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Abstract
We present Local Moment Matching (LMM), a unified methodology for symmetric functional es-
timation and distribution estimation under Wasserstein distance. We construct an efficiently com-
putable estimator that achieves the minimax rates in estimating the distribution up to permutation,
and show that the plug-in approach of our unlabeled distribution estimator is “universal” in estimat-
ing symmetric functionals of discrete distributions. Instead of doing best polynomial approximation
explicitly as in existing literature of functional estimation, the plug-in approach conducts polyno-
mial approximation implicitly and attains the optimal sample complexity for the entropy, power
sum and support size functionals.
Keywords: Distribution Estimation; Functional Estimation; Minimax Risk; Wasserstein Distance

1. Introduction and Main Results

Given n independent samples from a discrete distribution P = (p1, · · · , pS), we aim to estimate
the distribution vector P up to permutation. In other words, let P< = (p(1), p(2), · · · , p(S)) be the
sorted version of P (i.e., p(1) ≤ p(2) ≤ · · · ≤ p(S) are the order statistics of P ), we would like to
find an estimator P̂ which comes close to minimizing the sorted `1 distance

EP ‖P̂ − P<‖1

in the minimax sense.
Our study of estimating the sorted distribution P< is motivated by the following facts:

1. The sorted distribution P< can be interpreted as the distribution P up to permutation, or the
multiset of probabilities in P = (p1, p2, . . . , pS), or the “tail” of a distribution. In economics,
the theory of long tail Anderson (2004) emphasizes the significance of products in the tail,
and inferring the sorted distribution precisely shows the shape of the tail.

2. Estimating the sorted distribution P< turns out to require significantly less number of samples
than that required to estimate the distribution P under the same `1 loss, as shown by Valiant
and Valiant (2011a) using a different Wasserstein loss function.
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3. The sorted distribution estimate proves to be useful in estimating symmetric functionals of
the distribution, which are defined as functionals of P that can also be viewed as functionals
of P<. Indeed, Valiant and Valiant (2011a, 2013); Acharya et al. (2016) constructed estima-
tors of the sorted distribution can be used to plug-in some symmetric functionals to achieve
the information theoretic limits in certain parameter regimes, which performed significantly
better than the approach of plugging-in the empirical distribution.

4. The whole distribution P can be decomposed into two parts: the sorted distribution P< and
the permutation from P< to P . Being able to design computationally efficient schemes to
achieve the information theoretic limit in estimating P< sheds light on the general question
of inferring parameters up to group transformations, which is of fundamental significance in
statistics and machine learning Kong and Valiant (2017); Tian et al. (2017).

The main idea to solve the traditional distribution estimation problem (i.e., estimating P ) is to
use the empirical frequency and/or its variants, which turn out to be minimax optimal for various
loss functions including `2 Steinhaus (1957); Trybula (1958); Rutkowska (1977); Olkin and Sobel
(1979), `1 Daskalakis et al. (2012); Diakonikolas (2014); Han et al. (2015); Kamath et al. (2015)
and KL loss Kamath et al. (2015). To consistently estimate P , usually it is required to observe
each symbol i ∈ [S] sufficiently many times on average; for example, n � S is a necessary and
sufficient condition for the existence of an estimator which estimates P within a vanishing `1 error
Han et al. (2015). However, recent studies suggested that estimating P< might be significantly
easier than estimating P : compared with an oracle with the same observation X1, · · · , Xn and
perfect knowledge of P<, there still exists some estimator which performs nearly as well as the
oracle even if S =∞ under the `1 loss Valiant and Valiant (2015) and KL loss Orlitsky and Suresh
(2015). This observation shows that the “labeling” from P< to P is the difficult step in estimating
P , and estimating the sorted distribution P< may only require sub-linear samples (i.e., n� S).

Two main approaches have been proposed in literature to estimate the sorted distribution P<.
One is the approach of profile maximum likelihood (PML) Orlitsky et al. (2004); Acharya et al.
(2009), which aims at solving the sorted distribution that maximizes the likelihood of observing
the sorted empirical distribution. It is not clear how to solve the corresponding optimization prob-
lem efficiently. Algorithms that approximately solve the PML have been proposed in the literature,
including Orlitsky et al. (2004); Vontobel (2012); Pavlichin et al. (2017), without clear theoreti-
cal approximation guarantees. It was shown in Acharya et al. (2016) that plugging-in the profile
maximum likelihood distribution into a variety of symmetric functionals (namely, entropy, support
size, support coverage, and distance to uniformity) achieves the information theoretic limit when
the number of samples is not “too” large.

A different approach, which initiated from Efron and Thisted (1976), proposed to use linear
programming to find a sorted distribution that was consistent with the observed frequency counts.
This approach was adapted and rigorously analyzed in Valiant and Valiant (2011a, 2013) under a
Wasserstein distance loss function, where it was shown that plugging-in the inferred sorted distri-
bution from the linear program into certain symmetric functionals (namely, entropy, support size,
support coverage, and distance to uniformity) results in estimators that achieve the information the-
oretic limit in the constant error regime.

Various questions remain unsolved given existing literature. It is not clear how to efficiently
provably solve the PML, and the proof of the optimality of PML in the plug-in machinery of sym-
metric functional estimation heavily relies on the fact that the observations can only take values in
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a finite set. It does not apply to the Gaussian setting, where one observes a Gaussian random vector
X ∼ N (µ, Ip), and would like to estimate the sorted version of the mean vector µ. For the linear
programming approach, it was not shown to achieve the optimal dependence on ε in entropy esti-
mation, and it was not clear whether it is near-optimal if we plug it in other functionals. Indeed, the
general achievability proof is done through a Lipschitz continuity argument in Valiant and Valiant
(2011a), and it was not clear whether they can match the lower bounds for individual functionals.

The main mathematical reason that motivated this paper is to develop relations between esti-
mation of (nonsmooth) functionals of distributions, and estimation of the sorted distribution. In the
first realm, Lepski et al. (1999) considered the problem of Lr norm estimation in Gaussian noise
model and utilized Fourier approximation theory, while Cai and Low (2011) considered estimating
the `1 norm of normal mean and applied best polynomial approximation. The work of Valiant and
Valiant (2011b) developed “Chebyshev bump” based approximation and proposed linear estimators
that achieve the optimal dependence on ε in estimating the entropy, distance to uniformity, and sup-
port size when the sample size n is not too “large”. Minimax rates for estimation of a large variety
of functionals were solved in the past few years, including entropy Wu and Yang (2016a); Jiao
et al. (2015), Rényi entropy Acharya et al. (2015), support size Wu and Yang (2015), support cov-
erage Orlitsky et al. (2016), distinct elements Wu and Yang (2016b), L1 distance Jiao et al. (2016),
Kullback–Leibler divergence Bu et al. (2016); Han et al. (2016), squared Hellinger divergence Han
et al. (2016), χ2 divergence Han et al. (2016), support coverage from multiple populations Raghu-
nathan et al. (2017), Lr norm of a regression function in Gaussian white noise Han et al. (2017a),
and differential entropy Han et al. (2017b). The latest batch of work have developed essentially a
framework of proving minimax upper and lower bounds for functional estimation problems, which
was called the Approximation approach in Jiao et al. (2015). The main idea is, we first use con-
centration inequalities to “zoom in” sets that are guaranteed to contain the true parameters with
overwhelming probability, and then apply unbiased estimators of (best) approximation polynomials
up to a certain degree in those sets. The minimax lower bounds are proved using the dual repre-
sentation of best polynomial approximation over each individual sets that we may “zoom in”. For a
crisp illustration of the lower bound technique, we refer the readers to Jiao et al. (2017).

The Approximation approach requires to compute deterministic approximations for each indi-
vidual functional separately, and is naturally a non-plug-in approach. It was shown in Jiao et al.
(2017) that indeed any plug-in approach cannot hope to completely replace the Approximation ap-
proach: there exist certain functionals such that any plug-in approach fails to achieves the statistical
limit.

This paper aims at bridging the Approximation approach illustrated above and the plug-in ap-
proach. We start with the following question.

Question 1 Find an estimator of the sorted distribution that satisfies the following properties:

1. Plugging-in the estimator into a large variety of symmetric functionals achieves the informa-
tion theoretic limit;

2. It has a clear mathematical correspondence with the Approximation approach (hence gener-
alizable to Gaussian settings);

3. It achieves the minimax rates in estimating sorted distribution under `1 loss;

4. It is efficiently computable.
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We present Local Moment Matching (LMM), an approach that provably answers the question
above.

The intuition behind LMM, on the highest level, is the following. It shares with Approximation
the same first step, which is to use concentration inequalities to “zoom in” the smallest sets that are
guaranteed to contain the true parameters with overwhelming probability. The difference appears
in the second step, while Approximation tries to find a polynomial that closely approximates the
functional over the specific set and then use unbiased estimators to estimate the polynomial, LMM
aims to find a set of numbers, whose total number equals to the number of true parameters we believe
are in the set, whose moments match the unbiased estimates of the moments of true parameters. In
other words, Approximation conducts an explicit approximation of functional, and LMM conducts
and implicit approximation, since LMM needs to achieve statistical optimality for a large variety of
symmetric functionals.

The idea of combining moment matching and linear programming appeared before in Kong
and Valiant (2017); Tian et al. (2017). However, the key contribution of our work is the feature
of local rather than global moment matching in Kong and Valiant (2017); Tian et al. (2017). The
advantage and necessity of locality can be seen from the following thought experiment. Suppose
p1 = 0.1, p2 = 0.1+ ε, p3 = 0.3. Given sufficiently many number of samples, it is easy to infer that
the probability corresponding to symbol 3 is larger than the probability corresponding to symbol 1,
but it may be unclear whether p1 ≥ p2 or p1 ≤ p2 for ε small enough. The global moment matching
approach tries to find a sorted distribution that matches the moments of (p1, p2, p3), while local
moment matching tries to only match the moments corresponding to (p1, p2). In other words, the
local approach only uses linear program and moment matching when there is ambiguity about the
relative magnitude of the true probabilities, while global moment matching discards the information
we already know (such as p3 > p1) thus behaves sub-optimally unless the number of samples is very
small. Indeed, it is the reason why Tian et al. (2017) is only statistically optimal for very small n
(n ≤ lnS in the notation of this paper). We also mention that the setting in Tian et al. (2017) is not
entirely identical to ours, since in Tian et al. (2017)

∑S
i=1 pi is not necessarily one.

We present our main results below.

Theorem 1 For n & S
lnS , we have1

inf
P̂

sup
P∈MS

EP ‖P̂ − P<‖1 �
√

S

n lnn
+ Θ̃

(√
S

n
∧ n−

1
3

)
.

Furthermore, the estimator P̂ constructed in Section 2 does not require the knowledge of the support
size S.

The following corollary is immediate.

Corollary 2 There exists an estimator P̂ for the unlabeled distribution P̂ under sorted `1 loss if
and only if n� S

lnS .

Corollary 2 shows that as opposed to the requirement n = ω(S) in consistently estimating P ,
estimating the sorted distribution P< only requires sub-linear samples n = ω( S

lnS ). The following
corollary shows that when the support size S is not too small, the empirical frequency Pn which is
minimax optimal for estimating P is no longer optimal in estimating P<.

1. Notation an = Θ̃(bn) means that for any ε > 0, we have n−εbn � an � nεbn.
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Corollary 3 For n & S
lnS , the minimax rate-optimal estimator P̂ for P< outperforms the sorted

empirical distribution P<n if and only if S � Θ̃(n
1
3 ), where Pn denotes the empirical distribution.

Corollary 3 shows that the minimax rate-optimal estimator outperforms the baseline (i.e., the
sorted empirical distribution) when S

lnS . n� Θ̃(S3). The constraint that the sample size n cannot
be too large is indeed natural: for larger sample size, there is not enough ambiguity between the
relative magnitude of probabilities of each symbol, and the problem of estimating sorted distribution
is essentially reduced to that of estimating the original unsorted distribution. Specifically, we show

that the error Θ(
√

S
n lnn) can be achieved if and only if S

lnS . n . Θ̃(S3); in contrast, Valiant and

Valiant (2017) can only achieve it under a different Wasserstein distance when S
lnS . n . S.

We then demonstrate the performance of plugging-in our sorted distribution estimate into certain
symmetric functionals of the following form:

F (P ) =
S∑
i=1

f(pi), f ∈ C[0, 1], f(0) = 0. (1)

We will be mainly interested in the case where f is non-smooth and the estimation of F (P ) becomes
challenging. Concretely, we consider entropyH(P ), the power sum function Fα(P ) and the support
size S(P ), which are given by

H(P ) ,
S∑
i=1

pi ln
1

pi
, P ∈MS ,

Fα(P ) ,
S∑
i=1

pαi , P ∈MS , 0 < α < 1,

S(P ) ,
S∑
i=1

1(pi 6= 0), P ∈ Dk ,
{
P ∈MS : pi ≥

1

k
, i ∈ [S]

}
.

The exact minimax rates for these functionals have been obtained in Wu and Yang (2016a); Jiao
et al. (2015); Wu and Yang (2015), respectively. For these functionals, the plug-in approach F (P̂ )
of the estimator P̂ of the sorted distribution P< (as in Theorem 12) achieves the corresponding
minimax risk when the sample size n is not too large.

Theorem 4 (Informal) For F (P ) = H(P ), Fα(P ) with α ∈ (0, 1) and S(P ), the plug-in estima-
tor F̂ = F (P̂ ) achieves the corresponding minimax risk when n is not too large. In particular, F̂
attains the optimal sample complexity n� S

lnS and n� k
ln k to achieve a vanishing error.

We refer the explicit construction of the plug-in estimator F̂ = F (P̂ ) and the precise statement
of Theorem 4 to Section 3. In summary, Theorem 4 provides an affirmative answer to Question 1
and shows that our estimator P̂ for the sorted distribution P< is “universal” in the sense that the
plug-in approach yields a near-minimax estimator for various functionals.

The rest of this paper is organized as follows. Section 2 relates the problem of estimating sorted
distribution P< to the distribution estimation problem under Wasserstein distance, where the idea
of local moment matching is motivated and the final estimator P̂ is constructed. Section 3 discusses
the application of sorted distribution estimation to symmetric functional estimation in detail, and
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proves Theorem 4. Theorem 1 is then proved via a combination of the achievability part in Section
A and the converse part in Section B. Some auxiliary lemmas and their proofs are deferred in the
appendices.

Notation: For a finite set A, let |A| denote its cardinality; [n] , {1, · · · , n}; lattice operations
∧,∨ are defined as a ∧ b = min{a, b}, a ∨ b = max{a, b}; letMS denote the probability simplex
over S elements, and PolyK be the space of all polynomials of degree at most K; for non-negative
sequences {an} and {bn}, the notation an . bn (or bn & an, an = O(bn), bn = Ω(an)) means
lim supn→∞

an
bn
<∞, and an � bn (bn � an, an = o(bn), bn = ω(an)) means lim supn→∞

an
bn

=
0, and an � bn (or an = Θ(bn)) is equivalent to both an . bn and bn . an.

2. Estimator Construction

In this section, we make use of the duality in Wasserstein distance to relate sorted distribution
estimation to the estimation of Lipschitz functionals, and introduce the duality between moment
matching and polynomial approximation. Based on these insights, finally we construct the estimator
via local moment matching.

2.1. Duality of Wasserstein Distance

We first introduce the Wasserstein distance.

Definition 5 (Wasserstein Distance) Let (S, d) be a separable metric space, and P,Q be two Borel
probability measures on S. The Wasserstein distance between P,Q is defined as

W (P,Q) , inf
L(X)=P,L(Y )=Q

E[d(X,Y )],

where the infimum is taken over all possible couplings between S-valued random variables X,Y
with marginals P and Q, respectively.

The key reason why we introduce the Wasserstein distance lies on the following lemma.

Definition 6 For any vector P = (p1, · · · , pS), we define µP to be the uniform probability measure
on the multiset {p1, · · · , pS}.

Lemma 7 For any two vectors P,Q, we have

‖P< −Q<‖1 = S ·W (µP , µQ)

with d(x, y) = |x− y| being the usual Euclidean metric.

In other words, in order to estimate the sorted distribution P< in terms of the `1 distance, it is
equivalent to finding some distribution P̂ such that the Wasserstein distance between µP and µP̂ is
small. However, µP̂ must be a discrete measure, which may complicate the estimator construction.
Fortunately, the following randomization procedure and Lemma 9 show that it also suffices to find
any (possibly non-atomic) probability measure µ̂P over the real line such that W (µP , µ̂P ) is small:

Definition 8 (Randomized Discretization) Given a support size S and any probability measure
µ over the real line, the following procedure outputs an S-dimensional vector Q = (q1, · · · , qS):
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1. Let F be the CDF of µ, and U1, · · · , US be S independent random variables uniformly dis-
tributed on [0, 1];

2. For each i = 1, · · · , S, define qi , F−1
(
i−Ui
S

)
, where the inverse F−1(·) is defined as

F−1(t) , sup{x : F (x) ≤ t}.

3. Finally, form the vector Q = (q1, · · · , qS).

Lemma 9 Let P be an S-dimensional vector, and µ be any probability measure on R. If Q is the
returned vector of the previous randomization procedure, we have

EW (µP , µQ) = W (µP , µ)

where the expectation is taken with respect to the randomness in the randomized procedure.

To find a suitable probability measure µ̂ such that the Wasserstein distance W (µP , µ̂) is small,
it will be helpful to recall the well-known dual representation of the Wasserstein distance:

Lemma 10 Kantorovich and Rubinstein (1958) For two Borel probability measures P,Q on a sep-
arable metric space (S, d), the following duality result holds:

W (P,Q) = sup
f :‖f‖Lip≤1

EP f(X)− EQf(X)

where X is a random variable taking value in S with distribution P or Q, and the Lipschitz norm
is defined as ‖f‖Lip , supx 6=y∈S

|f(x)−f(y)|
d(x,y) .

The previous lemma shows that we need to find some µ̂ such that Eµ̂f(X) is close to EµP f(X)
for any real-valued function f with Lipschitz norm at most one. Moreover, by definition of µP , we
have EµP f(X) = S−1

∑S
i=1 f(pi) for any function f . In other words, we need to tackle the prob-

lem of functional estimation of the form
∑S

i=1 f(pi) for all 1-Lipschitz functions simultaneously.
There are two fundamental difficulties in this problem:

1. Estimation of functionals is hard in general;

2. The space of all 1-Lipschitz functions is infinite dimensional.

The next subsection will be devoted to overcoming these two difficulties.

2.2. Duality between Moment Matching and Approximation

In this subsection we present answers to the previous questions. The first step is to estimate the
functional of the form

∑S
i=1 f(pi) for some fixed 1-Lipschitz function f . It may be tempted to

use the plug-in approach
∑S

i=1 f(p̂i), where p̂i denotes the empirical probability of the symbol i.
Note that this approach will return the empirical distribution as the distribution estimate in the end.
However, it has been shown in previous works (e.g., Jiao et al. (2015)) that bias is the dominating
error in the estimation of functionals, and the plug-in approach incurs too much bias. This obser-
vation motivates us to look for proper functions f such that there exists an unbiased estimator of
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∑S
i=1 f(pi), and the sufficient and necessary condition is that f must be a polynomial of degree at

most n. Specifically, for np̂ ∼ B(n, p), we have

E
[
np̂(np̂− 1) · · · (np̂− k + 1)

n(n− 1) · · · (n− k + 1)

]
= pk, k = 0, 1, · · · , n.

Hence, polynomials are easy functionals for estimation, and we may restrict the function f to be
polynomials up to a certain degree.

The next step is to resolve the problem that the space of all 1-Lipschitz functions is infinite
dimensional. However, if we could accurately estimate

∑S
i=1 f(pi) for monomials, i.e.,

∑S
i=1 p̂

k
i ≈∑S

i=1 p
k
i for k = 0, 1, · · · ,K, then for any 1-Lipschitz function f and any polynomial P of degree

at most K, we have∣∣∣∣∣
S∑
i=1

(f(p̂i)− f(pi))

∣∣∣∣∣ ≈
∣∣∣∣∣
S∑
i=1

[(f(p̂i)− P (p̂i))− (f(pi)− P (pi))]

∣∣∣∣∣ ≤ 2S · inf
P∈PolyK

‖f − P‖∞

is small for large K. Hence, we can approximate the infinite-dimensional Lipschitz ball via a finite
collection of functions, and then find an distribution to match these basis functions. When we
choose monomials as the basis, we arrive at the moment matching; the reason why monomials are
chosen as the basis will be detailed in the next subsection.

We emphasize that the final estimator requires that we conduct moment matching locally rather
than globally, as shown in the next subsection.

2.3. Final Estimator

Before constructing the final estimator for P<, we introduce the idea of Poissonization which has
been widely used in related models. Specifically, in the Poissonized model, instead of drawing n
i.i.d samplesX1, · · · , Xn from P , we drawN i.i.d samplesX1, · · · , XN from P , where the number
of samples N ∼ Poi(n) is a random variable. The reason why we work on the Poissonized model
is that, the empirical counts np̂j ∼ Poi(npj) are independent under the Poissonized model. The
following lemma relates the sorted `1 errors in these two models:

Lemma 11 Let R(n, S), RP (n, S) be the minimax risk under sorted `1 loss in the Multinomial
and Poissonized models, respectively. The following inequality holds:

1

2
R(2n, S) ≤ RP (n, S) ≤ R(

n

2
, S) + 2 exp(−n

8
).

By Lemma 11, it suffices to focus on the Poissonized model, where the estimator P̂ for the
sorted distribution P< is constructed as follows:

1. Split the samples into two parts, i.e., attach a random label uniformly distributed on {1, 2}
independently to each observationX1, · · · , XN , and the observations are partitioned into two
partsX(1), X(2) according to the label. By the property of Poisson distribution, each subset of
the samples determines a Poissonized sampling model with rate replaced by n/2, and different
subsets are independent. In the sequel we redefine n/2 as n for notational simplicity;

2. For each part of the samples and i ∈ [S], conpute the empirical frequency p̂i,1, p̂i,2. The
empirical frequency p̂i,1 in the first part will be used to determine the local domain where the
true probability pi lies, and p̂i,2 in the second part will be used for the estimation of P<;

8



LOCAL MOMENT MATCHING

3. Fixing a universal constant c1 > 0, partition the unit interval [0, 1] into M sub-intervals
I1, I2, · · · , IM , where Ij , [ c1 lnn

n · (j − 1)2, c1 lnn
n · j2] for j ∈ [M ].2 We define xj ,

c1j(j−1) lnn
n as the “center” of the interval Ij . Similarly, we also define a slightly “enlarged”

version of Ij : Ĩj , [ c1 lnn
n · (j − 3

2)2
1(j ≥ 2), c1 lnn

n · (j + 1)2] for j ∈ [M ]. Without loss of

generality we assume that the number of sub-intervals M =
√

n
c1 lnn is an integer;

4. Fixing universal constants c2, c3 > 0, in each sub-interval Ĩj we solve the following convex
optimization problems:

• If j ≥ 2, check whether there exists a measure µj on Ĩj such that

µj(Ĩj) = Sj , (2)∣∣∣∣∣
∫
Ĩj

(x− xj)kµj(dx)−
S∑
i=1

1(p̂i,1 ∈ Ij)gk,xj (p̂i,2)

∣∣∣∣∣ ≤√Sj lnn ·
(
c3j lnn

n

)k
(3)

hold simultaneously for k = 1, 2, · · · ,K , c2 lnn, where Sj ,
∑S

i=1 1(p̂i,1 ∈ Ij) is
the number of symbols whose empirical probability lies in the interval Ij , and

gk,x(p) ,
k∑
l=0

(
k

l

)
(−x)k−l

l−1∏
l′=0

(
p− l′

n

)
.

If there exists a feasible solution, pick an arbitrary one; otherwise, report “failure” for
the interval Ĩj ;

• If j = 1, solve the following minimization program over all measures µ1 on Ĩ1:

min µ1(Ĩ1)

s.t.

∣∣∣∣∣
∫
Ĩ1

(x− x1)kµ1(dx)−
S∑
i=1

1(p̂i,1 ∈ I1)gk,x1(p̂i,2)

∣∣∣∣∣ ≤
√
µ1(Ĩ1) lnn ·

(
c3 lnn

n

)k
for all k = 1, · · · ,K.

(4)
Report the solution as µ1; if this problem is infeasible, report “failure”.

5. Construct a measure µ̂ on [0, 1] as follows: if any previous step reports “failure”, set µ̂ to be
an arbitrary fixed distribution on [0, 1]; otherwise, set µ̂ =

∑M
j=1 µj ;

6. Finally we need to output a vector. Let S0 , dµ̂(R)e, we add S0 − µ̂(R) ≥ 0 to the point
mass µ̂({0}), and apply the randomized discretization in Definition 8 (with support size S0)
to transform the probability measure µ̂/S0 into P̂ , which is our final estimator for P<.

A few remarks are in order:

1. Choice of the partition {Ij}Mj=1: the partition {Ij}Mj=1 is chosen so that based on an observa-
tion p̂i,1 ∈ Ij , the true probability mass pi can be “localized” around Ij (i.e., pi belongs to a

2. Boundary points can belong to either intervals, as long as {Ij}Mj=1 constitutes a legitimate partition of [0, 1].
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slightly larger interval Ĩj) with high probability. Each interval Ij coincides with the definition
of “confidence set” in Han et al. (2016), and the exact meaning of “localization” is referred
to Lemma 17. As a result, probability masses pi in the same partition are indistinguishable,
while those in different partitions can be easily distinguished. Hence, at later stages it suffices
to match moments locally since this is the range of indistinguishable probability masses.

2. Choice of gk,x(p): the key reason to choose gk,x(p) in the linear program is that in Poissonized
model np̂ ∼ Poi(np), the statistic gk,x(p̂) is an unbiased estimator of (p−x)k (Withers, 1987,
Example 2.8):

Egk,x(p̂) =
k∑
l=0

(
k

l

)
(−x)k−lE

l−1∏
l′=0

(
p̂− l′

n

)
=

k∑
l=0

(
k

l

)
(−x)k−lpl = (p− x)k. (5)

We will see in Section 3 that estimating P< is similar to estimating symmetric functionals
of P where bias is the dominating factor of the error, and this fact motivates us to apply an
unbiased estimator of (p− x)k in (3), (4).

3. Convex optimization: the constraints in (2), (3) are linear in the measure µj , and thus they
constitute an infinite-dimensional linear program. By squaring each sides of (4), the optimiza-
tion problem for j = 1 becomes a conic quadratic programming and is thus convex. Due to
its special structure, there is also a linear-programming-based way to solve (4): just do bisec-
tion search for µ1(Ĩ1), and solve a linear programming to check feasibility for each µ1(Ĩ1).
To overcome the infinite dimensionality, in practice we can assume that µj is supported on a
sufficiently fine grid to obtain a finite-dimensional problem. One can also transform the fea-
sibility program in (2), (3) into a minimization problem, while the current form is sufficient
for theoretical purposes. The idea of applying linear programming in related problems has
appeared in several works, e.g., Valiant and Valiant (2011a, 2013, 2015); Kong and Valiant
(2017); Tian et al. (2017).

4. Moment matching via convex optimization: the optimization problems (2), (3) and (4) are
designed in such a way that the true measure µP,j (cf. (7), which requires the knowledge of the
unknown P ) is a feasible solution with high probability (cf. Lemma 18). Consequently, for
any feasible solution µj , triangle inequality ensures that the local moments of our estimator
will be close to the true moments (cf. (8)). The degree K of matched moments will be the
main source of the bias of our estimator, and the RHS of (3) measures the fluctuation and will
become the variance.

5. Choice of monomials (x − xj)k: there are two reasons to choose the monomials rather than
other basis functions. Firstly, there exist unbiased estimators for monomials in the Pois-
sonized model. Secondly, the subspace spanned by monomials is an optimal basis for ap-
proximating Lipschitz functions, i.e., it attains the Kolmogorov-n width of the Lipschitz ball
Lorentz et al. (1996).

6. The knowledge of the support size S: we remark that our estimator construction is agnostic
to the support size S. A key observation is that, although S appears in the definition of
Sj , unseen symbols will not affect {Sj}j≥2 since Sj only consists of symbols which have
appeared in the first half samples for j ≥ 2. The reason why we need a different program for
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j = 1 is to deal with the unknown support size: if S was known, we could simply replace
(4) by (2), (3) as well. The last step returns a vector P̂ of length no longer than S with high
probability (cf. Corollary 19), and we simply fill zeros to P̂ when evaluating ‖P̂ − P<‖1
with S ≥ S0. A key observation is that, filling m zeros to a vector P̂ is equivalent to adding
m units to µ̂({0}) and then applying the randomized discretization, and thus Lemmas 7 and
9 still hold without knowing the support size S.

The performance of the estimator P̂ is summarized in the following theorem.

Theorem 12 Let c1 > 0 be large enough as in Lemma 17, c1 > 2c2, c3 > 30c1, c2(6 ln 2 +
ln(5c3/c1)) < ε and c2 lnn ≥ 1. Then there exists a constant C0 > 0 independent of n, S such that

sup
P∈MS

EP ‖P̂ − P<‖1 ≤ C0

(√
S

n lnn
+ nε

(√
S

n
∧ n−

1
3

))
.

3. Applications in Symmetric Functional Estimation

For functionals F (·) taking the form of (1), if we define the following estimator3

F̂ ,
∫
R
f(x)µ̂(dx) = S ·

∫
R
f(x)µ̂∗(dx) (6)

with µ̂ given by our estimator construction and µ̂∗ = S−1µ̂, it is straightforward to see that

|F̂ − F (P )| = S ·
∣∣∣∣∫

R
f(x)(µ̂∗(dx)− µP (dx))

∣∣∣∣ .
If f is 1-Lipschitz, since Theorem 12 guarantees that the expected Wasserstein distance EPW (µ̂∗, µP )
is small, it follows from the dual representation of Wasserstein distance (cf. Lemma 10) that
EP |F̂ − F (P )| is also small. For general non-smooth f , we have the following lemma:

Lemma 13 Let the parameter configurations in Theorem 12 be fulfilled, f(0) = 0, µP,j and µj be
defined in (7), (2), (3) and (4), respectively. Suppose that for each j ∈ [M ], there is a polynomial
Pj of degree at most K with ‖f − Pj‖∞,Ĩj ≤Mj , supx 6=y∈Ĩj |f(y)− f(x)|, and P1(0) = 0. For

the estimator F̂ defined in (6), with probability at least 1 − 3Sn−4, the following inequality holds
conditioning on the first half samples:

|F̂ − F (P )| ≤ C0

M∑
j=1

(∫
R
|f(x)− Pj(x)|(µj(dx) + µP,j(dx)) + nεMj

√
Sj

)
,

where C0 > 0 is a constant independent of n, S, f and Pj . In particular,

|F̂ − F (P )| ≤ C0

M∑
j=1

(
Sj · inf

Pj∈PolyK
‖f − Pj‖∞,Ĩj + nεMj

√
Sj

)
.

3. Our construction of µ̂ does not depend on S, so is F̂ .

11
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Remark 14 The condition ‖f − Pj‖∞,Ĩj ≤ Mj is mild since a reasonable approximating polyno-

mial should approximate f(·) better than a constant function on Ĩj .

Lemma 13 shows that the plug-in approach of F̂ does polynomial approximation implicitly and
everywhere. Specifically, the construction of F̂ has nothing to do with polynomial approximation,
while polynomial approximation emerges in the performance analysis of F̂ . Moreover, as opposed
to the traditional approximation-based estimators where an explicit and functional-dependent poly-
nomial is required, the plug-in estimator F̂ can essentially approximate f using any polynomials.
This property is desirable, since in general Pj may not be the best approximating polynomial and
may be hard to design explicitly: we refer to Jiao et al. (2017) for such an example. Also, as op-
posed to the approximation-based estimators which split dom(f) into “non-smooth” and “smooth”
regimes, the plug-in estimator F̂ does polynomial approximation everywhere. This property pre-
vents F̂ from achieving the optimal variance, but this is the price we need to pay to achieve a unified
methodology without the dependence on f .

The following theorem characterizes the performance of F̂ for F (P ) with F = H,Fα, S:4

Theorem 15 The plug-in estimator in (6) with F = H,Fα, S satisfies:

sup
P∈MS

EP |Ĥ −H(P )| ≤ C0

(
S

n lnn
+ nε

(√
S

n
∧ n−

1
3

))
,

sup
P∈MS

EP |F̂α − Fα(P )| ≤ C0

(
S

(n lnn)α
+ nε

(√
S3−2α

n
∧ n−

α
3

))
,

sup
P∈Dk

EP |Ŝ − S(P )| ≤ C0k

(
exp

(
−Θ

(√
n ln k

k

))
+

nε√
k

)
, n . k ln k,

where C0 > 0 is a constant independent of n, S, k.

Remark 16 An additional condition n . k ln k is required for the support size functional S(P ):
if n � k ln k, the minimax risk decays super-polynomially in n, which makes the O(Sn−4) failure
probability in Lemma 13 become non-negligible.

Compared with the minimax rates of these functionals in Wu and Yang (2016a); Jiao et al. (2015);
Wu and Yang (2015), the general plug-in approach in (6) achieves the optimal total bias term, which
is the leading term when S or k is large. As a result, the plug-in approach attains the optimal sample
complexity for all these functionals, establishing Theorem 4.

However, a comparison of Theorem 15 and the minimax rates shows that the variance term of
F̂ is not optimal, conforming to the aforementioned intuition that everywhere polynomial approx-
imation may incur a too large variance. Hence, among the functionals considered in Theorem 15,
the general plug-in approach in (6) attains the optimal bias and thus the optimal sample complexity,
but need to pay a price on the variance.

4. For the support size functional S(P ), due to the additional constraint pi ≥ 1
k

on the parameter set, an additional
linear constraint µj((0, 1

k
)) = 0 should be imposed in addition to (2) and (3).

12



LOCAL MOMENT MATCHING

References

Jayadev Acharya, Alon Orlitsky, and Shengjun Pan. Recent results on pattern maximum likelihood.
In Networking and Information Theory, 2009. ITW 2009. IEEE Information Theory Workshop on,
pages 251–255. IEEE, 2009.

Jayadev Acharya, Alon Orlitsky, Ananda Theertha Suresh, and Himanshu Tyagi. The complexity
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Appendix A. Estimator Analysis

A.1. Controlling “Bad Events”

There are several types of bad events in the construction of our estimator:

1. For some symbol i = 1, · · · , S and j = 1, · · · ,M , it may happen that pi /∈ Ĩj but p̂i,1 ∈ Ij ;

2. For some j = 1, · · · ,M , it may happen that the linear programming in (2), (3), (4) does not
have a solution;

3. In the last step, it may happen that µ̂(R) > S.

In this subsection we show that the probability that any of these bad events occurs is negligible. The
following lemma follows directly from the Poisson tail inequalities (cf. Lemma 29).

Lemma 17 Let c1 > 0 be large enough, then for any i = 1, 2, · · · , S and j = 1, 2, · · · ,M ,

P(p̂i,1 ∈ Ij |pi /∈ Ĩj) ≤ n−5.

Based on Lemma 17 and the union bound, we see that the first-type bad events occurs with a
negligible probability. To upper bound the probability of other bad events, we need to come up
with a solution µj which fulfills (2), (3), (4) with high probability. In the sequel we condition on a
specific realization of the first half samples, and define the set of symbols falling in Ij as

Aj , {i ∈ {1, 2, · · · , S} : p̂i,1 ∈ Ij}.

Note that Aj is a random set depending only on the first half samples, and |Aj | = Sj . Moreover,
{Aj , Sj}j≥2 are uniquely determined by the first half samples, while {A1, S1} may be unknown
due to the unknown support size S and possibly unseen symbols. Now the key observation is that,
the following measure

µP,j(·) ,
∑
i∈Aj

1(pi ∈ ·), j = 1, 2, · · · ,M (7)

which requires the knowledge of the unknown P satisfies (2), (3), (4) with high probability. Obvi-
ously, if pi ∈ Ĩj for any i ∈ Aj and j ≥ 2, the measure µP,j will be supported on Ĩj and thus (2)
holds. The following lemma shows that, given the same assumption, the measure µP,j also satisfies
(3) and (4) with high probability.

Lemma 18 Let c1 > 0 be large enough as in Lemma 17, and c1 > 2c2, c3 > 30c1, c2 lnn ≥ 1.
Further assume that pi ∈ Ĩj for any i ∈ Aj and j = 1, 2, · · · ,M . Then conditioning on the first
half samples, for k = 1, 2, · · · ,K = c2 lnn we have

P

(∣∣∣∣∣
∫
Ĩj

(x− xj)kµj(dx)−
S∑
i=1

1(p̂i,1 ∈ Ij)gk,xj (p̂i,2)

∣∣∣∣∣ >√Sj lnn ·
(
c3j lnn

n

)k)
≤ 2n−4.

Lemma 18 shows that µP,j is a feasible solution to (3) with high probability for j ≥ 2. For
j = 1, note that µP,1(Ĩ1) = S1 conditioning on the events in Lemma 17, the measure µ̂P,1 is also a
feasible solution to (4). Moreover, in this case the returned solution µ1 of (4) satisfies µ1(R) ≤ S1,
thus we must have µ̂(R) ≤ S in the last step. Hence, based on Lemma 17 and 18, by the union
bound we have the following corollary:
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Corollary 19 Let E be the event that any of the aforementioned bad events happens, then

P(E) ≤ Sn−5 + 2Mn−4.

By Corollary 19, the probability that any bad event happens is negligible, and it thus suffices to
focus on the “good” events to analyze the performance of our estimator, which will be the focus of
the next subsection.

A.2. Local Performance of Moment Matching

By Lemma 18, the measure µP,j using the unknown true knowledge of P is a feasible solution to
(2), (3) and (4) with high probability, and our estimator returns a perfect answer if this solution is
chosen among all feasible solutions. In this subsection, we show that any feasible solution µj is in
fact close to the true measure µP,j in terms of the Wasserstein distance. By the dual representation
of Wasserstein distance (cf. Lemma 10), we can fix any 1-Lipschitz function f on R and prove the
following lemma:

Lemma 20 For any j = 1, · · · ,M , let µj be any feasible solution to (2), (3) or (4), the true
measure µP,j be given in (7), and c2 be small enough such that c2(6 ln 2 + ln(5c3/c1)) < ε with
c2 lnn ≥ 1. Assuming all good events happen and conditioning on the first half samples, for any
1-Lipschitz function f on R with f(0) = 0,∣∣∣∣∣

∫
Ĩj

f(x)µj(dx)−
∫
Ĩj

f(x)µP,j(dx)

∣∣∣∣∣ ≤ C0

(∫
R

√
x

n lnn
(µj(dx) + µP,j(dx)) +

j
√
Sj

n1−ε

)

where C0 is a constant independent of n, S and f .

Remark 21 The condition f(0) = 0 is important for j = 1: (4) cannot ensure that µ1(R) =
µP,1(R) since it does not contain the total mass constraint in (2).

The remainder of this subsection is devoted to the proof of Lemma 20. For j ≥ 2, by assumption
both µP,j and µj are feasible solutions to (2) and (3), i.e., they are supported on Ĩj with the same
total mass Sj , and by triangle inequality we have∣∣∣∣∣

∫
Ĩj

(x− xj)kµj(dx)−
∫
Ĩj

(x− xj)kµP,j(dx)

∣∣∣∣∣ ≤ 2
√
Sj lnn ·

(
c3j lnn

n

)k
(8)

for any k = 1, 2, · · · ,K = c2 lnn. As a result, fixing any polynomial

P (x) =
K∑
k=0

ak(x− xj)k
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on Ĩj , triangle inequality together with (8) gives∣∣∣∣∣
∫
Ĩj

f(x)(µj(dx)− µP,j(dx))

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Ĩj

(f(x)− P (x))(µj(dx)− µP,j(dx))

∣∣∣∣∣+

∣∣∣∣∣
∫
Ĩj

P (x)(µj(dx)− µP,j(dx))

∣∣∣∣∣
≤
∫
Ĩj

|f(x)− P (x)|(µj(dx) + µP,j(dx))︸ ︷︷ ︸
,B1

+

K∑
k=1

|ak| · 2
√
Sj lnn

(
c3j lnn

n

)k
︸ ︷︷ ︸

,B2

. (9)

It’s straightforward to see that (8), (9) also hold for j = 1, while in (9) we need to add an additional
assumption that the constant term of P (x) is zero.

The inequality (9) holds for any polynomial P (·) of degree at most K, and both terms B1 and
B2 depend on the choice of P . We shall choose P to be the best approximating polynomial of f(x)
on Ĩj in the uniform norm, i.e.,

P (x) , arg min
Q∈PolyK

max
x∈Ĩj
|Q(x)− f(x)|.

It is easy to see that this choice of P will result in a small value of B1, while we need the following
well-known Jackson’s inequality in approximation theory to upper bound B1 quantitatively:

Lemma 22 DeVore (1976) Let K > 0 be any integer, and [a, b] ⊂ R be any bounded interval. For
any 1-Lipschitz function f on [a, b], there exists a universal constant C independent of K, f such
that there exists a polynomial P (·) of degree at most K such that

|f(x)− P (x)| ≤
C
√

(b− a)(x− a)

K
, ∀x ∈ [a, b]. (10)

In particular, the following norm bound holds:

sup
x∈[a,b]

|f(x)− P (x)| ≤ C(b− a)

K
. (11)

We use the pointwise bound (10) and the norm bound (11) to upper boundB1 for the case j = 1
and j ≥ 2, respectively. If j = 1, we have Ĩj = [0, 9c1 lnn

4n ], then (10) with x = 0 and f(0) = 0
gives P (0) = 0, thus (9) holds for P . Moreover,

B1 ≤
C

K

∫
Ĩ1

√
9c1x lnn

4n
(µ1(dx) + µP,1(dx))

=
C

c2

√
9c1

4
·
∫
Ĩ1

√
x

n lnn
(µ1(dx) + µP,1(dx)). (12)
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If j ≥ 2, recall that Ĩj = [ c1(j−3/2)2 lnn
n , c1(j+1/2)2 lnn

n ], the norm bound (11) gives

B1 ≤
C

K

(
c1(j + 1/2)2 lnn

n
− c1(j − 3/2)2 lnn

n

)
·
∫
Ĩj

(µj(dx) + µP,j(dx))

≤ C

K

(
c1(j + 1/2)2 lnn

n
− c1(j − 3/2)2 lnn

n

)
·
∫
Ĩj

√
x

c1(j−3/2)2 lnn
n

(µj(dx) + µP,j(dx))

≤
12C
√
c1

c2
·
∫
Ĩj

√
x

n lnn
(µj(dx) + µP,j(dx)). (13)

A combination of (12) and (13) gives that for any j ∈ [M ],

B1 ≤
12C
√
c1

c2
·
∫
R

√
x

n lnn
(µj(dx) + µP,j(dx)). (14)

To upper bound B2, we need to obtain upper bounds on the coefficients |ak| of the best approx-
imating polynomial. We invoke Lemma 27 here: the polynomial P0(x) = P (x)− f(xj) defined on
Ĩj satisfies

|P0(x)| ≤ |P (x)− f(x)|+ |f(x)− f(xj)|

≤ C

K

(
c1(j + 1)2 lnn

n
− c1(j − 3/2)2 lnn

n

)
+

(
c1(j + 1)2 lnn

n
− c1j(j − 1) lnn

n

)
≤
(

1 +
C

K

)
5c1j lnn

n
.

Now applying Lemma 27 with A =
(
1 + C

K

) 5c1j lnn
n , [a, b] = [− c1((2j−9/4)∨0) lnn

n , c1(3j+1) lnn
n ],

for any k = 1, 2, · · · ,K we have

|ak| ≤ 2
7K
2

(
1 +

C

K

)
5c1j lnn

n
·
(
c1j lnn

5n

)−k
(5K + 1)

≤ 25

(
1 +

C

K

)
26K ·

(
c1j lnn

5n

)1−k
.

Hence, the quantity B2 can be upper bounded as

|B2| ≤
K∑
k=1

25

(
1 +

C

K

)
26K ·

(
c1j lnn

5n

)1−k
· 2
√
Sj lnn

(
c3j lnn

n

)k
≤ 10c1(1 + C)nc2(6 ln 2+ln(5c3/c1))(lnn)

3
2 ·

j
√
Sj

n
. (15)

Now a combination of (14) and (15) completes the proof of Lemma 20.
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A.3. Overall Performance

In this section we are about to establish Theorem 12. Note that finally the true measure µP and the
measure µ̂∗ as the input of randomized discretization are given by (conditioning on no failures)

µP =
1

S

M∑
i=1

µP,j ,

µ̂∗ =
1

S

M∑
i=1

µj +

(
1− µ̂(R)

S

)
δ0

where δ0(·) is the Dirac delta point mass at zero. By Lemma 7 and Lemma 9, the sorted `1 risk of
P̂ satisfies

EP ‖P̂ − P<‖1 = S · EPW (µP , µ̂
∗).

Using the dual representation of the Wasserstein distance (cf. Lemma 10), we further have

S · EPW (µP , µ̂) = S · EP sup
f :‖f‖Lip≤1

∫
R
f(x)(µP (dx)− µ̂∗(dx))

(a)
= S · EP sup

f :‖f‖Lip≤1,f(0)=0

∫
R
f(x)(µP (dx)− µ̂∗(dx))

= EP sup
f :‖f‖Lip≤1,f(0)=0

M∑
j=1

∫
R
f(x)(µP,j(dx)− µj(dx)) (16)

where (a) follows from µP (R) = µ̂∗(R) = 1.
Suppose that the condition of Lemma 20 holds, then each summand admits the following “bias–

variance” decomposition:∫
R
f(x)(µP,j(dx)− µj(dx)) ≤ C0

(∫
R

√
x

n lnn
(µj(dx) + µP,j(dx)) +

j
√
Sj

n1−ε

)
. (17)

The first term in (17) corresponds to the “bias”, which is the remaining error even after the first
K moments are exactly matched. The second term in (17) corresponds to the “variance”, which is
caused by the imperfect moment matching. Since C0 is independent of f , we have

sup
f :‖f‖Lip≤1,f(0)=0

M∑
j=1

∫
R
f(x)(µP,j(dx)− µj(dx))

≤ C0


∫
R

√
x

n lnn
(µ̂(dx) + SµP (dx))︸ ︷︷ ︸

,“total bias” B

+
M∑
j=1

j
√
Sj

n1−ε︸ ︷︷ ︸
,“total variance” V

 . (18)
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We first upper bound the total variance V . Using the fact that
∑S

i=1 pi = 1, and pi ≥ c1j2 lnn
16n

for any i ∈ Aj , j ≥ 2, we have

1 =

S∑
i=1

pi ≥
M∑
j=2

∑
i∈Aj

pi ≥
c1 lnn

16n

M∑
j=2

∑
i∈Aj

j2 =
c1 lnn

16n

M∑
j=2

j2Sj . (19)

Moreover, S1 ≤ S, thus by defining J = {j ∈ [M ] : Sj 6= 0}, we have

M∑
j=1

j
√
Sj ≤

√
S +

M∑
j=2

j
√
Sj ≤

√
S +

∑
j∈J

j
√
Sj =

√
S +

|J | ·∑
j∈J

j2Sj

 1
2

≤
√
S + 4

√
n|J |
c1 lnn

.

Now we obtain upper bounds for |J |, i.e., the number of sub-intervals in the partition which contains
any symbol in the first half samples. Trivially, |J | ≤ S, and (19) gives

1 ≥ c1 lnn

16n

M∑
j=2

j2Sj ≥
c1 lnn

16n

∑
j∈J−{1}

j2 ≥ c1 lnn

16n

|J |∑
j=2

j2 ≥ c1 lnn

48n
(|J | − 1)3

implying that |J | ≤
(

48n
c1 lnn

) 1
3

+ 1. As a result, we conclude that

M∑
j=1

j
√
Sj ≤

√
S + 4

√
n

c1 lnn

√S ∧
√(

48n

c1 lnn

) 1
3

+ 1

 (20)

and consequently

V . nε

(√
S

n
∧ n−

1
3

)
. (21)

Now we upper bound the total bias. By definition of µP , we know that∫
R
x · SµP (dx) =

S∑
i=1

pi = 1.

Moreover, summing over j = 1, · · · ,M in (8) for k = 1 gives∣∣∣∣∫
R
x(SµP (dx)− µ̂(dx))

∣∣∣∣ ≤ M∑
j=1

2
√
Sj lnn · c3j lnn

n
= 2c3(lnn)

3
2 ·

M∑
j=1

j
√
Sj

n
.

Hence, by (20) and the triangle inequality, we also have
∫
R xµ̂(dx) = 1 + o(1). As a result, by

Cauchy–Schwartz the total bias can be upper bounded as

B ≤ 1√
n lnn

(
S ·

√∫
R
xµP (dx) +

√
S ·
∫
R
xµ̂(dx)

)
.

√
S

n lnn
. (22)
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Finally, a combination of (16), (18), (21), (22), Corollary 19 and the fact that ‖P̂ − P<‖1 ≤ 2
gives that

sup
P∈MS

EP ‖P̂ − P<‖1 .

√
S

n lnn
+ nε

(√
S

n
∧ n−

1
3

)
+ 2 · (2Mn−4 + Sn−5)

.

√
S

n lnn
+ nε ·

(√
S

n
∧ n−

1
3

)
which completes the proof of Theorem 12.

Appendix B. Minimax Lower Bound

In this section we establish the following lower bound:

Theorem 23 For n & S
lnS , there exists a constant c0 > 0 independent of n, S such that

inf
P̂

sup
P∈MS

EP ‖P̂ − P<‖1 ≥ c0

(√
S

n lnn
+

(√
S

n
∧ n−

1
3

))
.

Notice that a combination of Theorem 12 and Theorem 23 completes the proof of Theorem 1.
As in the proof of achievability, we call the first term in Theorem 23 as “bias” and the second term
as “variance”: the techniques used to lower bound these terms mimic those which have been widely
used to lower bound the bias and the variance, respectively. The next two subsections are devoted
to the proof of Theorem 23.

B.1. Lower Bound on the “Bias”

To prove the Ω(
√

S
n lnn) lower bound, we use the following “double duality” arguments:

1. Use the dual representation of Wasserstein distance (cf. Lemma 10) to transform into estima-
tion of Lipschitz functionals;

2. Use the duality between moment matching and best polynomial approximation (cf. Lemma
25) to construct two measures used in the generalized Le Cam’s method (cf. Lemma 24).

Note that both these dualities are also used in the proof of the achievability part (cf. Theorem 12),
our arguments for the achievability and lower bound are in fact dual to each other.

We first make use of the first duality. Assume by contradiction that there exists an estimator P̂

such that supP∈MS
EP ‖P̂ −P<‖1 �

√
S

n lnn , then for any 1-Lipschitz function f(·) on R and the
symmetric functional F (P ) of the form

F (P ) ,
S∑
i=1

f(pi),

a combination of Lemma 7 and 10 implies that for the estimator F (P̂ ) =
∑S

i=1 f(p̂i), we have

EP |F (P̂ )− F (P )| ≤ S · EPW (µP , µP̂ ) = EP ‖P̂ − P<‖1 �
√

S

n lnn
.
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Hence, the existence of such an estimator P̂ implies that, for any 1-Lipschitz function f(·) and the
corresponding symmetric functional F (·), we have

inf
F̂

sup
P∈MS

EP |F̂ − F (P )| �
√

S

n lnn
. (23)

In other words, the estimation of Lipschitz functionals are easier than the estimation of the under-
lying distribution up to permutation. As a result, if we could prove that (23) breaks down for some
Lipschitz functional F (P ), we would arrive at the desired contradiction.

Next we step into the second duality, which requires the following generalized Le Cam’s method
(also known as the method of two fuzzy hypotheses Tsybakov (2008)). The application of this
method has appeared in several works in functional estimation Lepski et al. (1999); Cai and Low
(2011); Jiao et al. (2015); Wu and Yang (2016a); Han et al. (2016); Jiao et al. (2017); Han et al.
(2017a,b) to deal with the bias, which motivates us to call the first term in Theorem 23 as the “bias”.
Given a collection of distributions {Pθ : θ ∈ Θ′}, suppose the observation Z is distributed as Pθ
with θ ∈ Θ ⊂ Θ′. Let T̂ = T̂ (Z) be an arbitrary estimator of a function T (θ) based on Z. Denote
the total variation distance between two probability measures P,Q by

V (P,Q) , sup
A∈A
|P (A)−Q(A)| = 1

2

∫
|p− q|dν,

where p = dP
dν , q = dQ

dν , and ν is a dominating measure so that P � ν,Q � ν. The following
general minimax lower bound follows from the same proof as (Tsybakov, 2008, Theorem 2.15):

Lemma 24 Let σ0 and σ1 be two prior distributions on Θ′. Suppose there exist ζ ∈ R, s > 0, 0 ≤
β0, β1 < 1 such that

σ0(θ ∈ Θ : T (θ) ≤ ζ − s) ≥ 1− β0,

σ1(θ ∈ Θ : T (θ) ≥ ζ + s) ≥ 1− β1.

Then

inf
T̂

sup
θ∈Θ

Pθ
(
|T̂ − T (θ)| ≥ s

)
≥ 1− V (F1, F0)− β0 − β1

2
,

whereFi =
∫
Pθσi(dθ) is the marginal distribution of Z under the prior σi for i = 0, 1, respectively.

In our application, we will set θ = P , T (θ) = F (P ), and σi = ν⊗Si for i = 0, 1, where ν0, ν1

are priors on [ 1
S −

√
c lnn
nS , 1

S +
√

c lnn
nS ] with some constant c > 0. The priors ν0, ν1 are chosen to be

the solutions of the optimization program (24), whose optimal objective value is the best polynomial
approximation error as shown in the following lemma.

Lemma 25 Given a compact interval I = [a, b] with a > 0, an integer K > 0 and a continuous
function f on I , let

EK(f ; I) , inf
{ai}

sup
x∈I

∣∣∣∣∣
K∑
i=0

aix
i − f(x)

∣∣∣∣∣
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denote the best uniform approximation error of f by polynomials spanned by {1, x, · · · , xK}. Then

2EK(f ; I) = max

∫
f(t)ν1(dt)−

∫
f(t)ν0(dt)

s.t.
∫
tlν1(dt) =

∫
tlν0(dt), l = 0, · · · ,K

(24)

where the maximum is taken over pairs of probability measures ν0 and ν1 supported on I .

Lemma 25 establishes the duality between moment matching and best polynomial approximation,
where moment matching helps to obtain a small total variation distance V (F1, F0) in Lemma 24,
and best polynomial approximation error gives the value s in Lemma 24. Moreover, here moment

matching is also done locally, for supp(νi) = [ 1
S −

√
c lnn
nS , 1

S +
√

c lnn
nS ], i = 0, 1 takes the form of

a local interval as {Ij}Mj=1.
Next we specify the choice of the 1-Lipschitz function: f(x) = |x− 1

S |−
1
S , which was studied

in Jiao et al. (2017). In particular, Jiao et al. (2017) shows that with these priors and K � lnn in

Lemma 25, we have s &
√

S
n lnn and β0, β1, V (F1, F0)

n→∞→ 0 in Lemma 24 (with properly chosen
Θ and ζ). Hence, by Markov’s inequality,

inf
F̂

sup
P∈MS

EP |F̂ − F (P )| ≥ s · inf
F̂

sup
P∈MS

PP
(
|F̂ − F (P )| ≥ s

)
≥ s

2
&

√
S

n lnn

which is a desired contradiction to (23)!

B.2. Lower Bound on the “Variance”

To establish the second lower bound, we will essentially reduce the sorted distribution estimation
problem to the traditional distribution estimation where labels are required. Specifically, we con-
sider the scenario where we have known a priori that the probability vector is sorted, in which case
an accurate estimator for P< can be easily transformed into an accurate estimator for P . Then in

this scenario, we recover the traditional Ω(
√

S
n ) lower bound for estimating P . The reason why

this lower bound does not hold for large S is that when S exceeds some threshold, the prior knowl-
edge that the probability vector is sorted starts to make adjacent entries become informative on the
inference of the entry in the middle.

For some constant c > 0 large enough, define

S′ , S ∧
(n
c

) 1
3

as the new support size, and without loss of generality we assume that S′ = 2T +1 for some integer
T . Fixing some λ > 0 to be determined later, we associate a probability vector Pε ∈ MS to any
binary vector ε = (ε1, ε2, · · · , εT ) ∈ {±1}T as follows:

Pε , (0, 0, · · · , 0, x1 + λε1, · · · , xT + λεT , y1 − λε1, · · · , yT − λεT , 1−
T∑
i=1

(xi + yi))

with xi ,
c(t+ i)2

100n
, yi ,

c(t+ T + i)2

100n
, and t ,

( n
cT

) 1
2
.
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Hence, as long as

λ ∈
(

0,
ct

100n

)
, (25)

it is easy to check that Pε is sorted in an ascending order for any ε ∈ {±1}T . As a result, restricting
to the subclass P ∈ P , {Pε : ε ∈ {±1}T } ⊂ MS , estimating P< is equivalent to estimating P .
In other words,

inf
P̂

sup
P∈MS

EP ‖P̂ − P<‖1 ≥ inf
P̂

sup
P∈P

EP ‖P̂ − P‖1. (26)

Next we lower bound the RHS of (26). Consider a uniform prior on ε ∈ {±1}T , the fact that
the Bayes risk under any prior is always a lower bound for the minimax risk gives that

inf
P̂

sup
P∈P

EP ‖P̂ − P‖1 ≥ inf
P̂

EεEPε‖P̂ − Pε‖1 ≥
Tλ

10
· inf
P̂

P
(
‖P̂ − Pε‖1 ≥

Tλ

10

)
.

Defining the test function ε̂ , arg minε∈{±1}T ‖P̂−Pε‖1, by triangle inequality it is straightforward
to see that the event dH(ε̂, ε) ≥ T

5 implies ‖P̂ − Pε‖1 ≥ Tλ
10 , where dH(·, ·) is the Hamming metric

dH(x, y) =
∑T

i=1 1(xi 6= yi). Consequently, we further have

inf
P̂

sup
P∈P

EP ‖P̂ − P‖1 ≥
Tλ

10
· inf

ε̂
P
(
dH(ε̂, ε) ≥ T

5

)
. (27)

To lower bound the RHS of (27), we introduce the distance-based Fano’s inequality as follows:

Lemma 26 (Duchi and Wainwright, 2013, Corollary 1) Let random variables V and V̂ take value
in V , V be uniform on some finite V , and V −X − V̂ form a Markov chain. Let d be any metric on
V , and for t > 0, define

Nmax(t) , max
v∈V
|v′ ∈ V : d(v, v′) ≤ t|, Nmin(t) , min

v∈V
|v′ ∈ V : d(v, v′) ≤ t|.

If Nmax(t) +Nmin(t) < |V|, the following inequality holds:

P(d(V, V̂ ) > t) ≥ 1− I(V ;X) + ln 2

ln |V|
Nmax(t)

where I(V ;X) , EPV,X
[
ln

dPV,X
dPV ×dPX

]
denotes the mutual information between V and X .

Applying Lemma 26 to the Markov chain ε − X − ε̂ with Hamming metric and t = T
5 , by

Lemma 29 we know that Nmax(t)
|V| ≤ exp(−T

8 ). Moreover, in the Poissonized model we have

I(ε;X)
(a)

≤ EεD(PX|ε‖P0)

=
T∑
i=1

(EεD(Poi(n(xi + λεi))‖Poi(nxi)) + EεD(Poi(n(yi − λεi))‖Poi(nyi)))

(b)

≤ nλ2 ·
T∑
i=1

(
1

xi
+

1

yi

)
(c)

≤ 200T · nλ2
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where P0 is the probability measure Pε applied to ε = 0, (a) follows from the variational represen-
tation of mutual information

I(X;Y ) = inf
QY

EPXD(PY |X‖QY ),

(b) follows from D(Poi(λ1)‖Poi(λ2)) = λ1 ln λ1
λ2
− λ1 + λ2 ≤ (λ1−λ2)2

λ2
, and (c) follows from

xi, yi ≥ (200T )−1. Consequently, a combination of (26), (27) and Lemma 26 yields

inf
P̂

sup
P∈MS

EP ‖P̂ − P<‖1 ≥
Tλ

10

(
1− 800nT 2λ2 + ln 2

T/8

)
. (28)

Choosing λ = c′√
nT

, for c′ small enough the condition (25) is fulfilled, and by (28) and the
choice of T we conclude that

inf
P̂

sup
P∈MS

EP ‖P̂ − P<‖1 &

√
T

n
&

√
S

n
∧ n−

1
3 ,

establishing the second term of Theorem 23.

Appendix C. Auxiliary Lemmas

Lemma 27 (Han et al., 2016, Lemma 28) Let pn(x) =
∑n

ν=0 aνx
ν be a polynomial of degree at

most n such that |pn(x)| ≤ A for x ∈ [a, b]. Then

1. If a+ b 6= 0, then

|aν | ≤ 27n/2A

∣∣∣∣a+ b

2

∣∣∣∣−ν (∣∣∣∣b+ a

b− a

∣∣∣∣n + 1

)
, ν = 0, · · · , n.

2. If a+ b = 0, then

|aν | ≤ Ab−ν(
√

2 + 1)n, ν = 0, · · · , n.

Lemma 28 Hoeffding (1963) For independent and identically distributed random variablesX1, · · · , Xn

with a ≤ Xi ≤ b for 1 ≤ i ≤ n, denote Sn =
∑n

i=1Xi, we have for any t > 0,

P {|Sn − E[Sn]| ≥ t} ≤ 2 exp

(
− 2t2

n(b− a)2

)
.

Lemma 29 (Mitzenmacher and Upfal, 2005, Theorem 5.4) For X ∼ Poi(λ) or X ∼ B(n, λn) and
any δ > 0, we have

P(X ≥ (1 + δ)λ) ≤
(

eδ

(1 + δ)1+δ

)λ
≤ exp(−(δ2 ∧ δ)λ

3
),

P(X ≤ (1− δ)λ) ≤
(

e−δ

(1− δ)1−δ

)λ
≤ exp(−δ

2λ

2
).
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Appendix D. Proof of Main Lemmas

D.1. Proof of Corollary 3

By Theorem 1, it suffices to prove that for the empirical distribution Pn, we have

sup
P∈MS

EP ‖P<n − P<‖1 �
√
S

n
, n ≥ S.

By Han et al. (2015), the upper bound follows from

sup
P∈MS

EP ‖P<n − P<‖1 ≤ sup
P∈MS

EP ‖Pn − P‖1 ≤
√
S

n
.

For the lower bound, note that (Berend and Kontorovich, 2013, Theorem 1) shows that for
n ≥ S,

E
∣∣∣∣ 1nB(n,

1

S
)− 1

S

∣∣∣∣ ≥
√
S − 1

2nS2
.

Consider P = ( 1
S , · · · ,

1
S ) to be the uniform distribution, then there is no difference between esti-

mating P< and estimating P . Hence,

EP ‖P<n − P<‖1 = EP ‖Pn − P‖1 ≥ S · E
∣∣∣∣ 1nB(n,

1

S
)− 1

S

∣∣∣∣ ≥
√
S − 1

2n

as desired.

D.2. Proof of Lemma 7

Without loss of generality assume that P,Q are sorted in an ascending order. Consider the coupling
on (X,Y ) which is uniformly distributed on the multiset {(p1, q1), · · · , (pS , qS)}, we immediately
have

S ·W (µP , µQ) ≤ ‖P −Q‖1.

For the opposite inequality, let rij , P(X = pi, Y = qj), it’s straightforward to see that

W (µP , µQ) = min

S∑
i=1

S∑
j=1

rij |pi − qj |

s.t.
S∑
i=1

rij =
1

S
, j = 1, 2, · · · , S

S∑
j=1

rij =
1

S
, i = 1, 2, · · · , S

rij ≥ 0, i, j = 1, 2, · · · , S.
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For linear programming, there must be a vertex of the simplex which attains the minimum of
the objective. In other words,

S ·W (µP , µQ) = min
σ

S∑
i=1

|pi − qσ(i)|

where σ ranges over all permutations on {1, · · · , S}. Finally, note that for i < j, k < l, we have
(by symmetry we assume that pi ≤ qk)

|pi − ql|+ |pj − qk| = |pi − qk|+ |qk − ql|+ |pj − qk| ≥ |pi − qk|+ |pj − ql|.

In other words, switching σ(i) and σ(j) whenever i < j and σ(i) > σ(j) can only make the value
of the objective smaller. Hence, the minimum is attained at σ = id, and S ·W (µP , µQ) ≥ ‖P−Q‖1,
as desired.

D.3. Proof of Lemma 9

We prove Lemma 9 via figure. In the following figure, all curves represent different CDFs. Note that
µP is a discrete distribution supported on S = 4 elements, and µ is an arbitrary distribution. The
area of the yellow region exactly represents the Wasserstein distanceW (µP , µ). The randomization
procedure picks up one point uniformly at random from each small interval [0, 1

4 ], [1
4 ,

1
2 ], [1

2 ,
3
4 ], [3

4 , 1]
on the y-axis, and then returns the corresponding inverse on the x-axis. Now from a vertical view-
point, it is straightforward to verify that EW (µP , µQ) is also the yellow area, as desired.

0

µ

µP

1
4

1
2

3
4

1

µQ

q1 q2 q3 q4

D.4. Proof of Lemma 11

Let R(n, S, π), RP (n, S, π) be the corresponding Bayes risks under prior π in the Multinomial and
Poissonized models, respectively. By Jiao et al. (2015),

RP (n, S, π) =
∞∑
m=0

R(m,S, π) · P(Poi(n) = m).
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Note that R(m,S, π) is non-increasing in m, by Lemma 29 and Markov’s inequality we have

RP (n, S, π) ≤ 2 · P(Poi(n) <
n

2
) +R(

n

2
, S, π) ≤ 2 exp(−n

8
) +R(

n

2
, S, π),

RP (n, S, π) ≥ R(2n, S, π) · P(Poi(n) ≤ 2n) ≥ R(2n, S, π) ·
(

1− EPoi(n)

2n

)
=

1

2
R(2n, S, π).

Now taking supremum over π and using the minimax theorem Wald (1950) complete the proof.

D.5. Proof of Lemma 18

By definition of µP,j and Aj , the claimed result is equivalent to

P

∣∣∣∣∣∣
∑
i∈Aj

(
gk,xj (p̂i,2)− (pi − xj)k

)∣∣∣∣∣∣ >√Sj lnn ·
(
c3j lnn

n

)k ≤ 2n−4.

Let Zi , gk,xj (p̂i,2)− (pi − xj)k, and Mi , supp̂i,2:|p̂i,2−xj |≤3c1j lnn/n |Zi|. We first establish
an upper bound for Mi with i ∈ Aj : firstly, the condition i ∈ Aj implies that pi ∈ Ĩj , and thus

|pi − xj |k ≤
∣∣∣∣c1(j + 1)2 lnn

n
− c1j(j − 1) lnn

n

∣∣∣∣k ≤ (4c1j lnn

n

)k
. (29)

To upper bound |gk,xj (p̂i,2)|, we introduce the following lemma:

Lemma 30 Let k ≥ 1, np ∈ N and x ∈ [0, 1]. If max{|x− p|,
√

4pk
n } ≤ ∆, we have

|gk,x(p)| =

∣∣∣∣∣
k∑
l=0

(
k

l

)
(−x)k−l

l−1∏
l′=0

(
p− l′

n

)∣∣∣∣∣ ≤ (2∆)k.

The proof of Lemma 30 is postponed to the end of this subsection. The conditions of Lemma 30 are
fulfilled by ∆ = 3c1j lnn

n as long as c1 >
4
3c2, and thus

|gk,xj (p̂i,2)| ≤
(

6c1j lnn

n

)k
. (30)

As a result, a combination of (29) and (30) ensures that

Mi ≤
(

10c1j lnn

n

)k
, ∀i ∈ Aj . (31)

Define a new random variable Z̃i , max{min{Zi,Mi},−Mi} as the truncated version of Zi,
the Hoeffding’s inequality is about to be applied to the independent and bounded Z̃i. We need to
show that Z̃i and Zi are indeed close in expectation. Clearly,

|E(Z̃i − Zi)| ≤ E|gk,xj (p̂i,2)|1(|p̂i,2 − xj | > ∆j)

=
∑

m:|m−nxj |>n∆j

|gk,xj (
m

n
)| · P(Poi(npi) = m)

≤
∑

m:|m−nxj |>n∆j

2k
∣∣∣m
n
− xj

∣∣∣k · P(Poi(npi) = m)

29
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where ∆j ,
3c1j lnn

n and we have used Lemma 30 in the last step. If m+ 1 > n(xj + ∆j), we have

P(Poi(npi) = m+ 1)

P(Poi(npi) = m)
=

npi
m+ 1

≤ c1(j + 1/2)2 lnn

c1j(j + 2) lnn
≤ 1− 1

4j
.

Let mmax be the largest integer such that mmax ≤ n(xj + ∆j), by Lemma 29 and choosing c1 > 0
large enough (as in Lemma 17) we have P(Poi(npi) = mmax) ≤ n−5. Hence,

∑
m:m−nxj>n∆j

∣∣∣m
n
− xj

∣∣∣k · P(Poi(npi) = m) ≤
∞∑
l=0

(∆j +
l

n
)k · n−5

(
1− 1

4j

)l

≤ n−5∆k
j ·
∞∑
l=0

exp

(
kl

n∆j
− l

4j

)

≤ n−5∆k
j

[
1− exp

(
− 1

4j
+

k

n∆j

)]−1

≤ n−5∆k
j ·
[
1− exp

(
− 1

M

(
1

4
− c2

3c1

))]−1

≤ cMn−5∆k
j

where c is a constant depending only on c1, c2 when 3c1 > 4c2.
The case where m < n(xj −∆j) can be handled using similar arguments. As a result, as long

as c1 > 2c2, we have

|E(Z̃i − Zi)| ≤
cM

n5
·
(

6c1j lnn

n

)k
. (32)

Note that EZi = 0 by (5), and |Z̃i| ≤ Mi ≤
(

9c1j lnn
n

)k
by (31), Hoeffding’s inequality (cf.

Lemma 28) with (32) yields

P

∣∣∣∣∣∣
∑
i∈Aj

Zi

∣∣∣∣∣∣ >√Sj lnn ·
(
c3j lnn

n

)k
≤ P

∣∣∣∣∣∣
∑
i∈Aj

(Z̃i − EZ̃i)

∣∣∣∣∣∣ >√Sj lnn ·
(
c3j lnn

n

)k
− 24MSj

n5
·
(

6c1j lnn

n

)k

≤ 2 exp

−
(√

Sj lnn ·
(
c3j lnn
n

)k
− cMSj

n5 ·
(

6c1j lnn
n

)k)2

2Sj

(
10c1j lnn

n

)2k

 ≤ 2n−4

as long as c3 > 30c1, as desired.
Proof [Proof of Lemma 30] The Charlier polynomial ck(u, a) for u ∈ N is defined as

ck(u, a) ,
k∑
l=0

(−1)k−l
(
k

l

)
(u)l
al
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where (u)l , u(u − 1) · · · (u − l + 1) is the falling factorial. For the Charlier polynomial, the
following identities hold Peccati and Taqqu (2011), (Jiao et al., 2017, Eqn. (574)):

∞∑
k=0

ck(u, a)

k!
tk = e−t

(
1 +

t

a

)u
,

k∑
l=0

(
k

l

)
(−b)k−lalcl(u, a) = (a+ b)kck(u, a+ b).

The function gk,x(p) is related to the Charlier polynomial via the identity gk,x(p) = xkck(np, nx),
and thus the previous identities translate into the following:

∞∑
k=0

gk,p(p)

k!
tk = e−pt(1 +

t

n
)np, (33)

gk,x(p) =
k∑
l=0

(
k

l

)
(p− x)k−lgl,p(p). (34)

We can rewrite (33) into the following form:
∞∑
k=0

gk,p(p)

k!
tk =

[
e−

t
n

(
1 +

t

n

)]np
=

[( ∞∑
l=0

1

l!
(− t
n

)l

)(
1 +

t

n

)]np

=

(
1−

∞∑
l=2

l − 1

l!
(− t
n

)l

)np
.

Comparing the coefficients of tk at both sides yields

|gk,p(p)| ≤
k!

nk
·
∑

1≤r≤k/2

(
np

r

) ∑
∑r
i=1 li=k,li≥2

r∏
i=1

li − 1

li!

≤ k!

nk
·
∑

1≤r≤k/2

(
np

r

) ∑
∑r
i=1 li=k,li≥2

1

=
k!

nk
·
∑

1≤r≤k/2

(
np

r

)(
k − r − 1

r − 1

)

≤ k!

nk
·
∑

1≤r≤k/2

(
np

r

)
2k−r−1.

We distinguish into two cases: if np ≥ k, we have
(
np
r

)
≤
( np
k/2

)
, and thus

|gk,p(p)| ≤
k!

nk
·
(
np

k/2

)
2k ≤

(
4pk

n

) k
2

.

If np < k, we use the inequality
(
np
r

)
≤ 2np ≤ 2k to upper bound |gk,p(p)| as

|gk,p(p)| ≤
k!

nk
· 22k =

(
4k

n

)k
.
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Combining these two cases, and using the assumption on ∆ and (34), we conclude that

|gk,x(p)| ≤
k∑
l=0

(
k

l

)
∆k−l ·∆l = (2∆)k

as desired.

D.6. Proof of Lemma 13

By Corollary 19, the conditions of Lemma 20 are satisfied with probability at least 1 − Sn−5 −
2Mn−4 ≥ 1− 3Sn−4. Let µP,j and µj be given in (7) and (2), (3) respectively, we have

|F̂ − F (P )| ≤
M∑
j=1

∣∣∣∣∫
R
f(x)(µj(dx)− µP,j(dx))

∣∣∣∣ .
By (9), for any degree-K polynomial Pj(x) =

∑K
k=0 ak,jx

k on Ĩj , we further have

|F̂ − F (P )| ≤
M∑
j=1

(∫
R
|f(x)− Pj(x)|(µj(dx) + µP,j(dx)) +

K∑
k=1

|ak,j | · 2
√
Sj lnn

(
c3j lnn

n

)k)
.

By assumption, |Pj(x)− f(xj)| ≤ ‖f −P‖∞,Ĩj + |f(x)− f(xj)| ≤ 2Mj for any j, by Lemma 27
we have

|ak,j | ≤ 26K+3Mj

(
c1j lnn

5n

)−k
, k ≥ 1.

As a result, the second term can be upper bounded as

K∑
k=1

|ak,j | · 2
√
Sj lnn

(
c3 lnn

n

)k
≤

K∑
k=1

26K+3Mj

(
c1j lnn

5n

)−k
· 2
√
Sj lnn

(
c3j lnn

n

)k
= 16c2n

c2(6 ln 2+ln(5c3/c1))(lnn)
3
2 ·Mj

√
Sj . nε ·Mj

√
Sj

as long as c2(6 ln 2 + ln(5c3/c1)) < ε.
For the corollary, note that Lemma 18 ensures that µ1(R) ≤ S1 with high probability. Moreover,

the condition f(0) = 0 ensures that

inf
P1∈PolyK

‖f − P1‖∞,Ĩ1 ≤ 2 · inf
P1∈PolyK ,P1(0)=0

‖f − P1‖∞,Ĩ1 .

The proof is complete.
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D.7. Proof of Theorem 15

We first consider the entropy functional H(P ) with f(x) = −x lnx. By Jiao et al. (2015),

inf
P1∈PolyK

‖f − P1‖∞,Ĩ1 �
1

n lnn
.

For j ≥ 2, (Ditzian and Totik, 1987, Theorem 7.2.1) shows that

inf
Pj∈PolyK

‖f − Pj‖∞,Ĩj ≤
|Ĩj |2

2K2
sup
x∈Ĩj
|f ′′(x)| . j2

n
sup
x∈Ĩj
|f ′′(x)|.

For f(x) = −x lnx, the previous inequality gives

inf
Pj∈PolyK

‖f − Pj‖∞,Ĩj .
1

n lnn
, ∀j ≥ 2.

As a result,

M∑
j=1

Sj · inf
Pj∈PolyK

‖f − Pj‖∞,Ĩj .
1

n lnn

M∑
j=1

Sj =
S

n lnn
. (35)

For the second term in Lemma 13, we have Mj .
j(lnn)2

n . Hence, by (20),

M∑
j=1

nεMj

√
Sj .

M∑
j=1

j
√
Sj

n1−ε . nε

(√
S

n
∧ n−

1
3

)
. (36)

The desired result forH(P ) now follows from (35), (36) and Lemma 13. The results for Fα(P ), 0 <
α < 1 can also be obtained in a similar way.

Next we look at the support size functional S(P ) with f(x) = 1(x 6= 0). Here to apply Lemma
13, it suffices to consider j = 1 with the corresponding interval Ĩ ′1 = {0} ∪ [ 1

k ,
c1 lnn
n ]. By Wu and

Yang (2015),

inf
P1∈PolyK

‖f − P1‖∞,Ĩ′1 � exp

(
−Θ

(√
n ln k

k

))
.

In addition, M1 = 1 and Mj = 0 for any j ≥ 2, by Lemma 13 we know that

sup
P∈Dk

EP |Ŝ − S(P )| . k · n−3 + S1 · exp

(
−Θ

(√
n ln k

k

))
+ nε

√
S1

. k

[
exp

(
−Θ

(√
n ln k

k

))
+

nε√
k

]
.

The proof is complete.
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