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Abstract
In the present work, we give a solution to the following question from manifold learning. Sup-
pose data belonging to a high dimensional Euclidean space is drawn independently, identically
distributed from a measure supported on a low dimensional twice differentiable embedded mani-
foldM, and corrupted by a small amount of gaussian noise. How can we produce a manifoldMo

whose Hausdorff distance to M is small and whose reach is not much smaller than the reach of
M?
Keywords: Manifold learning, Hausdorff distance, reach

1. Introduction

One of the main challenges in high dimensional data analysis is dealing with the exponential growth
of the computational and sample complexity of generic inference tasks as a function of dimension,
a phenomenon termed “the curse of dimensionality”. One intuition that has been put forward to
lessen or even obviate the impact of this curse is that high dimensional data tend to lie near a low
dimensional submanifold of the ambient space. Algorithms and analyses that are based on this
hypotheses constitute the subfield of learning theory known as manifold learning; papers from this
subfield include Belkin and Niyogi (2003); Carlsson (2009); Dasgupta and Freund (2008); Donoho
and Grimes (2003); Fefferman et al. (2015, 2016); Genovese et al. (2012, 2014); Kégl et al. (2000);
Narayanan and Niyogi (2009); Niyogi et al. (2008); Roweis and Saul (2000); Smola and Williamson
(2001); Tenenbaum et al. (2000); Weinberger and Saul (2006). In the present work, we give a
solution to the following question from manifold learning. Suppose data is drawn independently,
identically distributed (i.i.d) from a measure supported on a low dimensional twice differentiable
(C2) manifold M whose reach is ≥ τ , and corrupted by amall amount of (i.i.d) gaussian noise.
How can can we produce a manifoldMo whose Hausdorff distance toM is small and whose reach
is not much smaller than τ?
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MANIFOLD FITTING

This question is an instantiation of the problem of understanding the geometry of data. To give
a specific real-world example, the issue of denoising noisy Cryo-electron microscopy (Cryo-EM)
images falls into this category. Cryo-EM images are X-ray images of three-dimensional macro-
molecules, possessing an arbitrary orientation. The space of orientations is in correspondence with
the Lie group SO3(R), which is only three dimensional. However, the ambient space of greyscale
images on [0, 1]2 can be identified with an infinite dimensional subspace of L2([0, 1]2), which gets
projected down to a finite but very high dimensional subspace through the process of dividing [0, 1]2

into pixels. Thus noisy Cryo-EM X-ray images lie approximately on an embedding of a compact
3−dimensional manifold in a very high dimensional space. If the errors are modelled as being gaus-
sian, then fitting a manifold to the data can subsequently allow us to project the data onto this output
manifold. Due to the large codimension and small dimension of the true manifold, the noise vectors
are almost perpendicular to the true manifold and the projection would effectively denoise the data.
The immediate rationale behind having a good lower bound on the reach is that this implies good
generalization error bounds with respect to squared loss (See Theorem 1 in Fefferman et al. (2016)).
Another reason why this is desirable is that the projection map onto such a manifold is Lipschitz
within a tube of the manifold of radius equal to c times the reach for any c less than 1.

LiDAR (Light Detection and Ranging) also produces point cloud data for which the methods of
this paper could be applied.

1.1. Model

Let M be a d dimensional C2 submanifold of RD. We assume M has volume (d−dimensional
Hausdorff measure) equal to V , reach (i.e. normal injectivity radius) greater or equal to τ , and that
M has no boundary. Let x1, . . . , xN be a sequence of points chosen i.i.d at random from a measure
µ absolutely continuous with respect to the d-dimensional Hausdorff measure HdM = λM onM.
More precisely, the Radon-Nikodym derivative dµ/dλM satisfies

0 < ρmin < dµ/dλM < ρmax <∞. (1)

Let Gσ denote the Gaussian distribution supported on RD whose density (Radon-Nikodym
derivative with respect to the Lebesgue measure) at x is(

1

2πσ2

)D
2

exp

(
−‖x‖

2

2σ2

)
.

Let ζ1, . . . , ζN be a sequence of i.i.d random variables independent of x1, . . . , xN having the
distribution Gσ. We observe yi = xi + ζi for i = 1, 2, . . . and wish to construct a manifoldMo

close toM in Hausdorff distance but at the same time having a reach not much less than τ . Note
that the distribution of yi (for each i), is the convolution of µ and Gσ. This is denoted by µ ∗Gσ.

We observe y1, y2, . . . , yN and will produce a description of a manifold Mo such that for σ
satisfying a certain upper bound, the Hausdorff distance betweenM andMo is at most O(σ) and
Mo has reach that is bounded below by cτ

d7
.

1.2. Prior work

The question of fitting a manifold to data is of interest to data analysts and statisticians. While
there are several results dealing exclusively with sample complexity such as Genovese et al. (2012);
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MANIFOLD FITTING

Narayanan and Mitter (2010), we will restrict our attention to results that provide an algorithm for
describing a manifold to fit the data together with upper bounds on the sample complexity.

A work in this direction, Genovese et al. (2014), building over Ozertem and Erdogmus (2011)
provides an upper bound on the Hausdorff distance between the output manifold and the true man-
ifold equal to O(( logN

N )
2

D+8 ) + O(σ2 log(σ−1)). Note that in order to obtain a Hausdorff distance
of cε, one needs more than ε−D/2 samples, where D is the ambient dimension. The results of this
paper guarantee (for sufficiently small σ,) a Hausdorff distance of

Cd7(σ
√
D) = O(σ)

with less than
CV

ωd(σ
√
D)d

= O(σ−d)

samples. Thus while the asymptotic bound on the Hausdorff distance is O(σ) which is worse than
Õ(σ2), the number of samples needed to get there depends exponentially on the intrinsic dimension
d. We note here that using Principal Component analysis, it is possible to replace D by a quantity
that is at most exponential in d2, however we will present these details elsewhere.

The question of fitting a manifold Mo to data with control both on the reach τo and mean
squared distance of the data to the manifold was considered in Fefferman et al. (2016). However,
Fefferman et al. (2016) did not assume a generative model for the data, and had to use an exhaustive
search over the space of candidate manifolds whose time complexity was doubly exponential in the
intrinsic dimension d ofMo. In the present paper the construction ofMo has a sample complexity
that is singly exponential in d, made possible by the generative model. The time complexity of
our construction is governed by the complexity of constructing a set of weights as described in
Lemma 6, which is bounded above by N(Cd)2d, N being the sample compexity. Also, Fefferman
et al. (2016) did not specify the bound on τo, beyond stating that the multiplicative degradation τ

τo
in the reach depended on the intrinsic dimension alone. In this paper, we pin down this degradation
to within (0, Cd7], where C is an absolute constant and d is the dimension ofM.

The paper Mohammed and Narayanan (2017) assumes a generative model with no noise and
proves that two algorithms related to the algorithm in Fefferman et al. (2016), can fit manifolds
whose Hausdorff distance is arbitrarily close to 0 to the data but the guaranteed lower bound on the
reach degrades to 0 as the Hausdorff distance tends to 0.

Finally, we mention that there is an interesting body of literature (Boissonnat et al. (2009);
Cheng et al. (2005)) in computational geometry that deals with fitting piecewise linear manifolds
(as opposed toC2−manifolds) to data . Cheng et al. (2005) presented the first algorithm for arbitrary
d, that takes samples from a smooth d−dimensional manifoldM embedded in an Euclidean space
and outputs a simplicial manifold that is homeomorphic and close in Hausdorff distance to M.

2. Some basic estimates and definitions.

2.1. A note on constants

In this section, and the following sections, we will make frequent use of constants c, C,C1, C2, c1

etc. These constants are absolute and positive, and may change in their value from line to line. Also,
the value of a constant can depend on the values of constants defined before it, but not those defined
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after it. This convention eliminates the possibility of circularity. We will use upper case letters to
denote constants greater than 1 and lower case to denote constants less than 1.

We need the following form of the Gaussian concentration inequality. Let Gσ, as stated earlier,

be the distribution supported on RD whose density at x is given by
(

1
2π

)D
2 exp

(
−‖x‖

2

2

)
. Let g :

RD → R be a 1−Lipschitz function and a = Eg(x) be the average value of g with respect to Gσ.
Then,

Gσ{x : |g(x)− a| ≥ tσ} ≤ C exp
(
−ct2

)
. (2)

for some absolute constants c, C.

Definition 1 (Tangent and Normal Space)
For a closed A ⊆ RD, and a ∈ A, let the tangent space (in the sense of Federer) Tan0(a,A)

denote the set of all vectors v such that for all ε > 0, there exists b ∈ A such that 0 < |a − b| < ε
and

∣∣v/|v| − b−a
|b−a|

∣∣ < ε. Let the normal space Nor0(a,A) denote the set of all v such that for all
w ∈ Tan0(a,A), we have 〈v, w〉 = 0. Let Tan(a,A) (or Tan(a) when A is clear from context)
denote the set of all x such that x − a ∈ Tan0(a,A). For a set X ⊆ RD and a point p ∈ RD, let
dist(p,X) denote the Euclidean distance of the nearest point in X to p. Let Nor(a,A) (or Nor(a)
when A is clear from context) denote the set of all x such that x− a ∈ Nor0(a,A).

Definition 2 (Reach) The reach of a closed set A ⊆ RD, denoted reach(A), is the supremum of
all r satisfying the following property. If dist(p,A) ≤ r, then there exists a unique q ∈ A such that
|p− q| = dist(p,A).

For a smooth submanifold, the reach is the size of the largest neighborhood where the tubular
coordinates near the submanifold are defined.

The following result of Federer (Theorem 4.18, Federer (1959)), gives an alternate characteri-
zation of the reach.

Proposition 3 Let A be a closed subset of RD. Then,

reach(A)−1 = sup
{

2|b− a|−2dist(b, Tan(a))
∣∣ a, b ∈ A, a 6= b

}
. (3)

Definition 4 We say M is a d−dimensional C2−submanifold of RD if M is compact and for
every point p ∈ M there is a neigborhood U ⊂ RD of p, a convex open W ∈ Rd and C2 functions
φ : U →W , ψ : W → U such thatM∩ U = ψ(W ) and φ ◦ ψ is the identity map on W .

3. Preliminary structures

Definition 5 (ε−net) Let (X, dist) be a metric space. We say that X1 is an ε−net of X , if X1 ⊆ X
and for every x ∈ X , there is an x1 ∈ X1 such that dist(x, x1) < ε.

Let

r ∈
[√

στD1/4,
τ

CdC

]
. (4)
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Let N0 be chosen to be an integer such that

N0/ ln(N0) >
CV

ρminωd(r2/τ)d
, (5)

where ωd is the volume of a Euclidean unit ball in Rd. We will assume that V and σ are sufficiently
small that we can choose r and N0 such that

N0 ≤ eD. (6)

By the coupon collector applied to the Voronoi cells corresponding to a 6r2/δ−net ofM that
is also r2/2δ−separated (such a net always exists, and can be constructed by a greedy procedure),
we see that if one chooses a set of N0 i.i.d random samples X̃0 from µ, with probability at least
1 −N−C0 , every Voronoi cell has at least one random sample. Therefore the Hausdorff distance of
X̃0 toM is less than 12r2/δ. The maximum distance of a point yi of X0 to the corresponding xi in
X̃0 is bounded above with probability at least 1−N−C0 by

σ(
√
D +

√
ln(NC

0 )) < Cr2/τ.

This is due to Gaussian concentration. This is an upper bound on the Hausdorff distance between
X0 and X̃0. Therefore, with probability 1 − N−C0 , if one chooses a set X0 of N0 i.i.d random
samples from µ ∗Gσ, X0 will be Cr2/τ−close toM in Hausdorff distance.

Then, letX1 = {pi} be a minimal cr/d−net ofX0. Such a net can be chosen greedily, ensuring
at every step that no element included in the net thus far is within cr

2d of the point currently chosen.
The process continues while progress is possible. Let the size of X1 be denoted N̄ .

We introduce a family of D dimensional balls of radius r, {Ui}i∈[N̄ ] where the center of Ui
is pi and a family of d−dimensional embedded discs of radius r, denoted {Di}i∈[N̄ ], Di ⊆ Ui
whereDi is centered at pi. TheDi are chosen by fitting a disc that approximately minimizes among
all discs of radius r centered at pi the Hausdorff distance to Ui ∩ X0 by a procedure described
in Subsection C.1. We will need the following properties of (Di, pi), which hold with probability
1−N−C0 :

1. The Hausdorff distance between ∪iDi andM is less than Cdr2

τ = δ.

2. For any i 6= j, |pi − pj | > cr
d .

3. For every z ∈M, there exists a point pi such that |z − pi| < 3 infi 6=j , |pi − pj |.

Consider the bump function α̃i : RD → R given by

α̃i(pi + rv) = ci(1− ‖v‖2)d+2

for any v ∈ BD and 0 otherwise. Let

α̃(x) :=
∑
i

α̃i(x).

Let

αi(x) =
α̃i(x)

α̃(x)
,

for each i.
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x

x + Range(Πx)

Figure 1: A vector bundle over a neighborhood of the data, used to produce the output manifold. In
the figure, x is the gray point and x + Range(Πx) is the gray line segment containing x.

Lemma 6 It is possible to choose ci such that for any z in a r
4d neighborhood ofM,

c−1 > α̃(z) > c,

where c is a small universal constant. Further, such ci can be computed using no more than
N0(Cd)2d operations involving vectors of dimension D.

Proof The details of the proof appear in the appendix in section D.

4. The output manifold

For the course of this section, we consider the scaled setting where r = 1. Thus, in the new
Euclidean metric, τ ≥ CdC .

Let Πi be the orthogonal projection onto the n−d−dimensional subspace containing the origin
that is orthogonal to the affine span of Di.

We define the function Fi : Ui → Rn by Fi(x) = Πi(x− pi). Let ∪iUi = U . We define

F : U → Rn

by F (x) =
∑

i αi(x)Fi(x).
Given a symmetric matrix A such that A has n− d eigenvalues in (1/2, 3/2) and d eigenvalues

in (−1/2, 1/2), let Πhi(A) denote the projection onto the span of the eigenvectors corresponding to
the largest n− d eigenvalues.

For x ∈ ∪iUi, we define Πx = Πhi(Ax) where Ax =
∑

i αi(x)Πi. Let Ũi be defined as the
cr
d −Eucidean neighborhood of Di intersected with Ui. Note that Πx is C2 when restricted to ∪iŨi,

because the αi(x) are C2 and when x is in this set, c <
∑

i α̃i(x) < c−1, and for any i, j such that
αi(x) 6= 0 6= αj(x), we have ‖Πi −Πj‖F < Cdδ.

Definition 7 The output manifoldMo is the set of all points x ∈ ∪iŨi such that ΠxF (x) = 0.
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As stated above,Mo is the set of points x ∈ ∪iŨi such that

Πhi(
∑
i

αi(x)Πi)(
∑
i

αi(x)Πi(x− pi)) = 0. (7)

Using diagonalization and Cauchy’s integral formula, we have

1

2πi

[∮
γ
(zI − (

∑
i

αi(x)Πi))−1dz

](∑
i

αi(x)Πi(x− pi)

)
= 0 (8)

where γ is the circle of radius 1/2 centered at 1.
Let
∑
αi(x)Πi = M(x), and as stated earlier, Πi(x− pi) = Fi(x). Let Πhi(M(x)) be denoted

Πx.
Then the left hand side of (8) can be written as∮

γ

dz

2πi

(∑
i

αi(x)(zI −M(x))−1Fi(x)

)
. (9)

for any v ∈ Rn̂ and and f : Rn̂ → Rñ where n̂, ñ ∈ N+ let

∂vf(x) := lim
α→0

f(x+ αv)− f(x)

α
.

∂v

∮
γ

dz

2πi

(∑
i

αi(x)(zI −M(x))−1Fi(x)

)
=

∑
i

αi(x)Πx(∂vFi(x)) (10)

+
∑
i

αi(x)(∂vΠx)Fi(x) (11)

+
∑
i

(∂vαi(x))ΠxFi(x). (12)

Let ‖v‖ = 1. LetMd
Π denote the set of all projection matrices of rank d. This is an analytic

submanifold of the space of n× n matrices.

Claim 1 The reach ofMd
Π is greater or equal to 1/2.

Proof This proof appears in Section E of the appendix.

We first look at the right hand side of (10). This can be rewritten as∑
i

αi(x)ΠxΠiv = Πxv + Πx (M(x)−Πx) v. (13)

7
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‖M(x)−Πx‖F = dist(M(x), Tan(Πx,Md
Π)) (14)

≤ sup
i
dist(Πi, Tan(Πx,Md

Π)) (15)

≤ sup
i
‖Πi −Πx‖2F /(2 reach(Md

Π)) (16)

≤ 4 sup
i,j
‖Πi −Πj‖2F (17)

≤ 8dδ2. (18)

We look at (11) next. Observe that∥∥∥∥∥
∮
γ

dz

2πi

(∑
i

αi(x)
(
∂v((zI −M(x))−1)

)
Fi(x)

)∥∥∥∥∥ ≤ ‖∂vΠx‖

∥∥∥∥∥∑
i

αi(x)Fi(x)

∥∥∥∥∥ .
In what follows, we will make repeated use of Hölder’s inequality: Let p, q ∈ R and 1

p + 1
q = 1,

then,
∀x, y ∈ Rn, 〈x, y〉 ≤ ‖x‖p‖y‖q.

Secondly, we will use the fact that for any ball Ui, the number of j such that Ui∩Uj is nonempty
is bounded above by (Cd)d because of the lower bound of cr

d on the spacing between the pi and pj
for any two distinct i and j. A consequence of this is that any vector v ∈ RN̄ that is supported on
the set of all j such that Ui ∩ Uj 6= ∅ will satisfy

‖v‖d+2 ≤ Cd‖v‖∞, (19)

and

‖v‖ d+2
2
≤ Cd2‖v‖∞. (20)

Thirdly, we will use the following bounds on the derivatives of the bump functions at points x
that are within a distance of cr/d ofM. Recall that

∑
i α̃i(x) is denoted α̃(x). Then we know that

c < α̃(x) < C if the distance of x fromM is less than cr/d.

Lemma 8 We have for any v ∈ RD such that |v| = 1, and any x ∈ RD such that dist(x,M) ≤ cr
d ,

‖(∂vαi(x))i∈[N̄ ]‖ d+2
d+1
≤ Cd2. (21)

Proof This proof appears in section F in the Appendix.

Lemma 9 We have for any v ∈ RD such that |v| = 1, and any x ∈ RD such that dist(x,M) ≤ cr
d ,

‖(∂2
vαi(x))i∈[N̄ ]‖ d+2

d
≤ Cd4. (22)

Proof This proof appears in section F in the Appendix.

Recall that F (x) =
∑
αi(x)Fi(x).
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4.1. A bound on the first derivative of ΠxF (x)

We proceed to obtain an upper bound on ‖∂vΠx‖.

‖∂vΠx‖ ≤ (radius(γ))
∥∥∂v((zI −M(x))−1)

∥∥ (23)

=

(
1

2

)
‖(zI −M(x))−1∂vM(x)(zI −M)−1‖ (24)

≤
(

1

2

)
‖(zI −M(x))‖−2‖∂vM(x)‖ (25)

≤ 8‖∂vM(x)‖ (26)

= 8‖
∑
i

∂vαi(x)(Πi −Π1) + ∂v
∑
i

αi(x)Π1‖ (27)

≤ 8
∑
i

|∂vαi(x)|δ + 0 (28)

≤ 8‖(∂vαi(x))i∈[N̄ ]‖ d+2
d+1
‖(δ)i∈[N̄ ]‖d+2 (29)

≤ Cd3δ. (30)

where C is an absolute constant.
Therefore, ∥∥∥∥∥

∮
γ

dz

2πi

(∑
i

αi(x)
(
∂v((zI −M(x))−1)

)
Fi(x)

)∥∥∥∥∥ ≤ Cd3δ. (31)

Finally, we bound (12) from above.∥∥∥∥∥
∮
γ

dz

2πi

(∑
i

(∂vαi(x)) (zI −M(x))−1Fi(x)

)∥∥∥∥∥ ≤

∥∥∥∥∥Πx

(∑
i

(∂vαi(x))(Fi(x)− F1(x))

)∥∥∥∥∥
+

∥∥∥∥∥
(∑

i

∂vαi(x)

)
F1(x)

∥∥∥∥∥ (32)

≤ ‖Πx‖
∑
i

|∂vαi(x)|‖Fi(x)− F1(x)‖+ 0 (33)

≤ ‖(∂vαi(x))i∈[N̄ ]‖ d+2
d+1
‖(Fi(x)− F1(x))i∈[N̄ ]‖d+2

≤ Cd3δ. (34)

Therefore

‖∂v (ΠxF (x))−Πxv‖ ≤ Cd3δ. (35)

Note also by (23)-(30) that

‖∂vΠx‖ ≤ Cd3δ. (36)

9
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4.2. A bound on the second derivative of ΠxF (x)

We now proceed to obtain an upper bound on ‖∂2
v (ΠxF (x)) ‖.

‖∂2
v (ΠxF (x)) ‖ ≤ ‖(∂2

vΠx)F (x)‖ (37)

+ ‖2(∂vΠx)∂vF (x)‖ (38)

+ ‖Πx∂
2
vF (x)‖. (39)

We first bound from above the right side of (37).

(∂2
vΠx) = ∂2

v

[
1

2πi

∮
[zI −M(x)]−1dz

]
(40)

= ∂v

[
1

2πi

∮
(zI −M(x))−1∂vM(x)(zI −M(x))−1dz

]
(41)

=
1

2πi

∮
2(zI −M(x))−1∂vM(x)(zI −M(x))−1∂vM(x)(zI −M(x))−1dz

+

∮
(zI −M(x))−1∂2

vM(x)(zI −M(x))−1dz. (42)

Therefore,

‖(∂2
vΠx)F (x)‖ ≤ sup

z∈γ

(
C‖(zI −M(x)‖−3‖(∂vM(x))2‖+ C‖(zI −M(x)‖−2‖(∂2

vM(x))‖
)

≤ C(‖∂vM(x)‖2 + ‖∂2
vM(x)‖) (43)

≤ Cd6δ2 + ‖∂2
vM(x)‖ (44)

= Cd6δ2 + ‖∂2
v

∑
i

αi(x)Πi‖ (45)

≤ Cd6δ2 +
∑
i

|∂2
vαi(x)(Πi −Π1)| (46)

≤ Cd6δ2 + ‖(∂2
vαi(x))i‖ d+2

d
‖(δ)i‖ d+2

2
(47)

≤ Cd6δ2 + Cd6δ. (48)

Next, we bound (38) from above. Note that

‖∂vF (x)‖ ≤ ‖(
∑
i

∂vαi(x))(Fi(x)− F1(x)) + Πxv‖ (49)

≤ 1 + Cd3δ. (50)

‖(∂vΠx)∂vF (x)‖ ≤ ‖(∂vΠx)‖‖∂vF (x)‖ (51)

≤ (Cd3δ)(1 + d3δ) (52)

= Cd3δ + Cd6δ2. (53)
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Finally, we bound (39) from above.

‖Πx∂
2
vF (x)‖ ≤ ‖∂2

vF (x)‖ (54)

≤ ‖∂2
v(F (x)− F1(x))‖ (55)

≤
∑
i

|∂2
vαi(x)|‖Fi(x)− F1(x)‖ (56)

+
∑
i

2|∂vαi(x)|‖∂vFi(x)− ∂vF1(x)‖ (57)

+
∑
i

|αi(x)|‖∂2
vFi(x)‖. (58)

We first bound (56) from above.∑
i

|∂2
vαi(x)|‖Fi(x)− F1(x)‖ ≤ ‖(|∂2

vαi(x)|)i∈[N̄ ]‖ d+2
d
‖(‖Fi(x)− F1(x)‖)i∈[N̄ ]‖ d+2

2

≤ (Cd4)(d2δ) (59)

= Cd6δ. (60)

Next we bound (57) from above.∑
i

|∂vαi(x)|‖∂vFi(x)− ∂vF1(x)‖ ≤ ‖(|∂vαi(x)|)i∈[N̄ ]‖ d+2
d
‖(‖∂vFi(x)− ∂vF1(x)‖)i∈[N̄ ]‖ d+2

2

≤ Cd4(d2δ) (61)

= Cd6δ. (62)

The term (58) is 0.
Therefore ∥∥∂2

v (ΠxF (x))
∥∥ ≤ Cd6δ. (63)

Recall thatMo is the set of points x ∈ ∪iŨi such that

Πhi(
∑
i

αi(x)Πi)(
∑
i

αi(x)Πi(x− pi)) = 0. (64)

In particular, x ∈ Mo ∩ Ui if and only if h(z) = ΠiΠhi(
∑

i αi(z)Π
i)(
∑

i αi(z)Π
i(z − pi)) = 0,

where Πi is the orthogonal projection onto the subspace orthogonal to Di, containing the center of
Di. We take Ui to be the unit ball and the center of Ui to be the origin and take the linear span of
Di to be Rd. We split z into its x component (projection onto Rd) and y component (projection
orthogonal to Rd). and define g(x, y) = (x, h(x, y)). This function is then substituted into the
quantitative inverse function theorem of section B in the appendix.

5. Hausdorff distance ofMo toM and the reach ofMo.

Theorem 10 With probability at least 1 − N−C0 , the following is true. The Hausdorff distance
betweenMo andM is less than Cd3

√
rδ < Cτ

dC
and the reach ofMo is at least τ

Cd7
.

11
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Proof Since σ(
√
D +

√
ln(NC

0 )) is less than Cr2/τ < τ
CdC

, by Gaussian concentration, with

probability at least 1−N−C0 , every point yi = xi + ζi satisfies

|yi − xi| = |ζi| < σ(
√
D +

√
ln(NC

0 )) < Cr2/τ.

All the statements for the rest of this proof will hold with probability at least 1−N−C0 . SinceX0 has
a Hausdorff distance Cr2

τ toM, and X1 has a Hausdorff distance cr
d toM, as a consequence, the

Hausdorff distance between ∪iDi andM is less than δ = Cdr2

τ by subsection C.1. The Hausdorff
distance between ∪iDi andMo is less than

Cd6δ = Cd7 r
2

τ
<
Cτ

dC
(65)

by the quantitative implicit function theorem (appendix, section B), applying Taylor’s theorem to-
gether with (122) and (125). Thus, by the triangle inequality, the Hausdorff distance betweenMo

andM is less than Cd7 r2

τ < Cτ
dC
. Next, we address the reach ofMo. By Federer’s criterion (Propo-

sition 3) we know that

reach(Mo) = inf
{
|b− a|2(2dist(b, Tan(a)))−1

∣∣ a, b ∈Mo, a 6= b
}
. (66)

We wish to prove that reach(Mo) >
τ
Cd7

. Let a, b ∈Mo, a 6= b.
If |a− b| > τ

Cd7
, then |b− a|2(2dist(b, Tan(a)))−1 > τ

Cd7
, because

|b− a| ≥ dist(b, Tan(a)).

Therefore, we may suppose that |a − b| ≤ τ
Cd7

. By the bound on the Hausdorff distance
betweenM andMo, the respective distances of a and b to the images of their projections ontoM,
which we denote a′ and b′ respectively, are less than Cd3

√
rδ. By the quantitative implicit function

theorem (appendix, section B) and the covering property of {Ui},Mo is a C2−submanifold of Rn.
Therefore Tan(a) is a d−dimensional affine subspace. By (122) and (125) the Hausdorff distance
between the two unit discs Tan(a) ∩ B(a, 1) and (TanM(a′) ∩ B(a′, 1)) + (a − a′) which are
centered at a, is bounded above by

Cd3
√
δ/r = Cd7/2

√
r/τ =

1

CdC
. (67)

Then,M andMo are Cd3
√
rδ close in Hausdorff distance and (Mo ∩ B(a, 2|a− b|)) and (M∩

B(a′, 2|a − b|)) are Cd3
√
δ/r|a − b| = 1

CdC
close in C1 over the maximal subset Ua of Tan(a)

on which both are defined as graphs of functions (respectively f̂o and f̂ ) whose range is Nor(a),
the fiber of the normal bundle at a by Lemma 13; please see section A in the appendix. This subset
contains (Tan(a) ∩ B(a, 3|a− b|/2)) because we further know by (67) and the reach ofM being
at least τ , that the C1 norm of f̂ on (Tan(a)∩B(a, 3|a− b|/2)) is at most (Cd7)−1. Therefore, the
C1 norm of f̂o on (Tan(a) ∩B(a, 3|a− b|/2)) is at most (Cd7)−1. But using this and the Hessian
bound of Cd6δ from (63), we also know that the Hessian of f̂o is bounded above by Cd7/τ . But
now, by Taylor’s theorem, dist(b, Tan(a)) ≤ sup ‖Hessf̂o‖|a − b|2/2, where the supremum is
taken over (Tan(a) ∩ B(a, 3/2|a − b|)). This, we know is bounded above by Cd7|a − b|2/τ .
Substituting this into Federer’s criterion for the reach, we see that

reach(Mo) ≥
τ

Cd7
.

12
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Appendix A. Geometric Preliminaries

LetM ∈ G(d, V, τ). In the remainder of this section, for x ∈ M denote the orthogonal projection
from Rn to the affine subspace tangent toM at x, Tan(x) by Πx.

Lemma 11 For each p ∈ M, such that Tan(p) = {(z1, z2) ∈ Rd ⊕ Rn−d|Az1 + b = z2} for
some matrix A(p) and vector b(p), there exists a neighborhood V ⊆ Rn of p, an open set U ∈ Rd
and a C2 function F : U → Rn−d with DF (u) of rank d for all u ∈ U such that

M∩ V = ((u, F (u)), u ∈ U ∩ Rd). (68)
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Proof Let U,W, φ, ψ be as in the definition of a C2 manifold. Since φ ◦ ψ = id, Dψ has rank d at
each point of W , in particular q = φ(p). Therefore,

det

(
∂

∂w1
ΠRd ◦ ψ, . . . ,

∂

∂wd
ΠRd ◦ ψ

)
6= 0 (69)

holds at q. By (69), we can apply the inverse function theorem to ΠRd ◦ ψ at u0 = ΠRd ◦ ψ(q) to
see that f = (Πd ◦ ψ)−1 : U ′ → Rd exists, is C2 and Df has rank d at each u ∈ U ′ for some
neighborhood U ′ (possibly smaller than U ) of ΠRdq. Setting F = ΠRn−d ◦ψ ◦ f , we obtain (68).

Lemma 12 Suppose thatM∈ G(d, V, τ). Let

U := {y
∣∣|y −Πxy| ≤ τ/4} ∩ {y

∣∣|x−Πxy| ≤ τ/4}.

Then,
Πx(U ∩M) = Πx(U).

Proof Without loss of generality, we will assume τ/2 = 1, and x = {0}, and Tan(x) = Rd. Let
N = U ∩ M. We will first show that Π0(N ) = Bd, where Bd is the unit ball in Rd. Suppose
otherwise, then let ∅ 6= Y := Bd \ Π0(N ). Note that N is closed and bounded and is therefore
compact. The image of a compact set under a continuous map is compact, therefore Π0(N ) is
compact. Therefore Rd \Π0(N ) is open. Let x1 be a point of minimal distance from 0 = Π0(0) ⊆
Π0(N ) among all points in the closure Z of Rd \ Π0(N ). Since ∅ 6= Y and Rd \ Π0(N ) is open,
|x1| < 1. Since Tan(0) = Rd andM is a closed imbedded C2−submanifold, 0 does not belong to
Z. Therefore x1 6= 0. By Federer’s criterion for the reach, ∀y1 ∈ Π−1

0 (x1) ∩N ,

dist(y1, Tan(0)) ≤ ‖y1‖2

4
. (70)

Therefore, ∀y1 ∈ Π−1
0 (x1) ∩N ,

dist(y1,Rd) ≤
dist(y1,Rd)2 + |x1|2

4
. (71)

Noting that 2 ≥ 1 ≥ dist(y1,Rd) and solving the above quadratic inequality, we see that

|y1 − x1|/2 ≤ 1−

√
1−

(
|x1|
2

)2

(72)

≤
(
|x1|
2

)2

. (73)

This implies that

|y1 − x1| ≤
1

8
<
τ

8
. (74)
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Again by Federer’s criterion, for any z ∈ Π−1
0 (|x1|Bd) ∩N ,

|z −Πy1(z)|/2 ≤ 1−

√
1−

(
|y1 −Πy1z|

2

)2

(75)

≤
(
|y1 −Πy1z|

2

)2

. (76)

By Lemma 11 and (74), we have the following.

Claim 2 Let y1 ∈ Π−1
0 (x1) ∩ N . Then there exists v ∈ ∂Bd such that if y′1 ∈ Tan(y1) then

〈y′1 − y1, v〉 = 0.

Let ` = {λv|λ ∈ R} and let Π` denote the orthogonal projection on to `. Then,

Π`(|x1|Bd) = {λv|λ ∈ [−|x1|, |x1|]}.

By Claim 2, Π`(Tan(y1)) is the single point Π`(y1). Let Π`(y1) = λ0v. Let x2 = |x1|v if λ0 ≤ 0
and x2 = −|x1|v if λ0 > 0. Let y2 ∈ Π−1

0 (x2) ∩N . Then,

|x1| ≤ |Π`(y1)− x2| (77)

≤ dist(y2, Tan(y1)) (78)

≤ |y2 − y1|2

4
(79)

≤ 2|y2 − x2|2 + |x1 − x2|2 + 2|y1 − x1|2

4
(80)

≤
2
(
|x2|2

2

)2
+ 4|x1|2 + 2

(
|x1|2

2

)2

4
(81)

Therefore,
α := |x1| ≤ |x1|4/4 + |x1|2.

Therefore, 1 ≤ α3/4 + α. This implies that

|x1| >
1

2
. (82)

Lemma 13
Suppose thatM∈ G(d, V, τ). Let

Û := {y
∣∣|y −Πxy| ≤ τ/8} ∩ {y

∣∣|x−Πxy| ≤ τ/8}.

There exists a C2 function Fx,Û from Πx(Û) to Π−1
x (Πx(0)) such that

{y + Fx,Û (y)
∣∣y ∈ Πx(Û)} =M∩ Û .
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Secondly, let z ∈ M∩ Û satisfy |Πx(z) − x| = δ. Let z be taken to be the origin and let the span
of the first d canonical basis vectors be denoted Rd and let Rd be a translate of Tan(x). Let the
span of the last n−d canonical basis vectors be denoted Rn−d. In this coordinate frame, let a point
z′ ∈ Rn be represented as (z′1, z

′
2), where z′1 ∈ Rd and z′2 ∈ Rn−d. By the preceding lemma, there

exists an (n− d)× d matrix Az such that

Tan(z) = {(z′1, z′2)|Azz′1 − Iz′2 = 0} (83)

where the identity matrix is (n − d) × (n − d). For δ < τ/8, let z ∈ M ∩ {z
∣∣|z − Πxz| ≤

δ} ∩ {z
∣∣|x−Πxz| ≤ δ}. Then ‖Az‖2 ≤ 20δ/τ.

Proof Let

U := {y
∣∣|y −Πxy| ≤ τ/4} ∩ {y

∣∣|x−Πxy| ≤ τ/4}.

We will first show that there exists a function Fx,Û that satisfies the given conditions and then show

that it is C2. Let z ∈ M ∩ Û satisfy |Πx(z) − x| = δ. Let z be taken to be the origin and let the
span of the first d canonical basis vectors be denoted Rd and let Rd be a translate of Tan(x). Let
the span of the last n − d canonical basis vectors be denoted Rn−d. In this coordinate frame, let a
point z′ ∈ Rn be represented as (z′1, z

′
2), where z′1 ∈ Rd and z′2 ∈ Rn−d. By the preceding lemma,

there exists a matrix A such that

Tan(z) = {(z′1, z′2)|Az′1 − Iz′2 = 0}. (84)

Further, a linear algebraic calculation shows that

dist(z′, Tan(z)) =

∥∥∥∥(I +AAT )−1/2(Az′1 − Iz′2)

∥∥∥∥
2

. (85)

Let Sd−1
δ denote the d − 1−dimensional sphere of radius δ centered at the origin contained in Rd.

By the preceding lemma, there is a point z̃ ∈M for every z′ ∈ Sd−1
δ such that z̃ ∈ U , Πxz̃ = Πxz

′

and

‖z̃ −Πxz̃‖ ≤
‖x−Πxz̃‖2

τ
=

4δ2

τ
. (86)

Therefore, ∥∥z̃ − z′∥∥ = ‖z̃ − ((Πxz̃)− x2)‖ ≤ 4δ2

τ
+
δ2

τ
=

5δ2

τ
. (87)

Therefore,

dist(z′, Tan(z)) ≤ dist(z̃, Tan(z)) +
∥∥z̃ − z′∥∥ (88)

≤ |z − z̃|2

τ
+

5δ2

τ
(89)

=
|z − z′|2 + |z′ − z̃|2

τ
+

5δ2

τ
(90)

≤ δ2 + (8δ2/τ)2

τ
+

5δ2

τ
. (91)
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Therefore, for any z′1 ∈ S
d−1
δ ,∥∥∥(I +AAT )−1/2(Az′1)

∥∥∥
2
≤ δ2

τ

(
6 +

64δ2

τ2

)
. (92)

Thus, ∥∥∥(I +AAT )−1/2(A)
∥∥∥

2
≤ δ

τ

(
6 +

64δ2

τ2

)
=: δ′. (93)

Therefore, we see that∥∥∥(I +AAT )−1/2(AAT )(I +AAT )−1/2
∥∥∥

2
≤ δ′2. (94)

Let ‖A‖2 = λ. We then see that λ2 is an eigenvalue of AAT . Therefore,

λ2

1 + λ2
≤ δ′2. (95)

This gives us λ2 ≤ δ′2

1−δ′2 , which implies that

λ ≤ δ′√
1− δ′2

. (96)

We will use this to show that , Π−1
x (Πxz) ∩M∩ U contains the single point z. Suppose to the

contrary, there is a point ẑ 6= z that also belongs to Π−1
x (Πxz) ∩M∩ U . Then,

dist(ẑ, Tan(z)) ≤ ‖ẑ2‖2

τ
, (97)

where ‖ẑ2‖ ≤ 2δ2/τ . Thus,

‖ẑ2‖ ≤
‖ẑ2‖2‖I +AAT ‖1/2

τ
.

Therefore,

1 ≤ ‖ẑ2‖(1/
√

(1− δ′2))/τ ≤ 2δ2

τ2
√

1− δ′2
. (98)

Therefore

1− δ′2 ≤ 2δ2

τ2
, (99)

and so

δ′ ≥ 1− 2δ2/τ2. (100)

assuming δ ≤ τ
8 ,

δ′ ≤ 7δ

τ
. (101)

Therefore
2δ2/τ2 + 7δ/τ ≥ 1.

This implies that δ/τ > 1/8. This is a contradiction.
By (84) and Lemma 11, Fx,U is C2.
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Appendix B. Quantitative inverse and implicit function theorems

We now prove versions of the implicit and inverse function theorems with quantitative bounds on
the second derivatives that do not depend on the dimensions involved.

We begin with the inverse function theorem.
Let g : Rp → Rp be a C2 function on whose derivatives the following bounds hold.
At any point x ∈ Bp(0, 1),

‖Jacg − I‖ ≤ ε2/4 (102)

for some ε ∈ [0, 1]
For any non-zero vector v and x as before,∥∥∥∥∂2g(x)

∂v2

∥∥∥∥ ≤ (ε24
)
|v|2 (103)

for the same ε.
By (102), for any x 6= x′, both belonging to Bp(0, 1),

|g(x)− g(x′)− (x− x′)| ≤ |x− x′|(1/4),

which implies that g(x) 6= g(x′). Applying the Inverse Function Theorem (Narasimhan (1965)),
there exists a function f : g(Bp(0, 1)) → Bp(0, 1) such that f(g(x)) = x, for all x ∈ B(0, 1). Let
F̂ = w · f for some fixed non-zero vector w. Let g = (g1, . . . , gp), where each gi is a real-valued
function. The Jacobian of the identity function is I . Therefore, by the chain rule,((

dfi
dgj

)
i,j∈[p]

)
Jacg = I, (104)

implying by (102) that

∥∥∥∥∥
((

dfi
dgj

)
i,j∈[p]

)∥∥∥∥∥ ≤ (1− ε2/4)−1 (105)

The second derivative of a linear function is 0 and so

0 =
∂2F̂ (g)

∂v2
(x) =

∑
i,j

d2F̂

dgidgj

(
dgi
dv

)(
dgj
dv

)
+
∑
j

dF̂

dgj

(
d2gj
dv2

)
. (106)

Therefore,

∑
i,j

d2F̂

dgidgj

(
dgi
dv

)(
dgj
dv

)
= (−1)

∑
j

dF̂

dgj

(
d2gj
dv2

)
. (107)

and so by Cauchy-Schwartz,
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∣∣∣∣∣∣
∑
i,j

d2F̂

dgidgj

(
dgi
dv

)(
dgj
dv

)∣∣∣∣∣∣ ≤
∥∥∥∥∥∥
( dF̂

dgj

)
j∈[p]

∥∥∥∥∥∥
∥∥∥∥∥
((

d2gj
dv2

)
j∈[p]

)∥∥∥∥∥ . (108)

By (102) there exists a unit vector ṽ such that∣∣∣∣∣∣
∑
i,j

d2F̂

dgidgj

(
dgi
dṽ

)(
dgj
dṽ

)∣∣∣∣∣∣ =
∥∥∥Hess F̂∥∥∥∥∥∥∥dgdṽ

∥∥∥∥2

≥
∥∥∥Hess F̂∥∥∥ inf

‖v‖=1

∥∥∥∥dgdv
∥∥∥∥2

. (109)

Together (103), (105), (108) and (109) imply that

∥∥∥Hess F̂∥∥∥ inf
‖v‖=1

∥∥∥∥dgdv
∥∥∥∥2

≤

∥∥∥∥∥
((

dfi
dgj

)
i,j∈[p]

)
w

∥∥∥∥∥ sup
‖v‖=1

(
ε2

4

)
‖v‖2 ≤

(
ε2

4− ε

)
‖w‖. (110)

It follows that ∥∥∥Hess F̂∥∥∥ ≤ ( ε2

4− ε

)
‖w‖ sup

‖v‖=1

∥∥∥∥dgdv
∥∥∥∥−2

≤
(

16ε2

(4− ε)3

)
‖w‖. (111)

Next, consider the setting of the Implicit Function Theorem. Let h : Rm+n → Rn be a
C2−function,

h : (x, y) 7→ h(x, y).

Let g : Bm+n → Rm+n be defined by

g : (x, y) 7→ (x, h(x, y)).

Suppose the Jacobian of g, Jacg satisfies

‖Jacg − I‖ < ε2/4

on Bm+n and that for any vector v ∈ Rm+n,∥∥∥∥∂2g(x)

∂v2

∥∥∥∥ ≤ (ε24
)
‖v‖2

where ε ∈ [0, 1]. Suppose also that ‖g(0)‖ < ε2

20 for the same ε.
Let p = m + n. Then, applying the inverse function theorem, we see that defining f and F̂ as

before, and choosing ‖w‖ = 1,

∥∥∥Hess F̂∥∥∥ ≤ 16ε2

(4− ε)3
. (112)
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Lemma 14 On the domain of definition of f , i. e. g(Bm+n)

f((x, y)) = (x, e(x, y))

for an appropriate e and in particular, for ‖x‖ ≤ η
2 , where η ∈ [0, 1],

f((x, 0)) = (x, e(x, 0))

and

‖(x, e(x, 0))‖ ≤ 8

5

(
ε2

20
+
η

2

)
.

Finally, for any w ∈ Rn such that ‖w‖ = 1,

‖Hess(e · w)‖ ≤ 16ε2

(4− ε)3
. (113)

Proof It suffices to prove that if z = (x, y) ∈ Rp and ‖z‖ ≤ η/2, where η ∈ [0, 1], then there
exists a point ẑ, where ‖ẑ‖ ≤ 8

5

(
ε2

20 + η
2

)
, such that g(ẑ) = z. We will achieve this by analysing

Newton’s method for finding a sequence ẑ0, . . . , ẑk, . . . converging to a point ẑ that satisfies g(ẑ) =
z. We will start with ẑ0 = 0.

The iterations of Newton’s method proceed as follows.
For i ≥ 0,

ẑi+1 = ẑi − J−1
g (ẑi)(g(ẑi)− z). (114)

Claim 3
We shall first show that for any i ≥ 0, ‖ẑi‖ ≤ 8

5

(
ε2

20 + η
2

)
.

Proof Observe that

‖ẑi+1 − ẑi‖ = ‖J−1
g (ẑi)(g(ẑi)− z)‖. (115)

For i = 0,

‖g(ẑi)− z‖ ≤
ε2

20
+
η

2
. (116)

and since ‖J−1
g (ẑi)‖ ≤ 1

1−ε/4 ≤ 4/3, therefore

‖ẑi+1 − ẑi‖ ≤
(

4

3

)(
ε2

20
+
η

2

)
. (117)

Suppose i ≥ 1.

g(ẑi)− z = g
(
ẑi−1 − J−1

g (ẑi−1)(g(ẑi−1)− z)
)
− z. (118)

Using the integral form of the remainder in Taylor’s theorem, the right hand side of (118) equals

g(ẑi−1) + Jg(ẑi−1)
(
−J−1

g (ẑi−1)(g(ẑi−1)− z)
)

+ Λ− z,
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which simplifies to Λ, where

Λ =

∫ 1

0
(1− t)(ẑi − ẑi−1)THessg(ẑi−1 + t(ẑi − ẑi−1))(ẑi − ẑi−1)dt.

The norm of Λ is bounded above as follows. Note that by the induction hypothesis, ‖ẑi‖ ≤
8
5

(
ε2

20 + η
2

)
, and ‖ẑi−1‖ ≤ 8

5

(
ε2

20 + η
2

)
, which places both ẑi and ẑi−1 within the unit ball. There-

fore ‖(ẑi− ẑi−1)THessg(ẑi−1 + t(ẑi− ẑi−1))(ẑi− ẑi−1)‖ ≤ (ε2/4)‖ẑi− ẑi−1‖2 for any t ∈ [0, 1].

‖Λ‖ ≤
∫ 1

0
(1− t)‖(ẑi − ẑi−1)‖2(ε2/4)dt =

(
ε2

8

)
‖(ẑi − ẑi−1)‖2.

Therefore

‖ẑi+1 − ẑi‖ = ‖J−1
g (ẑi)(g(ẑi)− z)‖ ≤

(
4

3

)(
ε2

8

)
‖(ẑi − ẑi−1)‖2 =

(
ε2

6

)
‖(ẑi − ẑi−1)‖2.(119)

By recursion,

‖ẑi+1 − ẑi‖ ≤
(
ε2i

6i

)
‖ẑ1 − ẑ0‖2

i
. (120)

Therefore,

‖ẑi+1‖ = ‖ẑi+1 − ẑ0‖ ≤
i∑

j=1

‖ẑj+1 − ẑj‖ ≤
‖ẑ1 − ẑ0‖

1− ε2

6

≤
(

4

3

(
ε2

20
+
η

2

))(
6

5

)
=

8

5

(
ε2

20
+
η

2

)
.(121)

Recall that g : Bm+n → Rm+n is given by

g : (x, y) 7→ (x, h(x, y)).

Since g is injective, it follows that on the domain of definition of f , i. e. g(Bm+n)

f((x, y)) = (x, e(x, y))

for an appropriate e. By (117) and (120) (ẑ0, . . . , ẑi, . . . ) is a Cauchy sequence, and therefore has
a unique limit point. By the preceding Claim, this limit ẑ satisfies ‖ẑ‖ ≤ 22

25 < 1. Therefore any
point in Bm ×Bn of the form (x, 0) where ‖x‖ = η

2 ≤
1
2 belongs to g(Bm+n). Further,

‖f((x, 0))‖ ≤ 8

5

(
ε2

20
+
η

2

)
.

In particular, setting η = 0, we have

‖f((0, 0))‖ ≤ 2ε2

25
. (122)
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By (105) the function e satisfies, for ‖x‖ ≤ 1/2,

‖Dxe‖2 = ‖Dxf‖2 − 1 (123)

≤ (1− ε2/4)−2 − 1 (124)

≤ ε2. (125)

By (112) the function e satisfies, for any w ∈ Rn such that ‖w‖ = 1,

‖Hess(e · w)‖ ≤ 16ε2

(4− ε)3
. (126)

Appendix C. Finding good discs

LetGzσ be the spherical gaussian measure whose variance (of the marginal along any fixed direction)
is σ2 and center z. When z is the origin, we will drop the superscript. Let µ̂ = µ ∗ Gσ be the
distribution from which the yi are drawn. We will need the following theorem which follows from
Theorem 3.2.3 in Federer (1969).

Theorem 15 LetLm denote them−dimensional Lebesgue measure andHm denote them−dimensional
Hausdorff measure. Suppose f : A → Rn be a 1 → 1 C2 function with m ≤ n where A is a
Lm−measurable subset of Rm and Jmf is the Jacobian of f . If u is a Lm integrable function, then∫

Rm

u(x)Jmf(x)Lm(dx) =

∫
Rn

u(f−1(y))Hm(dy). (127)

C.1. Learning unit discs that approximate the data locally

Let X be a finite set of points in E = RD and X ∩ B1(x) := {x, x̃1, . . . , x̃s} be a set of points
within a Hausdorff distance δ of some (unknown) unit d-dimensional discD1(x) centered at x. Here
B1(x) is the set of points in RD whose distance from x is less or equal to 1. We give below a simple
algorithm that finds a unit d-disc centered at xwithin a Hausdorff distanceCdδ ofX0 := X∩B1(x),
where C is an absolute constant.

The basic idea is to choose a near orthonormal basis from X0 where x is taken to be the origin
and let the span of this basis intersected with B1(x) be the desired disc. This algorithm appeared
previously in Fefferman et al. (2015), but has been included in the interest of readability.

Algorithm FindDisc:

1. Let x1 be a point that minimizes |1− |x− x′|| over all x′ ∈ X0.

2. Given x1, . . . xm for m ≤ d− 1, choose xm+1 such that

max(|1− |x− x′||, |〈x1/|x1|, x′〉|, . . . , |〈xm/|xm|, x′〉|)

is minimized among all x′ ∈ X0 for x′ = xm+1.
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Let Ãx be the affine d-dimensional subspace containing x, x1, . . . , xn, and the unit d-disc D̃1(x) be
Ãx ∩ B1(x). Recall that for two subsets A,B of RD, dH(A,B) represents the Hausdorff distance
between the sets. The same letter C can be used to denote different constants, even within one
formula.

Lemma 16 Suppose there exists a d-dimensional affine subspaceAx containing x such thatD1(x) =
Ax ∩ B1(x) satisfies dH(X0, D1(x)) ≤ δ. Suppose 0 < δ < 1

2d . Then dH(X0, D̃1(x)) ≤ Cdδ,
where C is an absolute constant.

Proof Without loss of generality, let x be the origin. Let d(x, y) be used to denote |x− y|. We will
first show that for all m ≤ d− 1,

max

(
|1− d(x, xm+1)|,

∣∣∣∣〈 x1

|x1|
, xm+1

〉∣∣∣∣ , . . . , ∣∣∣∣〈 xm
|xm|

, xm+1

〉∣∣∣∣) < δ.

To this end, we observe that the minimum over D1(x) of

max

(
|1− d(x, y)|,

∣∣∣∣〈(x1)

|x1|
, y

〉∣∣∣∣ , . . . , ∣∣∣∣〈(xm)

|xm|
, y

〉∣∣∣∣) (128)

is 0, because the dimension of D1(x) is d and there are only m ≤ d− 1 linear equality constraints.
Also, the radius of D1(x) is 1, so |1 − d(x, zm+1)| has a value of 0 where a minimum of (128)
occurs at y = zm+1. Since the Hausdorff distance between D1(x) and X0 is less than δ there exists
a point ym+1 ∈ X0 whose distance from zm+1 is less than δ. For this point ym+1, we have δ greater
than

max

(
|1− d(x, ym+1)|,

∣∣∣∣〈(x1)

|x1|
, ym+1

〉∣∣∣∣ , . . . , ∣∣∣∣〈(xm)

|xm|
, ym+1

〉∣∣∣∣) . (129)

Since

max

(
|1− d(x, xm+1)|,

∣∣∣∣〈(x1)

|x1|
, xm+1

〉∣∣∣∣ , . . . , ∣∣∣∣〈(xm)

|xm|
, xm+1

〉∣∣∣∣)
is no more than the corresponding quantity in (129), we see that for each m+ 1 ≤ n,

max

(
|1− d(x, xm+1)|,

∣∣∣∣〈(x1)

|x1|
, xm+1

〉∣∣∣∣ , . . . , ∣∣∣∣〈(xm)

|xm|
, xm+1

〉∣∣∣∣) < δ.

Let Ṽ be an D × d matrix whose ith column is the column xi. Let the operator 2-norm of a matrix
Z be denoted ‖Z‖. For any distinct i, j we have |〈xi, xj〉| < δ, and for any i, |〈xi, xi〉 − 1| < 2δ,
because 0 < 1− δ < |xi| < 1. Therefore,

‖Ṽ tṼ − I‖ ≤ C1dδ.

Therefore, the singular values of Ṽ lie in the interval

IC = (exp(−Cdδ), exp(Cdδ)) ⊇ (1− C1dδ, 1 + C1dδ).

For each i ≤ n, let x′i be the nearest point on D1(x) to the point xi. Since the Hausdorff distance
of X0 to D1(x) is less than δ, this implies that |x′i − xi| < δ for all i ≤ n. Let V̂ be an D × d
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matrix whose ith column is x′i. Since for any distinct i, j |〈x′i, x′j〉| < 3δ + δ2, and for any i,
|〈x′i, x′i〉 − 1| < 4δ,

‖V̂ tV̂ − I‖ ≤ Cdδ.

This means that the singular values of V̂ lie in the interval IC .
We shall now proceed to obtain an upper bound of Cdδ on the Hausdorff distance between X0

and D̃1(x). Recall that the unit d-disc D̃1(x) is Ãx ∩ B1(x). By the triangle inequality, since the
Hausdorff distance of X0 to D1(x) is less than δ, it suffices to show that the Hausdorff distance
between D1(x) and D̃1(x) is less than Cdδ.

Let x′ denote a point on D1(x). We will show that there exists a point z′ ∈ D̃1(x) such that
|x′ − z′| < Cdδ.

Let V̂ α = x′. By the bound on the singular values of V̂ , we have |α| < exp(Cdδ). Let
y′ = Ṽ α. Then, by the bound on the singular values of Ṽ , we have |y′| ≤ exp(Cdδ). Let z′ = z′ =
min(1− δ, |y′|)|y′|−1y′. By the preceding two lines, z′ belongs to D̃1(x). We next obtain an upper
bound on |x′ − z′|

|x′ − z′| ≤ |x′ − y′| (130)

+|y′ − z′|. (131)

We examine the term in (130)

|x′ − y′| = |V̂ α− Ṽ α| ≤ sup
i
|xi − x′i|(

∑
i

|αi|) ≤ δd exp(Cnδ).

We next bound the term in (131).

|y′ − z′| ≤ |y′|(1− exp(−Cdδ)) ≤ Cnδ.

Together, these calculations show that

|x′ − z′| < Cdδ.

A similar argument shows that if z′′ belongs to D̃1(x) then there is a point p′ ∈ D1(x) such that
|p′ − z′′| < Cdδ; the details follow. Let V̂ β = z′′. From the bound on the singular values of V̂ ,
|β| < exp(Cdδ). Let q′ := Ṽ β. Let p′ := min(1− δ, |q′|)|q′|−1q′.

|p′ − z′′| ≤ |q′ − z′′|+ |p′ − q′|
≤ |Ṽ β − V β|+ |1− Ṽ β|
≤ sup

i
|xi − x′i|(

∑
i

|βi|) + Cδd

≤ δd exp(Cdδ) + Cδd

≤ Cδd.

This proves that the Hausdorff distance between X0 and D̃1(x) is bounded above by Cdδ where C
is a universal constant.
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Appendix D. Proof of Lemma 6

Proof

Claim 4 There exists κ ∈ R independent of z such that

cκ−1 <
d(λM ∗ β)

dλ
(z) < c−1κ−1.

Proof After appropriate scaling, we will assume that r = 1. We make the following claim.

Claim 5 If |v| < 1√
2
,

exp(−2(d+ 2)|v|2) < β(v). (132)

Also

∀v ∈ RD, exp(−(d+ 2)|v|2) > β(v). (133)

Proof To see the first inequality, note that

|v| <
1√
2

(134)

=⇒ (−2)(1− |v|2) < −1 (135)

=⇒ (−2)(d+ 2)|v|2 < (d+ 2)

(
− |v|2

1− |v|2

)
(136)

=⇒ (−2)(d+ 2)|v|2 < (d+ 2)
(
ln(1− |v|2)

)
(137)

=⇒ exp((−2)(d+ 2)|v|2) <
(
1− |v|2

)d+2
= β(v). (138)

To see the second inequality, exponentiate the following inequality for |v| < 1:

−(d+ 2)|v|2 > (d+ 2)
(
ln(1− |v|2)

)
. (139)

When |v| ≥ 1, β(v) = 0, so the inequality holds.

We will now use the preceding claim to get upper and lower bounds on∫
Rd

β(v)λ(dv) =: c−1
β ,

where λ corresponds to the d−dimensional Lebesgue measure.

∫
Rd

β(v)λ(dv) =

∫
Bd

β(v)λ(dv) (140)

≤
∫
Bd

exp(−(d+ 2)v)λ(dv) (141)

≤ (
π

d+ 2
)d/2. (142)
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Also, ∫
Bd

β(v)λ(dv), ≥
∫

Bd√
2

exp(−2(d+ 2)v)λ(dv) (143)

≥ (
π

2(d+ 2)
)d/2(1− exp(−

(
d+ 4

2d+ 4

)2 d

4
)) (144)

≥ (
π

2(d+ 2)
)d/2(1− exp(−d/16)) (145)

≥ c(
π

2(d+ 2)
)d/2. (146)

Using numerical integration the value of cβ can be estimated to within a multiplicative factor of
2 using (Cd)d operations on real numbers.

Next consider a unit disk Bd ⊆ RD equipped with the measure cβλ. We consider a point q at a
distance ∆ from the projection of q onto Bd, which we assume is the origin. As a warm-up, we will
be interested in

((cβλ1Bd
) ∗ β)(q)

((cβλ1Bd
) ∗ β)(0)

=

∫
Bd
β(q − v)(cβλ(dv))∫

Bd
β(−v)(cβλ(dv))

, (147)

as a function of ∆. We observe that v ∈ Bd =⇒ β(−v) ≥ β(q − v), and so

((cβλ1Bd
) ∗ β)(q)

((cβλ1Bd
) ∗ β)(0)

≤ 1. (148)

Let ∆2 ≤ 1
8d2

. Suppose |v|2 < 1− 1
2d , then

∆2 ≤
(

1− |v|2

4d

)
. (149)

Therefore,∫
Bd

β(q − v)(cβλ(dv)) =

∫
Bd

(1− |v|2 −∆2)d+21{v||v|2≤1−∆2}(cβλ(dv))

≥
∫
√

1− 1
2d
Bd

((1− |v|2)(1− 1

4d
))d+2(cβλ(dv))

≥
∫
√

1− 1
2d
Bd

e−1((1− |v|2))d+2(cβλ(dv)) (150)

≥ c

∫
Bd

((1− |v|2))d+2(cβλ(dv)). (151)

In the above sequence of inequalities the last step comes from dilating the disk
√

1− 1
2dBd to Bd

and observing that β(v1) ≥ β(v2) if |v1| < |v2|.
We thus have

c ≤
((cβλ1Bd

) ∗ β)(q)

((cβλ1Bd
) ∗ β)(0)

=

∫
Bd
β(q − v)(cβλ(dv))∫

Bd
β(−v)(cβλ(dv))

≤ 1, (152)
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for some absolute constant c > 0 provided ∆2 ≤ 1
8d2

.
Next consider a point q at a distance ≤ 1/(2d) from M. We let q be the origin. Consider a

unit disk Bd ⊆ RD that is parallel to the tangent plane toM at the point nearest to q. We will be
interested in

((cβHdM1Bm) ∗ β)(q)

((cβλ1Bd
) ∗ β)(0)

=

∫
M∩Bn

β(−v)(cβHdM(dv))∫
Bd
β(−v)(cβλ(dv))

, (153)

as a function of ∆. Let Πd denote the projection onto Bd. Let

sup
x∈M∩Bn

|x−Πdx| = ∆. (154)

Then, by Federer’s criterion for the reach, ∆ < 1/d. Also,M∩Bn is the graph of a function f(x)
from Πd(M∩Bn) to the D − d dimensional normal space to Bd. For v ∈M∩Bn, let w = Πdv,
and by the definition of f , v = w + f(w).

∫
M∩Bn

β(−v)(cβHdM(dv)) =

∫
Πd(M∩Bn)

β(−(w + f(w)))(cβHdM(dv))

≤
∫

Πd(M∩Bn)
β(−w)(cβHdM(dv)) (155)

≤
∫

Πd(M∩Bn)
β(−w)(cβJ(w)λ(dw)). (156)

Since ‖Df‖ is of the order of 1
CdC

by lemma 13 and the upper bound on r, the Jacobian

J(w) =
√

det(I + (Df(w))(Df(w))T )

is less or equal to an absolute constant C. This implies that

∫
Πd(M∩Bn)

β(−w)(cβJ(w)λ(dw)) ≤ C
∫
Bd

β(−v)(cβλ(dv)). (157)

This in turn implies that

c−1 >

∫
M∩Bn

β(−v)(cβHdM(dv))∫
Bd
β(−v)(cβλ(dv))

. (158)

for an appropriately small universal constant c.
We now proceed to the lower bound. As noted above, ∆ < 1/d.

28



MANIFOLD FITTING

∫
M∩Bn

β(−v)(cβHdM(dv)) =

∫
Πd(M∩Bn)

β(−(w + f(w)))(cβHdM(dv)) (159)

≥
∫
Bd(1−1/d)

β(−(w + f(w)))(cβHdM(dv)) (160)

≥
∫
Bd(1−1/d)

(1− |w|2 −∆2)d+2(cβJ(w)λ(dw))

≥
∫
Bd(1−1/d)

((1− |w|2)(1− 1/d))d+2(cβλ(dw))

≥ c

∫
Bd(1−1/d)

((1− |w|2))d+2(cβλ(dw)) (161)

≥ c2

∫
Bd

((1− |w|2))d+2(cβλ(dw)). (162)

The last step comes from dilating the disk (1 − 1
d)Bd to Bd and observing that β(v1) ≥ β(v2)

if |v1| < |v2|. In dropping J(w), we used the fact that J(w) ≥ 1.
Relabelling c2 by c, the above sequence of inequalities shows that∫

M∩Bn
β(−v)(cβHdM(dv))∫

Bd
β(−v)(cβλ(dv))

> c. (163)

We next, using the fact that the Hausdorff distance of the set {pi} toM is less than cr
d show the

following.

Lemma 17 There exists a measure µP supported on {pi} such that

c <
d(µP ∗ β)

dλ
(z) < c−1,

for all z in a r
4d neighborhood ofM.

Proof For any ε ∈ (0, 1), let βε(εrv) = cεβ(1 − ‖v‖2)d+2 if |v| ≤ 1, and βε(εrv) = 0 if |v| > 1.
Here cεβ is chosen so that βε integrates to 1 over Rn. Let Vori denote the open set of all points
p ∈ Rn such that for all j 6= i, |p− pi| < |p− pj |. Let

µP (pi) = (cβHdM ∗ βε)(Vori).

We note
d(cβHdM ∗ β)

dλ
(z)

is a d
cr−Lipschitz function of z, and this continues to be true for

d(cβHdM ∗ β ∗ βε)
dλ

(z),
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for any ε ∈ (0, 1). Further, there exists an ε0 ∈ (0, 1) such that

∀ε ∈ (0, ε0),

∥∥∥∥d(cβHdM ∗ β ∗ βε)
dλ

−
d(cβHdM ∗ β)

dλ

∥∥∥∥
L∞(Rn)

< c(ε),

where limε→0
c(ε)
ε exists and is finite. It thus suffices to prove that for all ε ∈ (0, ε0),∥∥∥∥d(cβHdM ∗ β ∗ βε)

dλ
− d(µP ∗ β)

dλ

∥∥∥∥
L∞(Rd)

<
c

2
− c(ε)

for all z in a r
4d−neighborhood ofM. For any i, the diameter of

supp(cβHdM ∗ βε) ∩ Vori

is less than cr
d . Let π denote the map defined on supp(cβHdM ∗ βε) from Vori to pi. Then,∣∣∣∣d(cβHdM ∗ β ∗ βε)

dλ
(z)− d(µP ∗ β)

dλ
(z)

∣∣∣∣ =

∣∣∣∣d(((cβHdM ∗ βε)− µP ) ∗ β)

dλ
(z)

∣∣∣∣ .
For any w ∈ supp(cβHdM ∗ βε) ∩ Vori, |π(w)− w| < cr

d . Let cβHdM ∗ β ∗ βε be denoted ν. Then,

(ν − µP ) ∗ β
dλ

(z) =

∫
z+supp(β)

ν(dx)β(z − x)−
∫
z+supp(β)

µP (dy)β(z − y)

=

∫
z+supp(β)

ν(dx)β(z − x)−
∫
z+supp(β)

ν(dx)β(z − π(x)).

The Lemma follows noting that β is d
cr−Lipschitz.

Let λid denote the d−dimensional Lebesgue measure restricted to the disc Di.
Recall that

µP (pi) = (cβHdM ∗ βε)(Vori).

Let
µ̃P (pi) = (cβλ

i
d)(Vori ∩Di).

By making r
τ <

1
CdC

for a sufficiently large universal constantC, and ε a sufficiently small quantity,
we see that for each i,

c ≤ µ̃P (pi)

µP (pi)
≤ c−1.

for a suitable universal constant c. We see that (cβλ
i
d)(Vori ∩ Di) is the volume of the polytope

Vori ∩Di multiplied by cβ , and Vori ∩Di is given by a membership oracle, whose answer to any
query takes time (Cd)d. Thus by placing a sufficiently fine grid, and counting the lattice points
in Vori ∩ Di, µ̃P (pi) can be computed using (Cd)2d deterministic steps. Even faster randomized
algorithms exist for the task, which we choose not to delve into here.
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Appendix E. Proof of Claim 1

Proof Let
MΠ := ∪n

d̂=0
Md̂

Π.

The various connected components of MΠ are the different Md
Π (whose dimensions are respec-

tively (n − d)d), and by evaluating Frobenius norms, we see that the distance between any two
points on distinct connected components is at least 1. Since it suffices to show that a normal disc
bundle of radius less than 1/2 injectively embeds into the ambient space (which is Rn(n−1)/2,) it
suffices to show that

reach(MΠ) = 1/2.

Let x ∈ Md
Π. Let z belong to the normal fiber at x and let ‖x − z‖F < 1/2. Without loss of

generality we may (after diagonalization if necessary) take x = diag(1, . . . , 1, 0, . . . , 0) where the
number of 1s is d and the number of 0s is n−d. Further, (using block diagonalization if necessary),
we may assume that z is a diagonal matrix as well. All the eigenvalues of z lie in (1/2, 3/2) and
further the span of the corresponding eigenvectors is the space of eigenvectors of x corresponding
to the eigenvalue 1. Therefore Πhi(z) is well defined through Cauchy’s integral formula and equals
x. Thus the normal discs of radius < 1/2 do not intersect, and so reach(Md

Π) ≥ 1/2. Conversely,
M0

Π is the origin andM1
Π contains the point diag(1, 0, . . . , 0). We see that diag(1/2, 0, . . . , 0) is

equidistant fromM0
Π andM1

Π and the distance is 1/2. Therefore reach(Md
Π) ≤ 1/2. Therefore,

reach(Md
Π) ≥ reach(MΠ) = 1/2.

Appendix F. Proofs of Lemma 8 and Lemma 9

Proof [Proof of Lemma 8]

‖(∂vαi(x))i∈[N̄ ]‖ d+2
d+1

≤
‖(∂vα̃i(x))i‖ d+2

d+1

α̃
+
‖((∂vα̃(x))α̃i(x))i‖ d+2

d+1

α̃2
(164)

≤ (c−1)‖Cd(α̃i(x))i‖
d+1
d+2

1 + (c−2)‖(α̃i(x))i‖ d+2
d+1
|∂vα̃| (165)

≤ Cd+ C|∂vα̃| (166)

≤ Cd+ C‖(∂vα̃i)i ∈ [N̄ ]‖ d+2
d+1
‖(1)i‖d+2 (167)

≤ Cd2. (168)

Proof [Proof of Lemma 9]

‖(∂2
vαi(x))i∈[N̄ ]‖ d+2

d
= ‖(∂2

v

α̃i(x)

α̃(x)
)i∈[N̄ ]‖ d+2

d
(169)

= ‖(∂
2
v α̃i(x)

α̃(x)
+

(−2)(∂vα̃i(x))(∂vα̃(x))

α̃(x)2
+
α̃i(x)

α̃(x)3
(2(∂vα̃)2 − ∂2

v α̃(x)(α̃(x)))i∈[N̄ ]‖ d+2
d
.

We use the triangle inequality on the above expression, and reduce the task of obtaining an upper
bound to that of separately obtaining the following bounds.
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Claim 6 We have

‖(∂
2
v α̃i(x)

α̃(x)
)i∈[N̄ ]‖ d+2

d
≤ Cd2, (170)

Proof This follows from c < α̃ < C.

Claim 7 We have

‖((−2)(∂vα̃i(x))(∂vα̃(x))

α̃(x)2
)i∈[N̄ ]‖ d+2

d
≤ Cd3, (171)

Proof We have seen that |∂vα̃(x)| < Cd2. Therefore,

‖((−2)(∂vα̃i(x))(∂vα̃(x))

α̃(x)2
)i∈[N̄ ]‖ d+2

d
< Cd2‖((∂vα̃i(x)))i∈[N̄ ]‖ d+2

d
(172)

≤ Cd2‖((∂vα̃i(x)))i∈[N̄ ]‖ d+2
d+1

(173)

≤ Cd3. (174)

Claim 8

‖( α̃i(x)

α̃(x)3
(2(∂vα̃)2 − ∂2

v α̃(x)(α̃(x)))i∈[N̄ ]‖ d+2
d
≤ Cd4. (175)

Proof The only term that we have not already bounded is |∂2
v α̃(x)|. To bound this, we observe that

C|∂2
v α̃| ≤ C‖(∂2

v α̃i)i‖ d+2
d
‖(1)i‖(d+2)/2 (176)

≤ Cd4. (177)

Therefore, the entire expression gets bounded by Cd4 as well.
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