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Abstract
Datasets are often used multiple times and each successive analysis may depend on the
outcome of previous analyses. Standard techniques for ensuring generalization and statistical
validity do not account for this adaptive dependence. A recent line of work studies the
challenges that arise from such adaptive data reuse by considering the problem of answering
a sequence of “queries” about the data distribution where each query may depend arbitrarily
on answers to previous queries.

The strongest results obtained for this problem rely on differential privacy – a strong
notion of algorithmic stability with the important property that it “composes” well when
data is reused. However the notion is rather strict, as it requires stability under replacement
of an arbitrary data element. The simplest algorithm is to add Gaussian (or Laplace) noise
to distort the empirical answers. However, analysing this technique using differential privacy
yields suboptimal accuracy guarantees when the queries have low variance.

Here we propose a relaxed notion of stability based on KL divergence that also composes
adaptively. We show that our notion of stability implies a bound on the mutual information
between the dataset and the output of the algorithm and then derive new generalization
guarantees implied by bounded mutual information. We demonstrate that a simple and
natural algorithm based on adding noise scaled to the standard deviation of the query
provides our notion of stability. This implies an algorithm that can answer statistical queries
about the dataset with substantially improved accuracy guarantees for low-variance queries.
The only previous approach that provides such accuracy guarantees is based on a more
involved differentially private median-of-means algorithm and its analysis exploits stronger
“group” stability of the algorithm.

1. Introduction

The central challenge in statistical data analysis is to infer the properties of some unknown
population given only a small number of samples from that population. While a plethora of
techniques for guaranteeing statistical validity are available, few techniques can account for
the effects of adaptivity. Namely, if a single dataset is used multiple times, then the choice
of which subsequent analyses to perform may depend on the outcomes of previous analyses.
This adaptive dependence increases the risk of overfitting — that is, inferring a conclusion
that does not generalize to the underlying population.

0. Extended abstract. Full version appears as (Feldman and Steinke, 2017b, v2).

c© 2018 V. Feldman & T. Steinke.



Calibrating Noise to Variance in Adaptive Data Analysis

To formalize this problem, Dwork et al. (2014) and subsequent works (Hardt and Ullman,
2014; Steinke and Ullman, 2015; Bassily et al., 2016; Feldman and Steinke, 2017a, etc.)
study the following question: How many data samples are necessary to accurately answer a
sequence of queries about the data distribution when the queries are chosen adaptively –
that is, each query can depend on answers to previous queries? Each query corresponds to a
procedure that the analyst wishes to execute on the data. The goal is to design an algorithm
that provides answers to these adaptive queries that are close to answers that would have
been obtained had each corresponding analysis been run on independent samples freshly
drawn from the data distribution.

A common and relatively simple class of queries are statistical queries (Kearns, 1998). A
statistical query is specified by a function ψ : X → [0, 1] and corresponds to analyst wishing
to compute the true mean EX∼P [ψ(X)] of ψ on the data distribution P. (This is usually
done by using the empirical mean 1

n

∑n
i=1 ψ(Si) on a dataset S consisting of n i.i.d. draws

from the distribution P.) For example, such queries can be used to to estimate the true
loss (or error) of a predictor, the gradient of the loss function, or the moments of the data
distribution. Standard concentration results imply that, given n independent samples from
P, k fixed (i.e. not adaptively-chosen) statistical queries can be answered with an additive
error of at most O

(√
log(k)/n

)
with high probability by simply using the empirical mean

of each query. At the same time it is not hard to show that, for a variety of simple adaptive
sequences of queries, using the empirical mean to estimate the expectation leads to an error
of Ω(

√
k/n) (Dwork et al., 2014). Equivalently, in the adaptive setting, the number of

samples required to ensure fixed error scales linearly (rather than logarithmically in the
non-adaptive setting) with the number of queries and, in particular, in the worst case, using
empirical estimates gives the same guarantees as using fresh samples for every query (by
splitting the dataset into k parts).

Dwork et al. (2014) showed that, remarkably, it is possible to quadratically improve
the dependence on k in the adaptive setting by simply perturbing the empirical answers.
Specifically, let S ∈ X n denote a dataset consisting of n i.i.d. samples from some (unknown)
probability distribution P. Given S, the algorithm receives k adaptively-chosen statistical
queries ψ1, . . . , ψk : X → [0, 1] one-by-one and provides k approximate answers v1, . . . , vk ∈ R.
Namely, vj = 1

n

∑n
i=1 ψj(Si) + ξj , where each “noise” variable ξj is drawn independently

from N (0, σ2). The results of Dwork et al. (2014) and subsequent sharper analyses (Bassily
et al., 2016; Steinke, 2016) show that, with high probability (over the drawing of the sample
S ∼ Pn, the noise ξ, and the choice of queries), we have the following guarantee

∀j ∈ {1, · · · , k}
∣∣∣∣vj − E

X∼P
[ψj(X)]

∣∣∣∣ ≤ O
√√k log k

n

 . (1)

This quadratic relationship between n and k was also shown to be optimal in the worst case
(Hardt and Ullman, 2014; Steinke and Ullman, 2015).

The approach of Dwork et al. (2014) relies on properties of differential privacy (Dwork
et al., 2006a,b) and known differentially private algorithms. Differential privacy is a stability
property of an algorithm, namely it requires that replacing any element in the input
dataset results in a small change in the output distribution of the algorithm. Specifically, a
randomized algorithmM : X n → Y is (ε, δ)-differentially private if, for all datasets s, s′ ∈ X n
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that differ on a single element and all events E ⊆ Y,

Pr [M(s) ∈ E] ≤ eε Pr
[
M(s′) ∈ E

]
+ δ.

This stability notion implies that a function output by a differentially private algorithm
on a given dataset generalizes to the underlying distribution (Dwork et al., 2014; Bassily
et al., 2016). Specifically, if a differentially private algorithm is run on a dataset drawn
i.i.d from any distribution and the algorithm outputs a function, then the empirical mean of
that function on the input dataset is close to the expectation of that function on sample
from the same distribution.

The second crucial property of differential privacy is that it composes adaptively: running
several differentially private algorithms on the same dataset still is differentially private
(with somewhat worse parameters) even if each algorithm depends on the output of all
the previous algorithms. This property makes it possible to answer adaptively-chosen
queries with differential privacy and a number of algorithms have been developed for
answering different types of queries. The generalization property of differential privacy then
implies that such algorithms can be used to provide answers to adaptively-chosen queries
while ensuring generalization (Dwork et al., 2014). Specifically, the algorithm for answering
statistical queries mentioned above is based on the most basic differentially private algorithm:
perturbation by adding Laplace or Gaussian noise (Dwork et al., 2006a).

Differential privacy requires that the output distribution of an algorithm does not change
much when any element of a dataset is replaced with an arbitrary other element in the
domain X . As a result, the amount of noise that needs to be added to ensure differential
privacy scales linearly with the range of the function ψ whose expectation needs to be
estimated. If the range of ψ is comparable to the standard deviation of ψ(x) on x drawn
from P (such as when ψ has range {0, 1} and mean 1/2) then the error resulting from
addition of noise is comparable to the standard deviation of ψ. However, for queries whose
standard deviation is much lower than the range, the error introduced by noise is much
worse than the sampling error. Variance is much smaller than the range for a variety of
common settings, for example, difference between candidate predictors for the same problem
or individual input features when the input is usually sparse.

Achieving error guarantees in the adaptive setting that scale with the standard deviation
instead of range is a natural problem. Recently, Feldman and Steinke (2017a) gave a different
algorithm that achieves such a guarantee. Specifically, their algorithm ensures that with
probability at least 1− β,

∀j ∈ {1, · · · , k}
∣∣∣∣vj − E

X∼P
[ψj(X)]

∣∣∣∣ ≤ sd(ψj(P)) ·O


√√√√√k log3(k/β)

n

+ β, (2)

where sd(ψj(P)) =
√

EY∼P [(ψj(Y )−EX∼P [ψj(X)])2] is the standard deviation of ψj on
the distribution P and β > 0 can be chosen arbitrarily. Their algorithm is based on
an approximate version of the median of means algorithm and its analysis still relies on
differential privacy. (Their results extend beyond statistical queries, but we restrict our
attention to statistical queries in this paper.)
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In this work, we ask: does the natural algorithm that perturbs the empirical answers
with noise scaled to the standard deviation suffice to answer adaptive queries with accuracy
scaling to sampling error? To answer this seemingly simple question, we address a more
fundamental problem: does there exist a notion of stability that has the advantages of
differential privacy (namely, allows adaptive composition and implies generalization) but
avoids the poor dependence on the worst-case sensitivity of the query. This algorithm was
analyzed by Bassily and Freund (2016) via a notion of typical stability they introduced.
Their analysis shows that the algorithm will ensure the correct scaling of the error with
standard deviation but it does not improve on the naive mechanisms in terms of scaling
with k. Several works have considered relaxations of differential privacy in this context. For
example, Bassily et al. (2016) considered a notion of stability based on using KL divergence
or total variation distance in place of differential privacy (which can be defined in terms of
approximate max divergence). Wang et al. (2016) considered the expected KL divergence
between the output of the algorithm when run on a random i.i.d dataset versus the same
dataset with one element replaced by a fresh sample; unfortunately, their stability definition
does not compose adaptively. Notions based on the mutual information between the dataset
and the output of the algorithm and their relationship to differential privacy have also been
studied (Dwork et al., 2015; Russo and Zou, 2016; Rogers et al., 2016; Raginsky et al., 2016;
Xu and Raginsky, 2017). However, to the best of our knowledge, these approaches do not
give a way to analyze the calibrated noise addition that ensures correct dependence on k.

1.1. Our Contributions

We introduce new stability-based and information-theoretic tools for analysis of the general-
ization of algorithms in the adaptive setting. The stability notion we introduce is easier to
satisfy than differential privacy, yet has the properties crucial for application in adaptive
data analysis. These tools allow us to demonstrate that calibrating the variance of the
perturbation to the empirical variance of the query suffices to ensure generalization, as long
as the noise rate does not become too small. To ensure this lower bound on the noise rate
we simply add a second order term to the variance of the perturbation. Specifically, our
algorithm is described in Figure 1. The only difference between our algorithm and previous
work (Dwork et al., 2014; Bassily et al., 2016) is that in prior work the variance of the
Gaussian perturbation is fixed.

We prove that this algorithm has the following accuracy guarantee.

Theorem 1.1 (Main Theorem) Let P be a distribution on X and letM be our algorithm
from Figure 1 instantiated with T = n2/k and t = n

√
2 ln(2k)/k. Suppose M is given a

sample S ∼ Pn and is asked adaptive statistical queries ψ1, · · · , ψk : X → [0, 1]. Then M
produces answers v1, · · · , vk ∈ R satisfying the following.

E
[

kmax
j=1

|vj −EX∼P [ψj(X)]|
max {τ · sd(ψj(P)), τ2}

]
≤ 4, where τ =

√√
2k ln(2k)
n

.

Intuitively (that is, ignoring the second term in the maximum), the conclusion of Theorem 1.1
states that, with good probability, the error in each answer scales as the standard deviation
of the query multiplied by Õ

(√√
k/n

)
— which is what would be expected if we used

4



Calibrating Noise to Variance in Adaptive Data Analysis

Parameters: t, T > 0.
Input: s ∈ X n.
For j = 1, 2, · · · , k do:
Receive a statistical query ψj : X → [0, 1].
Compute µj = 1

n

∑n
i=1 ψj(si) and σ2

j = 1
n

∑n
i=1 (ψj(si)− µj)2.

Sample ξj ∼ N (0, 1).

Let vj = µj + ξj ·
√

max
{
σ2
j /t, 1/T

}
.

Output answer vj .

Figure 1: Calibrating noise to variance for answering adaptive queries.

n/
√
k fresh samples for each query. The ln k factor arises from the fact that we take a union

bound over the k queries.
More precisely, applying Markov’s inequality to the conclusion of Theorem 1.1, shows

that, with probability at least 90%,

∀j
∣∣∣∣vj − E

X∼P
[ψj(X)]

∣∣∣∣ ≤ 40·max
{
τ · sd(ψj(P)), τ2

}
≤ sd(ψj(P))·40

√√
2k ln(2k)
n

+40
√

2k ln(2k)
n

.

(3)
This guarantee is directly comparable to the earlier bound (2) of Feldman and Steinke
(2017a) – though it is weaker in two ways: First, Theorem 1.1 is a bound on the expectation
and does not readily yield high probability bounds (other than via Markov’s inequality).
Second, the second term in the maximum (which we think of as a low-order term) still
depends linearly on the sensitivity and is potentially larger. The advantage of this algorithm
is that it is substantially simpler than the earlier work.

Now we turn to the analysis tools that we introduce. Clearly the empirical error of our
algorithm — that is |vj − µj | — scales with the empirical standard deviation σj . However,
we must bound the true error, namely |vj −EX∼P [ψj(X)]|. By the triangle inequality, it
suffices to bound the generalization error |µj−EX∼P [ψj(X)]| in terms of standard deviation
and to relate the empirical standard deviation σj to the true standard deviation sd(ψj(P)).

1.1.1. Average leave-one-out KL stability and generalization

The key to our analysis is the following stability notion.

Definition 1.2 (Average Leave-one-out KL stability) An algorithmM :
(
X n ∪ X n−1)→

Y is ε-ALKL stable if, for all s ∈ X n,

1
n

∑
i∈[n]

D (M(s)‖M(s−i)) ≤ ε,

where s−i ∈ X n−1 denotes s with the ith element removed. Here D (·‖·) denotes the Kullback-
Leibler divergence.
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Our notion differs from differential privacy in three significant ways.1 First, we use
stability to leaving one out (LOO) rather than replacing one element. Second, we average the
stability parameter across the n dataset elements. Third, we use KL divergence instead of
(approximate) max divergence. This is necessary to obtain stronger bounds for our calibrated
noise addition as our algorithm does not satisfy differential privacy with parameters that
would be suitable to ensure generalization. We note that average LOO stability is a well-
studied way to define algorithmic stability for the loss function (e.g. , (Bousquet and Elisseeff,
2002; Poggio et al., 2004)). The use of KL divergence appears to be necessary to ensure
adaptive composition of our averaged notion. Specifically, the following composition result
is easy to prove.

Lemma 1.3 (Composition) Suppose M :
(
X n ∪ X n−1) → Y is ε-ALKL stable and

M ′ : Y ×
(
X n ∪ X n−1)→ Z is such that M ′(y, ·) :

(
X n ∪ X n−1)→ Z is ε′-ALKL stable for

all y ∈ Y. Then the composition s 7→M ′(M(s), s) is (ε+ ε′)-ALKL stable.

Using composition, we can show that our algorithm (Figure 1, with the parameters
set as in Theorem 1.1) is kt

n2 -ALKL stable. In particular, we show that each one of the k
answers is computed in a way that is t

n2 -ALKL stable. This follows from the properties
of the KL divergence between Gaussian distributions and the way we calibrate the noise.
(Alternatively, we could use Laplace noise to obtain similar results.)

We note that
√

2ε-differential privacy (Dwork et al., 2006a), notions based on Renyi
differential privacy (Bun and Steinke, 2016; Mironov, 2017), and ε-KL-stability (Bassily et al.,
2016) all imply ε-ALKL stability2 Thus we can also compose any ALKL stable algorithm
with any of the many algorithms satisfying one of the aforementioned definitions.

Crucially, average KL-divergence is strong enough to provide a generalization guarantee
that scales with the standard deviation of the queries, as we require. Our proof is based
on the high-level approach introduced by Dwork et al. (2015) who first convert a stability
guarantee to an upper bound on information between the input dataset and the output of
the algorithm and then derive generalization bounds from the bound on information. Here,
we demonstrate that ALKL stability implies a bound on the mutual information between
the input and output of the algorithm when run on independent samples and then derive
generalization guarantees from the bound on mutual information.3

Proposition 1.4 Let M :
(
X n ∪ X n−1)→ Q be ε-ALKL stable. Let S ∈ X n consist of n

independent samples from some distribution P. Then

I(S;M(S)) ≤ εn, (4)

where I denotes mutual information.

1. These relaxations mean that ALKL stability is not a good privacy definition, in contrast to differential
privacy. In particular, because of the averaging, ALKL stability cannot distinguish between an algorithm
that offers good privacy to all individuals and one that offers great privacy for n − 1 individuals but
terrible privacy for the last individual. Compromising a single data point is, however, not an issue for
generalization.

2. It may be necessary to extend an algorithm satisfying one of these definitions to inputs of size n− 1 to
satisfy ALKL stability. This can be done by simply padding such an input with one arbitrary item.

3. We thank Adam Smith for suggesting that we try this approach to proving generalization for ALKL
stable algorithms.
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To prove Proposition 1.4, we introduce an intermediate notion of stability:

Definition 1.5 (Mutual Information Stability) A randomized algorithmM : X n → Y
is ε-MI stable if, for any random variable S distributed over X n (including non-product
distributions),

1
n

n∑
i=1

I(M(S);Si|S−i) ≤ ε.

This notion is based on the notion of stability studied in (Raginsky et al., 2016) that considers
only product distributions over the datasets and, as a result, does not compose adaptively.

We prove Proposition 1.4 by combining the following two facts.

(i) ε-ALKL stability implies ε-MI stability. To show this, we express I(M(S);Si|S−i) as
the expectation over S of the KL divergence of the distribution (over the randomness
of M) of M(S) from an appropriately weighted convex combination of distributions
M(S′). (Specifically, S′ is S with Si “resampled.”) The “mean-as-minimizer” property
of KL divergence means we can simply replace this convex combination with M(S−i)
to complete the proof.

(ii) ε-MI stability implies the mutual information bound (4). To prove this, we invoke the
chain rule for mutual information along with the fact that Si is independent from S−i
(which helps resolve the conditioning).

Further, we point out that mutual information stability composes adaptively in the same way
as ALKL stability and hence could be useful for understanding adaptive data analysis for
more general queries (e.g. unlike ALKL stability it does not require M(S−i) to be defined).

As first shown in the context of PAC-Bayes bounds (McAllester, 2013) and more
recently in (Russo and Zou, 2016), a bound on mutual information implies generalization
results. Using a similar technique, we show that, if the mutual information I(S;ψj) is small
(with S consisting of n i.i.d. draws from P), we have E

[
1
n

∑n
i=1 ψj(Si)

]
≈ EX∼P [ψj(X)].

Moreover, the quality of the approximation scales with the standard deviation. (Specifically,
the approximation bound depends on the moment generating function E

[
eλµj

]
of µj =

1
n

∑n
i=1 ψj(Si), which we bound using both the variance and the range of µj .) We can

similarly relate the empirical variance σ2
j to the true variance. Thus a bound on mutual

information suffices to bound generalization error and, thus, prove Theorem 1.1.
Another known implication of bounded mutual information is that any event that would

happen with sufficiently low probability on fresh data will still happen with low probability
(Russo and Zou, 2016; Rogers et al., 2016). In particular, if E is some “bad” event – such as
overfitting the data or making a false discovery – and we know that we are exponentially
unlikely to overfit fresh data S′, then the probability of M overfitting its input data S is
also small, provided the mutual information is small.

One downside of using mutual information is that does not allow us to prove high
probability bounds, as can be done with differential privacy and the notion of approximate
max-information (Dwork et al., 2015). We note, however, that our analysis still upper
bounds the expectation of the largest error among all the queries that were asked. In other
words, a union bound over queries is built into the guarantees of the algorithm. Using known
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techniques, the confidence can be amplified at the expense of a somewhat more complicated
algorithm. In addition, our algorithm yields stronger stability guarantees than just ALKL
stability. For example, the minimum noise level of 1/T ensures differential privacy (albeit
with relatively large parameters4). The parameters can be improved using the averaging over
the indices that we use in ALKL stability but that leads to a notion that does not appear
to compose adaptively. Using a different analysis technique it might be possible to exploit
the stronger stability properties of our algorithm to prove high probability generalization
bounds. We leave this as an open problem. On the other hand, stability with KL divergence
is easier to analyze and allows a potentially wider range of algorithms to be used.

1.2. Related work

Our use of mutual information to derive generalization bounds is closely related to PAC-Bayes
bounds first introduced by McAllester (1999) and extended in a number of subsequent works
(see (McAllester, 2013) for an overview). In this line of work, the expected generalization
error of a predictive model (such as classifier) randomly chosen from some data-dependent
distribution Q(S) is upper-bounded by the KL divergence between Q and an arbitrary
data-independent prior distribution P0. One natural choice of Q(S) is the output distribution
of a randomized learning algorithm A on S. By choosing the prior P0 to be the distribution
of the output of A on a dataset drawn from Pn one obtains that the expected generalization
error is upper-bounded by the expected KL divergence between Q(S) an P0 (McAllester,
2013). While this has not been pointed out in (McAllester, 2013), this is exactly the mutual
information between S and A(S).

Recently, interest in using information-based generalization bounds was revived by
applications in adaptive data analysis (Dwork et al., 2015). Specifically, Dwork et al. (2015)
demonstrate that approximate max-information between the input dataset and the output
of the algorithm (a notion based on the infinity divergence between the joint distribution
and the product of marginals) implies generalization bounds with high probability. They
also showed that (ε, 0)-differential privacy implies an upper bound on approximate max-
information (and this later extended to (ε, δ)-differential privacy by Rogers et al. (2016)).
Russo and Zou (2016) show that mutual information can also be used to derive bounds
on expected generalization error and discuss several applications of these bounds. Xu and
Raginsky (2017) show how to derive “low-probability” bounds on the generalization error in
this context. (We note that (Russo and Zou, 2016; Xu and Raginsky, 2017) use the same
technique as that used in PAC-Bayes bounds and appear to have overlooked the direct
connection between their results and the PAC-Bayes line of work.)

Recent work (Bassily et al., 2018) studies learning algorithms in the PAC model whose
output has low mutual information with the input dataset. They also discuss generalization
bounds based on mutual information and (independently) derive results similar to those we
give for low-probability events.

4. Specifically, with the parameter setting from Theorem 1.1, our algorithm satisfies
(
O
(√

log(1/δ)
)
, δ
)
-

differential privacy for all δ > k−Ω(k).
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