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Abstract

We examine the theoretical properties of enforcing priors provided by generative deep neural net-
works via empirical risk minimization. In particular we consider two models, one in which the
task is to invert a generative neural network given access to its last layer and another in which the
task is to invert a generative neural network given only compressive linear observations of its last
layer. We establish that in both cases, in suitable regimes of network layer sizes and a randomness
assumption on the network weights, that the non-convex objective function given by empirical risk
minimization does not have any spurious stationary points. That is, we establish that with high
probability, at any point away from small neighborhoods around two scalar multiples of the desired
solution, there is a descent direction. Hence, there are no local minima, saddle points, or other
stationary points outside these neighborhoods. These results constitute the first theoretical guar-
antees which establish the favorable global geometry of these non-convex optimization problems,
and they bridge the gap between the empirical success of enforcing deep generative priors and a
rigorous understanding of non-linear inverse problems'.
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1. Introduction

Exploiting the structure of natural signals and images has proven to be a fruitful endeavor across
many domains of science. Breaking with the dogma of the Nyquist sampling theorem, which stems
from worst-case analysis, Candes et al. (2006) and Donoho (2006), provided a theory and practice
of compressed sensing (CS), which exploits the sparsity of natural signals to design acquisition
strategies whose sample complexity is on par with the sparsity level of the signal at hand. On
a practical level, compressed sensing has lead to significant reduction in the sample complexity
of signal acquisition of natural images, for instance speeding up MRI imaging by a factor of 10.
Beyond MRI, compressed sensing has impacted many if not all imaging sciences, by providing
a general tool to exploit the parsimony of natural signals to improve acquisition speed, increase
SNR and reduce sample complexity. CS has also lead to the development of the fields of matrix
completion (Candes and Recht, 2009), phase retrieval, (Candes et al., 2013b,a) and several other
subfields (Ahmed et al., 2014) which analogously exploit the sparsity of singular values of low rank
matrices as well as sparsity in some basis.
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Meanwhile, the advent of practical deep learning has significantly improved meaningful com-
pression of images and acoustic signals. For instance, deep learning techniques are now the state
of the art across most of computer vision, and have taken the field far beyond where it stood just
a few years prior. The success of deep learning ostensibly stems from its ability to exploit the hi-
erarchical nature of images and other signals. There are many techniques and add-on architectural
choices associated with deep learning, but many of them are non-essential from a theoretical and,
to an extent, practical perspective, with simple convolutional deep nets with Rectified Linear Units
(ReLLUs) achieving close to the state of the art performance on many tasks (Springenberg et al.,
2014). The class of functions represented by such deep networks is readily interpretable as hierar-
chical compression schemes with exponentially many linear filters, each being a linear combination
of filters in earlier layers. Constructing such compression schemes by hand would be quite tedious
if not impossible, and the biggest surprise of deep learning is that simple stochastic gradient descent
(SGD) allows one to efficiently traverse this class of functions subject to highly non-convex learning
objectives. While this latter property has been empirically established in an impressive number of
applications, it has so far eluded a completely satisfactory theoretical explanation.

Optimizing over the weights of a neural network or inverting a neural network may both be
interpreted as inverse problems (Mallat, 2012). Traditionally, rigorous understanding of inverse
problems has been limited to the simpler setting in which the optimization objective is convex.
More recently, there has been progress in understanding non-convex optimization objectives for
inverse problems, in albeit analytically simpler situations than those involving multilayer neural
networks. For instance, Sun et al. (2016) and Bandeira et al. (2016) provide a global analysis of non-
convex objectives for phase retrieval and community detection, respectively, ruling out adversarial
geometries in these scenarios for the purposes of optimization.

Very recently, deep neural networks have been exploited to construct highly effective natural im-
age priors, by training generative adversarial networks to find a Nash equilibrium of a non-convex
game (Goodfellow et al., 2014). The resulting image priors have proven useful in inverting hidden
layers of lossy neural networks (Nguyen et al., 2017) and performing super-resolution (Johnson
et al., 2016). Naturally, one may ponder whether these generative priors may be leveraged to im-
prove compressive sensing. Indeed, while natural images are sparse in the wavelet basis, a random
sparse linear combination of wavelets is far less structured than say a real-world scene or a bi-
ological structure, illustrating that a generic sparsity prior is nowhere near tight. The generative
priors provided by GANs have already been leveraged to improve compressed sensing in particular
domains (Bora et al., 2017). Remarkably, empirical results (Bora et al., 2017) dictate that given
a dataset of images from a particular class, one can perform compressed sensing with 10X fewer
measurements than what the sparsity prior alone would permit in traditional CS. As GANs and other
neural network-based priors improve in modeling more diverse datasets of images, many scenarios
in compressed sensing will benefit analogously. Moreover, using generative priors to improve sig-
nal recovery in otherwise underdetermined settings is not limited to linear inverse problems, and in
principle these benefits should carry over to any inverse problem in imaging science.

In this paper we present the first global analysis of empirical risk minimization for enforcing
generative multilayer neural network priors. In particular we show that under suitable randomness
assumptions on the weights of a neural network and successively expansive hidden layer sizes,
the empirical risk objective for recovering a latent code in R* from m linear observations of the
last layer of a generative network, where m is proportional to k up to log factors, has no spurious
local minima, in that there is a descent direction everywhere except possibly small neighborhoods
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around two scalar multiples of the desired solution. Our descent direction analysis is constructive
and relies on novel concentration bounds of certain random matrices, uncovering some interesting
geometrical properties of the landscapes of empirical risk objective functions for random ReLU’d
generative multilayer networks. The tools developed in this paper may be of independent interest,
and may in particular lead to global non-asymptotic guarantees regarding convergence of SGD for
training deep neural networks.

1.1. Related theoretical work

There has been much recent progress in analysis of non-convex formulations for inverse problems,
albeit in analytically simpler situations than those involving multilayer neural networks. For in-
stance, the Sun et al. (2016) and Bandeira et al. (2016) provide a global analysis of non-convex
objectives for phase retrieval and community detection, respectively, ruling out adversarial geome-
tries in these scenarios for the purposes of optimization. Additionally, rigorous recovery guarantees
for nonconvex formulations exist for phase retrieval (Candes et al., 2015; Chen and Candes, 2015),
blind deconvolution (Li et al., 2016; Ma et al., 2017; Huang and Hand, 2017), robust subspace
recovery (Maunu et al., 2017), discrete joint alignment (Chen and Candes, 2016), and more.

In related work, the authors of Bora et al. (2017) also study inverting compressive linear ob-
servations under generative priors, by proving a restricted eigenvalue condition on the range of the
generative neural network. However, they only provide a local guarantee by showing the global
minimzier of empirical risk is close to the desired solution. The work does not establish why the
global minimum of the nonconvex problem can be reached at all. In addition, Arora et al. (2015)
studied inverting neural networks given access to the last layer using an analytical formula that
approximates the inverse mapping of a neural network. The results of Arora et al. (2015) are in
a setting where the neural net is not generative, and their procedure is at only approximate, and,
since it requires observation of the last layer, it is not readily extendable to the compressive linear
observation setting. Meanwhile, the optimization problem we study can yield exact recovery, which
we observe empirically via gradient descent. Most importantly, in contrast to Bora et al. (2017) and
Arora et al. (2015), we provide a global analysis of the non-convex empirical risk objective function
and constructively exhibit a descent direction at every point outside a neighborhood of the desired
solution and a negative scalar multiple of it. Our guarantees are non-asymptotic, and to the best of
our knowledge the first of their kind.

1.2. Main Results

We consider the inverse problem of recovering a vector yg € R” from m « n linear measurements.
To resolve the inherent ambiguity from undersampling, we assume, as a prior, that the vector belongs
to the range of a d-layer generative neural network G : R¥ — R™, with & < n. To recover
the vector 9 = G(x0), we attempt to find the latent code o € R¥ corresponding to it. We
consider a generative network modeled by G(z) = relu(Wy . ..relu(Warelu(Wizy))...), where
relu(z) = max(x,0) applies entrywise, W; € R™*™~1 n,; is the number of neurons in the ith
layer, and k = ng < nj < --- < ng = n. We consider linear measurements of G(x() given by the
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sampling matrix A € R”*" and consider £k < m « n. The problem at hand is:

Let: x9eRF, AeR™" W, e R% "1 fori=1...d,
G(z) = relu(Wy. .. relu(Wy relu(Wizg)) . . .),

yo = G(20),
Given: Wy ... Wy, A, and observations Ay,

Find: xg.

This problem can be viewed in two ways: (1) as above, given compressive measurements of a vector
with the prior information that it belongs to the output of a generative neural network, find that
vector; or (2), given compressive observations of the output of a generative neural network, find the
latent code corresponding to the network’s output by inverting the neural network and compression
simultaneously.

As a way to solve the above problem, we consider minimizing the empirical risk objective

1 2
f@) = 5| AG() — Ayo . ()

As this objective is nonconvex, there is no a priori guarantee of efficiently finding the global mini-
mum (Murty and Kabadi, 1987). Approaches such as gradient descent could in principle get stuck
in local minima, instead of finding the desired global minimizer x.

In this paper, we consider a fully-connected generative network G : R¥ — R™ with Gaussian
weights and no bias term, along with a Gaussian sampling matrix A € R™*"”. We show that
under appropriate conditions and with high probability, f has a strict descent direction everywhere
outside two small neighborhoods of zy and a negative multiple of 5. We assume that the network is
sufficiently expansive at each layer, n; = 2(n;—1 log n;_1), and that there are a sufficient number of
measurements, m = Q(kdlog(ny ---ng)). Let D, f(x) be the unnormalized one-sided directional
derivative of f at z in the direction v: D, f(x) = lim;_ g+ w
follows:

. Our main result is as

Theorem 1 Fix ¢ > 0 such that K1d®¢'/4 < 1, and let d > 2. Assume n; = cn;—1logn;_1
foralli = 1...d and m > cdklog Hg;lni. Assume that for each i, the entires of W; are i.i.d.
N(0,1/n;), and the entries of A are i.i.d. N(0,1/m) and independent from {W;}. Then, on an
event of probability at least 1 — fo:l cnje” i1 — ce” 7™ we have the following. For all nonzero
x and xq, there exists vy 4, € R such that the one-sided directional derivatives of f satisfy

Doy, () <0, Va ¢ Blao, Kad®e|a]l2) U B(=pazo, Kad"*e/*|o]2) {0},
Duf(0) <0, Yu#0,

1

where pq is a positive number that converges to 1 as d — co. Here, c and v~ are constants that

depend polynomially on €', and &, K1, Ko are universal constants.

In particular, under the assumptions of the theorem, with high probability there are no local optima
or critical points outside of the two specified neighborhoods. Also, note that while the weights of any
layer of the network are assumed to be i.i.d. Gaussian, there is no assumption on the independence
between W; and W; for ¢ # j.
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This theorem will be proven by showing the sufficiency of two deterministic conditions on G
and A, and then by showing that Gaussian GG and A of appropriate sizes satisfy these conditions
with the appropriate probability. The first deterministic condition is on the spatial arrangement of
the network weights within each layer. We say that the matrix W e R™** satisfies the Weight
Distribution Condition with constant € if for all nonzero x,y € R¥,

™ — O sin 0
1
2w L 2w

n
t .
HZ Tw;-2>01w;y>0 - wiw; — Q:v,yH < €, with Q:c,y =
i=1

Mz, ()

where w; € R¥ is the ith row of W; Mo,y € RE*k is the matrix” such that & — ¢, § — &, and
z + 0 for all z € span({z,y})*; & = x/|z|2 and § = y/||ly|2; 6o = Z(x,y); and 1g is the
indicator function on S. The norm in the left hand side of (2) is the spectral norm. Note that an
elementary calculation® gives that Q. = E[>" | Lu;z>01lw;y>0 - wiw!] for w; ~ N(0, I/n).
As the rows w; correspond to the neural network weights of the ¢th neuron in a layer given by W,
the WDC provides a deterministic property under which the set of neuron weights within the layer
given by W are distributed approximately like a Gaussian. The WDC could also be interpreted as a
deterministic property under which the neuron weights are distributed approximately like a uniform
random variable on a sphere of a particular radius. Note that if x = y, Q. , is an isometry up to a
factor of 1/2.

The second deterministic condition is that the compression matrix acts like an isometry on
pairs of differences of vectors in the range of G : R¥ — R™. We say that the compression matrix
A e R™*™ gatisfies the Range Restricted Isometry Condition (RRIC) with respect to G with constant
e if for all z1, x2, x3, 24 € R¥,

’<A(G(:U1) — G(22)), A(Glas) — G(a:4))> - <G(m1) — G(x2), G(x3) — G(x4)>‘
< €|G(z1) — G(z2) 2| G(z3) — G(za) 2. (3)

‘We can now state our main deterministic result.

Theorem 2 Fix ¢ > 0 such that K1d®¢'/* < 1, and let d > 2. Suppose that G is such that W;
has the WDC with constant € for all i = 1...d. Suppose A satisfies the RRIC with respect to G
with constant €. Then, for all nonzero x and x, there exists vy z, € R” such that the one-sided
directional derivatives of f satisfy

D_y,, f(z) <0, V¢ Bxo, Kod3e'*|ao]2) U B(—pazo, Kad"3e4||z02) U {0},
Dyf(O) <0, Yy # 0,

where pq is a positive number that converges to 1 as d — o0, and K1 and Ko are universal con-
stants.

2. A formula for Mz, is as follows. If g = Z(&,9) € (0,7) and R is a rotation matrix such that & and § map

cos o sin Og 0
to e; and cosfp - e1 + sinfp - e respectively, then Mz.y = R' | sinfp — cos By 0 | R, where Ox_2 is a
0 0 Or—2

k — 2 x k — 2 matrix of zeros. If §y = 0 or 7, then M;,; = 24° or —£2", respectively.
3. To do this calculation, take x = e; and y = cosfg - e1 + sin 6o - e2 without loss of generality. Then each entry of
the matrix can be determined analytically by an integral that factors in polar coordinates.
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In the case that A = I,,, the RRIC is trivially satisfied, and we get the following corollary about
inverting multilayer neural networks.

Corollary 3 (Approximate Invertibility of Multilayer Neural Networks) If G is a d-layer neu-
ral network such that W; satisfies the WDC with constant € for all i = 1...d, then the function
f(z) = |G(z) — G(wo)l||2 has no stationary points outside of a neighborhood around x( and

—Pdxo-

In the case of a Gaussian network with Gaussian measurements, the WDC and RRIC are satis-
fied with high probability if the network is sufficiently expansive and there are a sufficient number
of measurements.

Proposition4 Fix 0 < ¢ < 1. Assume n; = cn;_1logn;,_1 forallt = 1...d and m >
cdk log Hldzlni. Assume the entires of W; are i.i.d. N(0,1/n;), and the entries of A are i.i.d.
N(0,1/m). Then, W; satisfies the WDC with constant € for all i and A satisfies the RRIC with
respect to G with constant € with probability at least 1 — Z?Zl cnje "1 — ¢e= Y™ Here, c and
~v~ 1 are constants that depend polynomially on €', and ¢ is a universal constant.

As stated after Theorem 1, no assumption is made on the independence between W; and W; for
i # j. While Proposition 4 is stated for A € R™*™ with 1.i.d. Gaussian entries, it also applies in the
case of any random matrix that satisfies the following concentration of measure condition:

P(||Az]3 — |z]3] = ¢|x]3) < 2e ™00,

for any fixed = € R™, where c¢y(¢€) is a positive constant depending only on €. In particular, Proposi-
tion 4 and hence Theorem 1 extends to the case of where the entries of A are independent Bernoulli
random variables (and the entries of W; are Gaussian). See Baraniuk et al. (2008) for more.
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