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Cutting plane methods can be extended into nonconvex optimization1
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Abstract
We show that it is possible to obtain an O(ε−4/3) runtime — including computational cost — for
finding ε-stationary points of nonconvex functions using cutting plane methods. This improves on
the best known epsilon dependence achieved by cubic regularized Newton of O(ε−3/2) as proved
by Nesterov and Polyak (2006). Our techniques utilize the convex until proven guilty principle
proposed by Carmon, Duchi, Hinder, and Sidford (2017).
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We consider the problem of finding an ε-stationary point x of the function f : Rd → R starting
from some point x(0), i.e.,

‖∇f(x)‖ ≤ ε

under the assumptions that f(x(0)) − infz f(z) is bounded below and the function has Lipschitz
first and third derivatives. It is well-known that gradient descent achieves an ε−2 runtime when
the first derivatives are Lipschitz. This was improved to ε−3/2 by Nesterov and Polyak (2006)
using cubic regularized Newton when the second derivatives are Lipschitz. However, each iteration
of cubic regularized Newton is more expensive — it requires Hessian evaluations and solving a
linear system. This observation has inspired a line of work developing gradient based methods that
improve on the worst-case runtime of gradient descent (Agarwal, Allen-Zhu, Bullins, Hazan, and
Ma, 2017; Carmon, Duchi, Hinder, and Sidford, 2016, 2017a; Jin, Netrapalli, and Jordan, 2017;
Royer and Wright, 2017). These methods have cheap ‘gradient’ iteration costs and runtime bounds
worse than cubic regularization but better than gradient descent. If low accuracy is desired in high
dimensions these gradient based methods are preferable.

What about the regime where the dimension is low but we want to obtain high accuracy? In this
case it might be acceptable to have iteration costs that scale polynomially with the dimension if that
enables an algorithm with significantly less iterations. Under the assumption that the first and third
derivatives to be Lipschitz, our main result is an algorithm that takes

Õ((T1 + dω)dε−4/3)

time to find an ε-stationary point, where Tp which refers to cost of one evaluating the function and
its first p derivatives and O(dω) denotes the runtime for a linear system solve. To prove our result
we utilize the ‘convex until proven guilty’ principle proposed by Carmon et al. (2017a) to adapt
cutting plane methods to find stationary points of nonconvex functions. Cutting plane methods are
traditionally used to optimize general convex functions in low dimensions to high accuracy.
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Our result can be contrasted with the results of Birgin, Gardenghi, Martı́nez, Santos, and Toint
(2017) who gives a runtime of O((T3+?)ε−(p+1)/p) where the ? denotes the cost of finding a sta-
tionary point of a pth order regularized problem. Letting p = 1 gives gradient descent and p = 2
cubic regularized Newton. However, for p > 2 all known methods for solving pth order have ε-
dependencies that cause the computational runtime to scale at best with O(ε−3/2) corresponding to
cubic regularized Newton. Therefore our major contribution is to show it is possible to obtain an
O(ε−4/3) runtime — including computational cost — for finding ε-stationary points of nonconvex
functions. See Table 1 for a comparison of our results with existing results.

Lipschitz method runtime dimension-free
lower bound (Car-
mon et al., 2017b,c)

∇f gradient descent T1ε
−2 T1ε

−2

∇f,∇2f Carmon et al. (2017a) T1ε
−7/4 T1ε

−12/7

∇f,∇3f Carmon et al. (2017a) T1ε
−5/3 T1ε

−8/5

∇2f cubic reg. Nesterov and
Polyak (2006)

(T2 + dω)ε−3/2 T2ε
−3/2

∇pf pth reg. Birgin et al.
(2017).

(Tp+?)ε
− p+1

p Tpε
−(p+1)/p

∇f,∇3f This paper. Thm 1. ((T1 + dω)d+ T2)ε
−4/3

∇f,∇3f This paper. Thm 2. (T3 + d4)ε−4/3 T3ε
−4/3

Table 1: Comparison of the runtime of different algorithms for finding stationary points of non-
convex functions. The question mark is a placeholder for the time to solve a pth order
regularization problem.
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