Lz max

{
sup
k≥n0

βk, sup
k≥n0

ηk

}
,

where Lz = Lde
2 + Lmd

2 + ‖W2‖Rin
2 + Lsd

2 .

Proof Let µ ∈ [sn, sn+1]. Then there exists κ ∈ [0, 1] so that

z̄(µ) = (1− κ)z̄(sn) + κz̄(sn+1).

Hence

‖z̄(µ)− z(µ, sn0 , zn0)‖ ≤ (1− κ) ‖z̄(sn)− z(µ, sn0 , zn0)‖+ κ ‖z̄(sn+1)− z(µ, sn0 , zn0)‖ .

Using (9),

z(µ, sn0 , zn0) = z(sn, sn0 , zn0) +

∫ µ

sn

[−W2 z(µ1, sn0 , zn0)]dµ1,

and
z(sn+1, sn0 , zn0) = z(µ, sn0 , zn0) +

∫ sn+1

µ
[−W2 z(µ1, sn0 , zn0)]dµ1.

Combining the above three relations, we have

‖z̄(µ)− z(µ, sn0 , zn0)‖ ≤ (1− κ) ‖z̄(sn)− z(sn, sn0 , zn0)‖

+ κ ‖z̄(sn+1)− z(sn+1, sn0 , zn0)‖+

∫ sn+1

sn

‖W2‖ ‖z(µ1, sn0 , zn0)‖ dµ1.

Since (11) holds, as ‖zn0‖ ≤ Rin
2 , from Remark 10, ‖z(µ, sn0 , zn0)‖ ≤ Rin

2 for all s ≥ sn0 . Using
this with (28), (68), the facts that K2 ≥ 1 and βn ≤ [supk≥n0

βk], and Lemma 18, the first claim
follows:

νn+1 ≤Lde
2

[
sup
k≥n0

βk

]
+ Lsd

2

[
sup
k≥n0

ηk

]
+ κLmd

2 βn

+ ((1− κ) + κK2)
∥∥Emd

2 (sn)
∥∥+ ‖W2‖βnRin

2 .

≤K2

∥∥Emd
2 (sn)

∥∥+ Lz max

{
sup
k≥n0

βk, sup
k≥n0

ηk

}
. (69)

For the second claim observe that

‖z̄(µ)‖ ≤ ‖z̄(µ)− z(µ, sn0 , zn0)‖+ ‖z(µ, sn0 , zn0)‖ .

Hence
ν∗n+1 ≤ νn+1 + sup

µ∈[sn,sn+1]
‖z(µ, sn0 , zn0)‖ .
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Lastly, since (11) holds, ‖zn0‖ ≤ Rin
2 , and hence using (23) and (68),

‖z(µ, sn0 , zn0)‖ ≤ K2R
in
2 e
−q2(µ−sn0 ).

Combining the above two relations with (69), the desired result is now easy to see.

We now reproduce the results of Lemma 19, this time for {θn} instead of {zn}, and obtain
bounds on ρn+1 and ρ∗n+1 onGn, assuming (11). To do so, it suffices to bound

∥∥Ede
1 (·)

∥∥ , ∥∥Emd
1 (·)

∥∥ ,
and ‖Ete

1 (·)‖ on the interval [tn, tn+1].
Similarly as in (68), there exist q1 and K1 ≥ 1 so that∥∥∥e−X1(t−τ)

∥∥∥ ≤ K1e
−q1(t−τ), ∀t ≥ τ. (70)

Fix
q ∈ (0, qmin), qmin := min{q1, q2}, (71)

where q2 is from (68). The next lemma gives bounds on the three components of E1(t).

Lemma 20 (Perturbation Error Bounds for θn) Fix n0 ≥ 0 and n ≥ n0. Then on Gn, assuming
(11),

sup
`∈{n,n+1}

∥∥Ede
1 (t`)

∥∥ ≤ Lde
1

[
sup
k≥n0

αk

]
,

sup
`∈{n,n+1}

∥∥Ete
1 (t`)

∥∥ ≤ Lte
1a e

−q(tn−tn0 ) + Lte
1b

[
sup
k≥n0

βk

]
+ Lte

1c

[
sup

n0≤k≤n
νk+1

]
,∥∥Emd

1 (tn+1)
∥∥ ≤ K1

∥∥Emd
1 (tn)

∥∥+ Lmd
1 αn,

whereLde
1 := K1Jθ‖X1‖

q1
, Lte

1a := K1 ‖W1‖K2R
in
2

1
(qmin−q)e , L

te
1b := K1 ‖W1‖ ‖W2‖Rin

2 /q1, L
te
1c :=

K1 ‖W1‖ /q1, Lmd
1 := K1m1[1 +R∗ +Rout

1 +Rw2 ].

Proof For the first claim of the lemma fix ` ∈ {n, n+1}. Let k ∈ {n0, . . . , `−1} and τ ∈ [tk, tk+1).
With Iθ(k) as in (61), ∥∥ζde(τ)

∥∥ ≤ ‖X1‖ (τ − tk)Iθ(k) ≤ αk ‖X1‖ Iθ(k).

So by Lemma 17, on Gn,
∥∥ζde(τ)

∥∥ ≤ αk ‖X1‖ Jθ. The first claim now follows by (70) and
Lemma 15.

For proving the second claim of the lemma let ` = n. By triangle inequality,

‖Ete
1 (tn)‖ ≤

n−1∑
k=n0

∫ tk+1

tk

∥∥∥e−X1(tn−τ)
∥∥∥∥∥ζ te(τ)

∥∥dτ.

Using (70), it follows that

‖Ete
1 (tn)‖ ≤ K1

n−1∑
k=n0

∫ tk+1

tk

e−q1(tn−τ)
∥∥ζ te(τ)

∥∥dτ.
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Fix k ∈ {n0, . . . , n− 1} and τ ∈ [tk, tk+1). Then∥∥ζ te(τ)
∥∥ ≤ ‖W1‖ ‖zk‖ .

Using (21) and the triangle inequality,

‖zk‖ ≤ ‖z(ξ(τ), sn0 , zn0)‖
+ ‖z(ξ(τ), sn0 , zn0)− z(ξ(tk), sn0 , zn0)‖+ ‖zk − z(ξ(tk), sn0 , zn0)‖ .

Since (11) holds, ‖zn0‖ ≤ Rin
2 ; thus by (23) and (68),

‖z(ξ(τ), sn0 , zn0)‖ ≤ K2R
in
2 e
−q2(ξ(τ)−sn0 ).

Remark 10 also implies that, as ‖zn0‖ ≤ Rin
2 , ‖z(s, sn0 , zn0)‖ ≤ Rin

2 for all s ≥ sn0 . Hence by (9),

‖z(ξ(τ), sn0 , zn0)− z(ξ(tk), sn0 , zn0)‖ ≤

∥∥∥∥∥
∫ ξ(τ)

ξ(tk)
[−W2] z(µ, sn0 , zn0)dµ

∥∥∥∥∥
≤ ‖W2‖Rin

2 βk,

where the last relation holds as [ξ(τ)− ξ(tk)] ≤ [sk+1 − sk]. Also note that, by (59),

‖zk − z(ξ(tk), sn0 , zn0)‖ ≤ νk+1.

Combining the above relations,∥∥ζ te(τ)
∥∥

≤ ‖W1‖
[
K2R

in
2 e
−q2(ξ(τ)−sn0 ) + ‖W2‖Rin

2 βk + νk+1

]
≤ ‖W1‖

[
K2R

in
2 e
−q2(ξ(τ)−sn0 ) + ‖W2‖Rin

2

[
sup
k≥n0

βk

]
+

[
sup

n0≤k≤n−1
νk+1

]]

By Lemma 16 and the fact that
∫ tn
tn0

e−q1(tn−τ)dτ ≤ 1/q1,

‖Ete
1 (tn)‖ ≤ Lte

1ae
−q(tn−tn0 ) + Lte

1b

[
sup
k≥n0

βk

]
+ Lte

1c

[
sup

n0≤k≤n−1
νk+1

]
.

A similar bound holds for ` = n + 1. Since e−q(tn+1−tn0 ) ≤ e−q(tn−tn0 ), the second claim of the
lemma follows.

The third claim of the lemma, bounding
∥∥Emd

2 (sn+1)
∥∥, follows in a similar way to the third

claim of Lemma 18.

Similarly to Lemma 19, the next lemma bounds ρn+1 and ρ∗n+1 with decaying terms using
Lemma 20.
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Lemma 21 (ODE-SA Distance Bound for θn) Fix n0 ≥ 0 and n ≥ n0. Then on Gn, assuming
(11),

ρn+1 ≤K1

∥∥Emd
1 (tn)

∥∥+ Lθa e
−q(tn−tn0 ) + Lθb

[
sup
k≥n0

βk

]
+ Lθc

[
sup

n0≤k≤n
νk+1

]
,

ρ∗n+1 ≤K1

∥∥Emd
1 (tn)

∥∥+ [K1R
in
1 + Lθa]e

−q(tn−tn0 ) + Lθb

[
sup
k≥n0

βk

]
+ Lθc

[
sup

n0≤k≤n
νk+1

]
,

where Lθa = Lte
1a, L

θ
c = Lte

1c and Lθb := Lde
1 + Lmd

1 + ‖X1‖Rin
1 + Lte

1b.

Proof Let τ ∈ [tn, tn+1]. Then arguing as in the proof of Lemma 19 and using (6), there exists
κ ∈ [0, 1] such that∥∥θ̄(τ)− θ(τ, tn0 , θn0)

∥∥ ≤ (1− κ)
∥∥θ̄(tn)− θ(tn, tn0 , θn0)

∥∥
+ κ

∥∥θ̄(tn+1)− θ(tn+1, tn0 , θn0)
∥∥+

∫ tn+1

tn

‖X1‖
∥∥θ(τ ′, tn0 , θn0)− θ∗

∥∥dτ ′.

Due to (11),
∥∥θ̄(tn0)− θ∗

∥∥ ≤ Rin
1 ; thus, from Remark 10, ‖θ(τ, tn0 , θn0)− θ∗‖ ≤ Rin

1 for all
t ≥ tn0 . Using this with (25) and (68), the facts that K1 ≥ 1,

αn ≤

[
sup
k≥n0

αk

]
≤

[
sup
k≥n0

βk

]
,

and Lemma 20, the first claim of the lemma follows:

ρn+1 ≤Lde
1

[
sup
k≥n0

βk

]
+ Lte

1ae
−q(tn−tn0 ) + Lte

1b

[
sup
k≥n0

βk

]
+ Lte

1c

[
sup

n0≤k≤n
νk+1

]

+ κLmd
1

[
sup
k≥n0

βk

]
+ (κ+ (1− κ)K1)

∥∥Emd
1 (tn)

∥∥+ ‖X1‖Rin
1

[
sup
k≥n0

βk

]

≤K1

∥∥Emd
1 (tn)

∥∥+ Lθa e
−q(tn−tn0 ) + Lθb

[
sup
k≥n0

βk

]
+ Lθc

[
sup

n0≤k≤n
νk+1

]
. (72)

For the second claim of the lemma, notice that∥∥θ̄(τ)− θ∗
∥∥ ≤ ∥∥θ̄(τ)− θ(τ, tn0 , θn0)

∥∥+ ‖θ(τ, tn0 , θn0)− θ∗‖ .

Thus, we have
ρ∗n+1 ≤ ρn+1 + sup

τ∈[tn,tn+1]
‖θ(τ, tn0 , θn0)− θ∗‖ .

Lastly, using (11),
∥∥θ̄(tn0)− θ∗

∥∥ ≤ Rin
1 ; thus, from (22),

‖θ(τ, tn0 , θn0)− θ∗‖ ≤ K1R
in
1 e
−q1(τ−tn0 ).

Combining the above two relations, using (72) and the fact that q < q1, the second claim of the
lemma follows.
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D.5. Completing the Proof of Theorem 4

We first prove Lemmas 22 and 23 for bounding the terms appearing in Lemma 14 using the results
from the previous subsections. Then, we provide a bound on the martingale difference noise in
Lemma 24. Finally, we combine these results to prove Theorem 4.

Lemma 22 In accordance with Table 2, let N0,a ≡ N0,a(ε1, ε2, {αk}, {βk}) denote the smallest
positive value satisfying

max

{
sup

k≥N0,a

βk, sup
k≥N0,a

ηk

}
≤ min {ε1/8, ε2/3}

Lz max{Lθc , 1}
, (73)

N0,b ≡ N0,b(ε1, {βk}) the smallest positive value satisfying

sup
k≥N0,b

βk ≤
ε1

4Lθb
, (74)

and N0 ≡ N0(ε1, ε2, {αk}, {βk}) = max{N0,a, N0,b}. Then, for any n0 ≥ N0 and n ≥ n0,
assuming (11),

[Gn ∩ {νn+1 ≥ Rgap
2 }] ⊆

[
Gn ∩

{
K2

∥∥Emd
2 (sn)

∥∥ ≥ ε2
3

}]
(75)

and

[Gn ∩ {ρn+1 ≥ Rgap
1 }]

⊆
[
Gn ∩

{
K1

∥∥Emd
1 (tn)

∥∥ ≥ ε1
4

}]
∪

n⋃
k=n0

[
Gk ∩

{
LθcK2

∥∥Emd
2 (sk)

∥∥ ≥ ε1
8

}]
. (76)

Proof Equation (75) follows from Lemma 19, (57), and the fact that

2ε2/3 ≥ ε2/3 ≥ Lz max

{
sup
k≥n0

βk, sup
k≥n0

ηk

}

for n0 ≥ N0,a.
We now prove (76). Due to (56) and (57),Rgap

1 = 4Lθa (see Table 2 for the definition ofLθa), and
thus Lθae

−q(tn−tn0 ) ≤ R
gap
1 /4 for n ≥ n0. Additionally, as n0 ≥ N0,b, Lθb

[
supk≥n0

βk
]
≤ ε1/4.

Consequently, by Lemma 21, and as Rgap
1 ≥ ε1 due to (57),

[Gn ∩ {ρn+1 ≥ Rgap
1 }]

⊆
[
Gn ∩

{
K1

∥∥Emd
1 (tn)

∥∥ ≥ ε1
4

}]
∪

[
Gn ∩

{
Lθc

[
sup

n0≤k≤n
νk+1

]
≥ ε1

4

}]
.

Noting also that Gn ⊆ Gk for all n0 ≤ k ≤ n, the desired result now follows from Lemma 19, and
the fact that ε1/8 ≥ Lz max

{
supk≥n0

βk, supk≥n0
ηk
}

for n0 ≥ N0,a by the definition of N0,a.
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Lemma 23 Fix some n0 ≥ N0 and n1 ≥ N1, where, in accordance with Table 2, N0 ≡
N0(ε1, ε2, {αk}, {βk}) is defined as in Lemma 22,N1 ≡ N1(n0, ε1, ε2, {αk}, {βk}) = max{N1,a, N1,b},
N1,a ≡ N1,a(n0, ε1, {αk}) denotes the smallest positive value satisfying

[K1R
in
1 + Lθa]e

−q(tN1,a
−tn0 ) ≤ ε1

4
, (77)

and N1,b ≡ N1,b(n0, ε2, {βk}) denotes the smallest positive value satisfying

K2R
in
2 e
−q2(sN1,b

−sn0 ) ≤ ε2
3
. (78)

Then, assuming (11), for all n ≥ n1,

[Gn ∩ {ν∗n+1 ≥ ε2}] ⊆
[
Gn ∩

{
K2

∥∥Emd
2 (sn)

∥∥ ≥ ε2
3

}]
(79)

and

[Gn ∩ {ρ∗n+1 ≥ ε1}]

⊆
[
Gn ∩

{
K1

∥∥Emd
1 (tn)

∥∥ ≥ ε1
4

}]
∪

n⋃
k=n0

[
Gk ∩

{
LθcK2

∥∥Emd
2 (sk)

∥∥ ≥ ε1
8

}]
. (80)

Proof Note that K2R
in
2 e
−q2(sn−sn0 ) ≤ ε2/3 for all n ≥ N1,b due to q ≤ q2, and that

Lz max

{
sup
k≥n

βk, sup
k≥n

ηk

}
≤ ε1/3

for all n ≥ N0,a (recall N0,a from Lemma 22) . Therefore, due to Lemma 19, (79) holds.
For proving (80), note first that, as n ≥ N1,a and q ≤ q2, it holds that

[K1R
in
1 + Lθa]e

−q2(tN1,a
−tn0 ) ≤ ε1

4
.

Additionally, as n ≥ N0,b, Lθb
[
supk≥n0

βk
]
≤ ε1/4 (recall N0,b from Lemma 22). Consequently,

by Lemma 21,

[Gn ∩ {ρ∗n+1 ≥ ε1}]

⊆
[
Gn ∩

{
K1

∥∥Emd
1 (tn)

∥∥ ≥ ε1
4

}]
∪

[
Gn ∩

{
Lθc

[
sup

n0≤k≤n
νk+1

]
≥ ε1

4

}]
. (81)

To complete the proof, we argue as in the last part of the proof of Lemma 22: noting that Gn ⊆ Gk
for all n0 ≤ k ≤ n, the desired result follows from (81) using Lemma 19, and the fact that ε1/8 ≥
Lz max

{
supk≥n0

βk, supk≥n0
ηk
}

for n0 ≥ N0,a (recall, again, N0,a from Lemma 22).

Lastly, to provide the proof of our main technical theorem, we give the following lemma. We
remind the reader that an =

∑n−1
k=0 α

2
ke
−2q1(tn−tk+1), and bn :=

∑n−1
k=0 β

2
ke
−2q2(sn−sk+1) for n ≥

0. Also recall that Emd
1 (tn) and Emd

2 (tn) depend on n0, as can be seen from their definition in
Subsection 4.2.
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Lemma 24 (Azuma-Hoeffding for Emd
1 and Emd

2 ) Fix n0 ≥ 0, δ > 0. Then for any n ≥ n0,

Pr
{
Gn,

∥∥Emd
1 (tn)

∥∥ ≥ δ} ≤ 2d2 exp

(
− δ2

d3(Lmd
1 )2an

)
(82)

and

Pr
{
Gn,

∥∥Emd
2 (sn)

∥∥ ≥ δ} ≤ 2d2 exp

(
− δ2

d3(Lmd
2 )2bn

)
. (83)

Proof We only prove (82); (83) follows similarly.
Let Ak,n be the matrix

∫ tk+1

tk
e−X1(tn−τ)dτ with Aijk,n denoting its i, j−th entry. Let M (1)

k+1(j)

denote the j−th entry of M (1)
k+1. On Gn, 1Gk = 1 for all n0 ≤ k ≤ n. So

Pr
{
Gn,

∥∥Emd
1 (tn)

∥∥ ≥ δ} = Pr

Gn,
∥∥∥∥∥∥
n−1∑
k=n0

Ak,nM
(1)
k+11Gk

∥∥∥∥∥∥ ≥ δ


≤ Pr


∥∥∥∥∥∥
n−1∑
k=n0

Ak,nM
(1)
k+11Gk

∥∥∥∥∥∥ ≥ δ


≤
d∑
i=1

d∑
j=1

Pr


∥∥∥∥∥∥
n−1∑
k=n0

Aijk,nM
(1)
k+1(j)1Gk

∥∥∥∥∥∥ ≥ δ

d
√
d

 ,

where the last relation is due to the union bound applied twice. OnGk, K1

∥∥∥M (1)
k+1

∥∥∥ ≤ Lmd
1 . Hence,

on Gk, for any i, j ∈ {1, . . . , d}, using (70),

|Aijk,n| |M
(1)
k+1(j)| ≤ ‖Ak,n‖ ‖Mk+1‖ ≤ K1L

md
1 αke

−q1(tn−tk+1).

Using
∑n−1

k=n0
α2
ke
−2q1(tn−tk+1) ≤ an, the desired result now follows from the Azuma-Hoeffding

inequality.

We finish with combining the above lemmas for proving our main technical result.
Proof of Theorem 4 Lemmas 14, 22, and 23 together show that, for any n0 ≥ N0(ε1, ε2, {αk}, {βk})
and n1 ≥ N1(n0, ε1, ε2, {αk}, {βk}),

Ec(n0, T ) ⊆

[ ∞⋃
n=n0

[
Gn ∩

{
K1

∥∥Emd
1 (tn)

∥∥ ≥ ε1
4

}]]

∪

[ ∞⋃
n=n0

[
Gn ∩

{
K2

∥∥Emd
2 (sn)

∥∥ ≥ ε2
3

}]]
∪

[ ∞⋃
n=n0

[
Gn ∩

{
LθcK2

∥∥Emd
2 (sn)

∥∥ ≥ ε1
8

}]]
.

The proof then follows from Lemma 24.
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Appendix E. Proof of Theorem 6

Using Theorem 4, we are now ready to prove Theorem 6.
Proof of Theorem 6, Statement 1 First we claim that, under the choice of stepsize in the statement
of the theorem, we have

n′0 ≥ N0(ε, ε, {αk}, {βk}) , (84)

where N0(ε, ε, {αk}, {βk}) is as in Lemma 22. The reason for this is that, due to our choice of n′0,
(73) and (74) hold with

N0,a(ε, ε, {αk}, {βk}) =
[
8Lz max{Lθc , 1}/ε

] 1
min{β,α−β}

,

N0,b(ε, ε, {βk}) =
[
4Lθb/ε

]1/β
.

Additionally, for any n0, (78) holds with

N1,b(n0, ε, {βk}) =
[
(n0 + 1)1−β + 1−β

q2
ln
[
3K2Rin

2
ε

]] 1
1−β

.

This follows from the fact that

N1,b−1∑
k=n0

(1 + k)−β ≥
∫ N1,b

n0

(1 + x)−βdx (85)

=
1

1− β

[
(N1,b + 1)(1−β) − (N1,0 + 1)(1−β)

]
. (86)

Similarly, (77) holds with

N1,a(n0, ε, {αk}) =
[
(n0 + 1)1−α + 1−α

q ln
[
4[K1Rin

1+L
θ
a]

ε

]] 1
1−α

.

For all n0 ≥ 3, we have 2n0 ≥ 1.5(n0 + 1). Hence, if

n0 ≥ max

{[
1− α

((1.5)1−α − 1)q
ln

4[K1R
in
1 + Lθa]

ε

]1/(1−α)
, 3

}
,

then it is easy to see that 2n0 ≥ N1,a(n0, ε, {βk}). Similarly, if

n0 ≥ max

{[
1− β

((1.5)1−β − 1)q2
ln

3K2R
in
2

ε

]1/(1−β)
, 3

}
,

then 2n0 ≥ N1,a(n0, ε, {βk}). Thus, by our choice of n′0,

2n′0 ≥ N1(n
′
0, ε, ε, {αk}, {βk}) , (87)

where N1(n
′
0, ε, ε, {αk}, {βk}) is as in Lemma 23.
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By (17), we have

{w ∈ Rd : ‖w‖ ≤ Rin
2 /2} ⊆ {w ∈ Rd : ‖w − λ(θ)‖ ≤ Rin

2 ∀θ with ‖θ‖ ≤ Rin
1 /2} .

Combining this with using (16), (7), and since n′0 is a power of 2, it follows from the definition of
the projection operation that

‖θ′n′0 − θ
∗‖ ≤ Rin

1 , and ‖z′n′0‖ ≤ R
in
2 . (88)

Let (θn, wn)n≥n′0 be the iterates obtained by running the unprojected algorithm given in (1) and
(2) with θn′0 = θ′n′0

and wn′0 = w′n′0
. Because of (88), it follows that (11) holds. Combining this

with (84) and (87), it follows from Theorem 4 that

Pr{‖θn − θ∗‖ ≤ ε, ‖zn‖ ≤ ε, ∀ n ≥ 2n′0}

≥ 1− 2d2
∑
n≥n′0

[
exp
[
−c1ε21
an

]
+ exp

[
−c2ε21
bn

]
+ exp

[
−c3ε22
bn

]]
≥ 1− 2d2

∑
n≥n′0

[
exp
[
−c1ε21
an

]
+ 2 exp

[
−min(c2,c3)ε21

bn

]]
. (89)

As the next step, we claim that, for any n, the event

{‖θn − θ∗‖ ≤ ε, ‖zn‖ ≤ ε} ⊆ {θn = Πn,Rin
1 /2

(θn), wn = Πn,Rin
2 /2

(wn)} . (90)

Indeed, due to (16) and the choice of ε, ‖θn − θ∗‖ ≤ ε implies

‖θn‖ ≤ ‖θn − θ∗‖+ ‖θ∗‖ ≤ ε+Rin
1 /4 ≤ Rin

1 /2 (91)

and thus θn = Πn,Rin
1 /2

(θn). Separately, from the above relation and (17), we also have ‖λ(θn)‖ ≤
Rin

2 /4. Because of this, (7), the fact that ‖zn‖ ≤ ε, and the choice of ε, it then follows that ‖wn‖ ≤
‖λ(θn)‖+ ‖zn‖ ≤ Rin

2 /2, and thus wn = Πn,Rin
2 /2

(wn).
An immediate consequence of (90) is that the event

I := {‖θj − θ∗‖ ≤ ε, ‖zj‖ ≤ ε,∀ j ≥ 2n′0}
⊆ {θj = Πj,Rin

1
(θj), wj = Πj,Rin

2
(wj), ∀ j ≥ 2n′0} . (92)

The statement of the theorem now follows by an easy coupling argument. For this, let

(θ̃′n, w̃
′
n) :=


(θ′n, w

′
n), for 0 ≤ n < n′0 ,

(θn, wn), for n ≥ n′0 on the event I ,
(θ′n, w

′
n), for n ≥ n′0 on the complement of the event I .

(93)

Due to (92), (θ̃′n, w̃
′
n)n≥0 and (θ′n, w

′
n)n≥0 are distributed identically. This, together with (89) and

Lemma 13, completes the proof of the claimed result.

Proof of Theorem 6, Statement 2 Let

N ′′0 (ε, δ, α, β) = max


[

1

c6aε2
log

4d2c7ae
c5aε2

ε2/αδ

]1/α
,

[
1

c6bε2
log

8d2c7be
c5bε

2

ε2/βδ

]1/β .
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Obviously, for any n′0 ≥ N ′′0 (ε, δ, α, β),

2d2
c7a

ε2/α
exp

[
c5aε

2 − c6aε2(n′0)α
]

+ 4d2
c7b
ε2/β

exp
[
c5bε

2 − c6b ε2(n′0)β
]
≤ δ .

Therefore, by Theorem 6, Statement 1,

Pr{
∥∥θ′n − θ∗∥∥ ≤ ε, ∥∥z′n∥∥ ≤ ε,∀n ≥ 2n′0} ≥ 1− δ (94)

for any n′0 ≥ max{N ′0(ε, α, β), N ′′0 (ε, δ, α, β)} such that n′0 is a power of 2. Thus,

Pr{
∥∥θ′n − θ∗∥∥ ≤ ε, ∥∥z′n∥∥ ≤ ε, ∀n ≥ n′0} ≥ 1− δ (95)

for any n′0 ≥ 4 max{N ′0(ε, α, β), N ′′0 (ε, δ, α, β)}. The factor 4 appears because the 2n′0 in (94) is
replaced with n′0 in (95), and the fact that n′0 was earlier required to be a power of 2.

For any integer n > 3, we argue that there is some ε ≡ ε(n) such that

n = 4 max{N ′0(ε, α, β), N ′′0 (ε, δ, α, β)} ;

indeed, as N ′0(ε, α, β) and N ′′0 (ε, δ, α, β) are both defined to be the maximum of terms that strictly
monotonically inrease as ε decreases—except for the constant 3 in (15)—such an ε(n) exists. Fur-
thermore, it is also not difficult easy to see that

ε(n) = O
(

max
{
n−β/2

√
ln(n/δ), nβ−α)

})
. (96)

This, together with (95), implies

Pr{
∥∥θ′n − θ∗∥∥ ≤ ε(n),

∥∥z′n∥∥ ≤ ε(n)} ≥ 1− δ (97)

for any n > 3, completing the proof.

Appendix F. Proofs from Section 5

Similarly to GTD(0) in Section 5, we now show how our assumptions hold, and with what constants,
for GTD2 and TDC algorithms. Thus, in the same spirit as Corollary 12, similar results trivially
follow for these algorithms as well.

F.1. GTD2

The GTD2 algorithm (Sutton et al., 2009b) minimizes the objective function

JMSPBE(θ) = 1
2(b−Aθ)>C−1(b−Aθ). (98)

The update rule of the algorithm takes the form of Equations (1) and (2) with

h1(θ, w) = A>w,

h2(θ, w) = b−Aθ − Cw,
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and

M
(1)
n+1 =

(
φn − γφ′n

)
φ>nwn −A>wn ,

M
(2)
n+1 =rnφn + φn[γφ′n − φn]>θn − φnφ>nwn − [b−Aθn − Cwn] .

That is, in case of GTD2 the relevant matrices in the update rules take the form Γ1 = 0,W1 = −A>,
v1 = 0, and Γ2 = A, W2 = C, v2 = b. Additionally, X1 = Γ1 −W1W

−1
2 Γ2 = A>C−1A. By

our assumptions, both W2 and X1 are symmetric positive definite matrices, and thus the real part of
their eigenvalues are also positive. It is also clear that

‖M (1)
n+1‖ ≤ (1 + γ + ‖A‖)‖wn‖,

‖M (2)
n+1‖ = ‖rnφn − b+ [A+ φn(γφ′n − φn)>]θn − [φnφ

>
n − C]wn‖

≤ 1 + ‖b‖+ (1 + γ + ‖A‖)‖θn‖+ (1 + ‖C‖)‖wn‖.

Consequently, Assumption A3A3A3 is satisfied with constants m1 = (1 + γ + ‖A‖) and m2 = 1 +
max(‖b‖, γ + ‖A‖, ‖C‖).

F.2. TDC

The TDC algorithm is designed to minimize (98), just like GTD2.
The update rule of the algorithm takes the form of Equations (1) and (2) with

h1θ(θ, w) = b−Aθ + [A> − C]w ,

h2(θ, w) = b−Aθ − Cw ,

and

M
(1)
n+1 =rnφn + φn[γφ′n − φn]>θn − γφ′φ>wn − [b−Aθn + [A> − C]wn] ,

M
(2)
n+1 =rnφn + φn[γφ′n − φn]>θn − φnφ>nwn − [b−Aθn + Cwn] .

That is, in case of TDC, the relevant matrices in the update rules take the form Γ1 = A, W1 =
[C − A>], v1 = b, and Γ2 = A, W2 = C, v2 = b. Additionally, X1 = Γ1 − W1W

−1
2 Γ2 =

A − [C − A>]C−1A = A>C−1A. By our assumptions, both W2 and X1 are symmetric positive
definite matrices, and thus the real part of their eigenvalues are also positive. It is also clear that

‖M (1)
n+1‖ ≤2 + (1 + γ + ‖A‖)‖θn‖+ (γ + ‖A‖+ ‖C‖)‖wn‖,

‖M (2)
n+1‖ =2 + (1 + γ + ‖A‖)‖θn‖+ (1 + ‖C‖)‖wn‖ .

Consequently, AssumptionA3A3A3 is satisfied with constants m1 = (2 + γ + ‖A‖ + ‖C‖) and m2 =
(2 + γ + ‖A‖+ ‖C‖).
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