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Abstract
We study the stochastic batched convex optimization problem, in which we use many parallel ob-
servations to optimize a convex function given limited rounds of interaction. In each of M rounds,
an algorithm may query for information at n points, and after issuing all n queries, it receives un-
biased noisy function and/or (sub)gradient evaluations at the n points. After M such rounds, the
algorithm must output an estimator. We provide lower and upper bounds on the performance of
such batched convex optimization algorithms in zeroth and first-order settings for Lipschitz con-
vex and smooth strongly convex functions. Our rates of convergence (nearly) achieve the fully
sequential rate once M = O(d log log n), where d is the problem dimension, but the rates may
exponentially degrade as the dimension d increases, in distinction from fully sequential settings.
Keywords: Stochastic convex optimization, batched optimization, parallel computing

1. Introduction

Moore’s law on the increasing speeds of computer processors, for reasons of basic physics, energy
consumption, and area, is no longer true: computer clock speeds are no longer increasing (Fuller and
Millett, 2011). As a consequence, processor manufacturers and algorithm designers have moved to-
ward increased parallelism, with reduced communication among processors, as the way to continue
to see increased computing performance (Fuller and Millett, 2011; Ballard et al., 2011). This has
had wide-ranging influences, most saliently for us in the context of optimization, where a number
of researchers, including Dekel et al. (2012), Duchi et al. (2012), and Niu et al. (2011), show how
leveraging parallelism to compute many stochastic (sub)gradients of convex functions simultane-
ously during iterations of stochastic gradient-based procedures yields faster convergence.

In this paper, we attempt to delineate the tradeoffs between parallelism and sequential compu-
tation in stochastic optimization, providing upper and lower bounds on the convergence rates for
algorithms as a function of the number of rounds of computation they may complete. To make this
more precise, consider the problem of minimizing a convex function f subject to the constraint that
x ∈ D ⊂ Rd, where D is a closed compact convex set. We consider algorithms based on noisy
zeroth- or first-order oracles, which proceed iteratively by querying a point x, and then receive (con-
ditional on x) either an unbiased estimate of f(x) (the zeroth-order case) or an unbiased estimate
of some g ∈ ∂f(x) (the first-order case). Stochastic optimization procedures proceed in iterative
batches, where in each batch, one chooses a set of points x1, . . . , xn at which to query the function
f , receives the information about f , and then the algorithm may choose the next batch of points.
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Given the growing expense of sequential computation as opposed to parallel computation, it is thus
of interest to understand more precisely what the tradeoffs are between the number of batches—
or rounds of interaction—and their size. Currently, the algorithms we develop are of intellectual
rather than practical interest, but we hope that this investigation is a stepping stone toward a deeper
understanding of sequential versus parallel optimization methods.

Perchet et al. (2016) inspired our interest in this problem with work on a more classical statistical
setting: estimating the effect of a medical treatment. Perchet et al. study the batched bandit problem,
where, motivated by multi-stage trials in medical settings, they ask the following: given noisy
observations from distributions with means {µ(1), µ(2)}, what is the regret of a procedure that may
only update its strategy a small number of times? Perchet et al. (2016) show that in a two-armed
bandit problem with n observations, O(log log n) batches is sufficient to achieve optimal regret.

We consider a different problem, as we do not study regret: we study only stochastic optimiza-
tion, where the optimizer need only output some estimate x̂ such that the optimality gap

f(x̂)− inf
x?∈D

f(x?) (1)

is small; we do not care which points are queried during iterations of the algorithm, and we do not
measure the sequential error or regret

∑
i f(xi)− infx?∈D f(x?). This problem differs substantially

from the linear bandits case, and deriving near optimal algorithms (as well as proving lower bounds)
is harder. Indeed, if all we care about is stochastic accuracy, the linear problem that underpins the
typical multi-armed bandit problem is quite solvable—at least in terms of achieving accuracy that
is optimal in the sample size n, ignoring dimensional issues. To make this clear, consider the 2-
dimensional setting, where f(x) = 〈µ, x〉 for some vector µ ∈ R2 that we assume satisfies ‖µ‖∞ ≤
1, and we wish to minimize f over the simplex D = {x ∈ Rd+ |

∑
j xj = 1} given observations

of the form f(x) + ε for sub-Gaussian, mean-zero noise ε. Then we sample x1, . . . , xn alternating
between the 2 basis vectors e1, e2, observing yi = f(xi) + εi. Letting µ̂j = 2

n

∑
i:xi=ej

yi and

defining the estimator ĵ = argminj{µ̂j}, then noting that te−
α
2
t2 ≤

√
e/α, we obtain

E[f(eĵ)−min
j
f(ej)] = |µ1 − µ2| · P(ĵ 6= 1) ≤ |µ1 − µ2| · exp

(
−n|µ1 − µ2|2

4

)
≤
√

2e

n
.

We can thus solve the linear stochastic optimization problem with no rounds of interaction.
In contrast with the linear case, we show that for general convex optimization, the number

of rounds of interaction to solve convex problems even to accuracy n−
1
2 must scale at least as

d log logn when n is the total number of observations. We shall be more precise in the com-
ing sections, but roughly, our results are as follows. We work in an oracle model of optimiza-
tion (Nemirovski and Yudin, 1983) where in each of M rounds, the algorithm may query n points
x1, . . . , xn ∈ D. After issuing all of the queries, the algorithm receives noisy function evaluations
f(xi) + εi (a zeroth-order oracle) or noisy (sub)gradient evaluations gi satisfying E[gi] ∈ ∂f(xi)
(the first-order oracle). After M such rounds, the algorithm must output an estimator x̂. For a
given information oracle (noisy function or subgradient evaluations), we evaluate the performance
of the algorithm in a worst-case sense as supf∈F E[f(x̂)] − infx?∈D f(x?), where E denotes the
expectation taken over randomness in the algorithm and in the noisy evaluation oracle, and F is a
collection of convex functions defined on D. We provide a number of lower and upper bounds on
these quantities, but roughly, we show that for the case of zeroth-order oracles, for any (possibly
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randomized) algorithm using M rounds with n function computations in each round,

sup
f∈F

{
E[f(x̂)]− inf

x?∈D
f(x?)

}
≥ c · n−

1
2

(
1−( d

d+2κ)
M
)

(2)

where F is either the class of 1-Lipschitz convex functions (in which case κ = 1) or 1-strongly-
convex and O(1)-strongly smooth functions (in which case κ = 2), and c is a constant depending
on problem parameters. In the first order case, we show a similar result, except the lower bound in

the strongly convex case becomes n−(1−( d
d+2(κ−1)

)M ). Let us perform an asymptotic comparison, in
which d is held fixed as n→∞. The gold-standard in such cases is for fully sequential algorithms
that receive n queries, in which case the minimax rates for the two settings scale (ignoring polyno-
mials in dimension d) as n−

1
2 and n−1, respectively (Agarwal et al., 2012; Shamir, 2013); achieving

these comparatively good rates requires a number of rounds scaling as d
κ log log n.

We are not the first to study these questions of interactivity and sequential versus batch access in
the case of convex optimization. Perchet et al. (2016) study the problem in its most natural statistical
setting, as the design of experiments in a bandit problem, and provide a comprehensive literature
review. Much of the statistical and medical literature on batched sample access focuses on testing
hypotheses: can we determine which treatment (of a set of treatments) is best, or at least reject a null
hypothesis with a desired a priori power (Dantzig, 1940; Stein, 1945); Hardwick and Stout (2002)
provide an elegant treatment of multi-stage experimental design. More recent work in the statistical
learning theory literature focuses on so-called “switching bandits,” in which an algorithm plays a
certain strategy and pays a penalty for switching between strategies (Cesa-Bianchi et al., 2013a,b).
In most of these cases, the problems are different from general (convex) stochastic optimization,
in that one has a linear function or hypothesis to test (the standard multi-armed bandit scenario),
and one must control the regret rather than the optimality gap (1). The results of Smith et al.
(2017) are related; they study the interaction necessary for locally differentially private estimation.
Their results suggest that roughly log 1

ε rounds of function queries are necessary for ε-accurate
optimization of a d-dimensional convex function, but it is hard to compare this with the current
work; most saliently, our lower and upper bounds indicate that the number of rounds (batches) must
at least scale linearly in the dimension, though it may be sub-logarithmic in the sample size n. In
addition, our lower bound arguments are information-theoretic.

Notation Throughout the paper, we consider the domain D = [0, 1]d. We use Bp
u(δ) to denote an

`p ball centered at u ∈ Rd with radius δ. As is standard, a δ-packing of S with respect to the metric
ρ is a set S′ ⊂ S such that for v, v′ ∈ S′ with v 6= v′, ρ(v, v′) ≥ δ. A maximal δ-packing is any
δ-packing S′ of S with maximum cardinality. For integers a ≤ b, let a : b := {a, a+ 1, . . . , b}. For
any m ∈ N we use [m] to denote the set {1, 2, . . . ,m}.

2. Problem Formulation

As desribed in the introduction, we consider convex optimization problems of minimizing a convex
objective f over the domain D = [0, 1]d. We consider algorithms that proceed in a fixed number
of batches or rounds, where in each round,the algorithm chooses n points x1, x2, . . . , xn from the
domain D to query in parallel, receiving noisy information about the function f .

Here we formalize the definition of the sequential optimization procedure. Let M ∈ N denote
the total number of rounds. For each t ∈ [M ], let X(t)

1:n = {X(t)
1 , X

(t)
2 , . . . , X

(t)
n } be the points the
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algorithm queries in round t. We consider the usual noisy oracle model of optimization (Nemirovski
and Yudin, 1983; Agarwal et al., 2012), where we represent information available to the algorithm
via an information oracle φ ∈ O from a family of oracles O. We consider one of two oracle
families. The first is the family O0 of zeroth-order oracles, which, when queried at a point x ∈ D
for the function f , return Y = f(x) + ε, where E[ε | x] = 0. For the first-order oracle family O1,
the information consists of the pair (Y, Z), where E[Z | x] ∈ ∂f(x) is a stochastic subgradient.

Let Y (t)
1:n = {Y (t)

1 , Y
(t)

2 , . . . , Y
(t)
n } be the (random) received noisy function values at the query

pointsX(t)
1:n when the oracle is zeroth-order oracle, and Z(t)

1:n the noisy gradient values atX(t)
1:n. Then

a batched optimization algorithm A consists of a series of conditional distributions Q, each defined
on the space Dn (within a round, the points X(t)

1:n may have arbitrary dependence), of the query-
ing points X(t)

1:n for t ∈ [T ]. At round t, the conditional Q(t) is defined given all past information
{X(i)

1:n, Y
(i)

1:n, Z
(i)
1:n}

t−1
i=1; the algorithm consists of these conditionals and the final conditional distribu-

tionQ of the estimate X̂ for the minimizer of the function f given {X(t)
1:n, Y

(t)
1:n, Z

(t)
1:n}Mt=1. A batched

optimization algorithm A is representable as the collection of these conditional distributions,

A :=

{
Q(X̂ | X(1:M)

1:n , Y
(1:M)

1:n )

}
∪

M⋃
t=1

{
Q(t)(X

(t)
1:n | X

(1:t−1)
1:n , Y

(1:t−1)
1:n )

}
(3)

when the oracle is zeroth-order, or

A :=

{
Q(X̂ | X(1:M)

1:n , Y
(1:M)

1:n , Z
(1:M)
1:n )

}
∪

M⋃
t=1

{
Q(t)(X

(t)
1:n | X

(1:t−1)
1:n , Y

(1:t−1)
1:n , Z

(1:t−1)
1:n )

}
(4)

when the oracle is first-order.
With this algorithmic setting, we define the risk of an M -round algorithm A, for a given oracle

φ and function f : D→ R, by the expected gap

R(φ,A, f) = Ef
[
f(X̂)− f?

]
,

where the expectation is taken over any randomness in A and the oracle φ. We evaluate the per-
formance of an algorithm A in a uniform sense (Wald, 1939) by considering its maximum risk for
a collection of functions F . Now, letting AM be the collection of all M -batch algorithms (as in
Eqs. (3) and (4)), the M -batch minimax risk of the function class F for an oracle family O is

MM (F ,O) := sup
φ∈O

inf
A∈AM

sup
f∈F
R(φ,A, f). (5)

Throughout this paper, we consider the following important classes of convex functions:

i. The class of λ strongly convex and H strongly smooth functions FH,λ,

FH,λ =
{
f : λ

∥∥x− x′∥∥2

2
≤
〈
∇f(x)−∇f(x′), x− x′

〉
≤ H

∥∥x− x′∥∥2

2
for all x, x′ ∈ D

}
.

ii. The class of L Lipschitz convex functions FL,

FL =
{
f :
∣∣f(x)− f(x′)

∣∣ ≤ L∥∥x− x′∥∥
2

for all x, x′ ∈ D
}
.

4



MINIMAX BOUNDS ON STOCHASTIC BATCHED CONVEX OPTIMIZATION

Finally, the minimax risk (5) and our algorithms are highly dependent on the oracle class O.
Throughout this paper, we consider subgaussian oracles, defined as follows. Recall the definition.

Definition 1 A random vector W ∈ Rd is σ2-subgaussian if for all v ∈ Rd and t ∈ R we have

E [exp(t〈v,W − E[W ]〉)] ≤ exp

(
t2σ2 ‖v‖22

2

)
.

Throughout this paper, we use O0 and O1 to denote an (otherwise arbitrary) noise oracle family
with the following properties:

i. The zeroth-order oracle class O0. For any φ ∈ O0, given the query x ∈ D, the oracle outputs
y = f(x) + ε, where ε ∈ R is (conditionally on x) mean-zero and σ2-subgaussian.

ii. The first-order oracle class O1. For any φ ∈ O1, given the query x ∈ D, the oracle outputs
y = f(x) + ε1 and the noisy gradient value z = g + ε2, where g(x) ∈ ∂f(x) and ε2 ∈ Rd is
(conditionally on x) mean-zero and σ2-subgaussian.

We assume that the noise additions are independent conditional on the query points X(1:M)
1:n .

3. The big ideas

The main contributions of this paper are twofold: (i) the construction of lower bounds for batched
convex optimization and (ii) the construction of matching—in terms of the sample size n, though
quite far from tight in dimension d—upper bounds through algorithmic developments. At this point,
the algorithms we develop should be seen more as intellectual contributions rather than practically
useful tools, but we believe it interesting to further understand this area and that these serve as a
useful first step in that direction.

3.1. Achieving reasonable convergence rates

We begin by giving a heuristic description of the convergence guarantees we might hope to achieve
by describing the idea of the algorithm for smooth strongly convex functions (FH,λ) and first-order
oracles (O1). Our algorithms are sequential, in that in each batch or round they collect (stochastic)
gradient information, then update and make a decision. Each algorithm maintains a box of radius rt
over iterations t, call this Bt = ct+[−rt/2, rt/2]d for some center ct ∈ Rd. Then within an iteration,
the algorithm chooses a number of points x1, x2, . . . , xm, distributed around Bt, and computes
estimated gradients ∇̂f(x1), ∇̂f(x2), . . . , ∇̂f(xm). If these gradients were accurate, then for each
x ∈ {x1, . . . , xm}, the standard cutting plane bound guarantees that x? ∈ {y | 〈∇f(x), y−x〉 ≤ 0}.
Of course, we cannot so precisely cut space, but we can guarantee that (with high probability)

x? ∈ {y | 〈∇̂f(x), y − x〉 ≤ d(x, y)}

for a distance-like function d. Once we know we can cut off these regions of the space, we may
construct a new center ct+1 and box Bt+1 = ct + [−rt+1/2, rt+1/2]d containing x? with high
probability. For a graphical illustration, see Figure 1, which shows the current box B0 on the left
with approximate gradients and contours of f , and the updated box B1 on the right, with points that
the algorithm has cut shaded gray.
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x1

x2

x3

x4

−∇̂f(x1)

−∇̂f(x2)

x1

x2

x3

x4

(a) (b)

Figure 1: Illustration of upper bound argument and algorithm on contours of the function f(x) = 1
2 ‖x‖

2
2

for x ∈ R2. (a) Points x1, . . . , x4 ∈ R2 at locations in box, with stochastic gradients ∇̂f(xi) represented for
each x. Hyperplanes they support, {y ∈ R2 | 〈∇̂f(x), y − x〉 = 0}, denoted as dotted red lines. (b) A box
containing the points the algorithm is confident enough to cut off, containing most of the area allowed by the
hyperplanes ∇̂f(x) define.

The key insight is that the updated radius rt is nearly contracting, in that

rt+1 ≤ νrβt (6)

for some β > 0 and ν < 1. The recursion (6) for the radius rt then, by a calculation, implies that

rt ≤ ν
βt−1
β−1 rβ

t

0 (7)

for β 6= 1, and is rt ≤ νtr0 when β = 1. The size of β of course governs the rate of convergence of
the sequence (6), where β > 1 guarantees superlinear convergence of rt to zero, whereas if β < 1,
we require ν to be near zero to guarantee that rt is small enough. Indeed, in our setting, β < 1, while
because of the sampling we perform in each round, the contraction multiplier ν scales as an inverse
polynomial in n, so that we may take ν = n−c for some constant c > 0. The question then becomes,
compared to the fully sequential case, how large must t be to achieve the “standard” accuracy. In
the convex optimization scenarios we consider, the optimal accuracy given n gradient samples is of
order n−1, so simplifying expression (7) by assuming r0 = 1, we must find ν sufficiently small and

t sufficiently large that ν
βt−1
β−1 . n−1, the typical rate of convergence for convex minimization.

Let us solve for the number of iterations necessary in this case, where we note that at t = ∞
we require that ν−

1
β−1 ≤ n−1, and for ν = n−c this implies we must choose our sampling schemes

such that c
1−β ≥ 1. Making this concrete, let us assume we wish to have t large enough that

n
−cβ

t−1
β−1 ≤ An−1 for some constant A > 1. This occurs if and only if

logA− log n ≥ −cβ
t − 1

β − 1
log n iff

(
1− c

1− β

)
+

cβt

1− β
≤ logA

log n
,
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which, using that c
1−β ≥ 1, is in turn implied by

βt ≤ 1− β
c

logA

log n
or t ≥ log logn− log logA

− log β
+

log(1− β)

log β
− log c

log β
.

In our sequential optimization setting, the exponents β and c depend on problem dimension, so that
β = d

d+k for a small integer k. In this case, − log β = log d+k
d = log(1 + k

d ) ≈ k
d . For simplicity in

intuition, we may set A = e, and in the case to which our subsequent analysis applies, we take the
sampling exponent c = 1− β; the preceding requirement then becomes

t ≥ log log n

− log β
≈ d

k
log log n.

That is, after order d log log n iterations, it is possible to achieve radius accuracy of order n−1.

3.2. Lower bounds on optimality

Our lower bound construction begins with the familiar Le Cam’s method for proving lower bounds
in statistical and stochastic optimization (Tsybakov, 2009; Agarwal et al., 2012; Duchi, 2017). The
idea is due to Agarwal et al.: given convex functions f and g, the separation between them is

dopt(f, g) := inf
x∈D
{f(x) + g(x)} − inf

x?∈D
f(x?)− inf

x?∈D
g(x?).

The key to this construction is that if we have a point x optimizing f to accuracy 1
2dopt(f, g), that is,

f(x) ≤ infx?∈D f(x?)+ 1
2dopt(f, g), then g(x) ≥ infx?∈D g(x?)+ 1

2dopt(f, g). Thus, an argument
with Markov’s inequality (see Agarwal et al. (2012, Eq. (18)) or Duchi (2017, Ch. 4.1)) implies that
for any two distributions P− and P+, functions f−, f+ ∈ F , and estimator x̂ based on observations
from the distribution Pv, we have

MM (F ,O) ≥ max
v∈{−,+}

EPv [fv(x̂)− f?v ] ≥ dopt(f−, f+)

4
(1− ‖P− − P+‖TV) , (8)

where ‖P− − P+‖TV = supA |P−(A) − P+(A)| denotes the usual variation distance between
distributions. For more details, please refer to Section B.1. Inequality (8) is the starting point
of our strategy for lower bounds: we will construct a pair of functions f− and f+ for which dopt is
reasonably large, but for which the distributions of associated observations are close in ‖·‖TV.

Our proof is somewhat delicate, as we must control the amount of interactivity allowed the
optimization procedures. We construct functions at multiple scales, where each scale corresponds to
a round or batch of data in the method being used for optimization. We do this by first constructing
a nested sequence of packings of D that we use to define our “difficult” functions. For a given
multiplier 0 < η < 1 and values 1

2 > δ1 ≥ δ2 ≥ · · · ≥ δM , each satisfying δt ≤ η
4δt−1, we let the

set U (1) be a maximal 2δ1-packing of the set [δ1, 1− δ1]d with respect to the `p norm, meaning that
for points u, u′ ∈ U (1), we have ‖u− u′‖p ≥ 2δ1 whenever u 6= u′. Additionally, for any vector

u ∈ D, we define the set U (t)
u as a maximal 2δt-packing of the `p ball Bp

u(ηδt−1 − δt) in `p-norm.
Consider the collection of all sequences u1, u2, . . . , uM defined recursively as elements in the chain

ut ∈ U (t)
ut−1

. (9)

7
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Figure 2: Recursively constructed packing sets U (1) (red), U (2)
u1 (blue). Left: packing in `∞-norm. Right:

packing in `2-norm.

Because ‖ut − u′t‖p ≥ 2δt for any pair ut 6= u′t ∈ U
(t)
ut−1 , all of the balls Bp

ut(ηδt) are disjoint, and

a volume argument (Lemma 8) shows that the cardinality of U (t)
ut−1 is at least (ηδt−1

4δt
)d. See Figure 2

for an illustration of this sequential construction.
Our idea, similar to one of Smith et al. (2017), is that for any path u1:M in the chain (9), we can

construct a pair of functions f−1
u1:M

and f+1
u1:M

such that

f+1
u1:M

(x) = f−1
u1:M

(x) for all x 6∈ Bp
uM

(δM ), and dopt(f
+1
u1:M

, f−1
u1:M

) � δκM , (10)

for a constant κ ∈ {1, 2}, depending on the function class that we consider. Additionally, we have
that if u1:M and ũ1:M are sequences in our construction (9) for which u1 = ũ1, . . . , ut = ũt with
ut+1 6= ũt+1, then the functions are equal except in a δt-sized region around ut, the tth element in
the chain, satisfying

fvu1:M (x) = fv
′

ũ1:M
(x) for x 6∈ Bp

ut(δt) and v, v′ ∈ {±1}. (11)

To construct the functions, we begin with the base function fu1(x) := ‖x− u1‖∞. Then, recur-
sively, we define hu1:t(x) = at ‖x− ut‖∞+ bt for appropriately chosen scalars αt and βt, defining
fu1:t(x) := max{fu1:t−1(x), hu1:t(x)}. See Figure 3 for an illustration. In the case that we desire
our functions to be smooth and strongly convex, we instead begin with fu1(x) = 1

2 ‖x− u1‖22, and
then recurse via a “smoothed” maximum fu1:t(x) := SMAX{fu1:t−1 , at ‖x− ut‖

2
2 + bt}. (See Fig-

ure 4 for an illustration, and Appendix C for details.) A careful calculation then shows that these
functions satisfy our desired properties of function closeness, and even more,

|fvu1:M (x)− fv′ũ1:M (x)| ≤ Kt · δκt for all x ∈ D (12)

whenever u1:t = ũ1:t, where Kt is a problem-dependant constant. For more details about function
construction, please refer to Appendices B.2 and C.
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Figure 3: Construction of Lipschitz convex functions. (a) Function f(x) = 1
3 |x|, h1(x) = 1

9 |x− 0.15|+ 1
12

and h2(x) = 1
9 |x + 0.15| + 1

12 . All are Lipschitz, with Lipschitz constants 1
3 , 1

9 , and 1
9 , respectively. (b)

Functions f1(x) = max{f(x), h1(x)} and f2(x) = max{f(x), h2(x)}. Noticeably, the function f1(x) and
f2(x) are different only within the region x ∈ [−.5, .5]. Functions f1 and f2 are indistinguishable based only
on function value/gradient information calculated outside [−.5, .5].
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Figure 4: The smooth technique for construction of strongly convex and smooth functions. (a) Function
f1(x) = (x − 1)2 + 14 and f2(x) = 2x2. (b) A smoothed version of the maximum max{f1, f2}, with
gradients interpolated in the region x ∈ [2, 4].

3.2.1. THE INFORMATION RECURSION

These functions are then hard to distinguish for iterative procedures: suppose a procedure, by query-
ing the function fu1:M , has “identified” u1:t, but is oblivious to ut+1:M . Then, given batch of n
points at which to compute function information, it is possible to distinguish two different functions
only if one samples a point near ut+1, which has exponentially small probability. Let us extend
this heuristic a bit to give intuition for the lower bounds we prove. Consider a batch-based algo-
rithm, querying n points in computational round t, attempting to distinguish functions fu1:t,ut+1 and
fu1:t,ũt+1

. As the functions are identical outside of Bp
ut(δt), we may consider sampling procedures

that without loss of generality sample only in the ball Bp
ut(δt). Now, consider the amount of in-

formation that function evaluation queries can release when function values are perturbed by (say)

9
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mean-zero Gaussian noise. In this case, we know that the difference in function values scales as δκt
by inequality (12), and the KL-divergence

Dkl

(
N(fu1:t,ut+1(x), 1)||N(fu1:t,ũt+1

(x), 1)
)

=
1

2
(fu1:t,ut+1(x)− fu1:t,ũt+1

(x))2 . δ2κ
t , (13)

where κ ∈ {1, 2} corresponds to the case in which we optimize a Lipschitz convex function (κ = 1)
or strongly convex and smooth convex function (κ = 2).

By a careful argument we do not detail here, we can actually consider allocation of points to
the slightly larger region But(δt−1), dividing But(δt−1) into sub-balls of radius δt; the number of
such regions is Rt = ( δt−1

δt
)d by a volume argument. By the pigeonhole principle, in at least one

of these regions, the procedure can collect a sample size of at most n/Rt. In the typical proofs of
information-theoretic lower bounds (Tsybakov, 2009; Agarwal et al., 2012; Duchi, 2017), the goal
is to choose the separation between distributions, ‖P0 − P1‖TV in Le Cam’s method (8), to be a
constant so as to guarantee a reasonable lower bound. In this case, recalling the KL-bound (13), we
see that the “information” released in round t of a sequential sampling procedure is constant over
the least-sampled region whenever

δ2κ
t ·

n

Rt
= 1.

Now, we use our volume argument to note that Rt = (δt−1/δt)
d, and substituting above, this yields

the “information” bound we iterate in our argument, that is,

δ2κ
t ·

nδdt
δdt−1

= 1 or δt = n−
1

d+2κ δ
d

d+2k

t−1 .

By inspection, beginning from δ0 = 1, this recursion has the solution

δM = n
− 1

2κ

(
1−( d

d+2κ)
M
)
. (14)

Of course, this iteration requires very delicate conditioning arguments, which we perform in Ap-
pendix B.3. Finally, to prove a lower bound, we require that the functions themselves are separated
according to our optimization distance. With that in mind, we also show that our construction satis-
fies dopt(f

+1
u1:M

, f−1
u1:M

) ≥ δκM , where as usual, κ ∈ {1, 2} corresponds to the Lipschitz or strongly
convex case. Thus, we can find the optimum of f to accuracy only δM using M rounds, and the
function error must scale as δκM , which is our desired result.

4. Lower Bounds

With our sketches and “big ideas” implemented, we turn to formal statements of our results. We
begin with the lower bounds on the minimax risk (5). We defer the proof of Theorem 2 to appen-
dices A through E, with apologies for the extraordinary length.

Theorem 2 Consider the case when the domain D = [0, 1]d.

1. When the function class F = FL and M ≤ log logn/ log
(
1 + 2

d

)
, then there exist constants

c1, c2 > 0 depending solely on d, σ, and L such that

MM (FL,O0) ≥ c1n
− 1

2

(
1−( d

d+2)
M
)
e−
√

2 logn log−c2 n.

10
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2. When the function class F = FH,λ and M ≤ log logn/ log
(
1 + 4

d

)
, then there exist constants

c1, c2 > 0 depending solely on d, σ,H, and λ such that

MM (FH,λ,O0) ≥ c1n
− 1

2

(
1−( d

d+4)
M
)
e−
√

2 logn log−c2 n

3. When the function class F = FH,λ and M ≤ log logn/ log
(
1 + 2

d

)
, then there exist constants

c1, c2 > 0 depending solely on d, σ,H, and λ such that

MM (FH,λ,O1) ≥ c1n
−
(

1−( d
d+2)

M
)
e−
√

8 logn log−c2 n.

We provide some contextualizing remarks on this result.

1. In Theorem 2, the lower bounds using n observations forM rounds take the form Ω̃(n−γ), where

γ =
κ

2(κ− ζ)

(
1−

(
d

d+ 2(κ− ζ)

)M)
, (15)

and Ω̃ hides leading dimension-dependent constants and sub-polynomial terms in n. The con-
stant κ corresponds to the function class, with κ = 1 forFL and κ = 2 forFH,λ, while ζ ∈ {0, 1}
indicates the order of the information oracle. The theorem shows that the rate is worse than the
fully-sequential rate n−

κ
2(κ−ζ) for M smaller than log logn/ log (1 + 2(κ− ζ)/d).

2. It is also interesting to see how the rate of algorithm depends on d for fixed M . As d increases
to infinity, d

d+2(κ−ζ) → 1, meaning that the minimax rates show exponential degradation as d
increases. We cannot observe this phenomenon in fully sequential problems. (Our lower bounds
have dimension-dependent leading constants, which we lave as an important open question.)

3. Our proof technique gives a generic approach of achieving these lower bounds whenever we can
construct functions satisfying recursive closeness properties similar to equations (10), (11), and
(12). (Condition 5 in Appendix B makes this precise.) If we can construct the set of functions
satisfying these, we immediately obtain a lower bound of the form (15).

5. Upper Bounds

We now present our upper bounds for the stochastic batched convex optimization problem. We note
that, while we present convergence guarantees, these algorithms are impractical, so it remains of
substantial interest to understand practical but low-round optimization schemes. We can construct
algorithms that achieve the lower bounds established in Theorem 2 over the functions f ∈ F to
within constants, which depend on the dimension d in possibly onerous ways, and sub-polynomial
factors in the sample size n. We defer the proof of Theorem 3 into appendices F through J.

Theorem 3 Consider the case when the domain D = [0, 1]d. Fix δ > 0.

1. When F = FH,λ and O = O1, then there exists an algorithm (detailed in section G) and
constants C1, C2 > 0 depending solely on d, σ,H, λ, δ such that, for all φ ∈ O1, f ∈ FH,λ, and
M ≤ log logn/ log(1 + 2

d)− C2 log log log n, the output X̂ of the algorithm satisfies

Pf,φ
(
f(X̂)− f? ≤ C1n

−
(

1−( d
d+2)

M
)

log(n)

)
≥ 1− δ.

11
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2. When F = FH,λ and O = O0, then there exists an algorithm (detailed in section H) and
constants C1, C2 > 0 depending solely on d, σ,H, λ, δ such that, for all φ ∈ O0, f ∈ FH,λ, and
M ≤ log logn/ log(1 + 4

d)− C2 log log log n, the output X̂ of the algorithm satisfies

Pf,φ
(
f(X̂)− f? ≤ C1n

− 1
2

(
1−( d

d+4)
M
)

log n

)
≥ 1− δ.

3. When F = FL and O = O1, then in the case when d = 1, there exists an algorithm (detailed
in section I) and constant C > 0 depending solely on σ, L, δ such that, for all φ ∈ O1, f ∈ FL,
and M ≥ 1, the output X̂ of the algorithm satisfies

Pf,φ
(
f(X̂)− f? ≤ Cn−

1
2 log n

)
≥ 1− δ.

4. When F = FL and O = O0, then,

(a) in the case when d = 1, there exists an algorithm (detailed in section J) and constants
C1, C2 > 0 depending solely on σ, L, δ such that, for all φ ∈ O0, f ∈ FL, and M ≤
log log n/ log 3− C2 log log log n, the output X̂ of the algorithm satisfies

Pf,φ
(
f(X̂)− f? ≤ C1n

− 1
2

(
1−( 1

3)
M
)

log n

)
≥ 1− δ.

(b) in the case when M = 1 (but d ≥ 1 arbitrary), there exists an algorithm (detailed in
section J) and some constant C > 0 depending solely on d, σ, L, δ such that, for all φ ∈ O0

and f ∈ FL, the output X̂ of the algorithm satisfies

Pf,φ
(
f(X̂)− f? ≤ Cn−

1
d+2 (log n)

1
d+2

)
≥ 1− δ.

We provide some remarks on this theorem before concluding. Theorems 2 and 3 together give
a tight minimax rate (up to dimension-dependent constants and sub-polynomial factors of n) for
the batched convex optimization problems for the strongly convex and smooth function class FH,λ
and the 1-dimensional Lipschitz convex class FL (for both zeroth and first order oracles). In these
settings, Theorems 2 and 3 imply that M = Õ(d log log n) sequential rounds is necessary and
sufficient to achieve the fully sequential rate in n.

The theorems also leave open a number of important questions. First, we do not have the
tight rates for batched convex optimization on the Lipschitz function class FL when d,M > 1;
it is unclear whether Õ(d log logn) rounds are sufficient to achieve the fully sequential rate. The
construction of multi-round algorithms for the smooth and strongly convex function class FH,λ
uses the ideas we elaborate in Section 3: the algorithms are recursive algorithms based on ideas
of grid search. However, the same idea does not apply to the Lipschitz function class FL because
local information is less useful for nonsmooth functions. Solving the general Lipschitz function
case FL calls for new ideas and techniques. Moreover, the algorithms for the proof of Theorem 3
require prior knowledge of the parameters σ, λ,H,L and δ; we have completely ignored questions
of adaptivity (which still provide challenge even in fully sequential settings).

12
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Appendix A. Proof of Theorem 2: roadmap

In this section, we briefly explain how the proof of Theorem 2 is structured. The proof for the lower
bounds is presented in Section B, whose subsections are arranged in the same order as Section 3.2 in
the paper. Among them, in B.2, the construction of “difficult-to-distinguish” functions for smooth
strongly convex functions is deferred to a separate section (Section C), because the explanation of
smooth maximum of quadratic functions took too much space due to technicality.

Since the proof is highly involved, we focused on conveying the main idea of the proof while
deferring technical details to separate sections. Sections D and E contain deferred technical proofs
from Sections B and C, respectively.

The roadmap for the proof of upper bound (Theorem 3) can be found in F.

Notation for Sections B–E. Throughout Sections B–E, we use Bp
u(δ) to denote an `p ball centered

at u ∈ Rd with radius δ. As is standard, a δ-packing of S with respect to the metric ρ is a set S′ ⊂ S
such that for v, v′ ∈ S′ with v 6= v′, ρ(v, v′) ≥ δ. A maximal δ-packing is any δ-packing S′ of S
with maximum cardinality. For integers a ≤ b, let a : b := {a, a + 1, . . . , b}. Let 1 ∈ Rd be a
d-dimensional vector full with ones, and ej be the jth standard basis vector. Given two functions
f, g : Rd → R, we define the their intersection set by

Its(f, g) := {x ∈ Rd | f(x) = g(x)}.

For A ⊂ Rd, clA and intA denote its closure and interior, respectively. Let ‖P− − P+‖TV =
supG |P−(G)− P+(G)| be the usual total variation distance between two distributions P− and P+.

Appendix B. Proof of Theorem 2

B.1. The outline

Recall that the minimax error (5), which we want to bound from below, is

MM (F ,O) := sup
φ∈O

inf
A∈AM

sup
f∈F

Ef
[
f(X̂)− f?

]
.

For proof of lower bound, we are going to consider only oracles φN ∈ O with independent Gaussian
noise with variance σ2. With these i.i.d. Gaussian φN, we are going to provide a lower bound for
supf∈F Ef [f(X̂)−f?] that holds for any algorithm A, which also is a lower bound for MM (F ,O).
To this end, we reduce F to a subset of two functions {f−, f+} ⊂ F . With any such subset and any
probabilistic event G,

sup
f∈F

Ef
[
f(X̂)− f?

]
≥ max

v∈{−,+}
Ev
[
(fv(X̂)− f?v )I {G}

]
= max

v∈{−,+}
Pv(G)Ev

[
fv(X̂)− f?v | G

]
, (16)

where P± and E± are the probability and expectation given that the true function is f±.
As mentioned in Section 3.2, our lower bound construction begins with the Le Cam technique

for proving lower bounds in statistical and stochastic optimization problems (Tsybakov, 2009; Agar-
wal et al., 2012; Duchi, 2017). The idea is due to Agarwal et al.: given two convex functions f−
and f+, the separation between them is

dopt(f−, f+) := inf
x∈D
{f−(x) + f+(x)} − inf

x?∈D
f−(x?)− inf

x?∈D
f+(x?).
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The key to this construction is that if we have a point x optimizing f− to accuracy 1
2dopt(f−, f+),

that is, f−(x) ≤ infx?∈D f−(x?)+ 1
2dopt(f−, f+), then f+(x) ≥ infx?∈D f+(x?)+ 1

2dopt(f−, f+).
Thus, an argument with Markov’s inequality (see Agarwal et al. (2012, Eq. (18)) or Duchi (2017,
Ch. 4.1)) gives the following lemma that reduces the optimization problem to a hypothesis testing
problem:

Lemma 4 Let G be any probabilistic event. Then,

max
v∈{−,+}

Ev
[
fv(X̂)− f?v | G

]
≥ dopt(f−, f+)

4
(1− ‖P−(· | G)− P+(· | G)‖TV) .

This is a standard technique for proving minimax lower bounds, and we will defer the proof of
Lemma 4 to the Appendix D.1.

Eq (16) and Lemma 4 is the starting point of our strategy for lower bounds. For any given
algorithm A and function class F , we will develop methods that can construct a pair of functions
f−, f+ ∈ F (for which dopt(f−, f+) is reasonably large) such that there exists an event G with

Pv(G) ≥ 1

2 · 4M
for v ∈ {−,+}, and ‖P−(· | G)− P+(· | G)‖TV ≤

1

2
, (17)

under the sampling strategies defined by A.
In the following subsections, we will describe in details the methods outlined in Sections 3.2 and

3.2.1. In Section B.2, we provide how to construct pairs of functions f−, f+ ∈ F at multiple scales,
where each scale corresponds to a round or batch of data in the method being used for optimization.
Using these construction methods, in Section B.3 we provide a delicate induction argument based on
pigeonhole principle and properties of constructed functions that enable us to choose the “difficult”
f− and f+, and prove Eq (17) for some G. After these are done, we will come back to this point
and finish the proof in Section B.4.

B.2. Function construction

For construction of functions that are necessary for our proof, we start by constructing a nested
sequence of maximal packings of D that we use to define our “difficult” functions. Then using the
points in the packings as parameters, we construct functions that have desirable properties.

Consider δ1, δ2, . . . , δM , which are real valued functions n which satisfy limn→∞ δ1(n) = 0

and limn→∞
δt(n)
δt−1(n) = 0. Given such δt’s, a multiplier 0 < η < 1, and a norm `p, we recursively

define a hierarchy of maximal packings as follows:

1. Let U (1) to be any maximal 2δ1-packing of [δ1, 1− δ1]d with respect to `p norm.

2. For any u1 ∈ U (1), let U (2)
u1 to be any maximal 2δ2-packing of Bp

u1(ηδ1 − δ2) w.r.t. `p norm.

3. For any u2 ∈ U (2)
u1 , let U (3)

u2 to be any maximal 2δ3-packing of Bp
u2(ηδ2 − δ3) w.r.t. `p norm.

...

M. For any uM−1 ∈ U (M−1)
uM−2 , let U (M)

uM−1 to be any maximal 2δM -packing of Bp
uM−1(ηδM−1 − δM )

w.r.t. `p norm.
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Let us explain in words what is going on. In the first stage, we construct a set of points U (1) so
that any u1 ∈ U (1) satisfies Bp

u1(δ1) ⊂ D. Starting from second stage, we construct maximal 2δt

packings for all points in the previous stage; for example, U (2)
u1 is defined for all u1 ∈ U (1) and U (2)

u1

depends on which u1 we choose. We continue in this recursive way until we define U (M)
uM−1 . After

that stage, we define the final set V := {±1}. By construction we have Bp
ut(δt) ⊂ Bp

ut−1(ηδt−1)
for t ∈ 2 : M . Also notice that for any t ∈ 2 : M , Bp

ut(ηδt) ∩Bp
ũt

(ηδt) = ∅, for different ut, ũt ∈
U (t)
ut−1 . This means that a point ut ∈ U (t)

ut−1 uniquely maps to all their “ancestors” ut−1, ut−2, . . . , u1

in the chain, because the neighborhoods of their ancestors never overlap with the other ancestors at
the corresponding level.

Given these maximal packings, we can choose u1 ∈ U (1), and then a chain of parameters

ut ∈ U (t)
ut−1

(9)

for t ∈ 2 : M , and choose v ∈ V . For this set of parameters u1:M and v, we will define a corre-
sponding function fvu1:M (x). The functions we construct has the property that a pair of functions
with “similar parameters” have the same value outside a small set, while they can only differ in-
side the set. This construction is crucial for proof of Eq (17), as it makes functions with similar
parameter values difficult to distinguish them.

More concretely, we summarize the list of desired properties that fvu1:M (x) must satisfy, in
Condition 5. As we will show, Condition 5 holds for both function classes of interest—L-Lipschitz
convex functions (FL) and H-smooth λ-strongly convex functions (FH,λ)—with a class-dependent
set of constants (C,α, η, β, κ, p). If the two functions share the same parameter values from u1

up to ut−1 (t ∈ 2 : M ), but their parameter deviated from each other after t, say ut, . . . , uM , v
and ũt, . . . , ũM , ṽ, then the two functions fvu1:M (x) and f ṽu1:t−1,ũt:M

(x) are completely identical far
away from ut−1, and differ only at points near ut−1. Similar thing happens when parameter values
are the same up to level M (u1:M ) but v and ṽ differ.

Condition 5 For a given class of functionsF , there exist constants (C,α, η, β, κ, p), whereC > 0,
0 < α < 1, 0 < β < 1, 0 < η < 1, κ ∈ N, p ∈ [2,∞], that satisfy the following statements:
Construct the nested packing sets U (1), . . . ,U (M)

uM−1 w.r.t. `p norm and choose chains of parameters.
For t ∈ 2 : M , if we have two chains of parameters (u1:t−1, ut:M , v) and (u1:t−1, ũt:M , ṽ), the
corresponding functions fvu1:M and f ṽu1:t−1,ũt:M

satisfy

1. fvu1:M (x) = f ṽu1:t−1,ũt:M
(x), ∀x /∈ Bp

ut−1(δt−1).

2. |fvu1:M (x)− f ṽu1:t−1,ũt:M
(x)| ≤ C(1− β)αt−2δκt−1, ∀x ∈ Bp

ut−1(δt−1).

3.
∥∥∥∇fvu1:M (x)−∇f ṽu1:t−1,ũt:M

(x)
∥∥∥

2
≤ 2κCαt−2δκ−1

t−1 , ∀x ∈ Bp
ut−1(δt−1).

Similarly, for a chain of parameters u1:M ,

4. f−1
u1:M

(x) = f+1
u1:M

(x), ∀x /∈ Bp
uM (δM ).

5. |f−1
u1:M

(x)− f+1
u1:M

(x)| ≤ C(1− β)αM−1δκM , ∀x ∈ Bp
uM (δM ).

6.
∥∥∇f−1

u1:M
(x)−∇f+1

u1:M
(x)
∥∥

2
≤ 2κCαM−1δκ−1

M , ∀x ∈ Bp
uM (δM ).

7. dopt(f
−1
u1:M

, f+1
u1:M

) = 2CαMηκδκM .
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Algorithm 1 Construction of Lipschitz convex fvu1:M .

Given parameters u1, u2, . . . , uM , v, size δ1, . . . , δM , and Lipschitzness parameter L,
1: Start with fu1(x) = hu1(x) := L ‖x− u1‖∞.
2: for t = 2 to M do
3: hu1:t(x) := L

3t−1 ‖x− ut‖∞ +
∑t−1

m=1
Lδm

2·3m−1 .
4: fu1:t(x) := max{fu1:t−1(x), hu1:t(x)}.
5: end for
6: hvu1:M (x) := L

3M

∥∥∥x− uM − vδM
2 1

∥∥∥
∞

+
∑M

m=1
Lδm

2·3m−1 .

7: Return fvu1:M (x) := max{fu1:M (x), hvu1:M (x)}.

Here, whenever the function fvu1:M is non-differentiable at x, we replace ∇fvu1:M (x) with any sub-
gradient gvu1:M ∈ ∂f

v
u1:M

(x).

It now remains to show that we can construct functions fvu1:M that satisfy Condition 5, for both
FL and FH,λ. We present the construction FL in the following subsection. Construction for FH,λ
is done in essentially the same way, but smoothing the maximum of quadratic functions require
additional technicality. To help the proof run smoothly, we separate the construction for FH,λ to a
different section (Section C).

B.2.1. FUNCTION CONSTRUCTION: LIPSCHITZ CONVEX FUNCTIONS

For L-Lipschitz convex functions, construct nested maximal packing sets U (1), . . . ,U (M)
uM−1 w.r.t. `∞

norm. For any chain u1:M from the packings and v ∈ V , Algorithm 1 takes those parameters as in-
put and returns the corresponding fvu1:M . We begin with the base function fu1(x) := L ‖x− u1‖∞.
Then, recursively, we define hu1:t(x) = at ‖x− ut‖∞ + bt for appropriate scalars at and bt, defin-
ing fu1:t(x) := max{fu1:t−1(x), hu1:t(x)}. For the scalars in Algorithm 1, we can show that the
functions fvu1:M (x) satisfy Condition 5:

Lemma 6 The functions constructed by Algorithm 1 satisfy Condition 5 with

(C,α, η, β, κ, p) =

(
L,

1

3
,
1

2
,
1

2
, 1,∞

)
.

The scalars at and bt are carefully chosen so that in fu1:t(x) := max{fu1:t−1(x), hu1:t(x)}, the max
operation can only change the function for x ∈ B∞ut−1

(δt−1); from this, we can show Condition 5.1.
Also, since fvu1:M (x) and f ṽu1:t−1,ũt:M

(x) can only differ in a ball of radius δt−1, their difference
should be proportional to δt−1, implying Condition 5.2. The rest of the proof of Lemma 6 is deferred
to Appendix D.2.

We also need to check whether the functions fvu1:M (x) we are constructing are indeed in our
function class of interest: L-Lipschitz convex functions. The following lemma addresses this points,
whose simple proof is deferred to Appendix D.3.

Lemma 7 The functions constructed with Algorithm 1 are L-Lipschitz and convex.

B.2.2. FUNCTION CONSTRUCTION: SMOOTH STRONGLY CONVEX FUNCTIONS

We can show that for FH,λ, we can construct functions fvu1:M that satisfy Condition 5, with (κ, p) =
(2, 2). For details, please refer to Section C.

18



MINIMAX BOUNDS ON STOCHASTIC BATCHED CONVEX OPTIMIZATION

B.3. The information recursion

The proof depends on whether the oracle is zeroth-order (O0) or first-order (O1). Let ζ denote the
order of the oracle: ζ = 0 whenever we are using zeroth-order oracles, ζ = 1 for first-order. So,
with κ and ζ, we can express the three cases presented in Theorem 2 into three tuples: (κ, ζ) = (1, 0)
for Lipschitz convex/zeroth-order, (2, 0) for smooth strongly convex/zeroth-order, and (2, 1) for
smooth strongly convex/first-order. Our proof strategy assumes κ > ζ; this means that the proof
does not apply to (κ, ζ) = (1, 1), which corresponds to Lipschitz convex functions with first-order
oracles. Also, let Pvu1:M and Evu1:M denote the probability of an event and expectation of any quantity,
respectively, based on the event that the true objective function is fvu1:M .

The rest of our proof is based solely on the assumption that construction of functions fvu1:M ∈ F
that satisfy Condition 5 is possible with some constants (C,α, η, β, κ, p) for the function class F .
This means that our analysis that follows can be used universally for any other function classes once
we can construct functions fvu1:M that satisfy Condition 5.

For the information recursion step, the crucial argument is the pigeonhole principle, i.e., if
there are n samples and R disjoint subsets of D, there must be at least one scarce-sampled subset
that contains at most n/R samples. For any constructed nested packing sets U (1), . . . ,U (M)

uM−1 and
given algorithm A, we will show that we can inductively find a particular chain of parameters u1:M

such that all Bp
u1(δ1), . . . ,Bp

uM (δM ) are scarce-sampled subsets (each Bp
ut(δt) contains at most

n/|U (t)
ut−1 | sample points) with constant probability. For that particular u1:M , it is difficult for A to

distinguish between f−1
u1:M

and f+1
u1:M

, hence leading to small total variation distance between P−1
u1:M

and P+1
u1:M

. This corresponds to proving Eq (17), for the event G that all Bp
u1(δ1), . . . ,Bp

uM (δM )
are scarce-sampled.

B.3.1. MINIMAX RATES: INFORMATION-THEORETIC INTUITION

Let us first provide a rather heuristic argument to give intuition for the “rates” (in n) of lower bounds
we prove. Suppose a procedure A, by querying the true function fvu1:M , has “identified” u1:t−1, but
is oblivious to ut:M . Then, given a batch of n points at which to compute function information,
it is possible to distinguish two different functions fvu1:M and f ṽu1:t−1,ũt:M

only if one samples a
point near ut−1. Consider a batch-based algorithm, querying n points in computational round t,
attempting to find the right value for ut. As the functions are identical outside of Bp

ut−1(δt−1), we
may consider a sampling scheme that without loss of generality sample n points only in the ball
Bp
ut−1(δt−1). By the pigeonhole principle, for at least one u′t, the procedure can collect a sample

size of at most n/|U (t)
ut−1 | in Bp

u′t
(δt). Suppose for the sake of worst-case analysis that the true ut

is equal to the scarce-sampled ball u′t. Now, with n samples in round t the procedure identified ut,
and given n/|U (t)

ut−1 | samples in Bp
ut(δt) one must seek to find the next ut+1.

Now, consider the amount of information about ut+1 that function evaluation queries in round
t can release when function values and/or (sub)gradients are perturbed by i.i.d mean-zero Gaussian
noise (recall our assumption that we consider φN). In this case, by Condition 5.2, we know that the
difference in function values scales as δκt , and the KL-divergence

Dkl

(
N(fvu1:M (x), σ2)||N(f ṽu1:t,ũt+1:M

(x), σ2)
)
� (fvu1:M (x)− f ṽu1:t,ũt+1:M

(x))2 . δ2κ
t , (13)

when the oracle is zeroth-order (ζ = 0). Similarly, we can show from Condition 5.3 that the
information we get in the case of the first-order Gaussian-noise oracle (ζ = 1) is O(δ

2(κ−1)
t ).

19



MINIMAX BOUNDS ON STOCHASTIC BATCHED CONVEX OPTIMIZATION

In the typical proofs of information-theoretic lower bounds (Tsybakov, 2009; Agarwal et al.,
2012; Duchi, 2017), the goal is to choose the separation between distributions, ‖Pvu1:M − Pṽu1:t,ũt+1:M

‖TV

in Le Cam’s method (8), to be a constant so as to guarantee a reasonable lower bound. In this case,
recalling the KL-bound (13), we see that the “information” about ut+1 revealed in round t of a
sequential sampling procedure is constant over the least-sampled region whenever

δ
2(κ−ζ)
t · n

|U (t)
ut−1 |

=
nδ

d+2(κ−ζ)
t

δdt−1

= 1, or δt = n
− 1
d+2(κ−ζ) δ

d
d+2(κ−ζ)
t−1 , (18)

where |U (t)
ut−1 | = ( δt−1

δt
)d was from a volume argument. By inspection, beginning from δ0 = 1, this

recursion (18) has the solution

δM = n
− 1

2(κ−ζ)

(
1−
(

d
d+2(κ−ζ)

)M)
. (19)

Note, from Lemma 5.7, that our construction satisfies dopt(f
−1
u1:M

, f+1
u1:M

) � δκM . Using Eqs (16),
(17), and (19), together with Lemmas 4 and 5.7, we can check the calculated rates agree with
Theorem 2 up to sub-polynomial factors, as desired.

In the following subsections, we introduce a set of new notation in Section B.3.2, and then, in
Section B.3.3, provide the formal inductive argument that proves Eq (17) for some G.

B.3.2. NOTATION

Using ζ, for example, we can define

C̃ζ := C(1− β)1−ζ(2κ)ζ , (20)

with which we can simplify the notations quite a bit. For example, Condition 5.2–3 can be now
written as

|fvu1:M (x)− f ṽu1:t−1,ũt:M
(x)| ≤ C̃0α

t−2δκt−1, ∀x ∈ Bp
ut−1

(δt−1),∥∥∥∇fvu1:M (x)−∇f ṽu1:t−1,ũt:M
(x)
∥∥∥

2
≤ C̃1α

t−2δκ−1
t−1 , ∀x ∈ Bp

ut−1
(δt−1).

Next, define the “exponent” constants (as we saw from the intuition)

γt :=
1

d+ 2(κ− ζ)

t−1∑
m=0

(
d

d+ 2(κ− ζ)

)m
=

1

2(κ− ζ)

(
1−

(
d

d+ 2(κ− ζ)

)t)
, (21)

for t ∈ 0 : M . Using this exponent constants, define δ1, . . . , δM as

δt := Dtn
−γt exp

(
−2
√

2γt−1
√

log n
)

for t = 1 : M − 1,

δM := DMn
−γM exp

(
−2
√

2γM−1
√

log n
)

log−ν/κ n,
(22)

where ν > 0 is any arbitrarily small number. Note that δt’s have the same rates in n as seen in
Eq (18) up to sub-polynomial factors. Some sub-polynomial factors appear in the process of the
proof; whether they are artifact of our proof technique or not is still an open question.
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The leading constants are defined recursively as

D1 :=

(
σ2

2·8dC̃2
ζ

) 1
d+2(κ−ζ)

Dt :=
(
Dt−1η

4

) d
d+2(κ−ζ)

(
σ2

8eC̃2
ζα

2t−2

) 1
d+2(κ−ζ)

for t ∈ 2 : M.

(23)

Solving the recurrence of Dt gives

Dt = D

(
d

d+2(κ−ζ)

)t−1

1

(
ηdσ2

8e · 4dC̃2
ζ

) 1
d

∑t−1
m=1

(
d

d+2(κ−ζ)
)m

α
− 2
d

∑t−1
m=1(t−m)

(
d

d+2(κ−ζ)
)m
. (24)

Also, define

ht :=

(
σ

C̃ζαt−1Dκ−ζ
t

)2

n2(κ−ζ)γt exp
(

4
√

2(κ− ζ)γt−1

√
log n

)
for t = 1 : M, (25)

so that
C̃2
ζα

2t−2htδ
2(κ−ζ)
t = σ2 for t ∈ 1 : M − 1,

C̃2
ζα

2M−2hMδ
2(κ−ζ)
M = σ2 log−

2ν(κ−ζ)
κ n.

(26)

Note that ht is an increasing quantity as n grows. Also, the exponent of n in ht is 1− ( d
d+2(κ−ζ))t,

so we have h1, . . . , hM ≤ n for large enough n.
Now that we have hm’s, define events Λ

(m)
um as

Λ(m)
um :=

{
n∑
i=1

I
{
X

(m)
i ∈ Bp

um(δm)
}
≤ hm

}
for m = 1 : M.

These are probabilistic events that, in the pigeonhole principle argument, this event corresponds to
the case that this particular hole Bp

um(δm) around um has small number of “pigeons” in it. Given
the definition of Λ

(m)
um , we can see from Eq (18) that hm corresponds to n/|U (m)

um−1 |, and Eq (26) is a
scaled version of δ2(κ−ζ)

t × (# of samples) = 1.
For a fixed true function fvu1:M , Λ

(m)
um is an event that only a small number hm of sampled points

X
(m)
i during the m-th round are in the region Bp

um(δm), which contains the global minimum of
fvu1:M . So, if this occurs, the amount of information to distinguish between fvu1:M and other functions
f ṽu1:m,ũm+1:M

is small, so it is hard to optimize fvu1:M to global optimality. Recall that Pvu1:M is the

probability measure when underlying true function is fvu1:M . So, if Pvu1:M (Λ
(m)
um ) happens with

constant probability, it means that there is some chance for sampling strategy Q(m) ∈ A to fail to
sample good enough amount of informative sample points.

B.3.3. THE INDUCTIVE ARGUMENT

The key of this part is to show that, for any algorithm A, there exist u1:M such that Eq (17) is satisfied
when we substitute P− ← P−1

u1:M
, P+ ← P+1

u1:M
, andG←

⋂M
m=1 Λ

(m)
um . This is proved in Lemma 11

at the end of a careful inductive argument. This means that if the true objective function is either
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one of f+1
u1:M

or f−1
u1:M

, with constant probability we do not have enough informative samples needed
to distinguish between f+1

u1:M
and f−1

u1:M
, which are reasonably separated with respect to dopt (by

Condition 5.7), hence leading to non-trivial error in optimization.
Before jumping into the induction, we present a lemma that bounds the packing numbers of sets

U (1),U (2)
u1 , . . . ,U

(M)
uM−1 . This will prove useful later in the induction.

Lemma 8 For large enough n, the cardinality of maximal packings satisfy

|U (1)| ≥
(

1

8δ1

)d
, and |U (t)

ut−1
| ≥

(
ηδt−1

4δt

)d
for t ∈ 2 : M,

regardless of the choice ut−1.

The proof of Lemma 8 is a simple volumetric argument, which is provided in Appendix D.5.
The proof is done by mathematical induction. First we fix any M -stage procedure A (hence the

distributions Q(1), . . . , Q(M)). Starting from t = 1 to t = M , we prove the statement

STt : There exists a chain of parameters u1 ∈ U (1), u2 ∈ U (2)
u1 , . . . , uM ∈ U

(M)
uM−1 and

v ∈ V such that Pvu1:M (
⋂t
m=1 Λ

(m)
um ) ≥ 1

4t for sufficiently large n.

Base case (t = 1). Since the first stage observations are sampled without any information about
the true function, the sampling strategies are all identical regardless of the true function fvu1:M . This

is, in other words, Pvu1:M (X
(1)
i ∈ Bp

u1(δ1)) = Q(1)(X
(1)
i ∈ Bp

u1(δ1)), for any u1:M and v. Recall
that interiors of balls int(Bp

u1(δ1)) are disjoint for different u1 ∈ U (1). So, for any fixed Q(1),∑
u1∈U(1)

n∑
i=1

Pvu1:M (X
(1)
i ∈ Bp

u1(δ1)) =
n∑
i=1

∑
u1∈U(1)

Q(1)(X
(1)
i ∈ Bp

u1(δ1)) ≤ n. (27)

Now by the pigeonhole principle, there must exist at least one u1 ∈ U (1) such that∑n

i=1
Q(1)(X

(1)
i ∈ Bp

u1(δ1)) ≤ n
|U(1)| .

Now recall |U (1)| ≥
(

1
8δ1

)d
from Lemma 8. Given u1, choose the next parameters u2:M and v

arbitrarily. Then,

n∑
i=1

Q(1)(X
(1)
i ∈ Bp

u1(δ1)) = Evu1:M

[
n∑
i=1

I
{
X

(1)
i ∈ Bp

u1(δ1)
}]
≤ (8δ1)dn.

Then, for those chosen u1:M and v, by Markov’s inequality,

Pvu1:M
(

(Λ(1)
u1 )c

)
= Pvu1:M

(
n∑
i=1

I
{
X

(1)
i ∈ Bp

u1(δ1)
}
> h1

)
≤ (8δ1)dn

h1

=
8dC̃2

ζ

σ2
δ
d+2(κ−ζ)
1 n =

8dC̃2
ζ

σ2
D
d+2(κ−ζ)
1 n−γ1(d+2(κ−ζ))n =

1

2
,

by definition of D1 (23) and γ1 (21). This implies ST1. In words, for the first-stage sampling
strategy Q(1), there exist parameter u1:M and v such that, no more than h1 sample points are in
Bp
u1(δ1) (the region where global optimum lies) with probability at least 1/4.
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Inductive step (2 ≤ t ≤ M ). At step t, by the induction hypothesis STt−1 we know that there
exist u1:M and v such that Pvu1:M (

⋂t−1
m=1 Λ

(m)
um ) ≥ 1

4t−1 . This means that for the sampling strate-
gies Q(1), Q(2), . . . , Q(t−1), there is constant probability for them all to fail to sample sufficient
amount of samples in Bp

u1(δ1),Bp
u2(δ2), . . . ,Bp

ut−1(δt−1). Note that these are the balls containing
the global minimizer of fvu1:M .

Given the chain u1:M and v as defined by STt−1, consider re-choosing the parameters from
level t and onwards. That is, we leave the first t − 1 parameters u1:t−1 unchanged, and arbi-
trarily re-choose the rest of them to define another chain of parameters, say ũt ∈ U (t)

ut−1 , ũt+1 ∈
U (t+1)
ũt

, . . . , ũM ∈ U (M)
ũM−1

and ṽ ∈ V . Then, note by Condition 5.1 that fvu1:M (x) = f ṽu1:t−1,ũt:M
(x)

for all x /∈ Bp
ut−1(δt−1). Since the two functions fvu1:M (x) and f ṽu1:t−1,ũt:M

(x) look exactly the
same outside Bp

ut−1(δt−1) and it is known that Q(1), . . . , Q(t−1) are likely to fail to sample suffi-
cient amount of samples in Bp

u1(δ1), . . . ,Bp
ut−1(δt−1), it is plausible to conjecture that the similar

thing might happen to f ṽu1:t−1,ũt:M
(x) as well. The next lemma formalizes and proves this idea:

Lemma 9 Suppose there exist u1:M and v such that Pvu1:M (
⋂t−1
m=1 Λ

(m)
um ) ≥ 1

4t−1 for sufficiently
large n (STt−1). For any ũt:M and ṽ re-chosen as above, the following inequality holds:

Pṽu1:t−1,ũt:M

(⋂t−1

m=1
Λ(m)
um

)
≥ 1

2 · 4t−1
, (28)

for sufficiently large n.

Notice that this lemma holds for any new choice of ũt:M and ṽ. The proof of Lemma 9 is presented
in Appendix D.6.

Next, consider the conditional probability of Λ
(t)
ũt

given
⋂t−1
m=1 Λ

(m)
um , for any re-chosen ũt ∈

U (t)
ut−1 . Recall that the sampling strategy Q(t) was fixed before we start our proof, so the conditional

distribution Q(t)(X
(t)
1:n |

⋂t−1
m=1 Λ

(m)
um ) is also a fixed probability distribution. Then, by the pigeon-

hole principle, there exists at least one ũt ∈ U (t)
ut−1 such that Bp

ũt
(δt) are scarce-sampled, i.e., have

at most ht sample points in Bp
ũt

(δt), with a constant probability. The next lemma formalizes and
proves this idea.

Lemma 10 Suppose there exist u1:M and v such that Pvu1:M (
⋂t−1
m=1 Λ

(m)
um ) ≥ 1

4t−1 for sufficiently
large n (STt−1). Then, there exist re-chosen parameters ũt:M and ṽ such that the following lower
bound is satisfied:

Pṽu1:t−1,ũt:M

(
Λ

(t)
ũt
|
⋂t−1

m=1
Λ(m)
um

)
≥ 1

2
(29)

The proof of Lemma 10 is in Appendix D.7. By Lemma 10, there exists a function f ṽu1:t−1,ũt:M
such

that Eq (29) holds. Combining this with Eq (28), we finish the proof of STt.

Final step. The proof of the final step is similar to the inductive step. From STM , let u1:M and v
be the parameter values satisfying Pvu1:M (

⋂M
m=1 Λ

(m)
um ) ≥ 1

4M
. We can state another lemma, which

actually is our goal (17):

Lemma 11 Suppose there exist u1:M and v such that Pvu1:M (
⋂M
m=1 Λ

(m)
um ) ≥ 1

4M
for sufficiently

large n. Then, for ṽ 6= v, the following lower bound is satisfied for n large enough:

Pṽu1:M

(⋂M

m=1
Λ(m)
um

)
≥ 1

2 · 4M
. (30)
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Also, the total variation distance between two conditional probability P−1
u1:M

and P+1
u1:M

given the

event
⋂M
m=1 Λ

(m)
um satisfies∥∥∥∥P−1

u1:M

(
· |
⋂M

m=1
Λ(m)
um

)
− P+1

u1:M

(
· |
⋂M

m=1
Λ(m)
um

)∥∥∥∥
TV

≤ 1

2
, (31)

for sufficiently large n.

The proof is very similar to those of Lemma 9 and 10, and is also deferred to Appendix D.8.

B.4. Finishing the proof

Now, we are left with the final step of our proof. Recall from Eq (16), Lemmas 4 and 11, Condi-
tion 5.7, and substituting G←

⋂M
m=1 Λ

(m)
um that

MM (F ,O) ≥ 1

2 · 4M
max
v∈V

Evu1:M [fvu1:M (X̂)− (fvu1:M )? | Λ1:M ]

≥
dopt(f

−1
u1:M

, f+1
u1:M

)

2 · 4M+1

(
1−

∥∥∥∥P−1
u1:M

(· |
⋂M

m=1
Λ(m)
um )− P+1

u1:M
+ (· |

⋂M

m=1
Λ(m)
um )

∥∥∥∥
TV

)
≥
CαMηκDκ

M

2 · 4M+1
n−κγM exp

(
−2
√

2κγM−1

√
log n

)
log−ν n, (32)

where the last inequality used

dopt(f
−1
u1:M

, f+1
u1:M

) = 2CαMηκδκM , and

δM := DMn
−γM exp

(
−2
√

2γM−1

√
log n

)
log−ν/κ n.

The sub-polynomial factors such as exp
(
−2
√

2κγM−1
√

log n
)

and log−ν n unfortunately ap-
pear during the course of analysis (while proving lemmas), and whether they are artifacts of analysis
or inevitable factors is not clear at this moment. To simplify the expressions a bit, note from Eq (21)
that

γM−1 =
1

2(κ− ζ)

(
1−

(
d

d+ 2(κ− ζ)

)M−1
)
,

and that the term

exp

( √
2κ

κ− ζ

(
d

d+ 2(κ− ζ)

)M−1√
log n

)
log−ν n

in Eq (32) is an increasing but sub-polynomial factor in n. Thus, in presenting the lower bound we
can safely discard those factors, resulting in a bound

MM (F ,O) ≥
CαMηκDκ

M

2 · 4M+1
n−κγM exp

(
−
√

2κ
√

log n

κ− ζ

)
. (33)
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Bounding the leading constant. From the leading constant Cα
MηκDκM

2·4M+1 that appeared in Eq (33)
and the definition of DM in Eq (24), we can check that the leading constant is dependent on M , d,
σ, C, α, η, β, κ, and ζ, and has a lower bound of the form c1 · rM , where c1 > 0 and 0 < r < 1
are independent of M . Recall that our theorem statements are for M ≤ log logn/ log(1 + 2(κ−ζ)

d ).
This implies that

log(rM ) ≥ log
(
rlog logn/ log(1+

2(κ−ζ)
d

)
)

=
log r

log(1 + 2(κ−ζ)
d )

log log n = log
(
(log n)−c2

)
,

where c2 := − log r/ log(1+ 2(κ−ζ)
d ) > 0. Thus, for small M , the leading constant can be bounded

below by c1 · log−c2 n, where c1, c2 > 0 depend on d, σ, C, α, η, β, κ, and ζ, not M .
Now recall from Condition 5 and Lemmas 6 and 17 that C, α, η, β, κ are defined according to

function classes, and ζ depends on oracle order. So, in Lipschitz convex/zeroth-order case (FL), the
constants c1 and c2 depend only on d, σ, L. In smooth strongly convex case (FH,λ), the constants
c1, c2 (for ζ = 0, 1) depend only on d, σ, H , and λ.

Proving each cases. Given the general bound (33), and definition of γM (21), let us now substitute
κ and ζ to finish the proof for each case presented in Theorem 2. Recall that κ = 1 for Lipschitz
convex functions, and κ = 2 for smooth strongly convex functions. Also, ζ = 0 for zeroth order
oracle, and ζ = 1 for first order oracle.

In the case of L-Lipschitz and zeroth-order (κ, ζ) = (1, 0), for M ≤ log logn/ log(1 + 2
d),

MM (FL,O0) ≥ c1n
− 1

2

(
1−( d

d+2)
M
)
e−
√

2 logn log−c2 n,

where c1, c2 > 0 depend only on d, σ, L. The cases of (κ, ζ) = (2, 0) and (κ, ζ) = (2, 1) can be
treated in similar ways.

Appendix C. Function construction for smooth strongly convex functions

This section handles the construction of smooth strongly convex functions (FH,λ). The high-level
idea is the same as the Lipschitz case, but taking max of two smooth functions f and g can break
smoothness on the intersection set Its(f, g) := {x ∈ Rd | f(x) = g(x)}, so this case requires
considerably more involved treatment. On the vicinity of the intersection set, we interpolate the
gradients of two functions to smooth the boundary, using suprema of infinitely many hyperplanes.
Section C.1 shows a simple 1-d example that illustrates the idea of “smoothing” maximum of two
quadratic functions, and Section C.2 presents the algorithm SMAX that calculates smooth maximum
of two multi-dimensional quadratic functions. Finally, Section C.3 describes recursive multi-stage
construction of the function (with `2 balls at this time) by a similar way as in Section B.2.1. We
also present that with suitable parameter choices, the constructed functions are in FH,λ and satisfy
Condition 5.

C.1. Smooth interpolation of two quadratic functions: a 1D example

Before we describe all the complicated details, let us start with an easy 1D example that illustrates
our key approach. In Lipschitz convex case, the goal of getting functions that have the same values
outside a certain set while having different values in that set was simply achieved by taking max
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operations. We want to do the same for smooth strongly convex functions, but the difficulty is that
the maximum of two functions f and g is not smooth on the intersection set Its(f, g). To remedy
this problem, we can interpolate or smooth the functions near the intersection set using suprema of
infinitely many hyperplanes.

To illustrate the idea, let us start with a simple 1D example; consider taking the maximum of two
quadratic functions f1(x) = 2x2 and f2(x) = (x − 1)2 + 14 defined on [0,∞). Their intersection
set is Its(f1, f2) = {3}, which contains the only non-smooth point of max{f1, f2}. Note that
max{f1, f2} = f1 for x ≥ 3 and max{f1, f2} = f2 for x ≤ 3. Smoothing is done by linearly
interpolating the gradient in the vicinity of the non-smooth point, for example x ∈ [2, 4], while
leaving the function values outside [2, 4] the same. We define constants ġ−, ġ0, ġ+:

ġ− := ḟ2(2) = 2, ġ0 :=
ḟ2(3) + ḟ1(3)

2
=

4 + 12

2
= 8, ġ+ := ḟ1(4) = 16,

and then define the linearly interpolated gradients

ḣ−(x) := ġ− + (ġ0 − ġ−)(x− 2) = 6x− 10 for x ∈ [2, 3],

ḣ+(x) := ġ+ − (ġ0 − ġ+)(x− 4) = 8x− 16 for x ∈ [3, 4].

Since the gradient in [2, 4] changed, also calculate interpolated function value accordingly:

h−(x) := f2(2) +

∫ x

2
ḣ−(t)dt = 3x2 − 10x+ 23 for x ∈ [2, 3],

h+(x) := f1(4)−
∫ 4

x
ḣ+(t)dt = 4x2 − 16x+ 32 for x ∈ [3, 4].

Note that f2(2) = h−(2) = 15, h−(3) = h+(3) = 20, and h+(4) = f1(4) = 32, so the functions
f2, h−, h+, f1 can be “connected” to make a continuous function. Lastly define an infinite number
of affine functions using previously calculated ḣ−, ḣ+, h− and h+:

fρ−(x) := ḣ−(ρ)(x− ρ) + h−(ρ) for ρ ∈ [2, 3],

fρ+(x) := ḣ+(ρ)(x− ρ) + h+(ρ) for ρ ∈ [3, 4].

Here, we are defining one affine function fρ−(x) for each value of ρ ∈ [2, 3]. Same applies to fρ+ for
ρ ∈ [3, 4].

Now, we can define the interpolated function, which is the supremum of the original functions
f1 and f2, and affine functions fρ− and fρ+:

f(x) := max

{
f1(x), f2(x), sup

ρ∈[2,3]
fρ−(x), sup

ρ∈[3,4]
fρ+(x)

}
. (34)

We can prove that this f(x), defined as the maximum of many functions, is actually a smooth
interpolation of maximum of f1 and f2. We state this in the following lemma.

Lemma 12 The function f(x) defined in Eq (34) satisfies the following:

f(x) =


f2(x) if 0 ≤ x ≤ 2

h−(x) if 2 ≤ x ≤ 3

h+(x) if 3 ≤ x ≤ 4

f1(x) if x ≥ 4,

and ḟ(x) =


ḟ2(x) if 0 ≤ x ≤ 2

ḣ−(x) if 2 ≤ x ≤ 3

ḣ+(x) if 3 ≤ x ≤ 4

ḟ1(x) if x ≥ 4.
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Also, f(x) is a 8-smooth and 2-strongly convex function.

The proof of Lemma 12 is a special case of Lemmas 14 and 15, which we will omit.
By Lemma 12, we saw that the maximum of two quadratic functions can be smoothly inter-

polated by using infinite number of hyperplanes. Also note that this function is 8-smooth and
2-strongly convex, whereas f1 and f2 are in the class of 4-smooth and 2-strongly convex functions;
the interpolation cause the “increase” of the smoothness constant, which we will observe in the
multi-dimensional example as well.

C.2. Smooth interpolation of two quadratic functions: multi-dimension

Extending to multi-dimension. Now, we extend the domain to d-dimension, and consider taking
the maximum of two quadratic functions f1(x) and f2(x), each minimized at x1 and x2, respec-
tively, where x2 ∈ B2

x1(ηδ):

f1(x) := ‖x− x1‖22 and f2(x) := α ‖x− x2‖22 + βδ2,

where the parameters satisfy 0 < η < 1, δ > 0, 0 < α < 1, and 0 < β < 1.
By solving f1(x) = f2(x), we can see that their intersection set Its(f1, f2) := {x ∈ Rd |

f1(x) = f2(x)} is a sphere:

Its(f1, f2) = {x | ‖x− c‖22 = r2},

where

c =
1

1− α
x1 −

α

1− α
x2 = x1 −

α

1− α
(x2 − x1), (35)

r =

√
α

(1− α)2
‖x1 − x2‖22 +

βδ2

1− α
. (36)

Since α
(1−α)2

‖x1 − x2‖22 + βδ2

1−α > 0 by assumptions on parameters, this sphere exists.
As seen in the 1D example, we need some “margin” for interpolation near non-smooth points. In

the 1D example the “margin” or what we call “interpolation set” was the interval [2, 4], on which we
alter the function values to do smooth interpolation. So, after taking the maximum between f1 and
f2, we will smooth the non-smooth points in the intersection set Its(f1, f2) by linearly interpolating
the gradients on a set Itp called “interpolation set”:

Itp := {x | (1− θ)r ≤ ‖x− c‖2 ≤ (1 + θ)r} ,

where 0 < θ < 1 will be chosen shortly.

Choosing the right parameters. We now state a lemma that chooses the parameters in the “right”
way that makes our construction of smooth maximum easier.

Lemma 13 Recall the conditions 0 < η < 1, δ > 0, 0 < α < 1, 0 < β < 1, and 0 < θ < 1 on
parameters of f1, f2, and Itp. Choose parameters that satisfy

η + α+ αη < 1, (37)
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Algorithm 2 Algorithm SMAX(f1, f2, α, η, δ).

Assume 0 < α < 1, 0 < η < 1, η + α+ αη < 1, δ > 0. Let β := (1−α)(1+η)2

4 − αη2

1−α .
Assume f1(x) = s ‖x− x1‖22 + t, f2(x) = sα ‖x− x2‖22 + sβδ2 + t, s > 0, x2 ∈ B2

x1(ηδ)

1: θ := 1−η−α−αη
1+η−α−αη , c := x1 − α

1−α(x2 − x1), r :=
√

α
(1−α)2

‖x1 − x2‖22 + βδ2

1−α .
2: For all ρ ∈ [(1− θ)r, r] and all unit vectors ‖w‖2 = 1,

ḣ−(ρ, w) :=
2α

1− α
(x1 − x2)− (1− α)(1− θ)r

θ
w +

(
1− α
θ

+ 2α

)
ρw,

h−(ρ, w) :=
α

(1− α)2
‖x1 − x2‖22 + βδ2 +

(1− α)(1− θ)2r2

2θ

+

(
2α

1− α
〈x1 − x2, w〉 −

(1− α)(1− θ)r
θ

)
ρ+

(
1− α

2θ
+ α

)
ρ2,

fρ,w− (x) :=s〈ḣ−(ρ, w), x− (c+ ρw)〉+ sh−(ρ, w) + t.

3: For all ρ ∈ [r, (1 + θ)r] and all unit vectors ‖w‖2 = 1,

ḣ+(ρ, w) :=
2α

1− α
(x1 − x2)− (1− α)(1 + θ)r

θ
w +

(
1− α
θ

+ 2

)
ρw,

h+(ρ, w) :=
α2

(1− α)2
‖x1 − x2‖22 +

(1− α)(1 + θ)2r2

2θ

+

(
2α

1− α
〈x1 − x2, w〉 −

(1− α)(1 + θ)r

θ

)
ρ+

(
1− α

2θ
+ 1

)
ρ2,

fρ,w+ (x) :=s〈ḣ+(ρ, w), x− (c+ ρw)〉+ sh+(ρ, w) + t.

4: Return f(x) := max
{
f1(x), f2(x), supρ∈[(1−t)r,r],‖w‖2=1 f

ρ,w
− (x), supρ∈[r,(1+t)r],‖w‖2=1 f

ρ,w
+ (x)

}
.

β =
(1− α)(1 + η)2

4
− αη2

1− α
, (38)

θ =
1− η − α− αη
1 + η − α− αη

. (39)

Then, the following statements hold:

Itp ⊂ cl(B2
x1(ηδ)c ∩B2

x1(δ)) for any x2 ∈ B2
x1(ηδ), (40)

The proof of Lemma 13 is provided in Appendix E.1. With the parameters satisfying Eqs (37)–
(39), we can ensure that the interpolation set is a subset of cl(B2

x1(ηδ)c ∩ B2
x1(δ)), so any point

x /∈ cl(B2
x1(ηδ)c ∩B2

x1(δ)) will not be affected by the interpolation.

Smoothing the maximum of two quadratic functions. We now describe how the smooth inter-
polation of max{f1, f2} is done in Itp. Notice that Itp can be expressed in a “polar” form:

Itp := {x | (1− θ)r ≤ ‖x− c‖2 ≤ (1 + θ)r} = {c+ ρw | (1− θ)r ≤ ρ ≤ (1 + θ)r, ‖w‖2 = 1} ,
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and we will specify the new interpolated gradient and function values for all (1 − θ)r ≤ ρ ≤
(1 + θ)r and ‖w‖2 = 1. For each fixed direction w, interpolated gradients ḣ−(ρ, w) and ḣ+(ρ, w)
are obtained by linearly interpolating the gradients along w. After that, we obtain interpolated
function values h−(ρ, w) and h+(ρ, w) by integrating directional derivatives along w, starting from
f2(c+ (1− θ)r) and f1(c+ (1 + θ)r), respectively.

For each fixed w, we define

ġ−(w) := ∇f2(c+ (1− θ)rw),

ġ0(w) :=
∇f2(c+ rw) +∇f1(c+ rw)

2
,

ġ+(w) := ∇f1(c+ (1 + θ)rw).

and then linearly interpolate the gradients along each direction w:

ḣ−(ρ, w) := ġ−(w) +
ġ0(w)− ġ−(w)

θr
(ρ− (1− θ)r) for ρ ∈ [(1− θ)r, r],

ḣ+(ρ, w) := ġ+(w)− ġ0(w)− ġ+(w)

θr
(ρ− (1 + θ)r) for ρ ∈ [r, (1 + θ)r].

Function values are obtained by integrating the directional derivatives along the direction w: The
function values after interpolation is calculated by integrating the directional derivatives, i.e.,

h−(ρ, w) := f2(c+ (1− θ)rw) +

∫ ρ

(1−θ)r
〈ḣ−(t, w), w〉dt for ρ ∈ [(1− θ)r, r],

h+(ρ, w) := f1(c+ (1 + θ)rw)−
∫ (1+θ)r

ρ
〈ḣ+(t, w), w〉dt for ρ ∈ [r, (1 + θ)r].

Using ḣ−, ḣ+, h−, and h+ defined as above, we can define infinite number of hyperplanes corre-
sponding to each point c+ ρw in Itp,

fρ,w− (x) := 〈ḣ−(ρ, w), x− (c+ ρw)〉+ h−(ρ, w) for ρ ∈ [(1− θ)r, r], ‖w‖2 = 1,

fρ,w+ (x) := 〈ḣ+(ρ, w), x− (c+ ρw)〉+ h+(ρ, w) for ρ ∈ [r, (1 + θ)r], ‖w‖2 = 1.

Finally, we define the smoothed function

f(x) := max

{
f1(x), f2(x), sup

ρ∈[(1−t)r,r],‖w‖2=1
fρ,w− (x), sup

ρ∈[r,(1+t)r],‖w‖2=1
fρ,w+ (x)

}
.

For more details of the calculation, please refer to Appendix E.2.
We summarize the construction in Algorithm 2. The equations written in Algorithm 2 are just

explicit calculation of ḣ−, ḣ+, h−, and h+, using the parameters as defined in Lemma 13. Algo-
rithm 2 presents the process of getting the “smooth maximum” of two quadratic functions, for a
slightly more general case where f1(x) and f2(x) are defined in the form

f1(x) := s ‖x− x1‖22 + t and f2(x) := sα ‖x− x2‖22 + sβδ2 + t,

where s > 0 and t ∈ R. That is, s and t are scale and translation in the range space.
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Correctness of smooth maximum. We now prove that the output of Algorithm 2 is indeed
the smooth interpolation of max{f1, f2}, and the interpolated function values attain the maxi-
mum/suprimum as originally intended. We prove this by the following lemma, whose technical
proof is deferred to Appendix E.3.

Lemma 14 Let

f1(x) := ‖x− x1‖22 and f2(x) := α ‖x− x2‖22 + βδ2,

where parameters satisfy 0 < α < 1, 0 < η < 1, η + α+ αη < 1, δ > 0, β = (1−α)(1+η)2

4 − αη2

1−α ,
and x2 ∈ B2

x1(ηδ). Then, the output f(x) of SMAX(f1, f2, α, η, δ) satisfies, for all ρ ≥ 0 and
‖w‖2 = 1,

f(c+ ρw) =


f2(c+ ρw) if ρ ∈ [0, (1− θ)r]
h−(ρ, w) if ρ ∈ [(1− θ)r, r]
h+(ρ, w) if ρ ∈ [r, (1 + θ)r]

f1(c+ ρw) if ρ ∈ [(1 + θ)r,∞)

∇f(c+ ρw) =


∇f2(c+ ρw) if ρ ∈ [0, (1− θ)r]
ḣ−(ρ, w) if ρ ∈ [(1− θ)r, r]
ḣ+(ρ, w) if ρ ∈ [r, (1 + θ)r]

∇f1(c+ ρw) if ρ ∈ [(1 + θ)r,∞).

Given Lemma 14, we showed that the interpolated function f(x) has function values and gradients
as specified in the lemma, which agrees with our intended construction in Appendix E.2. Note that
positive scaling and translation does not hurt the correctness of interpolation.

Now, we prove the smoothness and strong convexity constants of f(x).

Lemma 15 Under the same setting as Lemma 14, the output f(x) of SMAX(f1, f2, α, η, δ) is(
2 + 1−α

θ

)
-smooth and 2α-strongly convex.

The proof is in Appendix E.4. Note that, as in the 1D case, the smoothness constant increased after
interpolation while the strong convexity constant stayed the same.

We end this subsection with a lemma on the range of f(x), which will prove useful for multi-
stage construction as well as the reader’s comprehension of the interpolation. The proof is deferred
to Appendix E.5.

Lemma 16 Let

f1(x) := s ‖x− x1‖22 + t and f2(x) := sα ‖x− x2‖22 + sβδ2 + t,

where parameters satisfy 0 < α < 1, 0 < η < 1, η + α+ αη < 1, δ > 0, β = (1−α)(1+η)2

4 − αη2

1−α ,
s > 0 and x2 ∈ B2

x1(ηδ). Then, the output f(x) of SMAX(f1, f2, α, η, δ) satisfies

1. f(x) =

{
f1(x) ∀x ∈ cl(B2

x1(δ)c),

f2(x) ∀x ∈ B2
x1(ηδ),
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Algorithm 3 Construction of smooth strongly convex fvu1:M .

Given parameters u1, u2, . . . , uM , v, size δ1, . . . , δM ,
α, η ∈ (0, 1) satisfying η + α+ αη < 1, and C > 0,

1: Let β := (1−α)(1+η)2

4 − αη2

1−α
2: Start with fu1(x) = hu1(x) := C ‖x− u1‖22.
3: for t = 2 to M do
4: hu1:t(x) := Cαt−1 ‖x− ut‖22 + Cβ

∑t−1
m=1 α

m−1δ2
m

5: gu1:t(x) := SMAX(hu1:t−1 , hu1:t , α, η, δt−1).
6: fu1:t(x) := max{fu1:t−1(x), gu1:t(x)}.
7: end for
8: hvu1:M (x) := CαM ‖x− uM − vηδMe1‖22 + Cβ

∑M
m=1 α

m−1δ2
m.

9: gvu1:M (x) := SMAX(hu1:M , h
v
u1:M

, α, η, δM ).
10: Return fvu1:M (x) := max{fu1:M (x), gvu1:M (x)}.

2. ∇f(x) =

{
∇f1(x) ∀x ∈ cl(B2

x1(δ)c),

∇f2(x) ∀x ∈ B2
x1(ηδ),

3. sβδ2 + t ≤ f(x) ≤ sδ2 + t ∀x ∈ B2
x1(δ).

4. ‖∇f(x)‖2 ≤ 2sδ ∀x ∈ B2
x1(δ).

C.3. Multi-stage recursive construction

Now let us consider applying SMAX(·) many times in a recursive way, as done in the Lipschitz
convex case; we will iteratively apply SMAX while zooming into narrower regions of the domain.
The outline of the construction is the same, except a bit of difference in details.

As seen in Section B.2, we construct nested maximal packings. For FH,λ this is done with `2
norm. Given the maximal packings, we can recursively choose chain of parameters u1, . . . , uM and
v. Algorithm 3 constructs a function fvu1:M (x) that corresponds to the specific choice of u1, . . . , uM
and v. Algorithm 3 defines a series of quadratic functions hu1:t(x) and repeatedly takes smooth
maximum with previous ones to get the final function.

With Algorithm 3, we can show that the outputs of Algorithm 3 satisfy Condition 5, as desired.

Lemma 17 The functions constructed by Algorithm 1 satisfy Condition 5 with

(C,α, η, β, κ, p) =

(
C,α, η,

(1− α)(1 + η)2

4
− αη2

1− α
, 2, 2

)
,

if α, η ∈ (0, 1), η + α+ αη < 1, and C > 0.

The proof of Lemma 17 is deferred to Appendix E.6.
We also want to check whether the functions fvu1:M (x) we are constructing are indeed smooth

and strongly convex. Especially, one might wonder if the max operations at Lines 6 and 10 in
Algorithm 3 can hurt the smoothness. The following lemma addresses this points, whose proof is
deferred to Appendix E.7.
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Lemma 18 The functions constructed with Algorithm 3 are
(
C
(
2 + 1−α

θ

))
-smooth and 2CαM -

strongly convex, where θ := 1−η−α−αη
1+η−α−αη as in Eq (39). Moreover, whenH/5 ≥ λ, with the parameter

choice

α =

(
1

2

) 1
M

, η =
1− α

2
, C =

H

5

the constructed functions are H-smooth and λ-strongly convex. For H/5 < λ < H , there also
exists choice of parameters that returns H-smooth and λ-strongly convex functions, although a bit
more complicated.

Appendix D. Technical Proofs for Section B

D.1. Proof of Lemma 4

Consider a hypothesis testing problem, where v ∈ {−,+} is sampled uniformly at random by the
nature and v is not known to us. We have to estimate the v using a hypothesis test Ψ. Observe that
if fv(X̂)− f?v ≤ dopt(f−, f+)/2 for some v ∈ {−,+}, then for v′ 6= v,

dopt(f−, f+) ≤ fv(X̂) + fv′(X̂)− f?v − f?v′ ≤
dopt(f−,f+)

2 + fv′(X̂)− f?v′

=⇒ dopt(f−,f+)
2 ≤ fv′(X̂)− f?v′ .

so only a single v ∈ {−,+} may satisfy fv(X̂)− f?v ≤ dopt(f−, f+)/2. From this observation, we
can define our test Ψ̂ using our optimization estimate X̂ , Ψ̂ = argminv∈{−,+} fv(X̂) − f?v , where

ties are broken arbitrarily. Notice that for any v, Ψ̂ 6= v implies fv(X̂) − f?v ≥
dopt(f−,f+)

2 . Then,
using Markov’s inequality,

max
v∈{−,+}

Ev
[
fv(X̂)− f?v | G

]
≥ 1

2

∑
v∈{−,+}

Ev
[
fv(X̂)− f?v | G

]
≥dopt(f−, f+)

4

∑
v∈{−,+}

Pv
(
fvu1:M (X̂)− (fvu1:M )? ≥ dopt(f−,f+)

2 | G
)

≥dopt(f−, f+)

4

∑
v∈{−,+}

Pv(Ψ̂ 6= v | G) ≥ dopt(f−, f+)

4
inf
Ψ

∑
v∈{−,+}

Pv(Ψ 6= v | G).

where last the infimum is taken over all possible tests. By a classical inequality on hypothesis testing
and total variation distance,

inf
Ψ

∑
v∈{−,+}

Pv(Ψ 6= v | G) ≥ 1− ‖P−(· | G)− P+(· | G)‖TV .

D.2. Proof of Lemma 6

We start by showing the following technical lemma, which illustrates how the functions in the max
operation are placed above or below one another. Its proof is deferred to Appendix D.4.

Lemma 19 For any set of parameters u1, u2, . . . , uM , v chosen by u1 ∈ U (1), ut ∈ U (t)
ut−1 for

t ∈ 2 : M , and v ∈ V , run Algorithm 1 and get fvu1:M (x). Then, for any t ∈ 2 : M , we have:
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1. fu1:t(x) =

{
fu1:t−1(x) ∀x 6∈ B∞ut−1

(δt−1),

hu1:t(x) ∀x ∈ B∞ut−1
(δt−1/2),

2.
∑t−1

m=1
Lδm

2·3m−1 ≤ fu1:t(x) ≤
∑t−2

m=1
Lδm

2·3m−1 + Lδt−1

3t−2 for all x ∈ B∞ut−1
(δt−1).

Also, at the final step,

3. fvu1:M (x) =

{
fu1:M (x) ∀x /∈ B∞uM (δM ),

hvu1:M (x) ∀x ∈ B∞uM (δM/2),

4.
∑M

m=1
Lδm

2·3m−1 ≤ fvu1:M (x) ≤
∑M−1

m=1
Lδm

2·3m−1 + LδM
3M−1 for all x ∈ B∞uM (δM ).

We prove Lemma 6.1 and 6.4 using simple argument that max operations done in Algorithm 1
only changes limited parts of the domain. Recall the definition fu1:t(x) := max{fu1:t−1(x), hu1:t(x)}.
From Lemma 19.1, note that whenever we have fu1:t−1(x) and take max operation with hu1:t(x) to
construct fu1:t(x), any point ∀x 6∈ B∞ut−1

(δt−1) does not change its value. This means that the max
operation can only change function values in B∞ut−1

(δt−1). Also, later iterations of the algorithm
do not change that the function values at x /∈ B∞ut−1

(δt−1), because B∞ut−1
(δt−1) ⊃ B∞ut(δt) ⊃

· · · ⊃ B∞uM (δM ). From this argument, we can see that fvu1:M (x) = f ṽu1:t−1,ũt:M
(x) = fu1:t−1(x)

for all x /∈ B∞ut−1
(δt−1), therefore proving Lemma 6.1. Similarly, from Lemma 19.3, the final

line fvu1:M (x) := max{fu1:M (x), hvu1:M (x)} in Algorithm 1 can only change function values in
B∞uM (δM ), so f−1

u1:M
(x) = f+1

u1:M
(x) = fu1:M (x) for all x /∈ B∞uM (δM ), proving Lemma 6.4.

Lemma 6.5 can be implied directly by Lemma 19.4. In order to prove Lemma 6.2, note the
following facts from Lemma 19.4 and 19.2:

M∑
m=1

Lδm
2 · 3m−1

≤ fvu1:M (x) ≤
M−1∑
m=1

Lδm
2 · 3m−1

+
LδM
3M−1

for all x ∈ B∞uM (δM ),

M−1∑
m=1

Lδm
2 · 3m−1

≤ fu1:M (x) ≤
M−2∑
m=1

Lδm
2 · 3m−1

+
LδM−1

3M−2
for all x ∈ B∞uM−1

(δM−1).

Note from Lemma 19.3 that fvu1:M (x) = fu1:M (x) for all x /∈ B∞uM (δM ), and that, for all x ∈
B∞uM (δM ),

fvu1:M (x) ≤
M−1∑
m=1

Lδm
2 · 3m−1

+
LδM
3M−1

≤
M−2∑
m=1

Lδm
2 · 3m−1

+
LδM−1

3M−2
.

The last inequality is because 3δM−1

2 ≥ δM holds for large enough n by assumption that δM =
o(δM−1). From these observations, we have

M−1∑
m=1

Lδm
2 · 3m−1

≤ fvu1:M (x) ≤
M−2∑
m=1

Lδm
2 · 3m−1

+
LδM−1

3M−2
for all x ∈ B∞uM−1

(δM−1).

Again note that, for any x /∈ B∞uM−1
(δM−1) we also have x /∈ B∞uM (δM ), so fvu1:M (x) = fu1:M (x) =

fu1:M−1(x). We can repeat a similar argument and obtain

M−2∑
m=1

Lδm
2 · 3m−1

≤ fvu1:M (x) ≤
M−3∑
m=1

Lδm
2 · 3m−1

+
LδM−2

3M−3
for all x ∈ B∞uM−2

(δM−2).
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For any t ∈ 2 : M , we can repeat this argument until B∞ut−1
(δt−1), so that we get

t−1∑
m=1

Lδm
2 · 3m−1

≤ fvu1:M (x) ≤
t−2∑
m=1

Lδm
2 · 3m−1

+
Lδt−1

3t−2
for all x ∈ B∞ut−1

(δt−1),

which directly implies Lemma 6.2 that we are after.
In order to prove Lemma 6.3 and 6.6, we first need to show that the function value fvu1:M (x) in

B∞ut−1
(δt−1) can be expressed as

fvu1:M (x) = max

{
max

k∈t−1:M
{hu1:k(x)} , hvu1:M (x)

}
, for all x ∈ B∞ut−1

(δt−1). (41)

Notice from Lemma 19.1 that fu1:t−1(x) = hu1:t−1(x) for all x ∈ B∞ut−2
(δt−2/2). Recall that

B∞ut−1
(δt−1) ⊂ B∞ut−2

(δt−2/2), so fu1:t−1(x) = hu1:t−1(x) in B∞ut−1
(δt−1). After this point,

fvu1:M (x) is obtained from max operations with hu1:t , . . . , hu1:M , h
v
u1:M

. This proves Eq (41). Now
notice that the subgradient of

hu1:t(x) :=
L

3t−1
‖x− ut‖∞ +

t−1∑
m=1

Lδm
2 · 3m−1

always has `1 norm exactly L
3t−1 . From Eq (41), we can observe that for any point x ∈ B∞ut−1

(δt−1),
any subgradient gvu1:M ∈ ∂f

v
u1:M

(x) has
∥∥gvu1:M∥∥1

≤ L
3t−2 . Since this holds for any set of parameters

ut:M , v, ũt:M , and ṽ, we get Lemma 6.3. From a similar argument as Eq (41), we have

fvu1:M (x) = max
{
hu1:M (x), hvu1:M (x)

}
, for all x ∈ B∞uM (δM ),

whereby we can prove Lemma 6.6.
Finally, we have to show Lemma 6.7. To do so, we first show that, for any choice of u1, u2, . . . , uM

and v,

inf
x
fvu1:M (x) =

M∑
m=1

Lδm
2 · 3m−1

(42)

In fact, from Lemma 19.3, we have fvu1:M (x) = hvu1:M (x) for all x ∈ B∞uM (δM/2). Also, hvu1:M (x)

is minimized at uM + vδM
2 1 ∈ B∞uM (δM/2), whose minimum value is the RHS of Eq (42). So, for

any x ∈ D,

fvu1:M (x) ≥ hvu1:M (x) ≥ hvu1:M

(
uM +

vδM
2

1

)
=

M∑
m=1

Lδm
2 · 3m−1

,

proving Eq (42).
Next, we show that

inf
x

(f+1
u1:M

(x) + f−1
u1:M

(x)) =
M∑
m=1

Lδm
3m−1

+
LδM
3M

. (43)

Again note that fvu1:M (x) = hvu1:M (x) for all x ∈ B∞uM (δM/2). That is, for x ∈ B∞uM (δM/2), we
have f+1

u1:M
(x) = h+1

u1:M
(x) and f−1

u1:M
(x) = h−1

u1:M
(x). Therefore, for any x ∈ B∞uM (δM/2),

f+1
u1:M

(x) + f−1
u1:M

(x) = h+1
u1:M

(x) + h−1
u1:M

(x)

34



MINIMAX BOUNDS ON STOCHASTIC BATCHED CONVEX OPTIMIZATION

=
L

3M

(∥∥∥x− uM − δM
2 1
∥∥∥
∞

+
∥∥∥x− uM + δM

2 1
∥∥∥
∞

)
+

M∑
m=1

Lδm
3m−1

.

By triangle inequality, we have∥∥∥x− uM − δM
2 1
∥∥∥
∞

+
∥∥∥x− uM + δM

2 1
∥∥∥
∞
≥
∥∥∥(uM + δM

2 1
)
−
(
uM − δM

2 1
)∥∥∥
∞

= δM

Note also that x = uM in fact attains this lower bound. So, for any x ∈ D,

f+1
u1:M

(x) + f−1
u1:M

(x) ≥ h+1
u1:M

(x) + h−1
u1:M

(x) ≥ h+1
u1:M

(uM ) + h−1
u1:M

(uM ) =
M∑
m=1

Lδm
3m−1

+
LδM
3M

,

thus proving Eq (43). Now, Lemma 6.7 follows from Eq (42) and Eq (43).

D.3. Proof of Lemma 7

Consider the functions constructed in Algorithm 1. For any t ∈ 1 : M , the function hu1:t(x) is con-
vex andL-Lipschitz with respect to `p norm for any p ≥ 1. Hence, fu1:M (x) := max1≤t≤M {hu1:t(x)}
is also convex and L-Lipschitz. With the same reasoning, hvu1:M (x) is convex and L-Lipshcitz, and
so fvu1:M (x) := max{fu1:M (x), hvu1:M (x)} is.

D.4. Proof of Lemma 19

We demonstrate in details the proof for Lemma 19 below, which is based on an induction argument.

Base case t = 2. In the base case, for any u1 ∈ U (1) and u2 ∈ U (2)
u1 , we want to show that

fu1(x) ≥ hu1:2(x) for all x 6∈ B∞u1(δ1) and fu1(x) ≤ hu1:2(x) for any x ∈ B∞u1(δ1/2),

which correspond to Lemma 19.1. Recall the definitions that

fu1(x) = hu1(x) := L ‖x− u1‖∞ and hu1:2(x) :=
L

3
‖x− u2‖∞ +

Lδ1

2
.

Indeed, note that, since by definition u2 ∈ B∞u1( δ12 − δ2), we have ‖u2 − u1‖∞ ≤ δ1/2. Therefore,
by triangle inequality, we have ‖x− u2‖∞ ≤ ‖x− u1‖∞ + δ1/2. Thus, for any x 6∈ B∞u1(δ1), we
have

fu1(x)− hu1:2(x) = L

(
‖x− u1‖∞ −

‖x− u2‖∞
3

− δ1

2

)
≥ L

(
‖x− u1‖∞ −

‖x− u1‖∞
3

− 2δ1

3

)
≥ 0.

On the other hand, by triangle inequality ‖x− u2‖∞ + δ1/2 ≥ ‖x− u1‖∞. Thus, for x ∈
B∞u1(δ1/2),

fu1(x)− hu1:2(x) = L

(
‖x− u1‖∞ −

‖x− u2‖∞
3

− δ1

2

)
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≤ L
(
‖x− u1‖∞ −

‖x− u1‖∞
3

− δ1

3

)
≤ 0,

which proves Lemma 19.1.
We are left with the inequalities below:

Lδ1

2
≤ fu1:2(x) ≤ Lδ1 for all x ∈ B∞u1(δ1). (44)

Recall the definition fu1:2(x) = max{fu1(x), hu1:2(x)}. Indeed, the LHS of Eq (44) follows from
the fact that Lδ1/2 ≤ hu1:2(x) ≤ fu1:2(x). To show the RHS of inequality (44), we note first that for
any x ∈ B∞u1(δ1), fu1(x) = L ‖x− u1‖∞ ≤ Lδ1. In addition to that, since ‖u1 − u2‖∞ ≤ δ1/2,
by triangle inequality, we also have that, for any x ∈ B∞u1(δ1),

hu1:2(x) :=
L

3
‖x− u2‖∞ +

Lδ1

2
≤ L

3

(
‖x− u1‖∞ +

δ1

2

)
+
Lδ1

2
≤ Lδ1

Thus, we have, for any x ∈ B∞u1(δ1), fu1:2(x) = max {fu1(x), hu1:2(x)} ≤ Lδ1. Together, we
prove the desired inequality (44), which corresponds to Lemma 19.2 for t = 2.

Inductive case 2 < t ≤M . In the first step, we show our first claim in Lemma 19.1:

fu1:t−1(x) ≥ hu1:t(x) for any x /∈ B∞ut−1
(δt−1) and fu1:t−1(x) ≤ hu1:t(x) for any x ∈ B∞ut−1

(δt−1/2).

Recall the definitions that

hu1:t−1(x) :=
L

3t−2
‖x− ut−1‖∞ +

t−2∑
m=1

Lδm
2 · 3m−1

,

hu1:t(x) :=
L

3t−1
‖x− ut‖∞ +

t−1∑
m=1

Lδm
2 · 3m−1

,

fu1:t−1(x) := max{fu1:t−2(x), hu1:t−1(x)} ≥ hu1:t−1(x),

fu1:t(x) := max{fu1:t−1(x), hu1:t(x)} ≥ hu1:t(x).

Indeed, note that, since by definition ut ∈ B∞ut−1
( δt−1

2 − δt), we have ‖ut − ut−1‖∞ ≤ δt−1/2.
Hence, by triangle inequality, we have ‖x− ut‖∞ ≤ ‖x− ut−1‖∞ + δt−1/2. Also, by definition
fu1:t−1(x) ≥ hu1:t−1(x) for all x. Thus, for any x 6∈ B∞ut−1

(δt−1), we have

fu1:t−1(x)− hu1:t(x) ≥ hu1:t−1(x)− hu1:t(x) =
L

3t−2

(
‖x− ut−1‖∞ −

‖x− ut‖∞
3

− δt−1

2

)
≥ L

3t−2

(
‖x− ut−1‖∞ −

‖x− ut−1‖∞
3

− 2δt−1

3

)
≥ 0.

On the other hand, recall that B∞ut−1
(δt−1) ⊂ B∞ut−2

(δt−2/2). When x ∈ B∞ut−1
(δt−1/2) ⊂

B∞ut−2
(δt−2/2), Observe that by inductive hypothesis fu1:t−2(x) ≤ hu1:t−1(x). By definition of

fu1:t−1(x) := max{fu1:t−2(x), hu1:t−1(x)}, we can see that fu1:t−1(x) = hu1:t−1(x) for x ∈
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B∞ut−1
(δt−1/2). By triangle inequality, ‖x− ut‖∞ + δt−1/2 ≥ ‖x− ut−1‖∞. Thus, for x ∈

B∞ut−1
(δt−1/2),

fu1:t−1(x)− hu1:t(x) = hu1:t−1(x)− hu1:t(x) =
L

3t−2

(
‖x− ut−1‖∞ −

‖x− ut‖∞
3

− δt−1

2

)
≤ L

3t−2

(
‖x− ut−1‖∞ −

‖x− ut−1‖∞
3

− δt−1

3

)
≤ 0,

which proves Lemma 19.1.
We are left with Lemma 19.2, which we restate below:

t−1∑
m=1

Lδm
2 · 3m−1

≤ fu1:t(x) ≤
t−2∑
m=1

Lδm
2 · 3m−1

+
Lδt−1

3t−2
for all x ∈ B∞ut−1

(δt−1).

Recall the definition fu1:t(x) := max{fu1:t−1(x), hu1:t(x)}. Indeed, the LHS of Lemma 19.2 fol-
lows from the fact that

∑t−1
m=1

Lδm
2·3m−1 ≤ hu1:t(x) ≤ fu1:t(x). To show the RHS of Lemma 19.2,

recall first that if x ∈ B∞ut−1
(δt−1) ⊂ B∞ut−2

(δt−2/2), fu1:t−2(x) ≤ hu1:t−1(x) by induction hypoth-
esis, so fu1:t−1(x) = hu1:t−1(x). Thus, for all x ∈ B∞ut−1

(δt−1),

fu1:t−1(x) = hu1:t−1(x) :=
L

3t−2
‖x− ut−1‖∞ +

t−2∑
m=1

Lδm
2 · 3m−1

≤
t−2∑
m=1

Lδm
2 · 3m−1

+
Lδt−1

3t−2
.

Also, ‖ut−1 − ut‖∞ ≤ δt−1/2, and by triangle inequality, ‖x− ut‖∞ ≤ ‖x− ut−1‖∞ + δt−1/2.
Using this, for all x ∈ B∞ut−1

(δt−1)

hu1:t(x) :=
L

3t−1
‖x− ut‖∞ +

t−1∑
m=1

Lδm
2 · 3m−1

≤ L

3t−1
‖x− ut−1‖∞ +

Lδt−1

2 · 3t−1
+

t−1∑
m=1

Lδm
2 · 3m−1

≤ Lδt−1

3t−1
+

Lδt−1

2 · 3t−1
+

t−1∑
m=1

Lδm
2 · 3m−1

=

t−2∑
m=1

Lδm
2 · 3m−1

+
Lδt−1

3t−2
.

This finishes showing the RHS of Lemma 19.2.

Final Case. It is left to prove Lemma 19.3–4. Their proof can be done in a similar way as
Lemma 19.1–2 for the inductive cases, hence omitted.

D.5. Proof of Lemma 8

Since δ1 = o(1), for large enough n we have δ1 ≤ 1/8, so

|U (1)| = 2δ1-packing number (w.r.t. `p) of [δ1, 1− δ1]d

≥ 2δ1-packing number (w.r.t. `p) of
[

1

4
,
3

4

]d
≥ 2δ1-covering number (w.r.t. `p) of Bp

0(1/4)

≥ Vol(Bp
0(1/4))

Vol(Bp
0(2δ1))

=

(
1

8δ1

)d
.
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Similarly, by δt = o(δt−1), for large enough n we have δt ≤ ηδt−1/4.

|U (t)
ut−1
| = 2δt-packing number (w.r.t. `p) of Bp

ut−1
(ηδt−1 − δt)

≥ 2δt-packing number (w.r.t. `p) of Bp
ut−1

(ηδt−1/2)

≥
Vol(Bp

ut−1(ηδt−1/2))

Vol(Bp
0(2δt))

=

(
ηδt−1

4δt

)d
.

D.6. Proof of Lemma 9

In this section and the following two, for simplicity in notation, let

Λ1:k =
⋂k

m=1
Λ(m)
um .

The proofs of Lemmas 9 and 10 rely heavily on the following lemma which uses likelihood ratio and
concentration inequality arguments to prove bounds between different probability measures defined
by “similar” functions.

Lemma 20 For t ∈ 2 : M , let two sets of parameters share the same value u1:t−1 and then they
differ afterwards: ut:M , v and ũt:M , ṽ. Consider any probabilistic event G that is a function of the
random variables

X
(1:k)
1:n , Y

(1:k)
1:n , X

(k+1)
1:n if oracle is zeroth-order, or

X
(1:k)
1:n , Y

(1:k)
1:n , Z

(1:k)
1:n , X

(k+1)
1:n if oracle is first-order,

where k ∈ 1 : (t− 1). Then, the following holds for any choice of u1:t−1, ut:M , v and ũt:M , ṽ:

Pvu1:M (G ∩ Λ1:k) ≤ K1Pṽu1:t−1,ũt:M
(G ∩ Λ1:k) +K2,

where the quantities K1, K2 are

K1 := exp

(∑ζ
j=0

∑k
m=1 ξ

(j)
m

σ2
+

(
∑ζ

j=0 C̃
2
jα

2t−4δ
2(κ−j)
t−1 )

∑k
m=1 hm

2σ2

)
,

K2 := 2

k∑
m=1

ζ∑
j=0

exp

(
− (ξ

(j)
m )2

2σ2hmC̃2
jα

2t−4δ
2(κ−j)
t−1

)
,

where ξ(j)
m for m ∈ 1 : k and j ∈ 0 : ζ is any positive quantity we can choose.

The proof of Lemma 20 is deferred to Appendix D.9.
By assumption we have u1:M and v such that Pvu1:M (

⋂t−1
m=1 Λ

(m)
um ) ≥ 1

4t−1 for sufficiently large
n. Then, re-choose any ũt:M and ṽ, and apply Lemma 20, with

k = t− 2, G = Λ(t−1)
ut−1

, and ξ(j)
m = h

1
4
mδ

κ−j
2

t−1 for m ∈ 1 : t− 2, j ∈ 0 : ζ.

Then, we get
Pvu1:M (Λ1:t−1) ≤ K1Pṽu1:t−1,ũt:M

(Λ1:t−1) +K2,
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where the quantities K1 and K2 are

K1 := exp

(
∑ζ

j=0 δ
κ−j
2

t−1 )
∑t−2

m=1 h
1
4
m

σ2
+

(
∑ζ

j=0 C̃
2
jα

2t−4δ
2(κ−j)
t−1 )

∑t−2
m=1 hm

2σ2

 ,

K2 := 2
t−2∑
m=1

ζ∑
j=0

exp

− 1

2σ2h
1
2
mC̃2

jα
2t−4δκ−jt−1

 .

By definitions of γt (21), δt (22), and ht (25), whenever m < t − 1, hmδ
2(κ−j)
t−1 polynomially

decays to 0 as n increases. So, K1 ↓ 1 and K2 ↓ 0 as n → ∞. Therefore, for large enough n,
K1 ≤

√
2 and K2 ≤

(
1− 1√

2

)
1

4t−1 , resulting in

Pvu1:M (Λ1:t−1) ≤
√

2Pṽu1:t−1,ũt:M
(Λ1:t−1) +

(
1− 1√

2

)
1

4t−1
. (45)

From the assumption, we have Pvu1:M (Λ1:t−1) ≥ 1
4t−1 . Using this with Eq (45), we finish the proof

of Lemma 9:
Pṽu1:t−1,ũt:M

(Λ1:t−1) ≥ 1

2 · 4t−1
,

for any ũt:M and ṽ, as desired.

D.7. Proof of Lemma 10

For the proof of Lemmas 10 and 11, the following elementary lemma is useful.

Lemma 21 If a1 ≤ ca′1 + b and a′2 ≤ ca2 + b, then

a1

a1 + a2
≤ c2a′1
a′1 + a′2

+
cb

a′1 + a′2

for any a1, a2, a
′
1, a
′
2, b ≥ 0 and a1 + a2 > 0, a′1 + a′2 > 0 and c ≥ 1.

Proof The proof of the above lemma is straightforward calculation. Note that, the function f(x) :=
x
x+y is an increasing function of x > 0 for any y > 0, so we have

a1

a1 + a2
≤ ca′1 + b

ca′1 + a2 + b
≤ ca′1 + b

a′1 + a2 + b
,

where in the last inequality, we use the assumption that c ≥ 1. Now, notice that, the function
f(x) = y

x+z is a decreasing function of x > 0 for any positive number y, z, so we have,

c2a′1 + cb

a′1 + a′2
≥ c2a′1 + cb

a′1 + ca2 + b
=

ca′1 + b

(a′1 + b)/c+ a2
≥ ca′1 + b

a′1 + a2 + b

where in the last inequality, we use the assumption that c ≥ 1. Combining the two elementary
inequalities above, we have shown the claim in the lemma.
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By assumption we have u1:M and v such that Pvu1:M (
⋂t−1
m=1 Λ

(m)
um ) ≥ 1

4t−1 for sufficiently large

n. For any re-chosen ũt:M and ṽ, let E(t)
i,ũt

be an event on which the i-th sample of t-th round is in
Bp
ũt

(δt):

E
(t)
i,ũt

:= {X(t)
i ∈ Bp

ũt
(δt)}, for i ∈ 1 : n.

Then, apply Lemma 20, with

k = t− 1, G = (E
(t)
i,ũt

)c,

ξ(j)
m = h

1
4
mδ

κ−j
2

t−1 for m ∈ 1 : t− 2, j ∈ 0 : ζ,

ξ
(ζ)
t−1 =

√
2σ2
√

log n, ξ
(0)
t−1 = h

1
4
t−1δ

κ
2
t−1 if ζ = 1.

Then, we get

Pvu1:M ((E
(t)
i,ũt

)c ∩ Λ1:t−1) ≤ K1Pṽu1:t−1,ũt:M
((E

(t)
i,ũt

)c ∩ Λ1:t−1) +K2,

where the quantities K1 and K2 are

K1 := exp

(
∑ζ

j=0 δ
κ−j
2

t−1 )
∑t−2

m=1 h
1
4
m

σ2
+

(
∑ζ

j=0 C̃
2
jα

2t−4δ
2(κ−j)
t−1 )

∑t−2
m=1 hm

2σ2


× exp

√2σ2
√

log n+ I {ζ = 1} δ
κ
2
t−1h

1
4
t−1

σ2
+

(
∑ζ

j=0 C̃
2
jα

2t−4δ
2(κ−j)
t−1 )ht−1

2σ2


K2 :=2

t−2∑
m=1

ζ∑
j=0

exp

− 1

2σ2h
1
2
mC̃2

jα
2t−4δκ−jt−1


+ 2 exp

− σ2 log n

ht−1C̃2
ζα

2t−4δ
2(κ−ζ)
t−1

+ I {ζ = 1} exp

− 1

2σ2h
1
2
t−1C̃

2
0α

2t−4δκt−1

 .

As seen the proof of Lemma 9, the first multiplicative term in K1 and the first additive term in K2

go down to 1 and down to 0, respectively. Moreover, if ζ = 1, then htδ2κ
t also polynomially decays

to zero. So, if ζ = 1, the terms

exp

I {ζ = 1} δ
κ
2
t−1h

1
4
t−1

σ2
+

(C̃2
0α

2t−4δ2κ
t−1)ht−1

2σ2

 ↓ 1, and exp

− 1

2σ2h
1
2
mC̃2

0α
2t−4δκt−1

 ↓ 0.

Also, by noting the identity C̃2
ζα

2t−4htδ
2(κ−ζ)
t−1 = σ2 from Eq (26),

exp

(
C̃2
ζα

2t−4δ
2(κ−ζ)
t−1 ht−1

2σ2

)
=
√
e, 2 exp

− σ2 log n

ht−1C̃2
ζα

2t−4δ
2(κ−ζ)
t−1

 =
2

n
.

Summarizing all these observations, for large enough n, we have

Pvu1:M ((E
(t)
i,ũt

)c ∩ Λ1:t−1) ≤ K1Pṽu1:t−1,ũt:M
((E

(t)
i,ũt

)c ∩ Λ1:t−1) +K2, (46)
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where
1 ≤ K1 ≤

√
3e exp(

√
2
√

log n), K2 =
2

n
+O(exp(−nτ )). (47)

for some τ > 0.
Note that, we can switch between ut:M , v and ũt:M , ṽ, and apply Lemma 20 again, this time for

G = E
(t)
i,ũt

. This time, the equation we get is

Pṽu1:t−1,ũt:M
(E

(t)
i,ũt
∩ Λ1:t−1) ≤ K1Pvu1:M (E

(t)
i,ũt
∩ Λ1:t−1) +K2, (48)

with the same K1 and K2. Now, apply lemma Lemma 21 for Eqs (48) and (46), then

Pṽu1:t−1,ũt:M
(E

(t)
i,ũt
| Λ1:t−1) ≤ K2

1Pvu1:M (E
(t)
i,ũt
| Λ1:t−1) +

K1K2

Pvu1:M (Λ1:t−1)

≤ K2
1Pvu1:M (E

(t)
i,ũt
| Λ1:t−1) + 4t−1K1K2. (49)

Now we are ready to use the pigeonhold principle argument for this lemma. We then sum up
both sides of Eq (49) for all possible values of ũt:M , ṽ, and i = 1 : n. For simplicity in notation, let
us denote the summation ∑

ũt+1∈U(t+1)
ũt

· · ·
∑

ũM∈U
(M)
ũM−1

∑
ṽ∈V
≡

∑
ũt+1:M ,ṽ

.

Also, recall that there are 2|U (t)
ut−1 |

∏M
m=t+1 |U

(m)
ũm−1

| possible values of ũt:M and ṽ. After summing
up, we get

∑
ũt

∑
ũt+1:M ,ṽ

n∑
i=1

Pṽu1:t−1,ũt:M
(E

(t)
i,ũt
| Λ1:t−1)

=
∑
ũt

∑
ũt+1:M ,ṽ

Eṽu1:t−1,ũt:M

(
n∑
i=1

I
{
X

(t)
i ∈ Bp

ũt
(δt)
}
| Λ1:t−1

)

≤K2
1

n∑
i=1

∑
ũt

∑
ũt+1:M ,ṽ

Pvu1:M (E
(t)
i,ũt
| Λ1:t−1) + 4t−1K1K2 · 2n|U (t)

ut−1
|

M∏
m=t+1

|U (m)
ũm−1

|

≤K2
1 · 2n

M∏
m=t+1

|U (m)
ũm−1

|+ 4t−1K1K2 · 2n|U (t)
ut−1
|

M∏
m=t+1

|U (m)
ũm−1

|, (50)

where the last inequality used that
∑

ũt
Pvu1:M (E

(t)
i,ũt
| Λ1:t−1) ≤ 1.

Since there are 2|U (t)
ut−1 |

∏M
m=t+1 |U

(m)
ũm−1

| possible values of ũt:M and ṽ, Equation 50 implies
that by the pigeonhole principle, there exists at least one set of parameters ũt:M and ṽ that satisfies

Eṽu1:t−1,ũt:M

(
n∑
i=1

I
{
X

(t)
i ∈ Bp

ũt
(δt)
}
| Λ1:t−1

)

≤ nK2
1

|U (t)
ut−1 |

+ 4t−1nK1K2 ≤ nK2
1

(
4δt
ηδt−1

)d
+ 4t−1nK1K2,
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where Lemma 8 is used in the last inequality. This implies, by Markov’s inequality,

Pṽu1:t−1,ũt:M
(Λ

(t)
ũt
| Λ1:t−1) ≥ 1− 1

ht
Eṽu1:t−1,ũt:M

(
n∑
i=1

I
{
X

(t)
i ∈ Bp

ũt
(δt)
}
| Λ1:t−1

)

≥1− nK2
1

ht

(
4δt
ηδt−1

)d
− 4t−1nK1K2

ht
.

To finish the proof of Lemma 10, it suffices to show that the RHS of the last inequality is greater
than or equal to 1

2 , which is equivalent to

nK2
1

(
4δt
ηδt−1

)d
+ 4t−1nK1K2 ≤

ht
2
. (51)

Recall from Eq (47) that 1 ≤ K1 ≤
√

3e exp(
√

2
√

log n) and K2 = 2
n +O(exp(−nτ )). Substitut-

ing these to the first term in the LHS of Eq (51) yields

nK2
1

(
4δt
ηδt−1

)d
≤ 3en exp

(
2
√

2
√

log n
)( 4δt

ηδt−1

)d
.

From the definition of γt (21), δt (22), and Dt (23), we can get useful identities(
4Dt

ηDt−1

)d
=

σ2

8eC̃2
ζα

2t−2D
2(κ−ζ)
t

, and

1− d(γt − γt−1) = 1−
(

d

d+ 2(κ− ζ)

)t
= 2(κ− ζ)γt,

thereby one can get

3en exp
(

2
√

2
√

log n
)( 4δt

ηδt−1

)d
=

3σ2

8C2
ζα

2t−2D
2(κ−ζ)
t

n2(κ−ζ)γt exp
(

4
√

2(κ− ζ)γt−1

√
log n

)
(log n)−I{t=M}dν/κ.

comparing with ht (25), we check that

nK2
1

(
4δt
ηδt−1

)d
≤ 3

8
ht. (52)

Now, substitute K1 ≤
√

3e exp(
√

2
√

log n) and K2 = 2
n + O(exp(−nτ )) to the second term

in the LHS of Eq (51), the we get:

4t−1nK1K2 ≤ 2 · 4t−1
√

3e exp
(√

2
√

log n
)

(1 +O(n exp(−nτ ))) .

Since O(n exp(−nτ )) ↓ 0 as n → ∞, we can see that the first term in LHS of Eq (51) dominates
the second one for sufficiently large n. With the observation in Eq (52), we can see Eq (51) holds
for large enough n, so this finishes the proof of Lemma 10.
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D.8. Proof of Lemma 11

For this lemma, we present a variant of Lemma 20, for fixed u1:M and different v and ṽ. Lemma 22
is just a simple variant of Lemma 20 for the case t = M + 1 (final case), so its proof is omitted.

Lemma 22 Pick any set of parameters u1:M , and v, ṽ ∈ V where v 6= ṽ. Consider any probabilis-
tic event G that is a function of the random variables

X
(1:k)
1:n , Y

(1:k)
1:n , X

(k+1)
1:n if oracle is zeroth-order, or

X
(1:k)
1:n , Y

(1:k)
1:n , Z

(1:k)
1:n , X

(k+1)
1:n if oracle is first-order,

where k ∈ 1 : M−1. Otherwise, the probabilistic eventG could also be a function ofX(1:M)
1:n , Y

(1:M)
1:n ,

and/or Z(1:M)
1:n , in which case we let k = M . Then, the following holds for any u1:M and v 6= ṽ.

Pvu1:M (G ∩ Λ1:k) ≤ K1Pṽu1:M (G ∩ Λ1:k) +K2,

where the quantities K1, K2 are

K1 := exp

(∑ζ
j=0

∑k
m=1 ξ

(j)
m

σ2
+

(
∑ζ

j=0 C̃
2
jα

2M−2δ
2(κ−j)
M )

∑k
m=1 hm

2σ2

)
,

K2 := 2
k∑

m=1

ζ∑
j=0

exp

(
− (ξ

(j)
m )2

2σ2hmC̃2
jα

2M−2δ
2(κ−j)
M

)
,

where ξ(j)
m for m ∈ 1 : k and j ∈ 0 : ζ is any positive quantity we can choose.

To prove the first statement of Lemma 11, we can repeat the same process as Lemma 9, this
time with Lemma 22, and

k = M − 1, G = Λ(M)
uM

, and ξ(j)
m = h

1
4
mδ

κ−j
2

t−1 for m ∈ 1 : M − 1, j ∈ 0 : ζ.

Then, we get
Pvu1:M (Λ1:M ) ≤ K1Pṽu1:M (Λ1:M ) +K2,

where the quantities K1 ↓ 1 and K2 ↓ 0 as n→∞.
Therefore, for large enough n, K1 ≤

√
2 and K2 ≤

(
1− 1√

2

)
1

4t−1 , resulting in

Pvu1:M (Λ1:M ) ≤
√

2Pṽu1:M (Λ1:M ) +

(
1− 1√

2

)
1

4M
. (53)

From the assumption, we have Pvu1:M (Λ1:M ) ≥ 1
4M

. With these observations, we finish the proof of
the first part of Lemma 11:

Pṽu1:M (Λ1:M ) ≥ 1

2 · 4M
,

for ṽ 6= v, as desired.
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Now, the last goal is to show that the total variation between P−1
u1:M

and P+1
u1:M

conditional on
the event Λ1:M is small when the number of sample size n is sufficiently large. The technique is
essentially the same as that appeared in the proof of lemma 10. We apply Lemma 22, with

k = M, G = any G, ξ(j)
m = h

1
4
mδ

κ−j
2

M for m ∈ 1 : M, j ∈ 0 : ζ.

Then, we get
Pvu1:M (G ∩ Λ1:M ) ≤ K1Pṽu1:M (G ∩ Λ1:M ) +K2,

where the quantities K1 and K2 are

K1 := exp

(
∑ζ

j=0 δ
κ−j
2

M )
∑M

m=1 h
1
4
m

σ2
+

(
∑ζ

j=0 C̃
2
jα

2M−2δ
2(κ−j)
M )

∑M
m=1 hm

2σ2


K2 :=2

M∑
m=1

ζ∑
j=0

exp

− 1

2σ2h
1
2
mC̃2

jα
2M−2δκ−jM

 .

In this case, we can note that since C̃2
ζα

2M−2hMδ
2(κ−ζ)
M = σ2 log−

2ν(κ−ζ)
κ n (26), any hmδ

2(κ−j)
M

decreases to zero with n → ∞. So, we can see K1 ↓ 1 and K2 ↓ 0 as n → ∞, which allows us to
write

Pvu1:M (G ∩ Λ1:M ) ≤
√

5

4
Pṽu1:M (G ∩ Λ1:M ) +

1√
5 · 4M+1

, (54)

for n sufficiently large. Using exactly the same techniques, we can also get similar inequalities as
follows:

Pṽu1:M (Gc ∩ Λ1:M ) ≤
√

5

4
Pvu1:M (Gc ∩ Λ1:M ) +

1√
5 · 4M+1

(55)

Pṽu1:M (G ∩ Λ1:M ) ≤
√

5

4
Pvu1:M (G ∩ Λ1:M ) +

1√
5 · 4M+1

(56)

Pvu1:M (Gc ∩ Λ1:M ) ≤
√

5

4
Pṽu1:M (Gc ∩ Λ1:M ) +

1√
5 · 4M+1

(57)

Now apply Lemma 21 to Eqs (54) and (55) to get

Pvu1:M (G | Λ1:M ) ≤ 5

4
Pṽu1:M (G | Λ1:M ) +

1

2 · 4M+1Pṽu1:M (Λ1:M )
≤ 5

4
Pṽu1:M (G | Λ1:M ) +

1

4
.

Similarly, from Eqs (56) and (57),

Pṽu1:M (G | Λ1:M ) ≤ 5

4
Pvu1:M (G | Λ1:M ) +

1

4
.

From these two equations, we have∣∣Pvu1:M (G | Λ1:M )− Pṽu1:M (G | Λ1:M )
∣∣ ≤ 1

2
,

for any G and v 6= ṽ. Thus, by definition of total variation distance, we have∥∥P−1
u1:M

(· | Λ1:M )− P+1
u1:M

(· | Λ1:M )
∥∥

TV
≤ 1

2
,

as desired.
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D.9. Proof of Lemma 20

For t ∈ 2 : M and k ∈ 1 : t− 1, consider any event G that is a function of

X
(1:k)
1:n , Y

(1:k)
1:n , X

(k+1)
1:n if oracle is zeroth-order, or

X
(1:k)
1:n , Y

(1:k)
1:n , Z

(1:k)
1:n , X

(k+1)
1:n if oracle is first-order.

In this proof, we develop a generic technique that provides an upper bound of the probability
G ∩

⋂k
m=1 Λ

(m)
um under measure Pvu1:M in terms of the probability of the same event under an-

other measure Pṽu1:t−1,ũt:M
based on a different function. Recall that the two probability measure

are defined by their corresponding functions fvu1:M and f ṽu1:t−1,ũt:M
that only differ in the interior

of Bp
ut−1(δt−1). Note that, the conclusion stated in the lemma provides relationship between the

probabilities of an event under different measures and therefore the technique used in this proof can
be of independent interest to the readers.

Notation. To give a clear illustration of how we make that bound happen, we need to introduce
some notation, mainly to “partition” the events Λ

(m)
um . For m ∈ 1 : k, we enumerate and index all

the possible 2n subsets of {1, 2, . . . , n} by Slm , where lm ∈ 1 : 2n. Also, for all m ∈ 1 : k and
i ∈ 1 : n, define

ε
(m,0)
i = Y

(m)
i − fvu1:M (X

(m)
i ),

ε
(m,1)
i = Z

(m)
i −∇fvu1:M (X

(m)
i ),

∆
(m,0)
i = fvu1:M (X

(m)
i )− f ṽu1:t−1,ũt:M

(X
(m)
i ),

∆
(m,1)
i = ∇fvu1:M (X

(m)
i )−∇f ṽu1:t−1,ũt:M

(X
(m)
i ).

Here, whenever the function is not differentiable at x, we replace ∇fvu1:M (x) with any subgradient
of fvu1:M at x. To interpret these quantities, based on the assumption that fvu1:M is the true function,

ε
(m,0)
i is the (i.i.d. Gaussian) error of the zeroth order oracle at X(m)

i , and ∆
(m,0)
i is the difference

between two functions fvu1:M and f ṽu1:t−1,ũt:M
at X(m)

i . Similarly, ε(m,1)
i and ∆

(m,1)
i are the error

and difference in the first order information (gradient values) at X(m)
i . Note that ε(m,0)

i and ∆
(m,0)
i

are scalars while the other two are vectors. Note that, by Condition 5.1, ∆
(m,0)
i and ∆

(m,1)
i are zero

when X(m)
i /∈ Bp

ut−1(δt−1). Also note that, based on the assumption that f ṽu1:t−1,ũt:M
is the true

function, then ε(m,0)
i + ∆

(m,0)
i and ε(m,1)

i + ∆
(m,1)
i are the errors of the oracle.

Next, for each set Slm , we introduce the following groups of events,

Γ
(m)
um,lm

:=
{
X

(m)
i ∈ Bp

um(δm), ∀i ∈ Slm
}⋂{

X
(m)
i 6∈ Bp

um(δm), ∀i 6∈ Slm
}
, for m ∈ 1 : k,

Ξ
(m)
um,lm

:=
⋂ζ

j=0
Ξ

(m,j)
um,lm

, for m ∈ 1 : k,

Ξ
(m,j)
um,lm

:=


∣∣∣∣∣∣
∑
i∈Slm

〈ε(m,j)i ,∆
(m,j)
i 〉

∣∣∣∣∣∣ ≤ ξ(j)
m

 , for m ∈ 1 : k, j ∈ 0 : 1.

The event Γ
(m)
um,lm

occurs when X(m)
i is in the ball Bp

um(δm) if and only if the index i ∈ Slm . Recall

that ζ represents the order of the oracle. So if we are using zeroth-order oracle, Ξ
(m)
um,lm

= Ξ
(m,0)
um,lm

,
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while Ξ
(m)
um,lm

= Ξ
(m,0)
um,lm

∩ Ξ
(m,1)
um,lm

for first-order oracles. The event Ξ
(m,j)
um,lm

is that the sum of noise

introduced by the oracle is smaller than some positive quantity ξ(j)
m which we can choose. Recall

that ξ(j)
m appeared in the statement of the lemma.

Partitioning Γ
(m)
um,lm

into disjoint events. Notice the events Γ
(m)
um,lm

are disjoint from one another
for different lm ∈ 1 : 2n because it can never happen at the same time with different values of lm.
From this observation, we can get a partition of the event

⋂k
m=1 Λ

(m)
um , as the following equation

suggests,

k⋂
m=1

Λ(m)
um =

k⋂
m=1

⋃
lm

(
Γ

(m)
um,lm

∩ Λ(m)
um

) =
⋃

l1,l2,...,lk

(
k⋂

m=1

(
Γ

(m)
um,lm

∩ Λ(m)
um

))

From the above equation, we note that in order to establish an upper bound of Pvu1:M
(
G ∩

⋂k
m=1 Λ

(m)
um

)
,

it suffices to get an upper bound of Pvu1:M
(
G ∩

⋂k
m=1

(
Γ

(m)
um,lm

∩ Λ
(m)
um

))
for any fixed sequence

{lm}km=1 ∈ {1 : 2n}k and then do the summation over all possible {lm}km=1. As we will see
later, when restricted on the set

⋂k
m=1 Γ

(m)
um,lm

, we can give an explicit form of the likelihood ratio
between the two probability measures Pvu1:M and Pṽu1:t−1,ũt:M

, which greatly helps us analyze the
relationship between the two probabilities that are computed under different measures.

Now fix any {lm}km=1. For the sake of simplicity in notation, let us denote

Λ1:k =
k⋂

m=1

Λ(m)
um , Γ1:k =

k⋂
m=1

Γ
(m)
um,lm

, Ξ1:k =
k⋂

m=1

Ξ
(m)
um,lm

.

Expressed in this compact form, we want to get an upper bound for Pvu1:M (G ∩ Γ1:k ∩ Λ1:k). Start-
ing from this point, we have the following inequality:

Pvu1:M (G ∩ Γ1:k ∩ Λ1:k)

=Pvu1:M (G ∩ Γ1:k ∩ Λ1:k ∩ Ξ1:k) + Pvu1:M (G ∩ Γ1:k ∩ Λ1:k ∩ (Ξ1:k)
c)

≤Pvu1:M (G ∩ Γ1:k ∩ Λ1:k ∩ Ξ1:k) +

ζ∑
j=0

k∑
m=1

Pvu1:M
(

Γ1:k ∩ Λ1:m ∩ (Ξ
(m,j)
um,lm

)c
)
. (58)

Note that the RHS of the Eq (58) consists of two parts. The rest of the proof consists of two parts:
we first bound the first term of RHS of the Eq (58), and the bound the second term while summing
up disjoint events together.

Bounding the first term of Eq (58). We first give an upper bound of the first term using the
likelihood ratio between two different measures. Recall from Condition 5.1 that the functions fvu1:M
and f ṽu1:t−1,ũt:M

have the same values at all x /∈ Bp
ut−1(δt−1). Given the event Γ

(m)
um,lm

, form ∈ 1 : k
and any i /∈ Slm , we have

pvu1:M (y
(m)
i | x(m)

i ) = pṽu1:t−1,ũt:M
(y

(m)
i | x(m)

i ) if ζ = 0,

pvu1:M (y
(m)
i , z

(m)
i | x(m)

i ) = pṽu1:t−1,ũt:M
(y

(m)
i , z

(m)
i | x(m)

i ) if ζ = 1.
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Also recall the definition of C̃ζ = C(1− β)1−ζ(2κ)ζ from Eq (20) and Condition 5.2–3 that

|fvu1:M (x)− f ṽu1:t−1,ũt:M
(x)| ≤ C̃0α

t−2δκt−1, ∀x ∈ Bp
ut−1

(δt−1) ⊂ Bp
um(δm)∥∥∥∇fvu1:M (x)−∇f ṽu1:t−1,ũt:M

(x)
∥∥∥

2
≤ C̃1α

t−2δκ−1
t−1 , ∀x ∈ Bp

ut−1
(δt−1) ⊂ Bp

um(δm).

For i ∈ Slm , the ratio between pvu1:M and pṽu1:t−1,ũt:M
is the ratio between two Gaussian distributions.

Thus, if ζ = 0 (zeroth-order oracle), we have

I
{

Γ
(m)
um,lm

∩ Λ(m)
um ∩ Ξ

(m)
um,lm

} pvu1:M (y
(m)
1:n | x

(m)
1:n )

pṽu1:t−1,ũt:M
(y

(m)
1:n | x

(m)
1:n )

=I
{

Γ
(m)
um,lm

∩ Λ(m)
um ∩ Ξ

(m)
um,lm

}
exp

 1

σ2

∑
i∈Slm

ε
(m,0)
i ∆

(m,0)
i +

1

2σ2

∑
i∈Slm

(∆
(m,0)
i )2


≤I
{

Γ
(m)
um,lm

∩ Λ(m)
um

}
exp

(
ξ

(0)
m

σ2
+
hmC̃

2
0α

2t−4δ2κ
t−1

2σ2

)
, (59)

where the last inequality used the definitions of Ξ
(m)
um,lm

and Λ
(m)
um , and Condition 5.2. For ζ = 1

(first-order oracle), note that

pvu1:M (y
(m)
1:n , z

(m)
1:n | x

(m)
1:n ) ∝ exp

− 1

2σ2

∑
i∈Slm

(ε
(m,0)
i )2 − 1

2σ2

∑
i∈Slm

∥∥∥ε(m,1)
i

∥∥∥2

2


By a similar argument as the zeroth-order case, we can get

I
{

Γ
(m)
um,lm

∩ Λ(m)
um ∩ Ξ

(m)
um,lm

} pvu1:M (y
(m)
1:n , z

(m)
1:n | x

(m)
1:n )

pṽu1:t−1,ũt:M
(y

(m)
1:n , z

(m)
1:n | x

(m)
1:n )

=I
{

Γ
(m)
um,lm

∩ Λ(m)
um ∩ Ξ

(m)
um,lm

}
exp

 1

σ2

∑
i∈Slm

1∑
j=0

〈ε(m,j)i ,∆
(m,j)
i 〉+

1

2σ2

∑
i∈Slm

1∑
j=0

∥∥∥∆
(m,j)
i

∥∥∥2

2


≤I
{

Γ
(m)
um,lm

∩ Λ(m)
um

}
exp

(
ξ

(0)
m + ξ

(1)
m

σ2
+
hmC̃

2
0α

2t−4δ2κ
t−1 + hmC̃

2
1α

2t−4δ2κ−2
t−1

2σ2

)
, (60)

where the last inequality used the definitions of Ξ
(m)
um,lm

and Λ
(m)
um , and Condition 5.2–3.

Now consider again the zeroth-order case. For any eventE that is a function of random variables

X
(1:k)
1:n , Y

(1:k)
1:n , X

(k+1)
1:n ,

the probability Pvu1:M (E) can be expressed as

Pvu1:M (E) = Evu1:M [I {E}]

=

∫
I {E} dQ(k+1)(x

(k+1)
1:n | x(1:k)

1:n , y
(1:k)
1:n )dP vu1:M (y

(k)
1:n | x

(k)
1:n)dQ(k)(x

(k)
1:n | x

(1:k−1)
1:n , y

(1:k−1)
1:n )
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× · · · × dP vu1:M (y
(1)
1:n | x

(1)
1:n)dQ(1)(x

(1)
1:n).

=

∫
I {E}

k∏
m=1

dP vu1:M (y
(m)
1:n | x

(m)
1:n )

dP ṽu1:t−1,ũt:M
(y

(m)
1:n | x

(m)
1:n )

dQ(k+1)(x
(k+1)
1:n | x(1:k)

1:n , y
(1:k)
1:n )dP ṽu1:t−1,ũt:M

(y
(k)
1:n | x

(k)
1:n)

dQ(k)(x
(k)
1:n | x

(1:k−1)
1:n , y

(1:k−1)
1:n )× · · · × dP ṽu1:t−1,ũt:M

(y
(1)
1:n | x

(1)
1:n)dQ(1)(x

(1)
1:n)

=Eṽu1:t−1,ũt:M

I {E} k∏
m=1

pvu1:M (y
(m)
1:n | x

(m)
1:n )

pṽu1:t−1,ũt:M
(y

(m)
1:n | x

(m)
1:n )

 . (61)

Substituting E = G ∩ Γ1:k ∩ Λ1:k ∩ Ξ1:k to Eq 61 gives

Pvu1:M (G ∩ Γ1:k ∩ Λ1:k ∩ Ξ1:k)

=Eṽu1:t−1,ũt:M

I {G} k∏
m=1

I
{

Γ
(m)
um,lm

∩ Λ(m)
um ∩ Ξ

(m)
um,lm

} pvu1:M (y
(m)
1:n | x

(m)
1:n )

pṽu1:t−1,ũt:M
(y

(m)
1:n | x

(m)
1:n )


≤Eṽu1:t−1,ũt:M

[
I {G}

k∏
m=1

(
I
{

Γ
(m)
um,lm

∩ Λ(m)
um

}
exp

(
ξ

(0)
m

σ2
+
hmC̃

2
0α

2t−4δ2κ
t−1

2σ2

))]

=Pṽu1:t−1,ũt:M
(G ∩ Γ1:k ∩ Λ1:k) exp

(∑k
m=1 ξ

(0)
m

σ2
+
C̃2

0α
2t−4δ2κ

t−1

∑k
m=1 hm

2σ2

)
,

where the inequality used Eq (59). We can get a similar upper bound for the first-order case using
Eq (60), and in fact, we can express both cases into a unified form using ζ:

Pvu1:M (G ∩ Γ1:k ∩ Λ1:k ∩ Ξ1:k) ≤ K1Pṽu1:t−1,ũt:M
(G ∩ Γ1:k ∩ Λ1:k), (62)

where we define

K1 := exp

(∑ζ
j=0

∑k
m=1 ξ

(j)
m

σ2
+

(
∑ζ

j=0 C̃
2
jα

2t−4δ
2(κ−j)
t−1 )

∑k
m=1 hm

2σ2

)
,

so simplify the notation. By this, we finished bounding the first term of RHS in Eq (58).

Bounding the second term of Eq (58) and summing disjoint events. Now, we need to deal with
the second term. Note that

ζ∑
j=0

k∑
m=1

Pvu1:M
(

Γ1:k ∩ Λ1:m ∩ (Ξ
(m,j)
um,lm

)c
)

=

ζ∑
j=0

k−1∑
m=1

Pvu1:M
(

Γ1:k ∩ Λ1:m ∩ (Ξ
(m,j)
um,lm

)c
)

+

ζ∑
j=0

Pvu1:M
(

Γ1:k ∩ Λ1:k ∩ (Ξ
(k,j)
uk,lk

)c
)

=

ζ∑
j=0

k−1∑
m=1

Pvu1:M
(

Γ1:k ∩ Λ1:m ∩ (Ξ
(m,j)
um,lm

)c
)

+ Pvu1:M (Γ1:k ∩ Λ1:k)

ζ∑
j=0

Pvu1:M
(

(Ξ
(k,j)
uk,lk

)c | Γ1:k ∩ Λ1:k

)
(63)
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We can use a concentration inequality of Gaussian random variables to bound above the conditional
probability term. We should first note that once Γ

(k)
uk,lk

and Λ
(k)
uk are given, this means that at most

hk among X(k)
i are in Bp

ut−1(δt−1), so∑
i∈Slk

(∆
(k,0)
i )2 ≤ hkC̃2

0α
2t−4δ2κ

t−1 and
∑
i∈Slk

∥∥∥∆
(k,1)
i

∥∥∥2

2
≤ hkC̃2

1α
2t−4δ

2(κ−1)
t−1 .

Since the observation noise is independent zero-mean Gaussian with variance σ2, given that the
true function is fvu1:M we have ε(m,0)

i ∼ N (0, σ2) and ε(m,1)
i ∼ N (0, σ2Id). Now, we can apply the

concentration inequalities to get

Pvu1:M
(

(Ξ
(k,j)
uk,lk

)c | Γ1:k ∩ Λ1:k

)
≤ 2 exp

(
−

(ξ
(j)
k )2

2σ2hkC̃
2
jα

2t−4δ
2(κ−j)
t−1

)
, (64)

Substituting Eqs (62), (63), and (64) into the RHS of Eq (58), we have

Pvu1:M (G ∩ Γ1:k ∩ Λ1:k)

≤K1Pṽu1:t−1,ũt:M
(G ∩ Γ1:k ∩ Λ1:k) +

ζ∑
j=0

k−1∑
m=1

Pvu1:M
(

Γ1:k ∩ Λ1:m ∩ (Ξ
(m,j)
um,lm

)c
)

+ 2Pvu1:M (Γ1:k ∩ Λ1:k)

ζ∑
j=0

exp

(
−

(ξ
(j)
k )2

2σ2hkC̃
2
jα

2t−4δ
2(κ−j)
t−1

)
. (65)

Recall that the events Γ
(k)
uk,lk

are mutually disjoint for all possible values of lk ∈ 1 : 2n, and
their union is the whole probability space. Using this, we can sum up both sides of Eq (65) over all
possible values of lk to eliminate Γ

(k)
uk,lk

and obtain

Pvu1:M (G ∩ Γ1:k−1 ∩ Λ1:k)

≤K1Pṽu1:t−1,ũt:M
(G ∩ Γ1:k−1 ∩ Λ1:k) +

ζ∑
j=0

k−1∑
m=1

Pvu1:M
(

Γ1:k−1 ∩ Λ1:m ∩ (Ξ
(m,j)
um,lm

)c
)

+ 2Pvu1:M (Γ1:k−1 ∩ Λ1:k)

ζ∑
j=0

exp

(
−

(ξ
(j)
k )2

2σ2hkC̃
2
jα

2t−4δ
2(κ−j)
t−1

)
. (66)

In the second term of RHS in Eq (66), we can apply a similar concentration inequality to get

ζ∑
j=0

Pvu1:M
(

Γ1:k−1 ∩ Λ1:k−1 ∩ (Ξ
(k−1,j)
uk−1,lk−1

)c
)

≤2Pvu1:M (Γ1:k−1 ∩ Λ1:k−1)

ζ∑
j=0

exp

(
−

(ξ
(j)
k−1)2

2σ2hk−1C̃
2
jα

2t−4δ
2(κ−j)
t−1

)
,

and substituting this bound to Eq (66) and summing over all possible Γ
(k−1)
uk−1,lk−1

gives

Pvu1:M (G ∩ Γ1:k−2 ∩ Λ1:k)
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≤K1Pṽu1:t−1,ũt:M
(G ∩ Γ1:k−2 ∩ Λ1:k) +

ζ∑
j=0

k−2∑
m=1

Pvu1:M
(

Γ1:k−2 ∩ Λ1:m ∩ (Ξ
(m,j)
um,lm

)c
)

+ 2
k∑

m=k−1

Pvu1:M (Γ1:k−2 ∩ Λ1:m)

ζ∑
j=0

exp

(
− (ξ

(j)
m )2

2σ2hmC̃2
jα

2t−4δ
2(κ−j)
t−1

)
.

After repeating this process until we eliminate Γ
(1)
u1,l1

, we get

Pvu1:M (G ∩ Λ1:k)

≤K1Pṽu1:t−1,ũt:M
(G ∩ Λ1:k) + 2

k∑
m=1

Pvu1:M (Λ1:m)

ζ∑
j=0

exp

(
− (ξ

(j)
m )2

2σ2hmC̃2
jα

2t−4δ
2(κ−j)
t−1

)

≤K1Pṽu1:t−1,ũt:M
(G ∩ Λ1:k) + 2

k∑
m=1

ζ∑
j=0

exp

(
− (ξ

(j)
m )2

2σ2hmC̃2
jα

2t−4δ
2(κ−j)
t−1

)
(67)

Now, we define

K2 := 2
k∑

m=1

ζ∑
j=0

exp

(
− (ξ

(j)
m )2

2σ2hmC̃2
jα

2t−4δ
2(κ−j)
t−1

)
.

Then we get the claim of the lemma.

Appendix E. Technical Proofs for Section C

E.1. Proof of Lemma 13

Originally we had requirements 0 < η < 1, δ > 0, 0 < α < 1, 0 < β < 1, and 0 < θ < 1. Let the
parameter values satisfy

η + α+ αη < 1, β =
(1− α)(1 + η)2

4
− αη2

1− α
, θ =

1− η − α− αη
1 + η − α− αη

.

First, we check that all the parameters are in the desired range. We start by noting that the inequali-
ties 0 < α < 1, 0 < η < 1, η + α + αη < 1 are feasible. With these assumptions on α and η, it is
easy to check 0 < θ < 1. Also,

η + α+ αη < 1 ⇐⇒ η <
(1− α)(1 + η)

2
⇐⇒ η2 <

(1− α)(1 + η)2

4
− αη2

1− α
= β,

so we can ensure β > 0. Also,

β =
(1− α)(1 + η)2

4
− αη2

1− α
<

(1− α)(1 + η)2

4
< 1.

Now consider the interpolation set,

Itp := {x | (1− θ)r ≤ ‖x− c‖2 ≤ (1 + θ)r} ,
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where r and c are defined in Eqs (35) and (36), which we repeat below, and further evaluate with
the assumption (38) on β:

c =
1

1− α
x1 −

α

1− α
x2 = x1 −

α

1− α
(x2 − x1),

r =

√
α

(1− α)2
‖x1 − x2‖22 +

βδ2

1− α
=

√
(1 + η)2δ2

4
− α

(1− α)2
(η2δ2 − ‖x1 − x2‖22).

We now show that, with the choice of θ in Eq (39),

Itp ⊂ cl(B2
x1(ηδ)c ∩B2

x1(δ)) for any x2 ∈ B2
x1(ηδ),

which is the goal of this lemma, Eq (40). Consider x2 = x1 + ρδe1, where 0 ≤ ρ ≤ η. This choice
of x2 is a representative of all other x2 that are ρδ away from x1. The center point c and radius r of
intersection set, and the interpolation set Itp can be represented as functions of ρ:

c(ρ) = x1 −
αρδ

1− α
e1,

r(ρ) =

√
(1 + η)2δ2

4
− α

(1− α)2
(η2 − ρ2)δ2,

Itp(ρ) = {x | (1− θ)r(ρ) ≤ ‖x− c(ρ)‖2 ≤ (1 + θ)r(ρ)} .

Define Lmax(ρ) and Lmin(ρ) that are farthest and closest distance of points in Itp(ρ) to x1, defined
as follows:

Lmax(ρ) := sup
x∈Itp(ρ)

‖x− x1‖2 , Lmin(ρ) := inf
x∈Itp(ρ)

‖x− x1‖2 .

The desired condition Itp ∈ B2
x1(ηδ)c∩B2

x1(δ) can now be written as Lmax(ρ) ≤ δ and Lmin(ρ) ≥
ηδ for all ρ ∈ [0, η].

Since x1 and c are away by αρδ
1−α , the farthest distance Lmax(ρ) can be calculated as

Lmax(ρ) = (1 + θ)r(ρ) +
αρδ

1− α
= (1 + θ)

√
(1 + η)2δ2

4
− α

(1− α)2
(η2 − ρ2)δ2 +

αρδ

1− α

and it is clearly an increasing function of ρ, so we only need to check that Lmax(η) ≤ δ.

Lmax(η) = (1 + θ)

√
(1 + η)2δ2

4
+

αηδ

1− α
=

(
2(1− α− αη)

1 + η − α− αη

)
(1 + η)δ

2
+

αηδ

1− α

=
(1− α− αη)δ

1− α
+

αηδ

1− α
= δ.

For Lmin(ρ), it requires a bit more thought. As long as (1 − θ)r(ρ) > αρδ
1−α , we have x1 /∈ Itp(ρ)

and
Lmin(ρ) = (1− θ)r(ρ)− αρδ

1− α
.

Thus, by showing

(1− θ)r(ρ)− αρδ

1− α
≥ ηδ > 0, (68)
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we can prove (1− θ)r(ρ) > αηδ
1−α , and Lmin(ρ) ≥ ηδ. To do this, we show that the LHS of Eq (68)

is a decreasing function of ρ, and then show Eq (68) for ρ = η. We can easily see that −θr(ρ) is a
decreasing function of ρ. For the rest of the LHS,

d

dρ

(
r(ρ)− αρδ

1− α

)
=

2αδ2ρ
(1−α)2

2
√

(1+η)2δ2

4 − α
(1−α)2

(η2 − ρ2)δ2
− αδ

1− α
≤ 0, ∀ρ ∈ [0, η]

⇐⇒ ρ2 ≤ (1 + η)2(1− α)2

4
− α(η2 − ρ2), ∀ρ ∈ [0, η]

⇐⇒ (1− α)ρ2 ≤ (1 + η)2(1− α)2

4
− αη2, ∀ρ ∈ [0, η]

⇐⇒ (1− α)η2 ≤ (1 + η)2(1− α)2

4
− αη2

⇐⇒ 2η ≤ (1 + η)(1− α) = 1 + η − α− αη
⇐⇒ η + α+ αη ≤ 1.

Since we know from Eq (37) that the last statement is true, we proved that the LHS of Eq (68) is
decreasing. Finally, we examine Eq (68) for ρ = η.

(1− θ)r(η)− αηδ

1− α
=

2η

(1 + η)(1− α)

(1 + η)δ

2
− αηδ

1− α
= ηδ.

Thus far, we showed that with our choice of θ in Eq (39), the interpolation set Itp satisfies Itp ∈
B2
x1(ηδ)c ∩B2

x1(δ) for any x2 ∈ B2
x1(ηδ).

E.2. Development of Algorithm 2

We define

ġ−(w) := ∇f2(c+ (1− θ)rw) =
2α

1− α
(x1 − x2) + 2α(1− θ)rw,

ġ0(w) :=
∇f2(c+ rw) +∇f1(c+ rw)

2
=

2α

1− α
(x1 − x2) + (1 + α)rw,

ġ+(w) := ∇f1(c+ (1 + θ)rw) =
2α

1− α
(x1 − x2) + 2(1 + θ)rw

and then interpolate the gradients along each direction w:

ḣ−(ρ, w) := ġ−(w) +
ġ0(w)− ġ−(w)

θr
(ρ− (1− θ)r)

=
2α

1− α
(x1 − x2)− (1− α)(1− θ)r

θ
w +

(
1− α
θ

+ 2α

)
ρw for ρ ∈ [(1− θ)r, r],

(69)

ḣ+(ρ, w) := ġ+(w)− ġ0(w)− ġ+(w)

θr
(ρ− (1 + θ)r)

=
2α

1− α
(x1 − x2)− (1− α)(1 + θ)r

θ
w +

(
1− α
θ

+ 2

)
ρw for ρ ∈ [r, (1 + θ)r].

(70)
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We can see that ḣ−(r, w) = ḣ+(r, w) = ġ0(w).
Interpolation of gradients also changes the function values on Itp. The original function values

at x = c+ (1− θ)rw and x = c+ (1 + θ)rw, which are the points we start the interpolation from,
are

f2(c+ (1− θ)rw) =
α

(1− α)2
‖x1 − x2‖22 +

2α(1− θ)r
1− α

〈x1 − x2, w〉+ α(1− θ)2r2 + βδ2,

f1(c+ (1 + θ)rw) =
α2

(1− α)2
‖x1 − x2‖22 +

2α(1 + θ)r

1− α
〈x1 − x2, w〉+ (1 + θ)2r2.

The function values after interpolation is calculated by integrating the directional derivatives,

h−(ρ, w) := f2(c+ (1− θ)rw) +

∫ ρ

(1−θ)r
〈ḣ−(t, w), w〉dt for ρ ∈ [(1− θ)r, r], (71)

h+(ρ, w) := f1(c+ (1 + θ)rw)−
∫ (1+θ)r

ρ
〈ḣ+(t, w), w〉dt for ρ ∈ [r, (1 + θ)r],

and the integrals are evaluated as∫ ρ

(1−θ)r
〈ḣ−(t, w), w〉dt =

(
2α

1− α
〈x1 − x2, w〉 −

(1− α)(1− θ)r
θ

)
(ρ− (1− θ)r)

+
1

2

(
1− α
θ

+ 2α

)
(ρ2 − (1− θ)2r2),∫ (1+θ)r

ρ
〈ḣ+(t, w), w〉dt =

(
2α

1− α
〈x1 − x2, w〉 −

(1− α)(1 + θ)r

θ

)
((1 + θ)r − ρ)

+
1

2

(
1− α
θ

+ 2

)
((1 + θ)2r2 − ρ2).

Substituting the integrals and arranging the terms, we get the following:

h−(ρ, w) :=
α

(1− α)2
‖x1 − x2‖22 + βδ2 +

(1− α)(1− θ)2r2

2θ

+

(
2α

1− α
〈x1 − x2, w〉 −

(1− α)(1− θ)r
θ

)
ρ+

(
1− α

2θ
+ α

)
ρ2 for ρ ∈ [(1− θ)r, r],

h+(ρ, w) :=
α2

(1− α)2
‖x1 − x2‖22 +

(1− α)(1 + θ)2r2

2θ

+

(
2α

1− α
〈x1 − x2, w〉 −

(1− α)(1 + θ)r

θ

)
ρ+

(
1− α

2θ
+ 1

)
ρ2 for ρ ∈ [r, (1 + θ)r].

We can double-check that h−(r, w) = h+(r, w) by substituting ρ = r to both functions, arranging
terms, and noting that

α

(1− α)2
‖x1 − x2‖22 + αr2 + βδ2 =

α2

(1− α)2
‖x1 − x2‖22 + r2, (72)

by definition of β in Eq (38).
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Using ḣ−, ḣ+, h−, and h+ defined as above, we can define infinite number of hyperplanes
corresponding to each point c+ ρw in Itp,

fρ,w− (x) := 〈ḣ−(ρ, w), x− (c+ ρw)〉+ h−(ρ, w) for ρ ∈ [(1− θ)r, r], ‖w‖2 = 1,

fρ,w+ (x) := 〈ḣ+(ρ, w), x− (c+ ρw)〉+ h+(ρ, w) for ρ ∈ [r, (1 + θ)r], ‖w‖2 = 1.

After substituting ḣ−(ρ, w), ḣ+(ρ, w), h−(ρ, w), and h+(ρ, w), and then arranging terms, we get

fρ,w− (x) =
α

(1− α)2
‖x1 − x2‖22 + βδ2 +

(1− α)(1− θ)2r2

2θ
−
(

1− α
2θ

+ α

)
ρ2

+

〈
2α

1− α
(x1 − x2)− (1− α)(1− θ)r

θ
w +

(
1− α
θ

+ 2α

)
ρw, x− c

〉
(73)

fρ,w+ (x) =
α2

(1− α)2
‖x1 − x2‖22 +

(1− α)(1 + θ)2r2

2θ
−
(

1− α
2θ

+ 1

)
ρ2

+

〈
2α

1− α
(x1 − x2)− (1− α)(1 + θ)r

θ
w +

(
1− α
θ

+ 2

)
ρw, x− c

〉
.

We can finally state the definition of the interpolated function, which is

f(x) = max

{
f1(x), f2(x), sup

ρ∈[(1−t)r,r],‖w‖2=1
fρ,w− (x), sup

ρ∈[r,(1+t)r],‖w‖2=1
fρ,w+ (x)

}
. (74)

E.3. Proof of Lemma 14

Before the proof of Lemma 14, we state and prove a “helper” lemma.

Lemma 23 The following holds:

1. For any 0 < ρ ≤ ρ1 ≤ ρ2 where ρ1, ρ2 ∈ [(1 − θ)r, r], and any unit vectors w,w′, we have
fρ1,w− (c+ ρw) ≥ fρ2,w

′

− (c+ ρw), where equality holds if and only if ρ1 = ρ2 and w = w′.

2. For any ρ ≥ ρ1 ≥ ρ2 where ρ1, ρ2 ∈ [(1 − θ)r, r], and any unit vectors w,w′, we have
fρ1,w− (c+ ρw) ≥ fρ2,w

′

− (c+ ρw), where equality holds if and only if ρ1 = ρ2 and w = w′.

3. For any 0 < ρ ≤ ρ1 ≤ ρ2 where ρ1, ρ2 ∈ [r, (1 + θ)r], and any unit vectors w,w′, we have
fρ1,w+ (c+ ρw) ≥ fρ2,w

′

+ (c+ ρw), where equality holds if and only if ρ1 = ρ2 and w = w′.

4. For any ρ ≥ ρ1 ≥ ρ2 where ρ1, ρ2 ∈ [r, (1 + θ)r], and any unit vectors w,w′, we have
fρ1,w+ (c+ ρw) ≥ fρ2,w

′

+ (c+ ρw), where equality holds if and only if ρ1 = ρ2 and w = w′.

5. For any ρ ∈ [(1 − θ)r, r], h−(ρ, w) ≥ f2(c + ρw), where equality holds if and only if
ρ = (1− θ)r.

6. For any ρ ∈ [r, (1 + θ)r], h+(ρ, w) ≥ f1(c + ρw), where equality holds if and only if
ρ = (1 + θ)r.
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Proof For Part 1, we first show that fρ1,w− (c+ρw) ≥ fρ2,w− (c+ρw), and then show fρ2,w− (c+ρw) ≥
fρ2,w

′

− (c+ ρw). From Eq (73), we can see that

fρ1,w− (c+ ρw) ≥ fρ2,w− (c+ ρw)

⇐⇒ −
(

1− α
2θ

+ α

)
ρ2

1 +

(
1− α
θ

+ 2α

)
ρ1ρ ≥ −

(
1− α

2θ
+ α

)
ρ2

2 +

(
1− α
θ

+ 2α

)
ρ2ρ

⇐⇒ (ρ2 − ρ1)(ρ2 + ρ1) ≥ 2(ρ2 − ρ1)ρ,

which is true because ρ ≤ ρ1 ≤ ρ2. Also, we can check that equality holds if and only if ρ1 = ρ2.
For the next step,

fρ2,w− (c+ ρw) ≥ fρ2,w
′

− (c+ ρw)

⇐⇒ 〈−(1− α)(1− θ)r
θ

w +

(
1− α
θ

+ 2α

)
ρ2w, ρw〉 ≥ 〈−

(1− α)(1− θ)r
θ

w′ +

(
1− α
θ

+ 2α

)
ρ2w

′, ρw〉

⇐⇒
(

1− α
θ

(ρ2 − (1− θ)r) + 2αρ2

)
ρ(1− 〈w′, w〉) ≥ 0,

which is true and equality holds if and only if w = w′. Parts 2–4 can be proved in a very similar
way.

Part 5 holds because of the definition of h−(ρ, w) in Eq (71) and we can check that

〈ḣ−(ρ, w), w〉 ≥ 〈∇f2(c+ ρw), w〉 for ρ ∈ [(1− θ)r, r],

where equality holds if and only if ρ = (1− θ)r. Part 6 can be proved similarly.

Given the helper lemma, we prove Lemma 14 by partitioning ρ into 8 intervals and prove each
case separately. Specifically, for each case we show that for any given ρ and w, the supremum
f(c + ρw) is achieved by exactly one or two functions among all the functions. If there are two
functions that achieve the supremum, we show that they have the same gradients. If this is true, the
statement about∇f(c+ ρw) will naturally follow.

Case 1: ρ = 0. When ρ = 0, f2 is strictly bigger than all other functions. We can show this by
directly comparing function values at x = c. For this case, recall from Eq (72) and definition of f1

and f2 that

f1(c) =
α2

(1− α)2
‖x1 − x2‖22 =

α

(1− α)2
‖x1 − x2‖22+βδ2−(1−α)r2 = f2(c)−(1−α)r2. (75)

There are three things that we need to check:

1. f2(c) > fρ
′,w′

− (c), ∀ρ′ ∈ [(1− θ)r, r], ‖w′‖2 = 1

⇐⇒ 0 > (1−α)(1−θ)2r2
2θ −

(
1−α
2θ + α

)
ρ′2,∀ρ′ ∈ [(1− θ)r, r]

⇐⇒ 0 > (1−α)(1−θ)2r2
2θ −

(
1−α
2θ + α

)
(1− θ)2r2 = −α(1− θ)2r2.

2. f2(c) > fρ
′,w′

+ (c), ∀ρ′ ∈ [r, (1 + θ)r], ‖w′‖2 = 1. Note that

fρ
′,w′

+ (c) =
α2

(1− α)2
‖x1 − x2‖22 +

(1− α)(1 + θ)2r2

2θ
−
(

1− α
2θ

+ 1

)
ρ′2
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= f2(c)− (1− α)r2 +
(1− α)(1 + θ)2r2

2θ
−
(

1− α
2θ

+ 1

)
ρ′2,

so we need to show

− (1− α)r2 +
(1− α)(1 + θ)2r2

2θ
−
(

1− α
2θ

+ 1

)
ρ′2 < 0,∀ρ′ ∈ [r, (1 + θ)r],

⇐⇒ − (1− α)r2 +
(1− α)(1 + θ)2r2

2θ
−
(

1− α
2θ

+ 1

)
r2 < 0 ⇐⇒ (1− α)θ < 2,

which is true because α, θ ∈ (0, 1).

3. f2(c) > f1(c). This is already shown by Eq (75).

Case 2: ρ ∈ (0, (1− θ)r). In this region,

f2(c+ ρw) =
α

(1− α)2
‖x1 − x2‖22 + βδ2 +

2αρ

1− α
〈x1 − x2, w〉+ αρ2

dominates all other functions.

1. f2(c + ρw) > fρ
′,w′

− (c + ρw), ∀ρ′ ∈ [(1 − θ)r, r], ‖w′‖2 = 1. To show this, it suffices to
show f2(c+ ρw) > f

(1−θ)r,w
− (c+ ρw), and the rest follows because of Lemma 23.1. We can

calculate and arrange f (1−θ)r,w
− (c+ ρw) to get

f
(1−θ)r,w
− (c+ρw) =

α

(1− α)2
‖x1 − x2‖22+βδ2+

2αρ

1− α
〈x1−x2, w〉−α(1−θ)2r2+2α(1−θ)rρ,

so

f2(c+ρw) > f
(1−θ)r,w
− (c+ρw) ⇐⇒ α(1−θ)2r2−2α(1−θ)ρ+αρ2 > 0 ⇐⇒ α((1−θ)r−ρ)2 > 0,

which is true.

2. f2(c+ρw) > fρ
′,w′

+ (c+ρw),∀ρ′ ∈ [r, (1 + θ)r], ‖w′‖2 = 1. Notice that we just showed that
f2(c+ ρw) > f r,w− (c+ ρw) = f r,w+ (c+ ρw). The rest follows by Lemma 23.3.

3. f2(c+ ρw) > f1(c+ ρw). This can be shown by direct comparison.

Case 3: ρ = (1−θ)r. In this case, f2(c+(1−θ)rw) = f
(1−θ)r,w
− (c+(1−θ)rw) = h−((1−θ)r, w)

is strictly greater than all other functions. The gradient still exists because the gradients of these two
functions are the same: ∇f2(c+ (1− θ)rw) = ∇f (1−θ)r,w

− (c+ (1− θ)rw) = ḣ−((1− θ)r, w), as
we can see from Eq (69). We need to show:

1. f2(c + (1 − θ)rw) > fρ
′,w′

− (c + (1 − θ)rw), ∀ρ′ ∈ [(1 − θ)r, r], ‖w′‖2 = 1, as long as
(ρ′, w′) 6= ((1− θ)r, w). This is true because of Lemma 23.1.

2. f2(c+ (1− θ)rw) > fρ
′,w′

+ (c+ (1− θ)rw),∀ρ′ ∈ [r, (1 + θ)r], ‖w′‖2 = 1. We just showed
that f2(c + (1 − θ)rw) > f r,w− (c + (1 − θ)rw) = f r,w+ (c + (1 − θ)rw), so the rest follows
by Lemma 23.3.

3. f2(c+ (1− θ)rw) > f1(c+ (1− θ)rw). This can be shown by direct comparison.
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Case 4: ρ ∈ ((1 − θ)r, r). In this region, the function fρ,w− dominates all other functions. Note
that fρ,w− (c+ ρw) = h−(ρ, w).

1. fρ,w− (c+ ρw) > f2(c+ ρw). This is true by Lemma 23.5.

2. fρ,w− (c+ ρw) > fρ
′,w′

− (c+ ρw),∀ρ′ ∈ [(1− θ)r, r], ‖w′‖2 = 1, as long as (ρ′, w′) 6= (ρ, w).
This is true because of Lemma 23.1 and 23.2.

3. fρ,w− (c + ρw) > fρ
′,w′

+ (c + ρw),∀ρ′ ∈ [r, (1 + θ)r], ‖w′‖2 = 1. We just showed that
fρ,w− (c+ ρw) > f r,w− (c+ ρw) = f r,w+ (c+ ρw), so the rest follows by Lemma 23.3.

4. fρ,w− (c+ρw) > f1(c+(1−θ)rw). This can be shown by noting that f2(c+ρw) > f1(c+ρw)
by direct comparison, and then Lemma 23.5.

Case 5: ρ = r. In this case, f r,w− (c+ rw) = h−(r, w) = f r,w+ (c+ rw) = h+(r, w) is greater than
all other functions, but their gradients are also the same.

1. f r,w− (c+ rw) > f2(c+ rw). This is true by Lemma 23.5.

2. f r,w− (c+ rw) > fρ
′,w′

− (c+ rw),∀ρ′ ∈ [(1− θ)r, r], ‖w′‖2 = 1, as long as (ρ′, w′) 6= (r, w).
This is because of Lemma 23.2.

3. f r,w+ (c+ rw) > fρ
′,w′

+ (c+ rw),∀ρ′ ∈ [r, (1 + θ)r], ‖w′‖2 = 1, as long as (ρ′, w′) 6= (r, w),
which is implied by Lemma 23.3.

4. f r,w+ (c+ rw) > f1(c+ rw), by Lemma 23.6.

Case 6: ρ ∈ (r, (1 + θ)r). We have to show that fρ,w+ (c+ ρw) = h+(ρ, w) is greater than values
from all other functions.

1. fρ,w+ (c+ ρw) > f1(c+ ρw). This is true by Lemma 23.6.

2. fρ,w+ (c+ ρw) > fρ
′,w′

+ (c+ ρw), ∀ρ′ ∈ [r, (1 + θ)r], ‖w′‖2 = 1, as long as (ρ′, w′) 6= (ρ, w).
This is true because of Lemma 23.3 and 23.4.

3. fρ,w+ (c + ρw) > fρ
′,w′

− (c + ρw), ∀ρ′ ∈ [(1 − θ)r, r], ‖w′‖2 = 1. We just showed that
fρ,w+ (c+ ρw) > f r,w+ (c+ ρw) = f r,w− (c+ ρw), so the rest follows by Lemma 23.2.

4. fρ,w+ (c+ρw) > f2(c+(1−θ)rw). This can be shown by noting that f1(c+ρw) > f2(c+ρw)
by direct comparison, and then Lemma 23.6.

Case 7: ρ = (1 + θ)r. Here, f1(c+ (1 + θ)rw) = f
(1+θ)r,w
+ (c+ (1 + θ)rw) = h+((1 + θ)r, w)

dominate, but the gradients at the point are the same.

1. f1(c + (1 + θ)rw) > fρ
′,w′

+ (c + (1 + θ)rw), ∀ρ′ ∈ [r, (1 + θ)r], ‖w′‖2 = 1, as long as
(ρ′, w′) 6= ((1 + θ)r, w). This is true because of Lemma 23.4.

2. f1(c+ (1 + θ)rw) > fρ
′,w′

− (c+ (1 + θ)rw),∀ρ′ ∈ [(1− θ)r, r], ‖w′‖2 = 1. We just showed
that f1(c + (1 + θ)rw) > f r,w+ (c + (1 + θ)rw) = f r,w− (c + (1 + θ)rw), so the rest follows
by Lemma 23.2.

3. f1(c+ (1 + θ)rw) > f2(c+ (1 + θ)rw). This can be shown by direct comparison.
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Case 8: ρ ∈ ((1 + θ)r,∞). In the final case,

f1(c+ ρw) =
α2

(1− α)2
‖x1 − x2‖22 +

2αρ

1− α
〈x1 − x2, w〉+ ρ2.

dominates all other functions.

1. f1(c + ρw) > fρ
′,w′

+ (c + ρw), ∀ρ′ ∈ [r, (1 + θ)r], ‖w′‖2 = 1. To show this, it suffices to
show f1(c+ ρw) > f

(1+θ)r,w
+ (c+ ρw), and the rest follows because of Lemma 23.4. We can

calculate and arrange f (1+θ)r,w
+ (c+ ρw) to get

f
(1+θ)r,w
+ (c+ ρw) =

α2

(1− α)2
‖x1 − x2‖22 +

2αρ

1− α
〈x1−x2, w〉− (1 + θ)2r2 + 2(1 + θ)rρ,

so

f1(c+ρw) > f
(1+θ)r,w
+ (c+ρw) ⇐⇒ (1+θ)2r2−2(1+θ)ρ+ρ2 > 0 ⇐⇒ ((1+θ)r−ρ)2 > 0.

2. f1(c+ρw) > fρ
′,w′

− (c+ρw),∀ρ′ ∈ [(1− θ)r, r], ‖w′‖2 = 1. Notice that we just showed that
f1(c+ ρw) > f r,w+ (c+ ρw) = f r,w− (c+ ρw). The rest follows by Lemma 23.2.

3. f1(c+ ρw) > f2(c+ ρw). This can be shown by direct comparison.

E.4. Proof of Lemma 15

From Lemma 14, it became clear that

∇f(c+ ρw) =


∇f2(c+ ρw) if ρ ∈ [0, (1− θ)r]
ḣ−(ρ, w) if ρ ∈ [(1− θ)r, r]
ḣ+(ρ, w) if ρ ∈ [r, (1 + θ)r]

∇f1(c+ ρw) if ρ ∈ [(1 + θ)r,∞).

In order to show that the function is
(
2 + 1−α

θ

)
-smooth, it suffices to show that each piece of the

function has
(
2 + 1−α

θ

)
-Lipschitz gradient. Since f1 and f2 are quadratic functions, it is easy to see

that they are 2-smooth and 2α-smooth, respectively. In case of ḣ−(ρ, w), for ρ1, ρ2 ∈ [(1− θ)r, r]
and any arbitrary unit vectors w1 and w2,∥∥∥ḣ−(ρ1, w1)− ḣ−(ρ2, w2)

∥∥∥
2

=

∥∥∥∥−(1− α)(1− θ)r
θ

(w1 − w2) +

(
1− α
θ

+ 2α

)
(ρ1w1 − ρ2w2)

∥∥∥∥
2

=

∥∥∥∥1− α
θ

[(ρ1 − (1− θ)r)w1 − (ρ2 − (1− θ)r)w2] + 2α(ρ1w1 − ρ2w2)

∥∥∥∥
2

≤(1− α)

θ
‖(ρ1 − (1− θ)r)w1 − (ρ2 − (1− θ)r)w2‖2 + 2α ‖ρ1w1 − ρ2w2‖2

≤
(

2α+
1− α
θ

)
‖ρ1w1 − ρ2w2‖2 .
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The last inequality sign used that ‖(ρ1 − (1− θ)r)w1 − (ρ2 − (1− θ)r)w2‖2 ≤ ‖ρ1w1 − ρ2w2‖2.
To see this, whenever 0 ≤ z3 ≤ z1 and 0 ≤ z3 ≤ z2,

‖(z1 − z3)w1 − (z2 − z3)w2‖2 ≤ ‖z1w1 − z2w2‖2
⇐⇒ (z1 − z3)2 + (z2 − z3)2 − 2(z1 − z3)(z2 − z3)〈w1, w2〉 ≤ z2

1 + z2
2 − 2z1z2〈w1, w2〉

⇐⇒ ((z1 − z3)− (z2 − z3))2 + 2(z1 − z3)(z2 − z3)(1− 〈w1, w2〉) ≤ (z1 − z2)2 + 2z1z2(1− 〈w1, w2〉).

Similarly, for ρ1, ρ2 ∈ [r, (1 + θ)r] and any arbitrary unit vectors w1 and w2,

‖h+(ρ1, w1)− h+(ρ2, w2)‖2

=

∥∥∥∥−(1− α)(1 + θ)r

θ
(w1 − w2) +

(
1− α
θ

+ 2

)
(ρ1w1 − ρ2w2)

∥∥∥∥
2

=

∥∥∥∥1− α
θ

[((1 + θ)r − ρ2)w2 − ((1 + θ)r − ρ1)w1] + 2(ρ1w1 − ρ2w2)

∥∥∥∥
2

≤1− α
θ
‖((1 + θ)r − ρ2)w2 − ((1 + θ)r − ρ1)w1‖2 + 2 ‖ρ1w1 − ρ2w2‖2

≤
(

2 +
1− α
θ

)
‖ρ1w1 − ρ2w2‖2 .

The last inequality sign used that ‖((1 + θ)r − ρ2)w2 − ((1 + θ)r − ρ1)w1‖2 ≤ ‖ρ1w1 − ρ2w2‖2.
To see this, note that whenever z32 ≤ z1 ≤ z3 and z3

2 ≤ z2 ≤ z3,

‖(z3 − z2)w2 − (z3 − z1)w1‖2 ≤ ‖z1w1 − z2w2‖2
⇐⇒ ((z3 − z2)− (z3 − z1))2 + 2(z3 − z2)(z3 − z1)(1− 〈w1, w2〉) ≤ (z1 − z2)2 + 2z1z2(1− 〈w1, w2〉)
⇐⇒ (z3 − z2)(z3 − z1) ≤ z2z1.

The last statement holds because 0 ≤ z3 − z1 ≤ z1 and 0 ≤ z3 − z2 ≤ z2. Recalling θ ∈ (0, 1), ρ1,
ρ2, and (1 + θ)r corresponds to z1, z2, and z3, respectively. This concludes that the whole function
has
(
2 + 1−α

θ

)
-Lipschitz gradient.

Now, since we know that f2(x) is 2α-strongly convex, the proof of 2α-strong convexity can be
done by showing that f̃(x) := f(x) − f2(x) is convex, or equivalently, that ∇f̃(x) is monotone.
The value of∇f̃(c+ ρw) depending on different values of ρ is as the following:

∇f̃(c+ ρw) =


0 if 0 ≤ ρ ≤ (1− θ)r
(1−α)(ρ−(1−θ)r)

θ w if (1− θ)r ≤ ρ ≤ r
(1−α)((1+2θ)ρ−(1+θ)r)

θ w if r ≤ ρ ≤ (1 + θ)r

2(1− α)ρw if ρ ≥ (1 + θ)r.

Now, we need to show that∇f̃(c+ ρw) is monotone, meaning that

〈∇f̃(c+ ρ′w′)−∇f̃(c+ ρw), ρ′w′ − ρw〉 ≥ 0, ∀ρ ≥ 0, ρ′ ≥ 0, ‖w‖2 =
∥∥w′∥∥

2
= 1.

For notational simplicity in the proof, define (?) = 〈∇f̃(c+ ρ′w′)−∇f̃(c+ ρw), ρ′w′ − ρw〉.

1. If ρ, ρ′ ∈ [0, (1− θ)r], (?) = 0.

59



MINIMAX BOUNDS ON STOCHASTIC BATCHED CONVEX OPTIMIZATION

2. If ρ ∈ [0, (1− θ)r], ρ′ ∈ ((1− θ)r, r],

(?) =
(1− α)(ρ′ − (1− θ)r)

θ
(ρ′ − ρ〈w,w′〉) ≥ 0.

3. If ρ ∈ [0, (1− θ)r], ρ′ ∈ (r, (1 + θ)r], the proof is similar to Case 2.

4. If ρ ∈ [0, (1− θ)r], ρ′ ∈ ((1 + θ)r,∞), the proof is similar to Case 2.

5. If ρ, ρ′ ∈ ((1− θ)r, r],

(?) =
(1− α)

θ

(
(ρ′ − (1− θ)r)(ρ′ − ρ〈w,w′〉) + (ρ− (1− θ)r)(ρ− ρ′〈w,w′〉)

)
≥ (1− α)

θ

(
(ρ′ − (1− θ)r)(ρ′ − ρ) + (ρ− (1− θ)r)(ρ− ρ′)

)
=

(1− α)(ρ′ − ρ)2

θ
≥ 0.

6. if ρ ∈ ((1− θ)r, r], ρ′ ∈ (r, (1 + θ)r],

(?) ≥ (1− α)(ρ′ − ρ)

θ

(
((1 + 2θ)ρ′ − (1 + θ)r)− (ρ− (1− θ)r)

)
=

(1− α)(ρ′ − ρ)

θ

(
2θ(ρ′ − r) + (ρ′ − ρ)

)
≥ 0.

7. if ρ ∈ ((1− θ)r, r], ρ′ ∈ ((1 + θ)r,∞),

(?) ≥ (1− α)(ρ′ − ρ)

θ

(
2θρ′ − (ρ− (1− θ)r))

)
=

(1− α)(ρ′ − ρ)

θ

(
θ(2ρ′ − r) + r − ρ

)
≥ 0.

8. If ρ, ρ′ ∈ (r, (1 + θ)r], the proof is similar to Case 5.

9. If ρ ∈ (r, (1 + θ)r], ρ′ ∈ ((1 + θ)r,∞),

(?) ≥ (1− α)(ρ′ − ρ)

θ

(
2θρ′ − ((1 + 2θ)ρ− (1 + θ)r))

)
=

(1− α)(ρ′ − ρ)

θ

(
2θ(ρ′ − ρ) + (1 + θ)r − ρ

)
≥ 0.

10. If ρ, ρ′ ∈ ((1 + θ)r,∞), the proof is similar to Case 5.

E.5. Proof of Lemma 16

By Lemma 13,

Itp = {c+ ρw | (1− θ)r ≤ ρ ≤ (1 + θ)r, ‖w‖2 = 1} ⊂ cl(B2
x1(ηδ)c ∩B2

x1(δ)).

So, Lemma 16.1 and 16.2 are implied by Lemma 14.
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For Lemma 16.3, By observing f2(x2) = sβδ2 + t ≤ f2(x) ≤ f(x) for all x, it is easy to see
that the global minimum value of f(x) is sβδ2 + t and is attained at x2 ∈ B2

x1(ηδ). Also, at any
x such that ‖x− x1‖2 = δ, we can check f(x) = f1(x) = sδ2 + t. By convexity, any point in
between x and x2 cannot be larger than sδ2 + t, which means that sβδ2 + t ≤ f(x) ≤ sδ2 + t for
all x ∈ B2

x1(δ).
For the last statement Lemma 16.4, we will assume that the scaling factor s = 1 and prove

that ‖∇f(x)‖2 ≤ 2δ. The norm of gradient ‖∇f(x)‖2 naturally scales with s, so Lemma 16.4
follows for any s > 0. Note that ‖∇f1(x)‖2 = ‖2(x− x1)‖2 ≤ 2δ for any x ∈ B2

x1(δ). Also, for
x ∈ B2

x1(δ),

‖∇f2(x)‖2 = 2α ‖x− x2‖2 = 2α ‖x− x1‖2 + 2α ‖x1 − x2‖2 ≤ 2αδ + 2αηδ ≤ 2δ,

where the last inequality is by Eq (37): η+α+αη < 1, which implies α+αη < 1. For x = c+ρw
where ρ ∈ [(1− θ)r, r] and w is any unit vector,∇f(x) = ḣ−(x).∥∥∥ḣ−(c+ ρw)

∥∥∥
2

=

∥∥∥∥ 2α

1− α
(x1 − x2) +

[
(1− α)(ρ− (1− θ)r)

θ
+ 2αρ

]
w

∥∥∥∥
2

≤ 2α

1− α
‖x1 − x2‖2 +

[
(1− α)(ρ− (1− θ)r)

θ
+ 2αρ

]
≤ 2αηδ

1− α
+ (1 + α)r,

where the last inequality is obtained by substituting ρ = r, the maximum possible ρ in the range.∥∥∥ḣ+(c+ ρw)
∥∥∥

2
=

∥∥∥∥ 2α

1− α
(x1 − x2) +

[
(1− α)(ρ− (1 + θ)r)

θ
+ 2ρ

]
w

∥∥∥∥
2

≤ 2α

1− α
‖x1 − x2‖2 +

[
(1− α)(ρ− (1 + θ)r)

θ
+ 2ρ

]
≤ 2αηδ

1− α
+ 2(1 + θ)r,

also where the last inequality is obtained by substituting ρ = (1 + θ)r. We can check that 1 + α <
2 < 2(1 + θ), so it suffices to show

2αηδ

1− α
+ 2(1 + θ)r ≤ 2δ. (76)

First, recall from Eqs (36) and (38) that

r =

√
α

(1− α)2
‖x1 − x2‖22 +

βδ2

1− α
, and β =

(1− α)(1 + η)2

4
− αη2

1− α
.

Substituting β,

r =

√
(1 + η)2δ2

4
− α

(1− α)2
(η2δ2 − ‖x1 − x2‖22) ≤ (1 + η)δ

2
.

substituting this to LHS of Eq (76) and also θ = 1−η−α−αη
1+η−α−αη as defined in Eq (39),

2αηδ

1− α
+ 2(1 + θ)r ≤ 2αηδ

1− α
+ 2

(
1 +

1− η − α− αη
1 + η − α− αη

)
(1 + η)δ

2

=
2αηδ

1− α
+ 2

(
1− α− αη

(1 + η)(1− α)

)
(1 + η)δ = 2δ.

Thus, we have shown that for any x ∈ B2
x1(δ), ‖∇f(x)‖2 ≤ 2δ, which is our desired Lemma 16.4

with s = 1.
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E.6. Proof of Lemma 17

We start by showing the following technical lemma, which illustrates how the functions after the
smooth max operations look like. Its proof is deferred to Appendix E.8.

Lemma 24 For any set of parameters u1, u2, . . . , uM , v chosen by u1 ∈ U (1), ut ∈ U (t)
ut−1 for

t ∈ 2 : M , and v ∈ V , run Algorithm 3 and get fvu1:M (x). Then, for any t ∈ 2 : M , we have:

1. fu1:t(x) =

{
fu1:t−1(x) ∀x 6∈ B2

ut−1
(δt−1),

hu1:t(x) = gu1:t(x) ∀x ∈ B2
ut−1

(ηδt−1),

2. Cβ
∑t−1

m=1 α
m−1δ2

m ≤ fu1:t(x) ≤ Cβ
∑t−2

m=1 α
m−1δ2

m+Cαt−2δ2
t−1 for all x ∈ B2

ut−1
(δt−1).

3. fu1:t(x) := max{fu1:t−1(x), gu1:t(x)} is smooth.

Also, at the final step,

4. fvu1:M (x) =

{
fu1:M (x) ∀x 6∈ B2

uM
(δM ),

hvu1:M (x) = gvu1:M (x) ∀x ∈ B2
uM

(ηδM ),

5. Cβ
∑M

m=1 α
m−1δ2

m ≤ fvu1:M (x) ≤ Cβ
∑M−1

m=1 α
m−1δ2

m+CαM−1δ2
M for all x ∈ B2

uM
(δM ).

6. fvu1:M (x) := max{fu1:M (x), gvu1:M (x)} is smooth.

As done for Lemma 6 in Section D.2, we prove Lemma 17.1 and 17.4 using simple and intuitive
argument that max operations done in Algorithm 3 only changes limited parts of the domain. From
Lemma 24.1, note that whenever we have fu1:t−1(x) and take max operation with gu1:t(x) to con-
struct fu1:t(x), any point ∀x 6∈ B2

ut−1
(δt−1) does not change its value; i.e. fu1:t(x) = fu1:t−1(x).

This means that the Line 6: fu1:t(x) := max{fu1:t−1(x), gu1:t(x)} in Algorithm 3 can only possibly
change function values in B2

ut−1
(δt−1). Also, later iterations of the algorithm do not change that the

function values at x /∈ B2
ut−1

(δt−1), because B2
ut−1

(δt−1) ⊃ B2
ut(δt) ⊃ · · · ⊃ B2

uM
(δM ). From

this argument, we can see that fvu1:M (x) = f ṽu1:t−1,ũt:M
(x) = fu1:t−1(x) for all x /∈ B2

ut−1
(δt−1),

therefore proving Lemma 17.1. Similarly, Line 10: fvu1:M (x) := max{fu1:M (x), gvu1:M (x)} in Al-
gorithm 3 can only change function values in B2

uM
(δM ), so f−1

u1:M
(x) = f+1

u1:M
(x) = fu1:M (x) for

all x /∈ B2
uM

(δM ), proving Lemma 17.4.
Lemma 17.5 can be implied directly by Lemma 24.5. In order to prove Lemma 17.2, note the

following facts from Lemma 24.5 and 24.2:

Cβ
M∑
m=1

αm−1δ2
m ≤ fvu1:M (x) ≤ Cβ

M−1∑
m=1

αm−1δ2
m + CαM−1δ2

M for all x ∈ B2
uM

(δM ),

Cβ
M−1∑
m=1

αm−1δ2
m ≤ fu1:M (x) ≤ Cβ

M−2∑
m=1

αm−1δ2
m + CαM−2δ2

M−1 for all x ∈ B2
uM−1

(δM−1).

Note from Lemma 24.4 that fvu1:M (x) = fu1:M (x) for all x /∈ B2
uM

(δM ), and that, for all x ∈
B2
uM

(δM ),

fvu1:M (x) ≤ Cβ
M−1∑
m=1

αm−1δ2
m + CαM−1δ2

M ≤ Cβ
M−2∑
m=1

αm−1δ2
m + CαM−2δ2

M−1.
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The last inequality is because
(1−β)δ2M−1

α ≥ δ2
M holds for large enough n by assumption that δM =

o(δM−1). From these observations, we have

Cβ
M−1∑
m=1

αm−1δ2
m ≤ fvu1:M (x) ≤ Cβ

M−2∑
m=1

αm−1δ2
m + CαM−2δ2

M−1 for all x ∈ B2
uM−1

(δM−1).

Again note that, for any x /∈ B2
uM−1

(δM−1) we also have x /∈ B2
uM

(δM ), so fvu1:M (x) = fu1:M (x) =
fu1:M−1(x). We can repeat a similar argument and obtain

Cβ
M−2∑
m=1

αm−1δ2
m ≤ fvu1:M (x) ≤ Cβ

M−3∑
m=1

αm−1δ2
m + CαM−3δ2

M−2 for all x ∈ B2
uM−2

(δM−2).

For any t ∈ 2 : M , we can repeat this argument until B2
ut−1

(δt−1), so that we get

Cβ
t−1∑
m=1

αm−1δ2
m ≤ fvu1:M (x) ≤ Cβ

t−2∑
m=1

αm−1δ2
m + Cαt−2δ2

t−1 for all x ∈ B2
ut−1

(δt−1),

which directly implies Lemma 17.2 that we are after.
For Lemma 17.3 and 17.6, we will show that the function value fvu1:M (x) in B2

ut−1
(δt−1) can be

expressed as

fvu1:M (x) = max

{
hu1:t−1(x), max

k∈t:M
{gu1:k(x)} , gvu1:M (x)

}
, for all x ∈ B2

ut−1
(δt−1). (77)

Notice from Lemma 24.1 that fu1:t−1(x) = hu1:t−1(x) for all x ∈ B2
ut−2

(ηδt−2). Recall that
B2
ut−1

(δt−1) ⊂ B2
ut−2

(ηδt−2), so fu1:t−1(x) = hu1:t−1(x) in B2
ut−1

(δt−1). After this point, fvu1:M (x)
is obtained from max operations with gu1:t , . . . , gu1:M , g

v
u1:M

. This proves Eq (77). Given Eq (77),
we prove Lemma 17.3 by showing that for any x ∈ B2

ut−1
(δt−1), all the operands of the max op-

eration in Eq (77) satisfy that `2 norm of the gradient is bounded above by 2Cαt−2δt−1. First, the
gradient of hu1:t−1(x) := Cαt−2 ‖x− ut−1‖22+Cβ

∑t−2
m=1 α

m−1δ2
m is∇hu1:t−1(x) = 2Cαt−2(x−

ut−1), so ∥∥∇hu1:t−1(x)
∥∥

2
≤ 2Cαt−2δt−1, for any x ∈ B2

ut−1
(δt−1).

Now, for k ∈ t : M , apply Lemma 16 for gu1:k(x) = SMAX(hu1:k−1
, hu1:k , α, η, δk−1). Recall the

definition

hu1:k−1
(x) := Cαk−2 ‖x− uk−1‖22 + Cβ

∑k−2

m=1
αm−1δ2

m

hu1:k(x) := Cαk−1 ‖x− uk‖22 + Cβ
∑k−1

m=1
αm−1δ2

m,

then we can note that in terms of the formulation in Lemma 16, s = Cαk−2, t = Cβ
∑k−2

m=1 α
m−1δ2

m,
and δ = δk−1. From Lemma 16.1 and 16.4, we have

gu1:k(x) = hu1:k−1
(x) for all x /∈ B2

uk−1
(δk−1).

‖∇gu1:k(x)‖2 ≤ 2Cαk−2δk−1 ≤ 2Cαt−2δt−1 for all x ∈ B2
uk−1

(δk−1).
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For x ∈ B2
uk−1

(δk−1) we already proved that ‖∇gu1:k(x)‖2 ≤ 2Cαt−2δt−1. We now have to
consider points in B2

uk−1
(δk−1)c ∩B2

ut−1
(δt−1). Note that for k = t, this is ∅. For k ∈ (t+ 1) : M ,

‖∇gu1:k(x)‖2 =
∥∥∇hu1:k−1

(x)
∥∥

2
=
∥∥∥2Cαk−2(x− uk−1)

∥∥∥
2

≤2Cαk−2 ‖x− ut−1‖2 + 2Cαk−2 ‖ut−1 − uk−1‖2 ≤ 2Cαk−2δt−1 + 2Cαk−2ηδt−1

≤2Cαt−1δt−1 + 2Cαt−1ηδt−1 = 2Cαt−2δt−1(α+ ηα) ≤ 2Cαt−2δt−1.

Thus, for any x ∈ B2
ut−1

(δt−1), ‖∇gu1:k(x)‖2 ≤ 2Cαt−2δt−1 for k ∈ t : M . We can prove this
inequality for gvu1:M (x) in the same way. Since all the function in the max operation satisfies upper
bound on `2 norm of gradient, we have∥∥∇fvu1:M (x)

∥∥
2
≤ 2Cαt−2δt−1 for all x ∈ B2

ut−1
(δt−1),

which implies Lemma 17.3. From a similar argument as Eq (77), we have

fvu1:M (x) = max
{
hu1:M (x), gvu1:M (x)

}
, for all x ∈ B2

uM
(δM ),

whereby we can prove Lemma 17.6.
Finally, we have to show Lemma 17.7. To do so, we first show that, for any choice of u1, u2, . . . , uM

and v,

inf
x
fvu1:M (x) = Cβ

M∑
m=1

αm−1δ2
m. (78)

In fact, from Lemma 24.4, we have fvu1:M (x) = hvu1:M (x) for all x ∈ B2
uM

(ηδM ). Also, hvu1:M (x)
is minimized at uM + vηδMe1 ∈ B2

uM
(ηδM ), whose minimum value is the RHS of Eq (78). So,

for any x ∈ D,

fvu1:M (x) ≥ hvu1:M (x) ≥ hvu1:M (uM + vηδMe1) = Cβ
M∑
m=1

αm−1δ2
m,

proving Eq (78).
Next, we show that

inf
x

(f+1
u1:M

(x) + f−1
u1:M

(x)) = 2Cβ
M∑
m=1

αm−1δ2
m + 2CαMη2δ2

M . (79)

Again note that fvu1:M (x) = hvu1:M (x) for all x ∈ B2
uM

(ηδM ). That is, for x ∈ B2
uM

(ηδM ), we have
f+1
u1:M

(x) = h+1
u1:M

(x) and f−1
u1:M

(x) = h−1
u1:M

(x). Therefore, for any x ∈ B2
uM

(ηδM ),

f+1
u1:M

(x) + f−1
u1:M

(x) = h+1
u1:M

(x) + h−1
u1:M

(x)

=CαM
(
‖x− uM − ηδMe1‖22 + ‖x− uM + ηδMe1‖22

)
+ 2Cβ

M∑
m=1

αm−1δ2
m.

Note also that x = uM attains minimum, which evaluates to the RHS of Eq (79). So, for any x ∈ D,

f+1
u1:M

(x) + f−1
u1:M

(x) ≥ h+1
u1:M

(x) + h−1
u1:M

(x) ≥ h+1
u1:M

(uM ) + h−1
u1:M

(uM )

= 2Cβ

M∑
m=1

αm−1δ2
m + 2CαMη2δ2

M ,

thus proving Eq (79). Now, Lemma 17.7 follows from Eq (78) and Eq (79).
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E.7. Proof of Lemma 18

First note that

fvu1:M (x) = max

{
hu1(x), max

k∈2:M
{gu1:k(x)} , gvu1:M (x)

}
. (80)

As seen in Lemma 24.6, fvu1:M is smooth. Thus, the smoothness constant is determined by the
“piece” of the function with the largest smoothness constant. This appears at gu1:2(x), whose
smoothness constant is C

(
2 + 1−α

θ

)
, as seen from Lemma 15. In order to prove that fvu1:M (x)

is 2CαM -strongly convex, it suffices to show that every operand in the max operation in Eq (80) is
at least 2CαM -strongly convex. This can be readily checked using Lemma 15.

Now, we are ready to pick parameters α, η, and C of Algorithm 3 so as to make sure output
fvu1:M (x) is H-smooth and λ-strongly convex, for the case H/5 ≥ λ. The other case (H/5 < λ)
will be handled later. That is, we have to choose the right parameters to make

H ≥ C
(

2 +
1− α
θ

)
and λ ≤ 2CαM . (81)

We first choose
η =

1− α
2

,

so that 0 < η < 1
2 for α ∈ (0, 1). Which this choice, we have

η + α+ αη =
1

2
+ α− α2

2
,

which satisfies 1
2 < η + α+ αη < 1 for α ∈ (0, 1). Also, from Eq (38),

β :=
(1− α)(1 + η)2

4
− αη2

1− α
=

(9− α)(1− α)2

16
,

which satisfies 0 < β < 9
16 for α ∈ (0, 1). From Eq (39),

θ :=
1− η − α− αη
1 + η − α− αη

=
1− α
3− α

,

which satisfies 0 < θ < 1
3 for α ∈ (0, 1). We finished checking that constraints on η, β, and θ are

met, under this particular choice of η.
With this choice of η,

1− α
θ

= 3− α,

so 2 < 1−α
θ < 3 for α ∈ (0, 1). This also means that

C

(
2 +

1− α
θ

)
≤ 5C.

Now choose

α =

(
1

2

)1/M

, and C =
H

5
.
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With η = (1− α)/2, we can check that

C

(
2 +

1− α
θ

)
≤ 5C ≤ H, and 2CαM =

2H

5
· 1

2
≥ λ,

thus proving Eq (81).
For H/5 < λ < H , the choice of parameters is a bit more complicated; we choose η = (1−α)2

2 ,
which satisfies 0 < η < 1

2 for α ∈ (0, 1). With this choice, 1
2 < η+α+ ηα < 1. Also, 0 < β < 9

16
and 1

3 < θ < 1 is satisfied, so all the constraints are met. With this choice of η,

H

λ
=

1

2αM

(
2 +

1− α
θ

)
=

1

2αM

(
2 +

(1− α)(α2 − 2α+ 3)

1 + α2

)
.

When expressed as a function of α, the RHS of the last equation has limit∞ when α → 0+, and
limit 1 when α → 1−. Therefore, for any ratio of H/λ > 1, there exists a α0 that satisfies the
above equation. Choose α = α0, η = (1−α0)2

2 , and C = λ
2αM0

, then the output of Algorithm 3 is
H-smooth and λ-strongly convex.

E.8. Proof of Lemma 24

We demonstrate in details the proof for Lemma 24 below, which is based on an induction argument.

Base case t = 2. In the base case, recall the definitions that

fu1(x) = hu1(x) := C ‖x− u1‖22 , hu1:2(x) := Cα ‖x− u2‖22 + Cβδ2
1 ,

gu1:2(x) := SMAX(hu1 , hu1:2 , α, η, δ1)

Apply Lemma 16 to hu1 and hu1:2 . Note that in this case s = C, t = 0, and δ = δ1. Then,
Lemma 24.1–2 is immediately proved by Lemma 16.1 and 16.3.

For Lemma 24.3, we want to prove that fu1:2(x) = max{fu1(x), gu1:2(x)} is smooth. By
fu1(x) = hu1(x), already gu1:2(x) ≥ hu1(x) = fu1(x). Thus, fu1:2(x) = gu1:2(x), and it is proven
to be smooth by Lemma 15.

Inductive case 2 < t ≤M . Recall the definitions that

hu1:t−1(x) := Cαt−2 ‖x− ut−1‖22 + Cβ
∑t−2

m=1
αm−1δ2

m,

hu1:t(x) := Cαt−1 ‖x− ut‖22 + Cβ
∑t−1

m=1
αm−1δ2

m,

gu1:t−1(x) := SMAX(hu1:t−2 , hu1:t−1 , α, η, δt−2),

gu1:t(x) := SMAX(hu1:t−1 , hu1:t , α, η, δt−1),

fu1:t−1(x) := max{fu1:t−2(x), gu1:t−1(x)},
fu1:t(x) := max{fu1:t−1(x), gu1:t(x)}.

Apply Lemma 16 to hu1:t−1 and hu1:t . Note that in this case s = Cαt−2, t = Cβ
∑t−2

m=1 α
m−1δ2

m,
and δ = δt−1. By Lemma 16.1–3,

gu1:t(x) = hu1:t−1(x) for any x ∈ cl(B2
ut−1

(δt−1)c), (82)
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gu1:t(x) = hu1:t(x) for any x ∈ B2
ut−1

(ηδt−1), (83)

Cβ
t−1∑
m=1

αm−1δ2
m ≤ gu1:t(x) ≤ Cβ

t−2∑
m=1

αm−1δ2
m + Cαt−2δ2

t−1 for any x ∈ B2
ut−1

(δt−1), (84)

∇gu1:t(x) = ∇hu1:t−1(x) for any x ∈ cl(B2
ut−1

(δt−1)c). (85)

We will prove Lemma 24.1–3 using this list of facts. Note that fu1:t−1(x) ≥ gu1:t−1(x) ≥
hu1:t−1(x) for all x ∈ D. Together with Eq (82), this yields

fu1:t−1(x) ≥ gu1:t(x) for all x ∈ cl(B2
ut−1

(δt−1)c). (86)

For the other case, by using Lemma 24.1 for case t−1 (induction hypothesis), we have fu1:t−2(x) ≤
gu1:t−1(x) = hu1:t−1(x) for all x ∈ B2

ut−2
(ηδt−2). From the definition fu1:t−1(x) := max{fu1:t−2(x), gu1:t−1(x)},

we have fu1:t−1(x) = gu1:t−1(x) = hu1:t−1(x) for x ∈ B2
ut−2

(ηδt−2). Note that B2
ut−2

(ηδt−2) ⊃
B2
ut−1

(δt−1), so

fu1:t−1(x) = gu1:t−1(x) = hu1:t−1(x) for all x ∈ B2
ut−1

(δt−1). (87)

By Eq (83), gu1:t(x) = hu1:t(x) ≥ hu1:t−1(x) for any x ∈ B2
ut−1

(ηδt−1). With Eq (87), this proves

fu1:t−1(x) ≤ gu1:t(x) = hu1:t(x) for x ∈ B2
ut−1

(ηδt−1),

hence finishing the proof of Lemma 24.1.
By Eq (87), and that hu1:t−1(x) ≤ gu1:t(x), we have fu1:t−1(x) ≤ gu1:t(x) for all x ∈ B2

ut−1
(δt−1).

Together with Eq (86), this means

fu1:t(x) := max{fu1:t−1(x), gu1:t(x)} =

{
gu1:t(x) if ‖x− ut−1‖2 ≤ δt−1,

fu1:t−1(x) if ‖x− ut−1‖2 ≥ δt−1.
(88)

Combining Eqs (84) and (88), this proves Lemma 24.2.
We now have Lemma 24.3 to prove. If we look into Eq (88) more closely, we can see that

fu1:t−1(x) = gu1:t(x) if ‖x− ut−1‖2 = δt−1. We know by induction hypothesis that fu1:t−1(x)
is smooth, and by Lemma 15 that gu1:t(x) is also smooth. So, the proof of smoothness of fu1:t(x)
suffices to check if∇fu1:t−1(x) = ∇gu1:t(x) for all x such that ‖x− ut−1‖2 = δt−1. From Eq (85),

∇gu1:t(x) = ∇hu1:t−1(x) if ‖x− ut−1‖2 = δt−1.

Also, fu1:t−1(x) is a smooth function, meaning that∇fu1:t−1(x) = ∇gu1:t−1(x) whenever fu1:t−1(x) =
gu1:t−1(x). Together with Eq (87), we have

∇fu1:t−1(x) = ∇gu1:t−1(x) = ∇hu1:t−1(x) if ‖x− ut−1‖2 = δt−1.

This shows∇fu1:t−1(x) = ∇gu1:t(x) whenever x satisfies ‖x− ut−1‖2 = δt−1. So fu1:t is smooth,
hence Lemma 24.3 is shown.

Final Case. It is left to prove Lemma 24.4–6. Their proof can be done in a similar way as
Lemma 24.1–3 for the inductive cases, hence omitted.
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Appendix F. Proof of Theorem 3: Roadmap

The proof of theorem 3 is fairly involved. Indeed, we divide the proof of Thoerem 3 into four
parts: in Section G, we present the proof for the case where the function class F = FH,λ and the
oracle is first order oracle, in Section H, we present the proof for the case where the function class
F = FH,λ and the oracle is zeroth-order oracle, in Section I, we present the proof for the case
where the function class F = FL and the oracle is the first order oracle, and lastly, in Section J, we
present the proof for the case where the function class F = FL and the oracle is zeroth order oracle.
Broadly speaking, for each of those four cases, we prove the corresponding upper bound via first
introducing a concrete algorithm, and then showing that the algorithm achieves the upper bound in
Theorem 3 through careful theoretical justifications.

Common Notations from Section G to Section J. The following notations are useful throughout
the proofs of the upper bounds from Section G to Section J. For any c ∈ Rd, r ∈ R+ and k ∈ N, we
use G(c, r, k) to denote the following grids in Rd:

G(c, r, k) :=

{
c+

( r
k
i1,

r

k
i2, . . . ,

r

k
id

)′
| ij ∈ {−k,−(k − 1), . . . , k − 1, k} for all 1 ≤ j ≤ d

}
.

Denote γ : R+ → R to be the function γ(x) := x/ log(x), which we heavily use in the proof.

Appendix G. Smooth Function with First Order Oracle

G.1. Description of Algorithms

In this section, we propose two generic algorithms: algorithm 4 parameterized by parameters
(c, r, k, T ) ∈ D × R+ × N × N and algorithm 5 that builds from algorithm 4. We note here
that, algorithm 5 in essence, builds from M times of repeated calls of algorithm 4. As will be
shown immediately in the later subsections, it turns out that the two algorithms with careful choice
of parameters return the minimax estimator in single and multi rounds respectively.

G.2. Analysis of Algorithm 4: Single-Stage Analysis

In this section, we analyze the single-stage algorithm 4. For purpose of convenience in later discus-
sion for multi-stage algorithm 5, we slightly generalize the domain of interest. In fact, we consider
the domain to be Dc,r = {x : ‖x− c‖∞ ≤ r} parameterized by c ∈ Rd and r ∈ R+, and the goal
of the algorithm is to find x?f,c,r, the minimum of f in Dc,r so that the performance of the algorithm
is measured by E[f(x̂)− f(x?f,c,r))]. Note that, if we substitute c = 1

2 · 1 and r = 1
2 into the results

below, it leads to corresponding results to the original domain D = [0, 1]d.

Proposition 25 Given any fix c ∈ Rd and r ∈ (0, 1], suppose there exists k ∈ N satisfying

(2k + 1)d
⌈
2k2 log(2k + 1)

⌉
≤ nr2, and k >

10

λ

(
σ

(
log

1

δ
+ 3d

) 1
2

+Hd
1
2

)
. (89)

Then, pick any k satisfying Eq (89) and set T =
⌊

n
(2k+1)d

⌋
. Denote ĉ, r̂ and x̂ to be the output from

algorithm 4 when we input (c, k, T, r) as the input parameters. Then, we have,

P
(
f(x̂)− f(x?f,c,r) ≤ 2Hdr̂2 and

∥∥x?f,c,r − ĉ∥∥∞ ≤ r̂) ≥ 1− δ.
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Algorithm 4 Generic Routine for One Stage Smooth Functions FH,λ (First-order Oracle)

Input: Prior knowledge on λ,H ∈ R+ satisfying λ ≤ H and the noise level σ ∈ R+. User
specify the sampling center c ∈ D, radius r ∈ R+, grid size parameter k ∈ N, the sampling
times T ∈ N and the confidence level δ ∈ (0, 1).

1: Compute the grid points G = G(c, r, k).
2: At each point x ∈ G, query the first oracle T times and denote each sample gradient value via
{∇̂f(x)(1), ∇̂f(x)(2), . . . , ∇̂f(x)(T )}.

3: Compute the gradient estimate at each point x ∈ G via ∇̂f(x) := 1
T

∑T
i=1 ∇̂f(x)(i).

4: Define rS as rS := 4r
kλ ·

(
2σ
(
log 1

δ + 3d
) 1

2 +Hd
1
2

)
. Compute the ‘candidate’ set S ∈ G:

S =

{
x ∈ G :

〈
∇̂f(x), y − x

〉
+
λ

2
‖y − x‖22 > 0 for all y ∈ G satisfying ‖y − x‖2 ≥ r

S

}
.

5: Find the center xS ∈ S, defined by xS := argminx∈S maxy∈S ‖x− y‖2.

6: Define r̂ as r̂ := 10r
λk

(
σ
(
log 1

δ + 3d
) 1

2 +Hd
1
2

)
. Define the following rectangular W by:

W :=
{
x ∈ D :

∥∥x− xS∥∥∞ ≤ r̂}
7: Return the center ĉ = xS , the radius r̂ and the estimate x̂ ∈W , defined by

x̂ := argmax
x∈W

|{i ∈ {1, 2, . . . , d} : |xi − ci| = r}|,

where for each 1 ≤ i ≤ d, xi, ci denotes the ith coordinate of x, c ∈ Rd.

Algorithm 5 Generic Routine for Multi-stage Smooth Functions FH,λ (First-order Oracle)

Input: Prior knowledge on λ,H ∈ R+ satisfying λ ≤ H , the noise level σ ∈ R+ and number
of rounds R ∈ N+. Initialization of parameters (c1, r1, k1, T1) ∈ Rd × R+ × N × N. User
specifies the confidence level δ ∈ (0, 1] and the updating rule used in line (3) of the algorithm.

1: for i = 1 to M do
2: Run algorithm 4 with input parameters (ci, ri, ki, Ti). Denote the output to be ĉi, radius r̂i

and estimate x̂i.
3: Update (ci+1, ri+1, ki+1, Ti+1). The updating rule may take ĉi, r̂i and x̂i as input.
4: end for
5: return x̂M as estimate of x?f and the radius rM+1.
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Remark 26 Before we give the proof of proposition 25, we give some high-level intuitions why the
algorithm 4 should work. First of all, since the noise are all light-tailed random variables, it is
expected that all gradient estimate ∇̂f(x) concentrates at the true gradient ∇f(x), so that they
give useful information of the gradient value at all grid points in G. So the question becomes,
how can we utiliize the noisy gradient information in G to find the minimum x?f,c,r, which can be
characterized as the following:

〈∇f(x?f,c,r), x− x?f,c,r〉 ≥ 0 for all x ∈ Dc,r. (90)

Due to the construction of the grids, it is immediate that there always exists some point x̄ belonging
to the grid set G such that x̄ is close to x?f,c,r up to

∥∥∥x̄− x?f,c,r∥∥∥∞ ≤ r
k . A more careful analysis

from lemma 28 gives us a stronger but useful result: we can always find some x̄ ∈ G such that it
satisfies below two equations simultaneously,∥∥x̄− x?f,c,r∥∥∞ ≤ r

k
and 〈∇f(x?f,c,r), x− x̄〉 ≥ 0 for all x ∈ Dc,r. (91)

Basically, Eq (91) and Eq (90) tell us that, there always exists some grid point x̄ ∈ G close enough
to x?f,c,r so that, it has similar property as x?f,c,r. This motivates us to search for points as x̄ ∈ G.
One difficulty in searching for x̄ is that its characterization from the second inequality of Eq (91), as
it requires knowledge of the value∇f(x?f,c,r). Our strategy is to approximate the unknown gradient

value ∇f(x?f,c,r) by f̂(x̄). However, due to such approximation, we need additional regularization
to make the term to be non-negative. This motivates us to define the set S in line 4 of the algorithm 4.
As will be made more precise in lemma 29, we know that, with high probability, x̄ ∈ S and all points
in S is close to x̄ up to O(k−1). This crucial observation also motivates the construction of our
algorithm from line 5 to line 7. In line 5, we first find the center of the set S, i.e, xS and then in line
6 construct the set W centered at xS with an appropriate radius so that we can make sure both x̄
and thus x?f,c,r are within the box W with high probability. Finally, we carefully select x̂ from the
box W in line 7 to make sure the function value f(x̂) is also close to the minimum f(x?f,c,r).

Proof We start proving the proposition by considering the following high probability event. Denote
Γ to be the following event:

Γ =

{∥∥∥∇̂f(x)−∇f(x)
∥∥∥

2
≤ ra := 2σ

√
2

T

(
log

1

δ
+ 2d+ d log(2k + 1)

)
for all x ∈ G

}
.

The lemma below shows that Γ happens with probability at least 1− δ.

Lemma 27 We have P(Γ) ≥ 1− δ.

Proof First, let us for each x ∈ G, denote ε(x) := ∇̂f(x)−∇f(x). Then, since by our assumption
the noise vectors {∇̂f(x)(i)−∇f(x)}T1i=1 are mean 0, independent and is subgaussian with param-
eter σ2, we have that ε(x) is mean 0 and is subgaussian with parameter σ2/T . Therefore, we have,
for any fix x ∈ G,

P (‖ε(x)‖2 ≥ r
a) ≤ exp(2d) exp

(
−(ra)2T

8σ2

)
≤ δ(2k + 1)−d,
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where the last inequality above uses the definition of ra. Now, the desired claim of the lemma
follows from the fact that |G| = (2k + 1)d and the union bound of the above events.

Note that, since our condition on k in Eq (89), we get, T ≥ 2k2 log(2k + 1)r−2, and hence,

ra = 2σ

√
2

T

(
log

1

δ
+ 2d+ d log(2k + 1)

)
≤ 2σr

k

(
log

1

δ
+ 3d

) 1
2

. (92)

Lemma 28 There exists some x̄ ∈ G satisfying the below conditions:∥∥x̄− x?f,c,r∥∥∞ ≤ r

k
and

〈
∇f(x?f,c,r), x̄− x?f,c,r

〉
= 0. (93)

Any x̄ satisfying Eq (93) satisfies the crucial property below:〈
∇f(x?f,c,r), x− x̄

〉
≥ 0 for all x ∈ Dc,r. (94)

Proof To start with, let us define the set K? to be:

K? = {i ∈ {1, 2, . . . , d} : |(x?f,c,r)i − ci| = r},

where in above, (x?f,c,r)i denotes the ith coordinate of x?f,c,r. Now, using optimality condition of
x?f,c,r (actually complementary slackness condition from the KKT characterization of x?f,c,r), we
know that, (∇f(x?f,c,r))i = 0 for all i 6∈ K?. Now, denote the following sets:

RK
?

= {x ∈ Rd : xi = (x?f,c,r)i for all i ∈ K?}, GK?
= G ∩RK?

and DK?
= D ∩RK?

.

Then x?f,c,r ∈ DK?
. Now, denote x̄ = argminx∈GK?

∥∥∥x− x?f,c,r∥∥∥∞. Then, it is easy to see that,∥∥∥x̄− x?f,c,r∥∥∥∞ ≤ r
k since GK

?
forms a set of grid points of DK?

. Thus, we have,

〈
∇f(x?f,c,r), x̄− x?f,c,r

〉
=
∑
i∈K?

(∇f(x?f,c,r))i (x̄i − x?f,i)︸ ︷︷ ︸
0

+
∑
i 6∈K?

(∇f(x?f,c,r))i︸ ︷︷ ︸
0

(x̄i − x?f,i) = 0.

Now, the above identity and the optimality condition of x?f,c,r in Eq (90) together imply that〈
∇f(x?f,c,r), x− x̄

〉
=
〈
∇f(x?f,c,r), x− x?f,c,r

〉
≥ 0 for all x ∈ Dc,r.

Lemma 29 Let x̄ be any point in Dc,r satisfying Eq (93). Denote S to be the ‘candidate’ set S ⊆ G
in the line 4 of algorithm 4. Then, on event Γ, we have,

x̄ ∈ S and S ⊆

{
x ∈ Dc,r : ‖x− x̄‖2 ≤

4r

λk

(
2σ

(
log

1

δ
+ 3d

) 1
2

+Hd
1
2

)}
. (95)
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Proof Throughout the proof, we assume event Γ happens. Note the upper bound on ra in Eq (92),
we know that, on event Γ,

sup
x∈G

∥∥∥∇̂f(x)−∇f(x)
∥∥∥

2
≤ 2σr

k

(
log

1

δ
+ 3d

) 1
2

. (96)

To show the desired result, let us define Dex
c,r to be the following subset of D,

Dex
c,r =

{
x : ‖x− x̄‖2 >

4r

λk

(
2σ

(
log

1

δ
+ 3d

) 1
2

+Hd
1
2

)}
.

By definition of S, it suffices to show that, for all x ∈ Dex
c,r,〈

∇̂f(x̄), x− x̄
〉

+
λ

2
‖x− x̄‖22 > 0 and

〈
∇̂f(x), x̄− x

〉
+
λ

2
‖x− x̄‖22 < 0. (97)

To do so, let x̄ ∈ Dc,r satisfying Eq (93). Then for any x ∈ Dc,r, using Eq (94), we get,

〈∇f(x̄), x− x̄〉 ≥
〈
∇f(x̄)−∇f(x?f,c,r), x− x̄

〉
. (98)

Now, note that x̄ satisfies
∥∥∥x̄− x?f,c,r∥∥∥∞ ≤ r

k . Since the function f is smooth, we get that,

∥∥∇f(x̄)−∇f(x?f,c,r)
∥∥

2
‖x− x̄‖2 ≤ H

∥∥x̄− x?f,c,r∥∥2
≤ H
√
d
∥∥x̄− x?f,c,r∥∥∞ ≤ Hr

√
d

k
.

Hence, by Cauchy Schwartz inequality, we further get,

〈
∇f(x̄)−∇f(x?f,c,r), x− x̄

〉
≥ −

∥∥∇f(x̄)−∇f(x?f,c,r)
∥∥

2
‖x− x̄‖2 ≥ −

Hr
√
d

k
‖x− x̄‖2 .

(99)
Noticing the definition of Dex

c,r, Eq (98) and Eq (99) together imply that, for all x ∈ Dex
c,r,

〈∇f(x̄), x− x̄〉+
λ

4
‖x− x̄‖22 ≥ −

Hr
√
d

k
‖x− x̄‖2 +

λ

4
‖x− x̄‖22 ≥ 0. (100)

Now, using Cauchy Schwartz inequality, we get that, for all x ∈ Dex
c,r,〈

∇̂f(x̄)−∇f(x̄), x− x̄
〉

+
λ

4
‖x− x̄‖22 ≥ −

∥∥∥∇̂f(x̄)−∇f(x̄)
∥∥∥

2
‖x− x̄‖2 +

λ

4
‖x− x̄‖22 > 0

(101)
Now, inequality (100) and (101) gives that for all x ∈ Dex

c,r,〈
∇̂f(x̄), x− x̄

〉
+
λ

2
‖x− x̄‖22

=

(
〈∇f(x̄), x− x̄〉+

λ

4
‖x− x̄‖22

)
+

(〈
∇̂f(x̄)−∇f(x̄), x− x̄

〉
+
λ

4
‖x− x̄‖22

)
> 0

(102)
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This gives the first part of Eq (97). Now, since the function f(·) is λ strongly convex, for all
x ∈ Dc,r, we have,

〈∇f(x̄)−∇f(x), x̄− x〉 ≥ λ ‖x− x̄‖22 .

Together with Eq (100), it shows that, for all x ∈ Dex
c,r,

〈∇f(x), x̄− x〉+
3λ

4
‖x− x̄‖22 ≤ λ ‖x− x̄‖

2
2 − 〈∇f(x̄)−∇f(x), x̄− x〉 ≤ 0. (103)

Now, using again by Cauchy Schwartz inequality, we get for all x ∈ Dex
c,r,〈

∇̂f(x̄)−∇f(x̄), x− x̄
〉
− λ

4
‖x− x̄‖22 ≤

∥∥∥∇̂f(x̄)−∇f(x̄)
∥∥∥

2
‖x− x̄‖2 −

λ

4
‖x− x̄‖22 < 0.

(104)
Thus, for all x ∈ Dex

c,r, the inequality below holds〈
∇̂f(x), x̄− x

〉
+
λ

2
‖x− x̄‖22

=

(
〈∇f(x̄), x− x̄〉+

3λ

4
‖x− x̄‖22

)
+

(〈
∇̂f(x̄)−∇f(x̄), x− x̄

〉
− λ

4
‖x− x̄‖22

)
< 0.

This gives the second part of Eq (97). As discussed previously, this shows that x̄ ∈ S.

The lemma above has a lot of nice implications. Indeed, denote W to be the set that we construct in
the 6th line of the algorithm. In fact, using Eq (93) and Eq (95), on event Γ, the distance between
xS and x?f,c,r can be upper bounded by,

∥∥xS − x?f,c,r∥∥2
≤
∥∥xS − x̄∥∥

2
+
∥∥x̄− x?f,c,r∥∥2

≤ 10r

λk

(
σ

(
log

1

δ
+ 3d

) 1
2

+Hd
1
2

)
= r̂.

By definition, this means that x?f,c,r ∈ W on event Γ. Finally, we show that, our careful choice of
x̂ ∈W makes f(x̂) is close to f(x?f,r,c) close up to O((r̂)2).

Lemma 30 Assume that k satisfies Eq (89). Then, r̂ < r, and on event Γ, x̂ satisfies,

f(x̂)− f(x?f,c,r) ≤ 2Hdr̂2.

Proof We prove the desired inequality by showing the following crucial property of x̂:〈
∇f(x?f,c,r), x̂− x?f,c,r

〉
= 0 and

∥∥x̂− x?f,c,r∥∥2
≤ 2
√
dr̂. (105)

Given above equation, the desired inequality follows, since by smoothness of f ,

f(x̂)− f(x?f,c,r) ≤
〈
∇f(x?f,c,r), x̂− x?f,c,r

〉
+
H

2

∥∥x̂− x?f,c,r∥∥2

2
≤ 2Hdr̂2,

The rest of the proof is thus devoted to proving Eq (105). Note that, the second inequality of
Eq (105) follows easily since on Γ, x?f,c,r ∈ W and the diameter of W is exactly 2

√
dr̂. Now, we

prove the first equality in Eq (105). To do so, denote K? and K̂ respectively as follows:

K? = {i ∈ {1, 2, . . . , d} : |(x?f,c,r)i − ci| = r} and K̂ = {i ∈ {1, 2, . . . , d} : |x̂i − ci| = r}.
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Now, we show K? ⊆ K̂. Suppose on the contrary, then, consider some x such that xi = x̂i for
i ∈ K1 ∪ (K?)c and xi = (x?f,c,r)i for i ∈ K? \K1. Then x ∈W and the set Kx defined below,

Kx := {i ∈ {1, 2, . . . , d} : |xi − ci| = r} ⊇ K? ∪ K̂,

and hence Kx contains K. This contradicts the definition of x̂. Thus, we have, K? ⊆ K̂. Now, the
optimality condition of x? gives that (∇f(x?f,c,r))i = 0 for all i 6∈ K?. In addition, if k satisfies
Eq (89), then r̂ < r. Since both x?f,c,r and x̂ belong to W , we know that, (x?f,c,r)i = x̂i for all
i ∈ K?. Together, it gives the first part of Eq (105), as〈
∇f(x?f,c,r), x̂− x?f,c,r

〉
=
∑
i∈K?

(∇f(x?f,c,r))i (x̂i − (x?f,c,r)i)︸ ︷︷ ︸
0

+
∑
i 6∈K?

(∇f(x?f,c,r))i︸ ︷︷ ︸
0

(x̂i−(x?f,c,r)i) = 0.

The desired claim of the proposition now follows easily from Lemma 27 and Lemma 30.

Motivated by Proposition 25, it becomes important to understand when such k exists in Eq (89)
and how large it is.

Lemma 31 Assume n is large enough satisfying

nr2 ≥ (6B)2(d+2), where B =
10

λ

(
σ

(
log

1

δ
+ 3d

) 1
2

+Hd
1
2

)
. (106)

Denote k(r) =
(
γ
(
nr2
)) 1

d+2 and k? =
⌊

1
3k(r)

⌋
. Then k? ∈ N, and k? satisfies Eq (89).

Proof Note that, γ(x) ≥
√
x whenever x ≥ 3. Thus, by our assumption on n, we get that,(

γ(nr2)
) 1
d+2 ≥ 6B ≥ 6.

This immediately gives us that k? ≥ 1 and k? satisfies the second inequality of Eq (89). Now, we
show that k? satisfies the first inequality of Eq (89). In fact, when k = k?, we have,

(2k + 1)d
⌈
2k2 log(2k + 1)

⌉
≤ (3k)d+2 log(3k)d+2 ≤ (k(r))d+2 log(k(r))d+2 ≤ nr2,

where the last inequality follows from the fact that, for any x > 0, γ(x) log γ(x) ≤ x.

Proposition 25 and Lemma 31 together immediately give the corollary below.

Corollary 32 Given any fix c ∈ Rd and r ∈ [0, 1], set k =
⌊

1
3

(
γ
(
nr2
)) 1

d+2

⌋
, and T =

⌊
n

(2k+1)d

⌋
.

Assume n is large enough satisfying Eq (106). Then if we denote ĉ, r̂ and x̂ to be the output of
Algorithm 4 when we input (c, k, T, r) as the input parameters, we have,

r̂ ≤ min{r, 6Br
d
d+2n−

1
d+2 log(nr2)

1
d+2 }, where B =

10

λ

(
σ

(
log

1

δ
+ 3d

) 1
2

+Hd
1
2

)
.

In addition, we get that,

P (f(x̂)− f(x− f, c, r?) ≤ γ?) ≥ 1− δ,

where
γ? = 2Hdr̂2 ≤ 2Hd(6B)2r

2d
d+2n−

2
d+2 log(nr2)

2
d+2 .
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G.3. Analysis of Algorithm 5: Multi-Stage Analysis

In this section, we show that, with careful choice of input parameters (c1, r1, k1, T1) and updat-
ing rule, algorithm 5 returns some minimax estimator x̂. In essence, algorithm 5 recursively uses
algorithm 4 to build smaller confidence region of the optimum x?f through iterations. Indeed, an
important message from proposition 25 shows that, given any δ > 0, with appropriate choice of pa-
rameters, one can find some rectangular W such that x?f lies inside the rectangular with probability
at least 1 − δ. This means that, after one round, one can ‘localize’ the search of the optimum x?f
by searching the optimum of f inside W . Now, treating W as the original D, one can thus get an
improved rate of convergence in the second round. Finally, we note that such ‘localized’ search can
be recursively applied in all rounds from the first to the last round.

To be clear about how we specify the updating rule in line 3 of the algorithm 5, we summarize it
as follows: given the output parameters (ĉi, r̂i), we update (ci+1, ri+1, ki+1, Ti+1) via algorithm 6.
The next proposition shows that with appropriate choice of the initial parameter, we have nice
convergence guarantees for the output of algorithm 5.

Algorithm 6 Updating Rule in Algorithm 5

Input: ĉi ∈ Rd and r̂i ∈ R+.
(i) Update ci+1 coordinate-wisely via:

ci+1,j = min{1− r̂i,max{ri, ĉi,j}},

where ci,j and ci+1,j denote the jth coordinate of ci and ci+1.
(ii) Update ri+1 as ri+1 = r̂i.
(iii) Update ki+1 to be the largest k ∈ N such that

(2k + 1)d
⌈
2k2 log(2k + 1)

⌉
≤ nr2

i . (107)

If no such k exists, return FAIL.
(iv )Update Ti+1 to be Ti+1 =

⌊
n

(2ki+1)d

⌋
.

Proposition 33 Let D = [0, 1]d, and we are given the confidence level δ > 0. We initialize the
initial parameters as follows: set c1 = 1

2 · 1, r1 = 1
2 , and set k1 to be the largest k ∈ N (if exists)

such that, (2k + 1)d
⌈
2k2 log(2k + 1)

⌉
≤ nr2

1 and T1 =
⌊

n
(2k1+1)d

⌋
. Consider algorithm 5 that

uses algorithm 6 to be the updating rule. Denote x̂M and rM+1 = r̂M to be the output of estimate
and radius from algorithm 5. Now, assuming that the {ki}Mi=1 exist for Eq (107) and satisfy the
following lower bounds:

ki >
10

λ

(
σ

(
log

M

δ
+ 3d

) 1
2

+Hd
1
2

)
for all 1 ≤ i ≤M. (108)

Then, we have,
P
(
f(x̂M )− f(x?f ) ≤ 2Hdr2

M+1

)
≥ 1− δ.

Proof Note that, when M = 1, proposition 33 reduces to proposition 25. When M > 1, note that,
the definition of k1 and T1 takes the same form as that in Eq (89). In addition, the condition of k1 in
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Eq (108) changes by substituting δ by δ/M . Hence, denoting W ′1 = {x ∈ D : ‖x− ĉ1‖∞ ≤ r̂1},
Proposition 25 gives P(x?f ∈W ′1) ≥ 1−δ/M . Now, denote similarlyW1 = {x : ‖x− c2‖∞ ≤ r2}.
Then, by definition of c2 and r2, W1 ⊆ W ′1 ⊆ D, and hence P(x?f ∈ W1) ≥ P(x?f ∈ W ′1) ≥
1− δ/M .

Now, in the second round of sampling and estimation, the algorithm essentially view W1 as
the entire domain D and sample the points using the same strategy as that in the first round. As
the noise vectors in the second round is independent of the first one, Proposition 25 gives that
P
(
x?f ∈W2 | x?f ∈W1

)
≥ 1 − δ/M , where W2 = {x : ‖x− c3‖∞ ≤ r3}. Indeed, the same

conclusion holds for the ith round: denoting Wi analogously to be Wi = {x : ‖x− ci+1‖ ≤ ri+1},
we get, P

(
x?f ∈Wi+1 | x?f ∈Wi

)
≥ 1 − δ/M for all 1 ≤ i ≤ M − 1. Thus, denoting via

convection that W0 = D, we get,

P(x?f ∈WM ) ≥ ΠM
i=1

[
P
(
x?f ∈Wi | x?f ∈Wi−1

)]
≥ (1− δ/M)M ≥ 1− δ.

Now, we introduce the notation Γ = {x?f ∈ WM}. Then, P(Γ) ≥ 1− δ. Now the requirements on
k in Eq (108) guarantees that the size of Wi is strictly decreasing when 1 ≤ i ≤ M . Hence, we
can prove similarly to lemma 30 to get that, on event Γ, f(x̂M )− f(x?f ) ≤ 2Hdr̂2

m for our careful
choice of the estimator x̂M ∈W ′M .

Motivated by Proposition 33, it becomes important to understand when ki ∈ N exists to satisfy
both Eq (107) and Eq (108).

Lemma 34 Assume n is large enough satisfying the bounds below:

log logn > M log

(
1 +

2

d

)
+ log (2M log(6B log n) + (2d+ 5) log(6B)) , (109)

where we denote B to be B = 10
λ

(
σ
(
log M

δ + 3d
) 1

2 +Hd
1
2

)
. Then, the sequence {ri}Mi=1,

{ki}Mi=1 and {Ti}Mi=1 are well defined via algorithm 6. In addition, the sequence {ki}Mi=1 satisfy
Eq (108). Finally, the output {ri}Mi=1 satisfy the bound below:

ri ≤ (6B)
d+2
2

(
1−( d

d+2)
M
)
D

1
2

(
1−( d

d+2)
M
)

n n
− 1

2

(
1−( d

d+2)
M
)

for all 1 ≤ i ≤M.

Proof We prove the desired claim of the lemma via induction. Our strategy is to show via induction
that the below hypothesis hold for all 1 ≤ i ≤M :

(i)nr2
i > (6B)2(d+2) (ii)ki is well defined and ki > B (110)

(iii) ri ≤ min

{
1, (6B)

d+2
2

(
1−( d

d+2)
i−1
)
(log n)

1
2

(
1−( d

d+2)
i−1
)
n
− 1

2

(
1−( d

d+2)
i−1
)}

. (111)

We first show the base case i = 1. Note that, the first part of Eq (110) is implied by the assumption
on n, the second part of Eq (110) follows from the first part and corollary 32, and Eq (111) is
trivial when i = 1. Now, for some i < M , assuming that the induction hypothesis holds for all
j ∈ {1, 2, . . . , i}, we show that the hypothesis holds for i + 1. We first show the second part of
Eq (110) for i + 1. Indeed, by induction hypothesis, we know that, the first inequality of Eq (110)
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is true for i, and thus the second part of Eq (110) follows from a direct application of corollary 32
(by substituting δ by δ/M and r by ri there). Next, we show Eq (111) holds for i + 1. Again, we

know from corollary 32 that ri+1 ≤ ri ≤ 1 and the bound that ri+1 ≤ (6B)r
d
d+2

i n−
1
d+2 (log n)

1
d+2 .

Now, using the induction hypothesis of the upper bound on ri, we get,

ri+1 ≤ 6B

(
(6B)

d+2
2

(
1−( d

d+2)
i−1
)

(log n)
1
2

(
1−( d

d+2)
i−1
)
n
− 1

2

(
1−( d

d+2)
i−1
)) d

d+2

(log n)
1
d+2n−

1
d+2

= (6B)
d+2
2

(
1−( d

d+2)
i
)

(log n)
1
2

(
1−( d

d+2)
i
)
n
− 1

2

(
1−( d

d+2)
i
)
,

so we have shown Eq (111) for i+ 1. Finally, we show the first part of Eq (110) for i+ 1. Note that,
by definition of {ri}Mi=1, we know that,

ri+1 = r1 ·Πi
j=1

rj+1

rj
= r1 ·Bi · 1

Πi
j=1kj

=
Bi

2Πi
j=1kj

.

Hence, the first part of Eq (119) for i+ 1 is equivalent to

nB2i > 4(6B)2(d+2) ·Πi
j=1k

2
j . (112)

To establish Eq (121), note first that, by definition of kj , we have, for all j ≤ i,

kj ≤
1

3
(γ(nr2

j ))
1
d+2 ≤ 1

3
(nr2

j )
1
d+2 .

Now, using Eq (121) from the induction hypothesis for j ≤ i, we get that,

kj ≤ (nr2
j )

1
d+2 ≤ (6B)

(
1−( d

d+2)
i
)
n

1
d+2

( d
d+2

)j−1

(log n)
1
d+2

(
1−( d

d+2)
i
)
≤ 6Bn

1
d+2

( d
d+2

)j−1

(log n).

Hence, to prove Eq (121), it suffices to show that, for all 1 ≤ i ≤M ,

nB2i > 4(6B)2(d+2)(6B log n)2in
2
d+2

∑i−1
j=0(

d
d+2)

j

= 4(6B)2(d+2)(6B log n)2in1−( d
d+2)

i

.

Note that, it suffices if n is large enough satisfying the bound below,

n( d
d+2)

M

> 4(6B)2(d+2)(6B log n)2M ,

which would suffice is n satisfies

log log n > M log

(
1 +

2

d

)
+ log (2M log(6B log n) + (2d+ 5) log(6B)) .

Now, Proposition 33 and Lemma 34 together immediately give the corollary below.

Corollary 35 Let D = [0, 1]d. Consider algorithm 5. Suppose we use the same initialization rule
as that in Proposition 33 and use Algorithm 6 to be the updating rules for algorithm 5, then, when
n is large enough so that it satisfies Eq (109), then the output x̂M from algorithm 5 satisfies

P
(
f(x̂M )− f(x?f ) ≤ γ?M

)
≥ 1− δ

with

γ?M := 2Hd(6B)
(d+2)

(
1−( d

d+2)
M
)
(log n)

(
1−( d

d+2)
M
)
n
−
(

1−( d
d+2)

M
)
.
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Appendix H. Smooth Function with Zeroth Order Oracle

H.1. Description of Algorithms

In this section, we propose two generic algorithms: algorithm 7 parameterized by parameters
(c, r, k, T ) ∈ D × R+ × N × N and algorithm 8 that builds from algorithm 7. We note here
that, algorithm 8 in essence, builds from M times of repeated calls of algorithm 7. As will be
shown immediately in the later subsections, it turns out that the two algorithms with careful choice
of parameters return the minimax estimator in single and multi rounds respectively.

Algorithm 7 Generic Routine for One Stage Smooth Functions FH,λ (Zeroth-order Oracle)

Input: Prior knowledge on λ,H ∈ R+ satisfying λ ≤ H and the noise level σ ∈ R+. User
specifies the sampling center c ∈ D, radius r ∈ R+, grid size parameter k ∈ N, the sampling
times T ∈ N and the confidence level δ ∈ (0, 1].

1: Compute the grid points G = G(c, r, k).
2: At each point x ∈ G, query the first oracle T times and denote each sample function value via
{f̂(x)(1), f̂(x)(2), . . . , f̂(x)(T )}.

3: Compute the function value estimate at each point x ∈ G via f̂(x) := 1
T

∑T
i=1 f̂(x)(i).

4: Compute the estimate x̂ ∈ G, defined as, x̂ := argminx∈G f̂(x).

5: Return the estimator x̂ and the confidence radius r̂ = r
k ·
(

2σ
λ

(
log 2

δ + d
) 1

2 + H
λ d
) 1

2
.

Algorithm 8 Generic Routine for Multi-stage Smooth Functions FH,λ (Zeroth-order Oracle)

Input: Prior knowledge on λ,H ∈ R+ satisfying λ ≤ H and the noise level σ ∈ R+ and
number of rounds R ∈ N+. Initialization of parameters (c1, r1, k1, T1) ∈ Rd × R+ × N × N.
User specifies the confidence level δ ∈ (0, 1] and the updating rule that used in line (3) of the
algorithm.

1: for i = 1 to M do
2: Run algorithm 4 with input parameters (ci, ri, ki, Ti). Denote the output to be x̂i, confidence

radius r̂i.
3: Update (ci+1, ri+1, ki+1, Ti+1). The updating rule may take x̂i and r̂i as input.
4: end for
5: return x̂M as estimate of x?f and the radius rM+1.

H.2. Analysis of Algorithm 7: Single-Stage Analysis

In this section, we show that a single call of algorithm 7 with careful choice of input parameters
(c, r, k, T ) returns some estimator x̂ that is minimax optimal. To serve for the purpose for latter
discussion on multi-stage algorithm, in this section, we slightly generalize the domain of interest
Dc,r = {x ∈ Rd : ‖x− c‖∞ ≤ r} and denote x?f,c,r the unique minimum of f on domain Dc,r.
We consider finding the minimax estimator x̂ ∈ Dc,r for x?f,c,r evaluated by f(x̂) − f(x?f,c,r).
Substituting c = 1

2 · 1 and r = 1
2 gives the result for the single-stage algorithm for the original

domain D = [0, 1]d.
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Proposition 36 Given any fix c ∈ Rd and r ∈ (0, 1], suppose there exists some k ∈ N satisfying

(2k + 1)d
⌊
2k4 log(2k + 1)

⌋
≤ nr4 and k ≥

(
2σ

λ

(
log

2

δ
+ d

) 1
2

+
H

λ
d

) 1
2

. (113)

Set T =
⌊

n
(2k+1)d

⌋
. Then, if we denote r̂ and x̂ to be the output from algorithm 7 when inputting

(c, k, T, r) as above, then, we have r̂ < r and

P
(
f(x̂)− f(x?f,c,r) ≤

1

2
λr̂2 and

∥∥x?f,c,r − x̂∥∥∞ ≤ r̂) ≥ 1− δ.

Remark 37 Before we give the proof of proposition 36, we give some high-level intuitions why
algorithm 7 should work. As shown previously in lemma 28, we know that there always exists some
point x̄ ∈ G satisfying∥∥x̄− x?f,c,r∥∥∞ ≤ r

k
and

〈
∇f(x?f,c,r), x̄− x?f,c,r

〉
= 0.

It turns out that such x̄ also has function value f(x̄) close to f(x?f,c,r) up to O(r̂2). Since x̂ is

defined to be the smallest point in grid that minimizes f̂ , intuitively it makes sense that f(x̂) should
also be as good as f(x?f,c,r) when the sample size n is large enough.

Proof We first recall lemma 28 in the proof of proposition 25.

Lemma 38 There exists some x̄ ∈ G satisfying the below conditions:∥∥x̄− x?f,c,r∥∥∞ ≤ r

k
and

〈
∇f(x?f,c,r), x̄− x?f,c,r

〉
= 0. (114)

Now, take any point x̄ ∈ G satisfying Eq (114). Note first that, by smoothness assumption of the
objective function f , we have,

f(x̄)− f(x?f,c,r) ≤
〈
∇f(x?f,c,r)), x̄− x?f,c,r

〉
+
H

2

∥∥x̄− x?f,c,r∥∥2

2
≤ Hr2d

2k2
.

Now, let us consider the following event:

Γ =

{∣∣∣f̂(x)− f(x)
∣∣∣ ≤ ra := σ

√
2

T
log

2(2k + 1)d

δ
for all x ∈ G

}
,

The next lemma shows that Γ happens with probability at least 1− δ.

Lemma 39 We have P(Γ) ≥ 1− δ.

Proof First, for each x ∈ G, denote ε(x) := f̂(x)−f(x). Then, since by our assumption, the noise
{f̂(x)− f(x)}Tx=1 is mean 0, independent and subgaussian with parameter σ2, we have that ε(x) is
mean 0 and subgaussian with parameter σ2/T . Therefore, for any fix x ∈ G,

P (|ε(x)| ≥ ra) ≤ 2 exp

(
−(ra)2T

2σ2

)
≤ δ(2k + 1)−d.,
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where the first inequality above uses the subgaussianity of ε(x), and the second inequality uses the
definition of k and T . Now, the desired claim of the lemma follows from the fact that |G| = (2k+1)d

and the union bound of the above events.

Since the assumption on k, T shows that T ≥ 2k4 log(2k + 1)r−4, and therefore, we have,

ra = σ

(
2 log 2

δ + 2d log(2k + 1)

T

) 1
2

≤ σr2

k2

(
log

2

δ
+ d

) 1
2

,

this shows that, on Γ, for all x ∈ Dc,r such that
∥∥∥x− x?f,c,r∥∥∥

2
≥ r̂, we have,

f(x)− f(x?f,c,r) ≥
〈
∇f(x?f,c,r)), x− x?f,c,r

〉
+
λ

2

∥∥x− x?f,c,r∥∥2

2
≥ λ

2
r̂2 ≥ Hr2d

2k2
+ 2ra.

Hence, on event Γ, we have, for all x ∈ D satisfying
∥∥∥x− x?f,c,r∥∥∥

2
≥ r̂, we have,

f̂(x)− f̂(x̄) =
(
f̂(x)− f(x)

)
︸ ︷︷ ︸

≥−ra

+
(
f(x)− f(x?f,c,r)

)︸ ︷︷ ︸
≥Hr2d

2k2
+2ra

+
(
f(x?f,c,r)− f(x̄)

)︸ ︷︷ ︸
≥−Hr2d

2k2

+
(
f(x̄)− f̂(x̄)

)
︸ ︷︷ ︸

≥−ra

> 0,

which gives us that on event Γ, we must have∥∥x̂− x?f,c,r∥∥2
≤ r̂ ⇔ x?f,c,r ∈W.

Finally, since always f̂(x̂) ≤ f̂(x̄), on Γ, we have below upper bound on f(x̂) on event Γ:

f(x̂)−f(x?f,c,r) = f(x̂)− f̂(x̂)︸ ︷︷ ︸
≤ra

+ f̂(x̂)− f̂(x̄)︸ ︷︷ ︸
≤0

+ f̂(x̄)− f(x̄)︸ ︷︷ ︸
≤ra

+ f(x̄)− f(x?f,c,r))︸ ︷︷ ︸
≤Hr2d

2k2

≤ Hr2d

2k2
+2ra.

The desired claim of the proposition follows from Hr2d
2k2

+ 2ra ≤ λ
2 r̂

2.

Motivated by Proposition 36, it becomes important to understand when such k exists in Eq (113)
and how large it is.

Lemma 40 Assume n is large enough satisfying

nr4 ≥ (6B)2(d+4), where B = 12

(
2σ

λ

(
log

2

δ
+ d

) 1
2

+
H

λ
d

) 1
2

. (115)

Denote k(r) =
(
γ
(
nr4
)) 1

d+4 and k? =
⌊

1
3k(r)

⌋
. Then k? ∈ N, and k? satisfies Eq (113).

Proof Note that, γ(x) ≥
√
x whenever x ≥ 3. Thus, by our assumption on n, we get that,(

γ(nr4)
) 1
d+4 ≥ 6B ≥ 6.
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This immediately gives us that k? ≥ 1 and k? satisfies the second inequality of Eq (113). Now, we
show that k? satisfies the first inequality of Eq (113). In fact, when k = k?, we have,

(2k + 1)d
⌈
2k4 log(2k + 1)

⌉
≤ (3k)d+4 log(3k)d+4 ≤ (k(r))d+4 log(k(r))d+4 ≤ nr4,

where the last inequality follows from the fact that, for any x > 0, γ(x) log γ(x) ≤ x.

Proposition 36 and Lemma 40 together immediately give us the corollary below.

Corollary 41 Given any fix c ∈ Rd and r ∈ [0, 1], set k =
⌊

1
3γ(nr4)

1
d+4

⌋
and T =

⌊
n

2k+1d

⌋
.

Assume n is large enough satisfying Eq (115). Then, if we denote r̂ and x̂ to be the output of of
Algorithm 7 when we input (c, k, T, r) as the input parameters, we have,

r̂ ≤ min{r, 6Br
d
d+4n−

1
d+4 log(nr4)

1
d+4 }, where B =

(
2σ

λ

(
log

2

δ
+ d

) 1
2

+
H

λ
d

) 1
2

.

In addition, we get that,
P
(
f(x̂)− f(x?f,c,r) ≤ γ?

)
≥ 1− δ,

where
γ? =

1

2
λr̂2 ≤ (6B)2r

2d
d+4n−

2
d+4 log(nr4)

2
d+4 .

H.3. Analysis of Algorithm 8: Multi-Stage Analysis

In this section, we show that with careful choice of input parameters (c1, r1, k1, T1) and the updating
rule, algorithm 8 returns some estimator x̂ that is minimax optimal. To do so, our strategy is similar
to the strategy used in algorithm 5. In fact, an important message from proposition 36 shows that,
given any δ > 0, with appropriate choice of parameters, one can find some rectangular W such that
x?f lies inside the rectangular with probability at least 1 − δ. This means that, after one round, one
can ‘localize’ the search of the optimum x?f by searching the optimum of f inside W . Now, treating
W as the original D, one can thus get an improved rate of convergence in the second round.

To be clear about how we specify the updating rule in line 3 of the algorithm 5, we summarize it
as follows: given the output parameters (ĉi, r̂i), we update (ci+1, ri+1, ki+1, Ti+1) via algorithm 6.
The next proposition shows that with appropriate choice of the initial parameter, we have nice
convergence guarantees for the output of algorithm 5.

Below proposition quantifies such ‘localization’ idea and shows us that an appropriate choice
of the initial parameter (c1, r1, k1, T1) and appropriate choice of the updating rule gives back some
estimator that optimal minimax rate.

Proposition 42 Let D = [0, 1]d, and we are given the confidence level δ > 0. We initialize the
initial parameters as follows: set c1 = 1

2 · 1, r1 = 1
2 , and set k1 to be the largest k ∈ N (if exists)

such that, (2k + 1)d
⌈
2k4 log(2k + 1)

⌉
≤ nr4

1 and T1 =
⌊

n
(2k1+1)d

⌋
. Consider algorithm 8 that

uses algorithm 9 to be the updating rule. Denote x̂M and rM+1 = r̂M to be the output of estimate
and radius from algorithm 5. Now, assuming that the {ki}Mi=1 exist for Eq (107) and satisfy the
following lower bounds:

ki ≥

(
2σ

λ

(
log

2M

δ
+ d

) 1
2

+
H

λ
d

) 1
2

. for all 1 ≤ i ≤M. (117)
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Algorithm 9 Updating Rule in Algorithm 8

Input: x̂i ∈ Rd and r̂i ∈ R+.
(i) Update ci+1 coordinate-wisely via:

ci+1,j = min{1− r̂i,max{ri, x̂i,j}},

where x̂i,j and ci+1,j denote the jth coordinate of x̂i and ci+1.
(ii) Update ri+1 as ri+1 = r̂i.
(iii) Update ki+1 to be the largest k ∈ N such that

(2k + 1)d
⌈
2k4 log(2k + 1)

⌉
≤ nr4

i . (116)

If no such k exists, return FAIL.
(iv )Update Ti+1 to be Ti+1 =

⌊
n

(2ki+1)d

⌋
.

Then, we have,

P
(
f(x̂M )− f(x?f ) ≤ 1

2
λr2

M+1

)
≥ 1− δ.

Proof Note that, when M = 1, proposition 42 reduces to proposition 36. When M > 1, note that,
the definition of k1 and T1 take the same form as that in Eq (113) However, the condition of k1 in
Eq (117) changes by substituting δ by δ/M . Denote W ′1 = {x ∈ D : ‖x− x̂1‖∞ ≤ r̂1}, then
proposition 36 asserts that P(x?f ∈ W1) ≥ 1 − δ/M . Now, denote W1 = {x : ‖x− x2‖∞ ≤ r2}.
Then W1 ⊆ W ′1 ⊆ D by definition of x̂′1 and the fact that r̂1 ≤ r. Thus, we have P(x?f ∈ W1) ≥
P(x?f ∈ W ′1) ≥ 1 − δ/M . Now, in the second round of sampling and estimation, the algorithm
essentially view W1 as the entire domain D and sample the points using the same strategy as that
in the first round. Since the noise in the second round is independent of the noise in the first
round, by proposition 36 that P

(
x?f ∈W2 | x?f ∈W1

)
≥ 1 − δ/M , where we define analogously

W2 = {x : ‖x− x3‖∞ ≤ r3}. The same reasoning applies to any round, which shows that,

we have P
(
x?f ∈Wi+1 | x?f ∈Wi

)
≥ 1 − δ/M , where we define Wi analogously by Wi = {x :

‖x− xi+1‖∞ ≤ ri+1}. In addition to that, in theM th round, with the same reasoning as proposition

36, one can easily show that P
(
f(x̂M )− f(x?f ) ≤ λ

2 r
2
M+1 | x?f ∈WM−1

)
≥ 1 − δ/M . Thus, if

we denote via convection that W0 = D, then we have,

P
(
f(x̂M )− f(x?f ) ≤ λ

2
r2
M+1

)
= P

(
f(x̂M )− f(x?f ) ≤ λ

2
r2
M+1 | x?f ∈WM−1

)
·ΠM−1

i=1

[
P
(
x?f ∈Wi | x?f ∈Wi−1

)]
≥ (1− δ/M)M ≥ 1− δ,

which gives the desired claim of the proposition.

Motivated by Proposition 42, it becomes important to understand when ki ∈ N exists to satisfy
both Eq (116) and Eq (117).

82



MINIMAX BOUNDS ON STOCHASTIC BATCHED CONVEX OPTIMIZATION

Lemma 43 Assume n is large enough satisfying the bounds below:

log logn ≥M log

(
1 +

4

d

)
+ log (2M log(12B log n) + (2d+ 6) log(6B)) . (118)

where we denote B to be B =
(

2σ
λ

(
log 2

δ + d
) 1

2 + H
λ d
) 1

2
. Then, the sequence {ri}Mi=1, {ki}Mi=1

and {Ti}Mi=1 are well defined via algorithm 9. In addition, the sequence {ki}Mi=1 satisfy Eq (117).
Finally, the output {ri}Mi=1 satisfy the bound below:

ri ≤ (6B)
d+4
4

(
1−( d

d+4)
M
)
D

1
4

(
1−( d

d+4)
M
)

n n
− 1

4

(
1−( d

d+4)
M
)

for all 1 ≤ i ≤M.

Proof We prove the desired claim of the corollary via induction. Our strategy is to show via
induction that the below hypothesis hold for all 1 ≤ i ≤M .

(i)nr4
i ≥ (6B)2(d+4) (ii)ki ∈ N and ki ≥ B (119)

(iii) ri ≤ min

{
1, (6B)

d+4
4

(
1−( d

d+4)
i−1
)
(log n)

1
4

(
1−( d

d+4)
i−1
)
n
− 1

4

(
1−( d

d+4)
i−1
)}

. (120)

We first show the base case i = 1. Note that, the first part of Eq (119) is implied by the assumption
on n, the second part of Eq (119) follows from the first part and corollary 41, and Eq (120) is
trivial when i = 1. Now, for some i < M , assuming that the induction hypothesis holds for all
j ∈ {1, 2, . . . , i}, we show that the hypothesis holds for i + 1. We first show the second part of
Eq (119) for i + 1. Indeed, by induction hypothesis, we know that, the first inequality of Eq (119)
is true for i, and thus the second part of Eq (119) follows from a direct application of corollary 41
(by substituting δ by δ/M and r by ri there). Next, we show Eq (120) holds for i + 1. Again, we

know from corollary 41 that ri+1 ≤ ri ≤ 1, and the bound that, ri+1 ≤ 6Br
d
d+4

i n−
1
d+4 (log n)

1
d+4 .

Now, using the induction hypothesis of the upper bound on ri, we get,

ri+1 ≤ 6B

(
(6B)

d+4
4

(
1−( d

d+4)
i−1
)

(log n)
1
4

(
1−( d

d+4)
i−1
)
n
− 1

4

(
1−( d

d+4)
i−1
)) d

d+4

(log n)
1
d+4n−

1
d+4

= (6B)
d+4
4

(
1−( d

d+4)
i
)

(log n)
1
4

(
1−( d

d+4)
i
)
n
− 1

4

(
1−( d

d+4)
i
)
,

so we have shown the Eq (120) for i+ 1. Finally, we show the first part of Eq (119) for i+ 1. Note
that, by definition of {ri}Mi=1,

ri+1 = r1 ·Πi
j=1

rj+1

rj
= r1 ·Bi · 1

Πi
j=1kj

=
Bi

2Πi
j=1kj

.

Hence, the first part of Eq (119) for i+ 1 is equivalent to

nBi ≥ 16 · (6B)2(d+4) ·Πi
j=1k

4
j . (121)

To establish Eq (121), note first that, by definition of kj , we have, for all j ≤ i,

kj ≤
1

3
(γ(nr4

j ))
1
d+4 ≤ 1

3
(nr4

j )
1
d+4 .
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Now, using Eq (121) from the induction hypothesis for j ≤ i, we get that,

kj ≤ (nr4
j )

1
d+4 ≤ (6B)

(
1−( d

d+4)
i
)
n

1
d+4

( d
d+4

)j−1

(log n)
1
d+4

(
1−( d

d+4)
i
)
≤ 6Bn

1
d+4

( d
d+4

)j−1

(log n).

Hence, to prove Eq (121), it suffices to show that, for all 1 ≤ i ≤M ,

nBi ≥ 16(6B)2(d+4)(6B log n)2in
4
d+4

∑i−1
j=0(

d
d+4)

j

= 16(6B)2(d+4)(6B log n)2in1−( d
d+4)

i

.

Note that, it suffices if n is large enough satisfying the bound below,

n( d
d+4)

M

≥ 16(6B)2(d+4)(6B log n)2M ,

which would suffice if

log log n ≥M log

(
1 +

4

d

)
+ log (2M log(6B log n) + (2d+ 6) log(6B)) .

Now, Proposition 42 and Lemma 43 together immediately give the corollary below.

Corollary 44 Let D = [0, 1]d. Consider algorithm 8. Suppose we use the same initialization rule
as that in Proposition 42 and use Algorithm 9 to be the updating rules for algorithm 8, then, when
n is large enough so that it satisfies Eq (118), then the output x̂M from algorithm 8 satisfies

P
(
f(x̂M )− f(x?f ) ≤ γ?M

)
≥ 1− δ

with

γ?M :=
1

2
λ(6B)

d+4
2

(
1−( d

d+4)
M
)
(log n)

1
2

(
1−( d

d+4)
M
)
n
− 1

2

(
1−( d

d+4)
M
)
.

Appendix I. Lipschitz Function with First-Order Oracle

I.1. Lipschitz Function with First-Order Oracle, d = 1

I.1.1. DESCRIPTION OF ALGORITHM

In this section, we propose a generic algorithm: Algorithm 10 to solve the problem when the dimen-
sion d = 1. The algorithm is a one-round algorithm. As will be seen immediately, this one-round
algorithm achieves the best possible statistical minimax rate (up to logarithmic factors and con-
stants). Thus, under the first oracle situtation, adaptivity gives no advantage for optimization in one
dimension.
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Algorithm 10 Routine for One Stage Lipschitz Function Fλ (First-Order Oracle)

Input: User’s choice of the sampling center c ∈ D, radius r ∈ R+, resolution M , grid size
parameter {ki}Mi=1, sampling times {Ti}Mi=1 and the precision {∆i}Mi=1.

1: Initialize the interval I = [l1, l2] = [c− r, c+ r].
2: for i = 1 to K do
3: Compute the grid Gi = G(c, r, ki) ∩ I .
4: At each point x ∈ Gi, query the first-order oracle Ti times. Denote each sample derivative

value via {f̂ ′(x)(1), f̂ ′(x)(2), . . . , f̂ ′(x)(Ti)}.
5: Compute the derivative estimate at each point x ∈ Gi via averaging:

f̂ ′(x) =
1

Ti

Ti∑
i=1

f̂ ′(x)(i)

6: if there exists x?i ∈ Gi such that |f̂ ′(x?i )| ≤ ∆i then
7: Return the estimator x̂ = x?i .
8: else if for all x ∈ Gi, f̂ ′(x?i ) < −∆i then
9: Return the estimator x̂ = r

10: else if for all x ∈ Gi, f̂ ′(x?i ) > ∆i then
11: Return the estimator x̂ = l
12: else update the interval I = [l1, l2] via:

l1 = max
x∈Gi
{x ∈ I : f̂ ′(x) < −∆i} and l2 = min

x∈Gi
{x ∈ I : f̂ ′(x) > ∆i}.

13: end if
14: end for
15: Return the estimator x̂ = (l1 + l2)/2.

I.1.2. ANALYSIS OF ALGORITHM 10

In this section, we show that, with careful choice of input parameters, algorithm 10 returns some
estimator x̂ so that its risk is upper bounded by Õ

(
n−1/2

)
. As before, we slightly generalize the

domain of interest to be Dc,r = [c− r, c+ r]. The target of interest now becomes x?f,c,r, the unique

minimum of f in the domain Dc,r and the risk of interest would be E
[
f(x̂)− f(x?f,c,r)

]
.

Proposition 45 Given any fix c ∈ R and r ∈ R+. Let us choose the parameters

ki = 2i−1, M =

⌊
1

2
log2 n

⌋
, Ti =

⌊
n

M(2ki + 1)

⌋
and ∆i =

√
2σ2

Ti
log

2M(2ki + 1)

δ
. (122)

If we denote x̂ to be the output of the algorithm 10 with the above input parameters, then,

P
(
f(x̂)− f(x?f,c,r) ≤ max{4 max

1≤j≤M

{
∆jk

−1
j

}
, Lk−1

M }r
)
≥ 1− δ.
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Proof Now, let us consider the following event:

Γ =

M⋂
i=1

{
|f̂ ′(x)− f ′(x)| ≤ ∆i for all x ∈ Gi

}
The next lemma shows that Γ happens with probability at least 1− δ.

Lemma 46 We have P(Γ) ≥ 1− δ.

Proof First, for each x ∈ Gi, denote ε(x) := f̂ ′(x) − f ′(x). Then, since by our assumption, the
noise {f̂ ′(x)−f ′(x)}Tix=1 is mean 0, independent and subgaussian with parameter σ2, we have ε(x)
is mean 0 and subgaussian with parameter σ2/Ti. Therefore, for any fix x ∈ Gi,

P (|ε(x)| ≥ ∆i) ≤ 2 exp

(
−∆2

iTi
2σ2

)
≤ δM−1(2ki + 1)−d,

where the first inequality above uses the subgaussianity of ε(x), and the second inequality uses the
definition of k and T . Now, since |Gi| = (2k + 1)d, by union bound, we have,

P(Γc) ≤
M∑
i=1

P(∃x ∈ Gi : |ε(x)| ≥ ∆i) ≤ δ,

which gives the desired claim of the proposition.

Now, assuming in the rest of the proof that event Γ happens. We now take a look into the first
iteration from line 2 to line 14. Note that, basically, from line 6 to line 14, we are checking whether
there exist x1 ∈ G1 such that f̂ ′(x1) < −∆1 or x2 ∈ G2 such that f̂ ′(x2) > ∆2. There are four
different circumstances, and here we discuss them one by one:

1. Suppose there exist some x?1 ∈ G1 such that |f̂ ′(x1)| < ∆1, then the algorithm terminates at
line 7. In this case, we know that |f ′(x1)| ≤ |f̂ ′(x)|+ |f(x1)− f̂ ′(x1)| ≤ 2∆1. By convexity,
this gives the following upper bound on f(x?1)− f(x?f,c,r):

f(x?1)− f(x?f,c,r) ≤ f ′(x?1)(x?1 − x?f,c,r) ≤ |f ′(x?1)||x?1 − x?f,c,r| ≤ 4∆1k
−1
1 r.

In this case, the algorithm returns x?1.

2. Suppose for all x ∈ G1, f̂ ′(x) < −∆1, then the algorithm terminates at line 9. Hence, for
all x ∈ G1, we indeed have f ′(x) < 0, and the function is monotonically decreasing on the
interval [l1, l2]. In this case, we return r, the minimum of f .

3. Suppose for all x ∈ G1, f̂ ′(x) > ∆1, then the algorithm terminates at line 11. Hence, for
all x ∈ G1, we indeed have f ′(x) > 0, and the function is monotonically increasing on the
interval [l1, l2]. In this case, we return l, the minimum of f .

4. Lastly, suppose there exists some x1, x2 ∈ G1 such that f̂ ′(x1) < −∆1 and f̂ ′(x2) > ∆1.
Thus in this case, f ′(x1) < 0 and f ′(x2) > 0. As f is a convex function on the interval
I = [l1, l2], its derivative f ′ can only flip the sign at most once on I . Our way of updating the
interval, will make sure that the minimum x?f,c,r lie in the updated interval I . Note that, the
length of the interval I now decreases to k−1

1 r = 2k−1
2 r in the next for loop.
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Now, following exactly the same reasoning as above, one can prove via induction that, in the jth
loop, where 1 ≤ j ≤M , we have, |I| = 2k−1

j r.

1. Suppose there exist some x?j ∈ G1 such that |f̂ ′(xj)| < ∆j . Then, the algorithm returns x?j ,
which satisfies,

f(x?j )− f(x?f,c,r) ≤ |f ′(x?j )||x?j − x?f,c,r| ≤ 4∆jk
−1
j r.

2. Suppose for all x ∈ Gj , f̂ ′(x) < −∆j , then the algorithm returns the minimum of f .

3. Suppose for all x ∈ Gj , f̂ ′(x) > ∆j , then the algorithm returns the minimum of f .

4. Suppose there exists some x1, x2 ∈ G1 such that f̂ ′(x1) < −∆j and f̂ ′(x2) > ∆j . Then I is
updated, and its length shrinks to k−1

j r. I contains the minimum x?f,c,r.

Now, when the algorithm does not terminate until we finish the M -th loop, the interval I now
contains x?f,c,r with length at most k−1

M r. In this case, we return the middle point of the interval, so
that by Lipschitzness of the objective function f , we have,

f(x̂)− f(x?f,c,r) ≤ L|x̂− x?f,c,r| ≤ L|I| ≤ Lk−1
M r.

The desired claim of the proposition now thus follows.

Corollary 47 Assume n ≥ 30, then the parameters in Eq (122) satisfy

min
1≤j≤M

Tj ≥ 1, kM ≤ n−1/2 and max
1≤j≤M

{
∆jk

−1
j

}
≤ 3σn−

1
2 (log2(n))

1
2

(
log

3

δ
+ log n

) 1
2

.

Moreover, the output x̂ from algorithm 10 with the input defined in Eq (122) satisfies,

P
(
f(x̂)− f(x?f,c,r) ≤ γ?

)
≥ 1− δ,

where

γ? := max

{
12σ(log2(n))

1
2

(
log

3

δ
+ log n

) 1
2

, 2L

}
n−

1
2 r

Proof Note that, the second part of the corollary follows immediately from the first part and propo-
sition 45. To prove the first part, note first that, kj ≤ kM ≤ n

1
2 for 1 ≤ j ≤ M . Since n ≥ 30, we

get for 1 ≤ j ≤M ,
n

M(2kj + 1)
≥ n

1
2 log2 n(2n

1
2 + 1)

≥ 1 ⇒ Tj ≥ 1.

Finally, note that, since we have, for all 1 ≤ j ≤M :

Tj ≥
n

2M(2kj + 1)
≥ n

log2(n) · (2kj + 1)
≥ n

3kj log2(n)
and 2kj + 1 ≤ 3n

1
2 .

this gives us that, when n ≥ 30, for all 1 ≤ j ≤M :

∆jk
−1
j ≤

√
6σ2 log2 n

nkj
log

3n1/2 log2(n)

δ
≤ 3σ

√
log2(n)

n

(
log

3

δ
+ log n

)
.
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Appendix J. Lipschitz Function with Zeroth-Order Oracle

J.1. Lipschitz Function with Zeroth-Order Oracle, d = 1 and M ≥ 1

J.1.1. DESCRIPTION OF ALGORITHMS

In this section, we propose two generic algorithms: algorithm 11 and algorithm 12 that builds from
algorithm 11. We note here that, algorithm 12 in essence, builds from M times of repeated calls
of algorithm 11. As will be shown immediately in the later subsections, it turns out that the two
algorithms with careful choice of parameters return the minimax estimator in the single and multi
rounds respectively.

Algorithm 11 Routine for One Stage d = 1 Lipschitz Functions Fλ (Zeroth-Order Oracle)

Input: User’s choice of the left point and right point of interval l1 and l2, grid size parameter
k ∈ N and sampling times T ∈ N, value m1 and m2 and function gap U ∈ R+.

1: Set c = 1
2(l1 + l2) and r = 1

2(l2 − l1). Compute the grid points G = G(c, r, k).
2: At each point x ∈ G, query the zeroth oracle T times and denote each sample function value

via {f(x)(1), f(x)(2), . . . , f(x)(T )}.
3: Compute the function value estimate at each point x ∈ G via f̂(x) = 1

T

∑T
i=1 f(x)(i).

4: Compute the estimate x ∈ G via x̂ = argminx∈G f̂(x).
5: Compute m̂1 and m̂2 as follows:

m̂1 = min{x ∈ G : f̂(x)− f̂(x̂) ≤ U} and m̂2 = max{x ∈ G : f̂(x)− f̂(x̂) ≤ U}

6: Compute l̂1 and l̂2 as follows:

l̂1 = max
{
m1 −

r

k
, l1

}
and l̂2 = min

{
m2 +

r

k
, l1

}
7: Return the the estimator x̂, the value of l̂1, l̂2, m̂1 and m̂2.

Algorithm 12 Routine for Multi Stage d = 1 Lipschitz Functions Fλ (Zeroth-Order Oracle)

Input: Initialization of th eparameters (l
(1)
1 , l

(1)
2 ,m

(1)
1 ,m

(1)
2 , k(1), T (1), U (1)) ∈ R × R × R ×

R× N× N× R+. User specifies the updating rule used in line (3) of the algorithm.
1: for i = 1 to M do
2: Run algorithm 11 with input parameter (l

(i)
1 , l

(i)
2 ,m

(i)
1 ,m

(i)
2 , k(i), T (i), U (i)). Denote the out-

put to be l̂(i)1 , l̂(i)2 , m̂(i)
1 , m̂(i)

2 and x̂(i).
3: Update (l

(i+1)
1 , l

(i+1)
2 ,m

(i+1)
1 ,m

(i+1)
2 , k(i+1), T (i+1), U (i+1)).

4: end for
5: return x̂M as the estimate of x?f , and Û = U (M+1).

J.1.2. ANALYSIS OF ALGORITHM 11: SINGLE-STAGE ANALYSIS

In this section, we show that, with careful choice of input parameters, algorithm 11 returns some
estimator x̂ so that its associated riskR is upper bounded by Õ

(
n−

1
3

)
. For purpose of convenience
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in later discussion on upper bounds for multi-stage algorithm, in this section, we slightly generalize
the domain of interest by considering the domain D = [l1, l2] (while noting that l1 = 0 and l2 = 1
corresponds to the original domain D = [0, 1]). In this sense, the algorithm discussed in this section
seeks to estimate x?f,l1,l2 , the unique minimum of f in the domain Dl1,l2 , while the risk of interest

would be E
[
f(x̂)− f(x?f,l1,l2)

]
.

Proposition 48 Given any fix c ∈ Rd and r, suppose there exists some k ∈ N satisfying

(2k + 1)
⌈
2k2 log(2k + 1)

⌉
≤ nr2 and k ≥ 6. (123)

Set T =
⌊

n
2k+1

⌋
and U = 2Lr. Then, if we denote l̂1, l̂2, m̂1, m̂2 and x̂ to be the output from

algorithm 12 with input l1 = m1 = c− r, l2 = m2 = c+ r, and k, T, U set up as above, we have,
with probability at least 1− δ:

1. The output set [m̂1, m̂2] is amenable to [l̂1, l̂2] with parameter (k, t) =
(
6, 1

6

)
.

2. The output estimator x̂ satisfies f(x̂)− f(x?f,l1,l2) ≤ k−1r
(

6L+ 2σ
(
log 2

δ + 1
) 1

2

)
.

3. For any x ∈ {m̂1, m̂2}, we have, f(x)− f(x?f,l1,l2) ≤ k−1r
(

18L+ 2σ
(
log 2

δ + 1
) 1

2

)
.

4. The output [l̂1, l̂2] contains the minimum: any minimum x?f,l1,l2 satisfies x?f,l1,l2 ∈ [l̂1, l̂2].

Proof The proof of the proposition relies on the following two critical lemma. The first lemma
bounds the deviation of the function value f(x) and its estimate f̂(x) on the grid G. The second
lemma establishes a critical property of the algorithm, which turns out to be very useful in the
analysis of multi-stage algorithm. We start with the first lemma. Consider the following event,

Γ :=

{∣∣∣f̂(x)− f(x)
∣∣∣ ≤ ra := σ

√
2

T
log

2(2k + 1)

δ
for all x ∈ G

}
.

The next lemma shows that Γ happens with probability at least 1− δ.

Lemma 49 We have P(Γ) ≥ 1− δ.

Proof First, for each x ∈ G, denote ε(x) := f̂(x)−f(x). Then, since by our assumption, the noise
{f̂(x)− f(x)}Tx=1 is mean 0, independent and subgaussian with parameter σ2, we have that ε(x) is
mean 0 and subgaussian with parameter σ2/T . Therefore, for any fix x ∈ G,

P (|ε(x)| ≥ ra) ≤ 2 exp

(
−(ra)2T

2σ2

)
≤ δ(2k + 1)−1,

where the first inequality above uses the subgaussianity of ε(x), and the second inequality uses the
definition of k and T . Now, the desired claim of the lemma follows from the fact that |G| = 2k+ 1
and the union bound of the above events.

Before we introduce the next lemma, we introduce the following concept.
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Definition 50 An interval [m1,m2] is amenable to another interval [l1, l2] with parameter k? ∈
N, t? ∈ R+ if it satisfies the following two conditions:

1. The set [m1,m2] ⊆ [l1, l2].

2. For any k ∈ N, denote Gk to be the grid points Gk = G(c, r, k) with c = 1
2(l1 + l2) and

r = 1
2(l2 − l1). Then, for any x ∈ [l1, l2] and k ≥ k?, there exists three consecutive grids

x0 ≤ x1 ≤ x2 ∈ Gk such that, either m1 ≤ x0 ≤ x1 ≤ x ≤ x2, x −m1 ≥ t?(l2 − l1) or
x0 ≤ x ≤ x1 ≤ x2 ≤ m2,m2 − x ≥ t?(l2 − l1).

The lemma below is helpful in understanding the above concept.

Lemma 51 Let [l1, l2] be some interval on R. Suppose m1,m2 satisfy the following condition:

m1 ≤ l1 ≤ l2 ≤ m2 and m2 −m1 ≥
1

3
(l2 − l1). (124)

Then, the interval [m1,m2] is amenable to [l1, l2] with parameter
(
6, 1

6

)
Proof By definition, we need to show that, [m1,m2] satisfies the following conditions:

1. The set [m1,m2] ⊆ [l1, l2].

2. For any k ≥ 6, denote Gk to be the grid points Gk = G(c, r, k) with c = 1
2(l1 + l2) and

r = 1
2(l2 − l1). Then, for any x ∈ [l1, l2] and k ≥ 6, there exists three consecutive grids

x0 ≤ x1 ≤ x2 ∈ Gk such that, either m1 ≤ x0 ≤ x1 ≤ x ≤ x2, x −m1 ≥ 1
6(l2 − l1) or

x0 ≤ x ≤ x1 ≤ x2 ≤ m2,m2 − x ≥ 1
6(l2 − l1).

The first condition is satisfied according to the first group of inequality of Eq (124). To show the
second inequality, pick any x ∈ [l1, l2], and we divide our discussion into two cases. (i) x ≥
1
2(m1 + m2). Then, since k ≥ 6, we can take three consecutive grids x0, x1, x2 ∈ Gk such that
x ∈ [x1, x2]. Then, by definition,we know that, x2 − x1 = x1 − x0 = 1

2k (l2 − l1). This gives
x0 ≥ x− 1

6 (l2 − l1). Since m2 −m1 ≥ 1
3(l2 − l1) by Eq (124), we get that,

x−m1 ≥
1

2
(m2 −m1) ≥ 1

6
(l2 − l1) and x0 ≥ x−

1

6
(l2 − l1) ≥ m1.

The desired claim of the lemma now thus follows. (ii)x ≤ 1
2(m1 + m2). One can similarly show

that, for k ≥ 6. there exists consecutive grids x0, x1, x2 ∈ Gk such that x0 ≤ x ≤ x1 ≤ x2 ≤
m2,m2 − x ≥ 1

6(l2 − l1). The proof under this case is essentially the same as that under the case
where x ≥ 1

2(m1 +m2).

Now, we are ready to introduce the following lemma. It is deterministic in nature.

Lemma 52 Assume that, the following four conditions hold:

1. The set [m1,m2] is amenable to the set [l1, l2] with parameter (k, t) =
(
6, 1

6

)
.

2. For any x ∈ [m1,m2], we have, f(x)− f(x?f,l1,l2) ≤ U ′ for some U ′ > 0.

3. The grid G = G(c, r, k) with c = 1
2(l1 + l2), r = 1

2(l2 − l1) and k ≥ 6.
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4. For any x ∈ G, we have, |f̂(x)− f(x)| ≤ ra.

Now, let us denote U to be U = 9U ′k−1 + 2ra > 0. Then, the output of algorithm 11 with input
parameters l1, l2,m1,m2, k, T and U satisfies:

1. The output set [m̂1, m̂2] is amenable to [l̂1, l̂2] with parameter (k, t) =
(
6, 1

6

)
.

2. The output estimator x̂ satisfies f(x̂)− f(x?f,l1,l2) ≤ 3U ′k−1 + 2ra.

3. For any x ∈ [m̂1, m̂2], we have, f(x)− f(x?f,l1,l2) ≤ 9U ′k−1 + 2ra = U .

4. The output [l̂1, l̂2] contains the minimum: any minimum x?f,l1,l2 satisfies x?f,l1,l2 ∈ [l̂1, l̂2].

Proof First note that, [m1,m2] is amenable to [l1, l2] with parameters (6, 1
6). Since x?f,l1,l2 ∈ [l1, l2],

and the grid size k ≥ 6, thus, by definition, we know that, there exist three consecutive grid points
x0 ≤ x1 ≤ x2 ∈ Gk such that, either m1 ≤ x0 ≤ x1 ≤ x?f,l1,l2 ≤ x2, x?f,l1,l2 −m1 ≥ 1

6(l2 − l1) or
x0 ≤ x?f,l1,l2 ≤ x1 ≤ x2 ≤ m2 and m2 − x?f,l1,l2 ≥

1
6(l2 − l1). We only prove the desired claim of

the lemma under the first situation, that ism1 ≤ x0 ≤ x1 ≤ x?f,l1,l2 ≤ x2, x?f,l1,l2−m1 ≥ 1
6(l2−l1),

while noting that the desired result of the lemma can be proved in a totally similar way under the
other situation.

We start by showing the first claim of the desired result. To do so, we show that, m̂1 ≤ x0 ≤
x1 ≤ m̂2. Indeed whenever z ∈ {x0, x1}, we know that, m1 ≤ z ≤ x?f,l1,l2 , and therefore, by
convexity of f , we have,

f(z) ≤ z1 −m1

x?f,l1,l2 −m1
f(x?f,l1,l2) +

x?f,l1,l2 − z1

x?f,l1,l2 −m1
f(m1).

Hence, the value f(z)− f(x?f,l1,l2) for z ∈ {x0, x1} can be upper bounded by:

f(z)− f(x?f,l1,l2) ≤
x?f,l1,l2 − z
x?f,l1,l2 −m1

(
f(m1)− f(x?f,l1,l2)

)
.

Now, note that, since we have 0 ≤ x?f,l1,l2 − x0 ≤ 1
k (l2 − l1), 0 ≤ x?f,l1,l2 − x1 ≤ 1

2k (l2 − l1),
1
6 (l2 − l1) ≤ x?f,l1,l2 −m1 and f(m1)− f(x?f,l1,l2) ≤ U ′, we get that,

f(x1)− f(x?f,l1,l2) ≤ 3U ′k−1 and f(x0)− f(x?f,l1,l2) ≤ 6U ′k−1. (125)

Thus, whenever z ∈ {x0, x1}, we get,

f̂(z)−f̂(x?f,l1,l2) ≤
∣∣∣f̂(z)− f(z)

∣∣∣+f(z)−f(x?f,l1,l2)+
∣∣∣f̂(x?f,l1,l2)− f(x?f,l1,l2)

∣∣∣ ≤ 2ra+6U ′k−1 = U.

This gives m̂1 ≤ x0 ≤ x1 ≤ m̂2. As an immediate consequence, we get m̂2 ≥ m̂1 + k−1r. Since
by definition, we know l̂1 ≤ m̂1 ≤ l̂1 + k−1r and m̂2 ≤ l̂2 ≤ m̂2 + k−1r, we get that,

l̂1 ≤ m̂1 ≤
2

3
l̂1 +

1

3
l̂2 and

1

3
l̂1 +

2

3
l̂2 ≤ m̂2 ≤ l̂2.

Thus, by lemma 51, we get that, [m̂1, m̂2] is amenable to [l̂1, l̂2] with parameter (6, 1
6).
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Next, we show the second and third claim of the desired result. Indeed, note first that, by
definition, f̂(x̂) ≤ f̂(x1). In addition, we know from the condition 4 of the lemma that, f(x̂) −
f̂(x̂) ≤ ra and f̂(x1) − f(x1) ≤ ra. Lastly, we know from Eq (125) that, f(x1) − f(x?f,l1,l2) ≤
3U ′k−1. Thus, combining all these bounds together, we have,

f(x̂)−f(x?f,l1,l2) ≤ f(x̂)−f̂(x̂)+f̂(x̂)−f̂(x1)+f̂(x1)−f(x1)+f(x1)−f(x?f,l1,l2) ≤ 3U ′k−1+2ra.

This gives us the second claim of the desired result. Similarly, notice that, for any z ∈ {m̂1, m̂2},
we have f(z) − f̂(z) ≤ ra. and the definition of m̂1, m̂2 and x̂ implies that, f̂(z) − f̂(x1) ≤
f̂(z)− f̂(x̂) ≤ 6U ′k−1 + 2ra. Thus, combining these bounds together, we get for z ∈ {m̂1, m̂2},

f(z)−f(x?f,l1,l2) ≤ f(z)−f̂(z)+f̂(z)−f̂(x1)+f̂(x1)−f(x1)+f(x1)−f(x?f,l1,l2) ≤ 9U ′k−1+2ra.

This gives us the third claim of the desired result.
In the last step, we show the fourth claim of the desired result. To do so, we need to show that,

l̂1 ≤ x?f,l1,l2 ≤ l̂2. First, we know that x?f,l1,l2 ≥ m̂1 ≥ l̂1. Next, we show that x?f,l1,l2 ≤ m̂2. We
divide our discussion into two cases: (i) m̂2 = l2. In this case, the result is trivial. (ii) m̂2 < l2.
In this case, by definition of l̂2, we know that in this case l̂2 = m̂2 + k−1r. Since we have already
shown that m̂2 ≥ x1, the fact that, x?f,l1,l2 ≤ x1 + k−1r gives us that, x?f,l1,l2 ≤ l̂2. Now, altogether,
we have shown the fourth claim of the desired result.

Now, we are ready to show the desired claim of the proposition. Since the function f(x) is
known to be Lipschitz with parameter L on the interval [l1, l2], thus, it is known that, for all x ∈
[l1, l2], we have, f(x) − f(x?f,l1,l2) ≤ L(l2 − l1) ≤ 2Lr. Now that, the condition on k shows that
T ≥ 2k2 log(2k + 1)r−2. As a consequence, this gives us that,

ra = σ

√
2

T
log

2(2k + 1)

δ
≤ σr

k
·
√

log
2

δ
+ 1.

Now, the desired claim of the proposition follows from lemma 52 and above bound on ra.

Motivated by proposition 48, it becomes important to understand when such k exists in Eq (123)
and how large it is.

Lemma 53 Assume n is large enough satisfying nr2 ≥ 612. Denote k(r) = (γ(nr2))
1
3 , and

k? =
⌊

1
3k(r)

⌋
. Then k? ∈ N and it satisfies Eq (123).

Proof Note that, the second part of the corollary follows easily from the first part, and proposi-
tion 48. To show the first part, note that, γ(x) ≥

√
x when x ≥ 3. Therefore, whenever nr2 ≥ 612,

we have, γ(nr2) ≥ 66. As a consequence, k(r) ≥ 36, and hence, k? ≥ 6. Now, we show that k?

satisfies Eq (123). Indeed, when k = k?,

(2k + 1)
⌊
2k2 log(2k + 1)

⌋
≤ (3k)3 log(3k)3 ≤ k(r)3 log(k(r))3 ≤ nr2,

where the last inequality follows from the fact that, for any x > 0, γ(x) log γ(x) ≤ x.

Now, proposition 48 and Lemma 53 immediately give us the following corollary.
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Corollary 54 Given any fix c ∈ Rd and r ∈ (0, 1], set k =
⌊

1
3γ(nr2)

1
3

⌋
and T =

⌊
n

2k+1

⌋
. Assume

n is large enough satisfying nr2 ≥ 612. Then, if we denote x̂ to be the output from algorithm 12
with input l1 = m1 = c− r, l2 = m2 = c+ r, and k, T, U set up as above, we get,

P
(
f(x̂)− f(x?f,l1,l2) ≤ 12Bn−

1
3 r

1
3 log(nr2)

1
3

)
≥ 1− δ where B = 3L+ σ

(
log

2

δ
+ 1

) 1
2

.

J.1.3. ANALYSIS OF ALGORITHM 12: MULTI-STAGE ANALYSIS

In this section, we show that with careful choice of input parameters l1, l2, k1, T1 and U1, and
appropriate updating rule, then algorithm returns some estimator x̂ that is minimax optimal. The
idea is from the crucial lemma 52: lemma 52 helps locate an interval such that all point in this new
interval has smaller function value gap to the minimum value f(x?f,l1,l2). The idea is to apply this
technique in multiple rounds, and after each round, get a better convergence rate of the function
value.

To be clear about how we specify the updating rule in line 3 of the algorithm 12, we summarize

it as follows: given the output parameters l̂1
(i)

, l̂(i)2 , m̂(i)
1 , m̂(i)

2 , we update l(i+1)
1 , l(i+1)

2 , m(i+1)
1 ,

m
(i+1)
2 , k(i+1), T (i+1) andU (i+1) as described in Algorithm 13. Our update also requires knowledge

of {k(j)}ij=1 and {U (j)}ij=1.

Algorithm 13 Updating Rule in Algorithm 12

Input:l(i)1 , l(i)2 , m(i)
1 , m(i)

2 , {k(j)}ij=1 and {U (j)}ij=1.

(i) Update l(i+1)
1 = l̂

(i)
1 , l(i+1)

2 = l̂
(i)
2 , m(i+1)

1 = m̂
(i)
1 , m(i+1)

2 = m̂
(i)
2 .

(ii) Update k(i+1) to be the largest k ∈ N such that,

(2k + 1)Πi
j=1

(
k(j)
)2
d2 log(2k + 1)e ≤ n (126)

If no such k exists, return FAIL.
(iii) Update T (i+1) to be T (i+1) =

⌊
n

2k(i)+1

⌋
.

(iv) Update U (i+1) to be U (i+1) = 9U (i)
(
k(i)
)−1

+ 2σΠi
j=1(k(j))−1

(
log 2

δ + 1
) 1

2 .

Proposition 55 Let D = [0, 1] and we are given the confidence level δ > 0. Set the initial
parameter l(1)

1 = m
(1)
1 = 0 and l(1)

2 = m
(1)
2 = 1. Set the parameters k(1) to be the largest k ∈ N

such that, (2k + 1) d2 log(2k + 1)e ≤ n. Set the initial parameters T (1) =
⌊

n
2k+1

⌋
and U (1) = L.

Consider algorithm 12 that uses algorithm 13 to be the updating rule. Now, assuming that the
{k(i)}Mi=1 exist and satisfy k(i) ≥ 6 for all 1 ≤ i ≤M . Then, if we denote x̂ and Û to be the output
from algorithm 12, we get,

P
(
f(x̂)− f(x?f,l1,l2) ≤ U (M+1)

)
≥ 1− δ.

Proof The proof of the proposition relies on the following two components. The first component
is the following probabilistic lemma that bounds the deviation of the function value f(x) and its
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estimate f̂(x) on the grid {Gi}Mi=1. The second component is the crucial lemma 51 that we have
shown before. We start with the first component. Consider the following event Γ,

Γ =

M⋂
i=1

|f̂(x)− f(x)| ≤ rai := σ

√
2

Ti
log

2M(2ki + 1)

δ
for all x ∈ Gi

 .

The following lemma shows that Γ happens with probability at least 1− δ.

Lemma 56 We have P(Γ) ≥ 1− δ.

Proof First, fix 1 ≤ i ≤ M . Note that, for each x ∈ Gi, denote ε(x) := f̂(x) − f(x). Then,
since by our assumption, the noise {f̂(x)− f(x)}Tix=1 is mean 0, independent and subgaussian with
parameter σ2, we have that ε(x) is mean 0 and subgaussian with parameter σ2/Ti. Therefore, for
any fix x ∈ Gi,

P (|ε(x)| ≥ ra) ≤ 2 exp

(
−(rai )2Ti

2σ2

)
≤ δM−1(2ki + 1)−1,

where the first inequality above uses the subgaussianity of ε(x), and the second inequality uses the
definition of ra. Since |Gi| = 2ki + 1, after taking a union bound, we get for 1 ≤ i ≤M ,

P
(
∃x ∈ Gi such that |f̂(x)− f(x)| ≥ rai

)
≤ δM−1.

Now, the desired claim of the lemma follows from a union bound on 1 ≤ i ≤M .

We are now ready to prove the desired claim of the proposition. Indeed, we can prove the following
via induction on the rounds 1 ≤ i ≤M :

1. The output [m̂
(i+1)
1 , m̂

(i+1)
2 ] is amenable to [l̂

(i+1)
1 , l̂

(i+1)
2 ] with parameter (k, t) =

(
6, 1

6

)
.

2. The output estimator x̂(i+1) satisfies f(x̂(i))− f(x?f,l1,l2) ≤ 3U (i)(k(i))−1 + 2rai .

3. For any x ∈ [m̂
(i+1)
1 , m̂

(i+1)
2 ], we have, f(x)− f(x?f,l1,l2) ≤ 9U (i)(k(i))−1 + 2rai ≤ U (i+1).

4. The output [l̂1, l̂2] contains the minimum: any minimum x?f,l1,l2 satisfies x?f,l1,l2 ∈ [l̂1, l̂2].

The only trick is to apply lemma 52 repeatedly and notice the fact that T (i) ≥ 2 log(2k(i) +
1)Πi

j=1(k(j))2 implies the following upper bound on rai :

rai := σ

√
2

T (i)
log

2M(2k(i) + 1)

δ
≤ σΠi

j=1(k(j))−1

(
log

2M

δ
+ 1

) 1
2

.

Motivated by Proposition 55, it becomes important to understand how large {k(i)}Mi=1 and
{U (i)}Mi=1 are.
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Lemma 57 Suppose that n is large enough satisfying

log logn ≥M log 3 + log 12 + log log 6. (127)

Then, the sequence {k(i)}Mi=1, {T (i)}Mi=1 and {U (i)}Mi=1 are well-defined via algorithm 13. In addi-
tion, k(i) ≥ 6 for all 1 ≤ i ≤M . Finally, if we denote the output U (M+1) satisfies,

U (M+1) ≤ 9M+2B(log n)
1
2 · n

1
2

(
1− 1

3M

)
where B = L+ σ

(
log

2

δ
+ 1

) 1
2

. (128)

Proof First of all, we show that {k(i)}Mi=1 are well defined via algorithm 13. To do so, we show that
the following hypothesis hold for all 1 ≤ i ≤M :

(i)n ≥ 612Πi
j=1(k(j))2 (ii)k(i) ∈ N and k(i) ≥ 6 (129)

(iii)Πi
j=1k

(j) ≥ (12)
− 3

2

(
1− 1

3i

)
(log n)

− 1
2

(
1− 1

3i

)
n

1
2

(
1− 1

3i

)
(130)

(iv)Πi
j=1k

(j) ≤ 6
− 3

2

(
1− 1

3i

)
n

1
2

(
1− 1

3i

)
(131)

We first show the base case i = 1. Note that, the first part of Eq (129) is implied by the assumption
on n, both the second part of Eq (129), Eq (130) and Eq (131) follow from the first part of Eq (129)
and corollary 54. Now, for some i < M , assuming that the induction hypothesis holds for all
j ∈ {1, 2, . . . , i}, we show that the hypothesis holds for i + 1. We first show the second part of
Eq (129) for i+ 1. Indeed, by induction hypothesis, we know that, the first inequality of Eq (129) is
true for i, and thus the second part of Eq (129) follows from a direct application of corollary 54 (by
substituting δ by δ/M and r by Πi

j=1k
−1
j there). Next, we show Eq (130) holds for i + 1. In fact,

note that, by definition of k(i), we know that,

k(i+1) ≥ 1

12

[
γ
(
nΠi

j=1(k(j))−2
)] 1

3 ≥ 1

12

(
nΠi

j=1(k(j))−2
) 1

3
(log n)−

1
3 ,

and therefore, we get that,

Πi+1
j=1k

(j) = Πi
j=1k

(j) · k(i+1) ≥ 12−1n
1
3 (log n)−

1
3

(
Πi
j=1k

(j)
) 1

3

Now, using the induction hypothesis Eq (130), we get,

Πi+1
j=1k

(j) ≥ 12−1n−
1
3 (log n)

1
3

(
(12)

− 3
2

(
1− 1

3i

)
(log n)

− 1
2

(
1− 1

3i

)
n

1
2

(
1− 1

3i

)) 1
3

= (12)
− 3

2

(
1− 1

3i+1

)
(log n)

− 1
2

(
1− 1

3i+1

)
n

1
2

(
1− 1

3i+1

)

This gives Eq (130) for the case i+ 1. In the third step, we show Eq (131) for i+ 1. The proof idea
is similar to that of Eq (130). In fact, by definition of k(i), we know that,

k(i+1) ≤ 1

6

[
γ
(
nΠi

j=1(k(j))−2
)] 1

3 ≤ 1

6

(
nΠi

j=1(k(j))−2
) 1

3
,
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and hence immediately we can get that,

Πi+1
j=1k

(j) = Πi
j=1k

(j) · k(i+1) ≤ 6−1n
1
3

(
Πi
j=1k

(j)
) 1

3
.

Now, using the induction hypothesis Eq (131), we get,

Πi+1
j=1k

(j) ≤ 6−1n−
1
3

(
6
− 3

2

(
1− 1

3i

)
n

1
2

(
1− 1

3i

)) 1
3

≤ 6
− 3

2

(
1− 1

3i+1

)
n

1
2

(
1− 1

3i+1

)

Finally, we show the first part of Eq (129). Note that, by the proven fact of Eq (131) for i + 1, it
suffices to show that, n1/3i+1 ≥ 612, which would suffice if n is large enough so that,

log logn ≥M log 3 + log 12 + log log 6.

Now, we are ready to show the rest of the corollary. We first show Eq (128). Indeed, it is easy
to use induction argument to show the following result: for all 0 ≤ i ≤M − 1:

U (M+1) = 9i+1U (M−i)Πi
j=0k

−1
M−j +

1

4
(9i+1 − 1)σ

(
log

2

δ
+ 1

) 1
2

ΠM
j=0k

−1
j .

Therefore, if we plug in i = M − 1 in the above argument, we get that,

U (M+1) ≤ 9M

(
U1 + σ

(
log

2

δ
+ 1

) 1
2

)
ΠM
j=0k

−1
j = 9MΠM

j=0k
−1
j

(
2L+ σ

(
log

2

δ
+ 1

) 1
2

)

Now, Proposition 55 and lemma 57 together immediately give us the corollary below.

Corollary 58 Let D = [0, 1]. Consider algorithm 12. Suppose we use the same initialization
rule and use algorithm 13 to be the updating rule as that in Proposition 55. Then, when n is large
enough satisfying Eq (127), then the output x̂ from algorithm 12 satisfies,

P(f(x̂)− f(x?) ≤ γ?M ) ≥ 1− δ.

where

γ?M = 9M+2(log n)
1
2 · n

1
2

(
1− 1

3M

)
·

(
L+ σ

(
log

2

δ
+ 1

) 1
2

)
, (132)

J.2. Lipschitz Function with Zeroth-Order Oracle, d ≥ 1 and M = 1

J.2.1. DESCRIPTION OF ALGORITHMS

In this section, we introduce the one stage algorithm for minimization of Lipschitz function under
zeroth-order oracle: algorithm 14 parameterized by (c, r, k, T ) ∈ D × R+ × N × N. Note that,
algorithm 14 is in essence the same as algorithm 7.
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Algorithm 14 Routine for One Stage Lipschitz Function Fλ (Zeroth-Order Oracle)

Input: User’s choice of the sampling center c ∈ D, radius r ∈ R+, grid size parameter k ∈ N
and the sampling times T ∈ N.

1: Compute the grid points G = G(c, r, k).
2: At each point x ∈ G, query the zeroth-order oracle T times and denote each sample function

value via {f̂(x)(1), f̂(x)(2), . . . , f̂(x)(T )}.
3: Compute the function value estimate at each point x ∈ G via f̂(x) = 1

T

∑T
i=1 f̂(x)(i).

4: Compute the estimate x̂ ∈ G, defined by x̂ := argminx∈G f̂(x).
5: Return the estimator x̂.

J.2.2. ANALYSIS OF ALGORITHM 14

In this section, we show that, with careful choice of input parameters (c, r, k, T ), algorithm 14
returns some estimator x̂ that achieves the minimax risk (up to constants and logarithmic factors).
The analysis is pretty close to that of algorithm 7. For convenience, we slightly generalize the
domain of interest by considering Dc,r = {x : ‖x− c‖∞ ≤ r} parameterized by c ∈ Rd and
r ∈ R. The target now becomes x?f,c,r, the unique minimum of f in the domain Dc,r, and the risk

of interest would be E
[
f(x̂)− f(x?f,c,r)

]
.

Proposition 59 Given any fix c ∈ Rd and r ∈ (0, 1], suppose there exists k ∈ N satisfying

(2k + 1)d
⌈
2k2 log(2k + 1)

⌉
≤ nr2. (133)

Then, pick any k ∈ N satisfying Eq (133), and set T =
⌊

n
(2k+1)d

⌋
. Denote x̂ to be the output from

algorithm 14 when we input (c, r, k, T ) as the input parameters. Then, we have

P

(
f(x̂)− f(x?f,c,r) ≤

r

k
·

(
2σ

(√
2 log

2

δ
+ d

)
+ L
√
d

))
≥ 1− δ.

Proof Denote x̄ = argminx∈G

∥∥∥x̄− x?f,c,r∥∥∥
2
. Then, by construction of the grids G and Lipschitz-

ness of the function f , we know that,

∥∥x̄− x?f,c,r∥∥2
≤ r
√
d

k
and f(x̄)− f(x?f,c,r) ≤ L

∥∥x̄− x?f,c,r∥∥2
≤ Lr

√
d

k
.

Now, let us consider the following event:

Γ =

{∣∣∣f̂(x)− f(x)
∣∣∣ ≤ ra := σ

√
2

T
log

2(2k + 1)d

δ
for all x ∈ G

}
,

The next lemma shows that Γ happens with probability at least 1− δ.

Lemma 60 We have P(Γ) ≥ 1− δ.
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Proof First, for each x ∈ G, denote ε(x) := f̂(x)−f(x). Then, since by our assumption, the noise
{f̂(x)− f(x)}Tx=1 is mean 0, independent and subgaussian with parameter σ2, we have that ε(x) is
mean 0 and subgaussian with parameter σ2/T . Therefore, for any fix x ∈ G,

P (|ε(x)| ≥ ra) ≤ 2 exp

(
−(ra)2T

2σ2

)
≤ δ(2k + 1)−d,

where the first inequality above uses the subgaussianity of ε(x), and the second inequality uses the
definition of ra. Now, the desired claim of the lemma follows from the fact that |G| = (2k + 1)d

and the union bound of the above events.

Note that, since by definition f̂(x̂) ≤ f̂(x̄), we get the below upper bound of f(x̂) on Γ,

f(x̂)−f(x?f,c,r) = f(x̂)− f̂(x̂)︸ ︷︷ ︸
≤ra

+ f̂(x̂)− f̂(x̄)︸ ︷︷ ︸
≤0

+ f̂(x̄)− f(x̄)︸ ︷︷ ︸
≤ra

+ f(x̄)− f(x?f,c,r)︸ ︷︷ ︸
≤Lr

√
d

k

≤ 2ra+
Lr
√
d

k
.

Now, the assumption on k, T shows that, T ≥ 2k2 log(2k + 1)r−2 and,

ra = σ

√2 log 2
δ + 2d log(2k + 1)

T

 ≤ σr

k
·

(√
2 log

2

δ
+ d

)

This gives the desired claim of the proposition.

Motivated by Proposition 59, it becomes important to understand when such k exists in Eq (133)
and how large it is.

Lemma 61 Assume n is large enough satisfying nr2 ≥ 32d+2. Denote k(r) =
(
γ
(
nr2
)) 1

d+2 and
k =

⌊
1
3k(r)

⌋
. Then k? ∈ N, and k? satisfies Eq (133).

Proof Note that, γ(x) ≥
√
x whenever x ≥ 3. Thus, by assumption that nr2 ≥ 32(d+2), we get

that γ(nr2) ≥ 3d+2 and hence k? ≥ 1. To show that k? satisfies Eq (133), note that, when k = k?,
we have,

(2k + 1)d
⌈
2k2 log(2k + 1)

⌉
≤ (3k)d+2 log(3k)d+2 ≤ (k(r))d+2 log(k(r))d+2 ≤ nr2,

where the last inequality follows from the fact that, for any x > 0, γ(x) log γ(x) ≤ x.

Proposition 59 and lemma 61 immediately give us the corollary below.

Corollary 62 Given any fix c ∈ Rd and r ∈ (0, 1], set k =
⌊

1
3(γ(nr2))

1
d+2

⌋
and T =

⌊
n

2k+1

⌋
.

Assume n is large enough satisfying nr2 ≥ 32d+2. Then if we denote x̂ to be the output from
algorithm 14 when we input (c, r, k, T ) as the input parameters, we get,

P
(
f(x̂)− f(x?f,c,r) ≤ γ?

)
≥ 1− δ,

where

γ? = 6r
d
d+2n−

1
d+2 log(nr2)

1
d+2 ·

(
2σ

√
2 log

2

δ
+ d+ L

√
d

)
.
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