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Abstract
A standard introduction to online learning might place Online Gradient Descent at its center and
then proceed to develop generalizations and extensions like Online Mirror Descent and second-
order methods. Here we explore the alternative approach of putting Exponential Weights (EW)
first. We show that many standard methods and their regret bounds then follow as a special case
by plugging in suitable surrogate losses and playing the EW posterior mean. For instance, we
easily recover Online Gradient Descent by using EW with a Gaussian prior on linearized losses,
and, more generally, all instances of Online Mirror Descent based on regular Bregman divergences
also correspond to EW with a prior that depends on the mirror map. Furthermore, appropriate
quadratic surrogate losses naturally give rise to Online Gradient Descent for strongly convex losses
and to Online Newton Step. We further interpret several recent adaptive methods (iProd, Squint,
and a variation of Coin Betting for experts) as a series of closely related reductions to exp-concave
surrogate losses that are then handled by Exponential Weights. Finally, a benefit of our EW inter-
pretation is that it opens up the possibility of sampling from the EW posterior distribution instead
of playing the mean. As already observed by Bubeck and Eldan, this recovers the best-known rate
in Online Bandit Linear Optimization.

1. Introduction

Exponential Weights (EW) (Vovk, 1990; Littlestone and Warmuth, 1994) is a method for keeping
track of uncertainty about the best action in sequential prediction tasks. It is most commonly con-
sidered for a finite number of actions in the prediction with expert advice setting, where each of the
actions corresponds to following the advice of one of a finite number of experts, and in this context
it is asymptotically minimax optimal (Cesa-Bianchi and Lugosi, 2006, Section 2.2). However, in
the present work we mostly consider EW on continuous action spaces in the more general setting
of Online Convex Optimization (Hazan, 2016), where we show that surprisingly many standard
methods turn out to be special cases of EW.

EW keeps track of a probability distribution over actions that is updated in each round of the
prediction task by multiplying the probability of each action by a factor that is exponentially de-
creasing in the action’s error or loss in that round, and renormalizing. This type of update is quite
flexible: by assigning appropriate surrogate losses to the actions, it covers any kind of multiplicative
probability updates, including, for instance, those of the Prod algorithm (Cesa-Bianchi et al., 2007).
For best performance, losses often need to be scaled by a positive parameter called the learning rate,
and the algorithm may also be biased towards particular actions by the choice of its initial distri-
bution, which is called the prior. For continuous sets of actions, efficient implementations of EW

c© 2018 D. van der Hoeven, T. van Erven & W. Kotłowski.



THE MANY FACES OF EXPONENTIAL WEIGHTS

are often restricted to conjugate priors for which the EW distribution can be analytically computed,
but sampling approximations based on random walks can also provide appealing trade-offs between
computational complexity and prediction accuracy, even for a single random walk step per round
(Narayanan and Rakhlin, 2017; Kalai and Vempala, 2002).

The usual presentation of Online Convex Optimization would introduce EW as a special case
of Mirror Descent (MD) or Follow-the-Regularized-Leader (FTRL) with the Kullback-Leibler di-
vergence as the regularizer. However, here we turn this view on its head and show that all instances
of MD based on regular Bregman divergences (Banerjee et al., 2005) in fact correspond to EW on
a continuous set of actions (Section 3.3). In particular, Gradient Descent (GD) comes from using a
Gaussian prior on linearized losses (Section 3.2), which is striking because GD has been contrasted
with the Exponentiated Gradient Plus-Minus algorithm (Kivinen and Warmuth, 1997) that is readily
seen to be an instance of EW (Section 3.1). In addition, the unnormalized relative entropy regular-
izer (Helmbold and Warmuth, 2009), which is normally considered a generalization of EW, turns
out to be a special case of EW as well for a multivariate Poisson prior (Section 3.3). Furthermore, in
Section 4 we show that running EW on suitable quadratic approximations of the losses recovers Gra-
dient Descent for strongly convex losses (Hazan et al., 2007) and, as already observed by Van Erven
and Koolen (2016), Online Newton Step (Hazan et al., 2007). The Vovk-Azoury-Warmuth fore-
caster would also be an example of running EW on quadratic losses, but we refer to (Vovk, 2001)
for its analysis, which requires a generalized proof technique (see also the discussion by Orabona
et al. (2015)). We do consider the recent adaptive iProd, Squint and Coin Betting methods of Koolen
and Van Erven (2015); Orabona and Pál (2016), which learn the optimal learning rate for prediction
with expert advice, and show that these may also be viewed as running EW after a reduction of the
original prediction task to various closely related surrogate tasks in which the learning rate is just
one of the parameters that does not need to be treated specially (Section 5). Finally, in the context
of Bandit Linear Optimization, the SCRiBLe method (Abernethy et al., 2008) may be viewed as an
approximation to EW, and an application of EW outlined by Bubeck and Eldan (2015) achieves the
best-known rate (we provide the technical details they omit in Section 6).

Related Work The diverse applications of EW on a finite number of actions range, for instance,
from boosting (Freund and Schapire, 1997) to differential privacy (Dwork and Roth, 2014) to multi-
armed bandits (Auer et al., 2002), and many algorithms in computer science can be viewed as special
cases of EW (Arora et al., 2012). EW has also been considered for continuous sets of actions, often
in the context of universal coding in information theory, where the goal is to sequentially compress a
sequence of symbols. In this case, actions parametrize a set of probability distributions and the loss
of an action is the logarithmic loss for the corresponding probability distribution on the symbol that
is being compressed (Cesa-Bianchi and Lugosi, 2006, Chapter 9). EW (with learning rate 1) then
simplifies to Bayesian probability updating. The choice of prior has received much attention in this
literature, with Jeffreys’ prior being shown to be asymptotically minimax optimal for exponential
families with parameters restricted to suitable bounded sets (Grünwald, 2007, Chapter 8). Without
parameter restrictions, Jeffreys’ prior is still minimax optimal up to constants for the Bernoulli and
multinomial models (Krichevsky and Trofimov, 1981; Xie and Barron, 2000). Several applications
to other losses are also closely related to the log loss: Online Ridge Regression corresponds to EW
on the squared loss, which matches the log loss for Gaussian distributions; and Cover’s method for
portfolio selection (Cover, 1991), which is EW on Cover’s loss, may be interpreted as learning a
mixture model under the log loss (Orseau et al., 2017). In general, continuous EW is not restricted
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Input: a convex set of distributions P over w, a prior P1 ∈ P and learning rates η1 ≥ η2 ≥ · · · ≥ ηT > 0
Lazy Exponential Weights Greedy Exponential Weights

P̃t+1 = arg min
P

E
P

[∑t
s=1 fs(w)

]
+ 1

ηt
KL(P‖P1)

Pt+1 = arg min
P∈P

KL(P‖P̃t+1)

P̃t+1 = arg min
P

E
P

[ft(w)] + 1
ηt

KL(P‖Pt)

Pt+1 = arg min
P∈P

KL(P‖P̃t+1)

Figure 1: The lazy and greedy versions of Exponential Weights

to the log loss, however, and has been considered e.g. for general convex losses (Dick et al., 2014)
or as a computationally inefficient gold standard for exp-concave losses (Hazan et al., 2007).

2. Exponential Weights

In Online Convex Optimization (OCO) (Shalev-Shwartz, 2011; Hazan, 2016) a learner repeat-
edly chooses actions wt from a convex set W ⊆ Rd during rounds t = 1, . . . , T , and suffers
losses ft(wt), where ft :W → R is a convex function. The learner’s goal is to achieve small regret
RT (u) =

∑T
t=1 ft(wt) −

∑T
t=1 ft(u) with respect to any comparator action u ∈ W , which mea-

sures the difference between the cumulative loss of the learner and the cumulative loss it could have
achieved by playing the oracle action u from the start. We will assume the domain of the losses ft is
extended fromW to Rd with convexity of ft being preserved. This comes without loss of generality
as one can always set ft(w) = ∞ outside W , but we will use more natural and straightforward
extensions throughout the paper (e.g. when the ft are linear or quadratic functions).

The central topic of this work is the Exponential Weights (EW) algorithm, which keeps track
of uncertainty over actions expressed by a distribution Pt and comes in the two flavors shown in
Figure 1 (our naming follows Zinkevich (2003)), where we let KL(P‖Q) = EP

[
ln dP

dQ

]
denote

the Kullback-Leibler (KL) divergence between distributions P and Q. The algorithm gets its name
from the distributions P̃t, whose densities have the following exponential forms:

dP̃t+1(w) =
e−ηt

∑t
s=1 fs(w) dP1(w)∫

e−ηt
∑t
s=1 fs(w) dP1(w)

(lazy EW) (1)

dP̃t+1(w) =
e−ηtft(w) dPt(w)∫
e−ηtft(w) dPt(w)

(greedy EW). (2)

In the case that P contains all possible distributions over Rd (for which the projection step becomes
void) and the learning rates ηt are constant η1 = · · · = ηT = η, both versions of EW are equivalent.
In general they differ, and enjoy the following regret bounds with respect to a potentially randomized
comparator drawn from a comparator distribution Q, which follow from a standard MD analysis
(Hazan, 2016) and a reformulation of the standard FTRL analysis that works for distributions Pt
on continuous spaces, which cannot be expressed as the finite-dimensional vectors that are usually
assumed (the proof details are in Appendix A):

Lemma 1 (EW Regret) Suppose that η1 ≥ η2 ≥ . . . ≥ ηT > 0, and that the minima that define P̃t
and Pt are uniquely achieved. LetQ ∈ P be any comparator distribution such that KL(Q‖P̃t) <∞
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for all t, let {wt ∈ W}Tt=1 be the actions of any learner, and define η0
def
= η1. Then EW satisfies

E
u∼Q

[R(u)] ≤ 1

ηT
KL(Q‖P1) +

T∑
t=1

{
ft(wt) +

1

ηt−1
ln E
Pt(w)

[
e−ηt−1ft(w)

]
︸ ︷︷ ︸

“mixability gap”

}
(lazy EW) (3)

E
u∼Q

[R(u)] ≤ 1

η1
KL(Q‖P1) +

(
1

ηT
− 1

η1

)
max

t=2,...,T
KL(Q‖Pt)

+

T∑
t=1

{
ft(wt) +

1

ηt
ln E
Pt(w)

[
e−ηtft(w)

]
︸ ︷︷ ︸

“mixability gap”

}
(greedy EW). (4)

While the predictions wt in Lemma 1 are arbitrary actions fromW , one always chooses wt to be
some function of Pt. A general mapping from Pt to wt is called a substitution function (Vovk,
2001) and is usually designed to give the best bound on the mixability gap in trial t. Throughout the
paper, we will use the mean wt = EPt [w] as our substitution function, which is a typical choice,
although alternatives may be better in specific cases (Vovk, 2001). To ensure that wt ∈ W , we will
also generally assume that P = {P : EP [w] ∈ W}, which is convex.

Bounding the mixability gap is a crucial part of the regret analysis of EW (Vovk, 2001; De Rooij
et al., 2014). In the special case that the losses are α-exp-concave for α > 0 (i.e. if e−αf(w) is
concave), the mixability gap for ηt ≤ α is at most 0. This happens in the following example.

Example 1 (The Krichevsky-Trofimov Estimator) Let W = [0, 1] and let the loss function be
the log loss: ft(w) = −xt ln(w)− (1− xt) ln(1−w), where xt ∈ {0, 1}. A standard algorithm in
this case is the Krichevsky-Trofimov forecaster wt = (

∑t−1
s=1 xs + 1

2)/t (Cesa-Bianchi and Lugosi,
2006, Chapter 9), which is is well known to be the mean wt = EPt [w] of non-projected EW with a
β(1

2 ,
1
2) prior and a fixed learning rate ηt = 1. For the log loss, the mixability gap is 0. To bound

the remaining terms in Lemma 1, we choose Q = PT+1, which gives:

T∑
t=1

ft(wt) ≤ E
PT+1(w)

[
T∑
t=1

ft(w)

]
+ KL(PT+1‖P1) = − ln E

P1(w)
[w

∑T
t=1 xt(1− w)T−

∑T
t=1 xt ]

≤ − ln max
w

{
w

∑T
t=1 xt(1− w)T−

∑T
t=1 xt

}
+ ln(2

√
T ) = min

w

T∑
t=1

ft(w) + ln(2
√
T ),

where the last inequality holds by (Cesa-Bianchi and Lugosi, 2006, Lemma 9.3).

For most regret bounds derived from Lemma 1 the structure of the proof remains the same: we need
both a bound on the mixability gap, and a choice forQ for which the expected loss underQ together
with KL(Q‖P1) can be related to the loss of a deterministic comparator.

3. Linearized Losses

A standard approach in OCO is to lower-bound the convex losses ft by their tangent at wt, which
leads to the following upper bound on the regret in terms of the linearized surrogate losses `t(w) =
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〈w, gt〉, where gt = ∇ft(wt) = (gt,1, . . . , gt,d)
ᵀ is the gradient at wt:

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

(
`t(wt)− `t(u)

)
. (5)

3.1. Exponentiated Gradient Plus-Minus as Exponential Weights

The Exponentiated Gradient Plus-Minus (EG±) algorithm (Kivinen and Warmuth, 1997) starts with
weight vectors w−t = w+

t = (1/d, . . . , 1/d) ∈ Rd, which are updated according to

w+
t+1,i =

w+
t,ie
−ηt〈ei,gt〉∑d

j=1(w+
t,je
−ηt〈ej ,gt〉 + w−t,je

ηt〈ej ,gt〉)
, w−t+1,i =

w−t,ie
ηt〈ei,gt〉∑d

j=1(w+
t,je
−ηt〈ejgt〉 + w−t,je

ηt〈ej ,gt〉)
,

and predicts by wt ∈ {w : ‖w‖1 ≤ 1} with components wt,i = w+
t,i − w

−
t,i.

This is readily seen to be the mean wt = EPt [w] of EW (without projections) on the linearized
losses (5) with a discrete uniform prior P1 on the standard basis vectors e1, . . . , ed, which form the
corners of the probability simplex, and their negations −e1, . . . ,−ed. The regular Exponentiated
Gradient algorithm is recovered by initializingw−1 = (0, . . . , 0), which corresponds to placing prior
mass only on e1, . . . , ed. Kivinen and Warmuth (1997) also extend the algorithm to scale up the
domain by a factor M > 0, which corresponds to a discrete prior on Me1, . . . ,Med for EG and
also on−Me1, . . . ,−Med for EG±. Hence we may analyze these methods using Lemma 1, which
leads to the following regret bound for EG± (see Appendix B):

Theorem 2 (EG± as EW) Suppose ‖gt‖∞ ≤ G for all t. Then the regret of EG± for scale factor

M > 0 and constant learning rate ηt =
√

2 ln(2d)
TM2G2 satisfies

RT (u) ≤ GM
√

2T ln(2d) for all u such that ‖u‖1 ≤M .

3.2. Gradient Descent as Exponential Weights

The prior of EG± is adapted to comparators u with small L1-norm. How do we change the prior
to favor comparators with small L2-norm? A natural and computationally efficient choice is to use
a Gaussian prior P1 = N (w1, σ

2I), where I is the identity matrix. Then it turns out that all EW
distributions Pt are Gaussian with the Gradient Descent (GD) predictions as their means:

Theorem 3 (Gradient Descent as EW) Let P = {P : EP [w] ∈ W}. Then, for Gaussian prior
P1(w) = N (w1, σ

2I), lazy and greedy EW with learning rates ηt on the linearized losses (5) yield
Gaussian distributions P̃t = N (w̃t, σ

2I) and Pt = N (wt, σ
2I) with the same covariance as the

prior. The means w̃t and wt coincide with lazy and greedy GD (Figure 2), except that the learning
rates in GD are scaled to σ2ηt by the prior variance σ2. Moreover, Lemma 1 directly implies:

RT (u) ≤ ‖u−w1‖22
2σ2ηT

+
σ2

2

T∑
t=1

ηt−1‖gt‖22 (lazy GD)

RT (u) ≤ maxt ‖u−wt‖22
2σ2ηT

+
σ2

2

T∑
t=1

ηt‖gt‖22 (greedy GD).
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Input: Convex setW and learning rates η1 ≥ η2 ≥ . . . ≥ ηT > 0
Lazy Gradient Descent Greedy Gradient Descent

w̃t+1 = w1 − ηt
∑t
s=1 gs

wt+1 = arg min
w∈W

1
2‖w − w̃t+1‖22

w̃t+1 = wt − ηtgt
wt+1 = arg min

w∈W

1
2‖w − w̃t+1‖22

Figure 2: The lazy and greedy versions of Gradient Descent

We note that in this case the parametrization of EW is redundant, because changing the prior vari-
ance σ2 has the same effect on the predictions wt and the regret bounds as scaling all ηt.
Proof P̃t = N (w̃t, σ

2I) may be verified analytically from (1) and (2). The fact that the projec-
tions Pt onto P preserve Gaussianity with the same covariance matrix is a property of projecting
a member of an exponential family onto a set of distributions defined by a convex constraint on
their means. (This follows from Lemma 11 in Appendix C or see (Van Erven and Koolen, 2016,
Lemma 9) for the Gaussian case.) The regret bounds follow by taking Q = N (u, σ2I), for which
KL(Q‖Pt) = 1

2σ2 ‖u−wt‖22, and evaluating the mixability gap in closed form.

3.3. Mirror Descent and FTRL as EW

The fact that Gradient Descent is an instance of EW raises the question of whether other instances
of MD or FTRL are special cases of EW as well. Let F ∗(w) = supθ〈w,θ〉 − F (θ) denote the
convex conjugate of F , and let BF ∗(u‖w) = F ∗(u) − F ∗(w) − ∇F ∗(w)ᵀ(u − w) denote the
corresponding Bregman divergence. Then MD and FTRL are defined in Figure 3 for Legendre
functions F (θ) on Rd (Cesa-Bianchi and Lugosi, 2006). We consider exponential families that take
the form E = {Pθ | dPθ(w) = e〈θ,w〉−F (θ)dK(w),θ ∈ Θ} for a nonnegative carrier measure K,
cumulant generating function F (θ) = ln

∫
e〈θ,w〉dK(w) and parameter space Θ = {θ | F (θ) <

∞} ⊂ Rd. These are called regular if Θ is an open set. We then start with the following relation
between MD and EW, which is proved in Appendix C:

Theorem 4 (Mirror Descent as EW) Suppose F is the cumulant generating function of a regular
exponential family E . Then the lazy and greedy versions of MD predict with the meanswt = EPt [w]
of lazy and greedy EW on the linearized losses (5) with the same ηt, prior Pθ1 for θ1 = ∇F ∗(w1)
and P = {P : EP [w] ∈ W}.

To answer our question, we therefore need to know whether, for any Legendre function F ∗, the
convex conjugate (F ∗)∗ = F corresponds to the cumulant generating function of some exponential
family, which means we need to find a corresponding carrier K. Nonconstructive existence of such
K has been studied by Banerjee et al. (2005, Theorem 6), who show that there is in fact a bijection
between regular Bregman divergences and regular exponential families, where regular Bregman
divergences based on F ∗ are defined to be those for which eF (θ) is a continuous, exponentially
convex1 function such that Θ = {θ | F (θ) <∞} is open and F is strictly convex.

There is no easy general procedure to construct the corresponding carrierK for a given Legendre
function F ∗. However, for the Gradient Descent example from Section 3.2 we see that F ∗(w) =

1
2σ2 ‖w‖22 is the convex conjugate of the cumulant generating function for K(w) = N (0, σ2I). We
also give another example:

1. Exponentially convex in the sense of Banerjee et al. (2005, Definition 7).
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Input: Legendre function F , convex setW , and learning rates η1 ≥ η2 ≥ . . . ≥ ηT > 0
FTRL / Lazy Mirror Descent Greedy Mirror Descent

w̃t+1 = arg min
w

∑t
s=1〈w, gs〉+ 1

ηt
BF∗(w‖w1)

wt+1 = arg min
w∈W

BF∗(w‖w̃t+1),

w̃t+1 = arg min
w
〈w, gt〉+ 1

ηt
BF∗(w‖wt)

wt+1 = arg min
w∈W

BF∗(w‖w̃t+1).

Figure 3: The lazy and greedy versions of Mirror Descent. Lazy MD is usually called FTRL.

Input: Convex setW and learning rate η > 0
Lazy EW Gaussian prior quadratic loss Greedy EW Gaussian prior quadratic loss

Σ−1t+1 = Σ−1t + ηMt

w̃t+1 = w̃t − ηΣt+1gt

wt+1 = arg min
w∈W

(w − w̃t+1)ᵀΣ−1t+1(w − w̃t+1)

Σ−1t+1 = Σ−1t + ηMt

w̃t+1 = wt − ηΣt+1gt

wt+1 = arg min
w∈W

(w − w̃t+1)ᵀΣ−1t+1(w − w̃t+1)

Figure 4: The means and covariances of both versions of Exponential Weights with a multivariate
normal prior and a constant learning rate η run on the quadratic surrogate loss (6)

Example 2 (Unnormalized Relative Entropy) Consider MD with regularization based on the un-
normalized relative entropy BF ∗(w‖u) =

∑d
i=1(wi ln wi

ui
− wi + ui) for w,u ∈ Rd+, which is

the Bregman divergence generated by F ∗(w) =
∑d

i=1wi(ln(wi) − 1) (Cesa-Bianchi and Lugosi,
2006). We have F (θ) =

∑d
i=1 e

θi . Interestingly, the exponential family with this cumulant generat-
ing function is the set of Poisson distributions, extended i.i.d. to d dimensions. To see this for d = 1,
note that if we start with the usual parametrization of Poisson, we have

Pλ(w) = e−λ
λw

w!
=

1

w!
e−λ+w lnλ on w ∈ {0, 1, 2, . . .},

for which the natural parameter is θ = lnλ and we see that the cumulant generating function is
F (θ) = λ = eθ. Thus, EW with the product prior P1(w) =

∏d
i=1 Pλi(wi) corresponds to MD with

unnormalized relative entropy, where we need to set (λ1, . . . , λd) = exp(θ1) = exp(∇F ∗(w1)) =
w1 to match the starting point of MD: EP1 [w] = w1. Note that in this case the EW distributions Pt
are discrete.

4. Quadratic Losses

In this section we assume that the losses ft satisfy quadratic lower bounds:

ft(w)− ft(wt) ≥ 〈w −wt, gt〉+
1

2
(w −wt)

ᵀMt(w −wt) =: `t(w), (6)

where Mt is a positive semi-definite matrix. Generalizing the results from Section 3, EW with
Gaussian prior on the surrogate loss `t yields explicitly computable Gaussian distributions Pt (see
also Van Erven and Koolen, 2016; Koolen, 2016):

Theorem 5 Let P1 = N (w1,Σ1). Both versions of the Exponential Weights algorithm, run on `t
with learning rate η and P = {P : EP [w] ∈ W}, yield a multivariate normal distribution Pt+1 =

7
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N (wt+1,Σt+1) with mean and covariance matrix given in Figure 4. Furthermore, Lemma 1 implies
that for all u ∈ Rd both versions of EW satisfy:

RT (u) ≤ 1

2η
(w1 − u)ᵀΣ−1

1 (w1 − u) +
η

2

T∑
t=1

gᵀt Σt+1gt. (7)

The proof of Theorem 5 in Appendix D.1 is a straightforward generalization of Theorem 3 for con-
stant learning rate ηt = η, which is recovered withMt = 0. Like in Theorem 3, the parametrization
by η and σ2 is redundant in that only the product ησ2 affects the predictions wt or the bound (7).

4.1. Gradient Descent: Quadratic Approximation of Strongly Convex Losses

For α-strongly convex loss functions, (6) holds with Mt = αI . The standard approach for these
loss functions is to use greedy Gradient Descent with a time-varying learning rate ηt = 1/(αt)
(Hazan et al., 2007). Interestingly, greedy GD with the closely related choice ηt = 1/( 1

ησ2 + αt)

turns out to be a special case of greedy EW with fixed learning rate η and prior P1 = N (0, σ2I).
Applying Theorem 5 results in the following corollary, proved in Appendix D.2:

Corollary 6 Suppose ‖u‖2 ≤ D and ‖gt‖2 ≤ G. Then the regret of both versions of the Expo-
nential Weights algorithm with prior N (0, σ2I) and constant learning rate η, run on the surrogate
loss (6) withMt = αI , satisfies:

RT (u) ≤ G2

2α
ln

(
1
ησ2 + αT

1
ησ2 + α

)
+

G2

2
ησ2 + 2α

+
D2

2ησ2
.

The standard learning rate and corresponding regret bound for GD (Hazan et al., 2007) correspond
to the limiting case ησ2 → ∞. Formally speaking, this case is not covered here, but for η → ∞
EW reduces to Follow-the-Leader (on the surrogate loss (6)), and taking σ2 → ∞ would lead to
EW with an improper prior, which becomes a proper EW posterior P2 after one round.

4.2. Online Newton Step: Quadratic Approximation of Exp-concave Losses

For α-exp-concave loss functions, (6) holds with Mt = βgtg
ᵀ
t , where β = 1

2 min{ 1
4GB , α}, as-

suming ‖gt‖2 ≤ G and B = maxw,u∈W ‖w − u‖2 (Hazan et al., 2007, Lemma 3). Running
Exponential Weights on `t(w) with prior N (0, σ2I) leads to the Online Newton Step algorithm
(Hazan et al., 2007) with the following regret bound, shown in Appendix D.3:

Corollary 7 Suppose ‖u‖2 ≤ D and ‖gt‖2 ≤ G. Then the regret of both versions of the Exponen-
tial Weights algorithm with priorN (0, σ2I) and learning rate η, run on the surrogate loss (6) with
Mt = βgtg

ᵀ
t , satisfies:

RT (u) ≤ d

2β
ln

(
1 +

ησ2βG2T

d

)
+

D2

2ησ2
. (8)

The results of Hazan et al. (2007) correspond to setting ησ2 = βD2, together with some simplifying
upper bounds on (8).
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5. Adaptivity by Reduction to Exponential Weights

In this section we show how several recent adaptive methods in the prediction with experts setting —
namely iProd (Koolen and Van Erven, 2015), Squint (Koolen and Van Erven, 2015) and a variation
of Coin Betting for experts (Orabona and Pál, 2016) –, whose original analyses seem unrelated at
first sight, can all be viewed as applying exponential weights after reductions of the original OCO
task to various closely related surrogate OCO tasks. The known regret bounds for these methods are
also recovered from the reductions upon plugging in regret bounds for EW in the surrogate tasks.

5.1. Reduction for iProd

The experts setting consists of linear losses ft(w) = 〈w, gt〉 over the simplex W = {w : wi ≥
0,
∑d

i=1wi = 1}, with gt,i ∈ [0, 1]. The instantaneous regret in round t with respect to expert i is
rt(i) = ft(wt)− ft(ei) and RT (i) =

∑T
t=1 rt(i) is the total regret. iProd achieves a second-order

regret bound in terms of the data-dependent quantity VT (i) =
∑T

t=1 rt(i)
2, which is much smaller

than the worst-case regret in many common cases (Koolen et al., 2016).
In the surrogate OCO task for iProd, predictions take the form of joint distributions Pt on (η, i)

for η ∈ [0, 1] and i ∈ {1, . . . , d}. These map back to predictions in the original task via

wt =
EPt [ηei]
EPt [η]

, (9)

which is like the marginal mean of Pt on experts, except that it is tilted to favor larger η. The
surrogate loss in the surrogate task is

`t(η, i) = − ln (1 + ηrt(i)) , (10)

and our aim will be to achieve small mix-regret with respect to any comparator distribution Q on
(η, i), which we define as S(Q) =

∑T
t=1− lnEPt

[
e−`t(η,i)

]
−EQ

[∑T
t=1 `t(η, i)

]
. The mix-regret

allows exponential mixing of predictions according to Pt just like for exp-concave losses, so there
is no mixability gap to pay. Exponential weights with constant learning rate 1 on the losses `t
therefore achieves S(Q) ≤ KL(Q‖P1) for any Q.2 The resulting predictions wt are those of
the iProd algorithm. As shown in Appendix E.1, they achieve the following regret bound, which
depends on the surrogate regret of EW:

Theorem 8 (iProd Reduction to EW) Restrict the domain for η to [0, 1
2 ]. Then any choice of Pt

in the surrogate OCO task defined above induces regret bounded by

E
Q

[η]

T∑
t=1

ft(wt)− E
Q

[
η

T∑
t=1

ft(ei)
]
≤ E

Q

[
η2VT (i)

]
+ S(Q) for any Q on (η, i) (11)

in the original prediction with expert advice task.
In particular, if we use EW in the surrogate OCO task with learning rate 1 and any product prior

P1 = γ × π for γ a distribution on η ∈ [0, 1
2 ] and π a distribution on i, and we take as comparator

Q = γ(η | η ∈ [η̂/2, η̂])× π̂ for any η̂ ∈ [0, 1
2 ] and distribution π̂ on i that can both depend on all

the losses, then

E
π̂

[
RT (i)

]
≤ 2η̂ E

π̂
[VT (i)] +

2

η̂

(
KL(π̂‖π)− ln γ([η̂/2, η̂])

)
. (12)

2. This follows e.g. from Lemma 1 by subtracting
∑
t ft(wt) on both sides of (3) and rearranging.

9
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Crucially, the algorithm does not need to know η̂ in advance, but (12) still holds for all η̂ simultane-
ously. To minimize (12) in η̂ we can restrict ourselves to η̂ ≥ 1/

√
T without loss of generality, so

that a prior density dγ(η)/dη ∝ 1/η on [1/
√
T , 1/2] achieves− ln γ([η̂/2, η̂]) = O(ln lnT ). After

optimizing η̂, this leads to an adaptive regret bound of

E
π̂

[
RT (i)

]
= O

(√
E
π̂

[VT (i)]
(

KL(π̂‖π) + ln lnT
))

for all π̂, (13)

which recovers the results of Koolen and Van Erven (2015) (see also (Koolen, 2015)).

5.2. Reduction for Squint

Running EW with a continuous prior on η for the iProd surrogate losses from (10) requires evalu-
ating a t-degree polynomial in η in every round, and therefore leads to O(T 2) total running time.
This may be reduced to O(T lnT ) by using a prior γ on an exponentially spaced grid of η (as in
MetaGrad (Van Erven and Koolen, 2016)), but in the experts setting even the extra lnT factor in
run time can be avoided. This is possible by moving the ‘prod bound’ that occurs in the proof of
Theorem 8, from the analysis into the algorithm by replacing the surrogate loss from (10) by the
slightly larger surrogate loss

`t(η, i) = −ηrt(i) + η2rt(i)
2, (14)

which turns iProd into Squint. Because this surrogate is quadratic in η, it becomes possible to run
EW in the resulting surrogate OCO task and evaluate the resulting integrals over η in closed form
for suitable choices of the prior on η, so that Squint has O(T ) run time (see Koolen and Van Erven
(2015) for a detailed discussion of the choice of prior). Moreover, as shown in Appendix E.2, it
satisfies exactly the same guarantees as iProd.

5.3. Reduction for Coin Betting

If we are willing to give up on second-order bounds, but still want to learn η, then there is another
way to obtain an algorithm with O(T ) run time by bounding the iProd surrogate loss, which leads
to a variant of the Coin Betting algorithm for experts of Orabona and Pál (2016). Our presentation
and analysis are very different from (Orabona and Pál, 2016), but we obtain exactly the same regret
bound for essentially the same algorithm, and we can explain some design choices that required
clever insights by Orabona and Pál (2016), as natural consequences of running EW in the surrogate
OCO task that we end up with.

The idea is to split the learning of η ∈ [0, 1] and i into separate steps: for each i, we restrict
Pt(η | i) to be a point mass on some ηit, and we will choose ηit to achieve small regret for the
surrogate loss

`it(η) = −1 + rt(i)

2
ln

1 + η

2
− 1− rt(i)

2
ln

1− η
2
− ln 2,

which upper bounds (10) by convexity of the negative logarithm. We then plug in the choices of ηit
in (10) and learn i for the resulting surrogate losses ˜̀

t(i) = − ln(1 + ηitrt(i)). For η ∈ [0, 1] and π̂
a distribution on i, let

SiT (η) =

T∑
t=1

`it(η
i
t)−

T∑
t=1

`it(η), S̃T (π̂) =
T∑
t=1

− ln E
i∼Pt

[
e−

˜̀
t(i)
]
− E

π̂

[ T∑
t=1

˜̀
t(i)
]

10
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be the mix-regret in the two surrogate OCO tasks. (Notice that in SiT the mix-regret has collapsed
to the ordinary regret, because we are restricting ourselves to play point masses on η.) Also let
R+
T (i) = max{RT (i), 0} be the nonnegative part of the regret, and define B(x‖y) = x ln x

y +

(1 − x) ln 1−x
1−y to be the Kullback-Leibler divergence between two Bernoulli distributions, which

satisfies B(x‖y) ≥ 2(x−y)2 by Pinsker’s inequality. Then this reduction gives the following regret
bound, proved in Appendix E.3:

Theorem 9 (Coin Betting Reduction to EW) Any choice of distributions Pt on i and learning
rates ηit in the surrogate OCO task defined above induces regret bounded by

E
π̂

[
B
(

1
2 +

R+
T (i)
2T ‖

1
2

)]
≤ 1

T

(
E
π̂

[
SiT

(
R+
T (i)
T

)]
+ S̃T (π̂)

)
for any π̂ on i (15)

in the original prediction with expert advice task.
In particular, if we use EW with learning rate 1 and prior π on i for the losses ˜̀

t, and for the
losses `it we let ηit be the mean of lazy EW with learning rate 1 and with prior on η ∈ [−1,+1]
such that 1+η

2 has a beta-distribution β(a, a) with a = T
4 + 1

2 and with projections onto P = {P |
EP [η] ∈ [0, 1]}, then

E
π̂

[RT (i)] ≤
√

3T (KL(π̂‖π) + 3) for any π̂ on i. (16)

Compared to (13), (16) avoids a ln lnT term, but it has lost the benefits of the second-order factor
Eπ̂[VT (i)] ≤ T . This may be explained by its upper bound `it(η) ≥ `t(η, i), which is tight only in
the extreme case that rt(i) ∈ {−1,+1}.

The Resulting Coin Betting Algorithm EW on the losses `it with the (conjugate) β(a, a) prior
is a generalization of the Krichevsky-Trofimov estimator (see Example 1) and its mean has the
closed form Rt−1(i)

t−1+2a . Lazily projecting onto P then simply amounts to clipping at 0 (by convexity
of KL-divergence in its first argument, which implies that the constraint EP [η] ≥ 0 will be satisfied
with equality when we project from a distribution with negative mean). This means that ηit =

max
{
Rt−1(i)
t−1+2a , 0

}
. By (9) the Coin Betting algorithm from the theorem predicts with weights wt,i

obtained by normalizing the unnormalized weights w̃t,i = p̃t(i)η
i
t, where p̃t(i) is the unnormalized

probability Pt(i) of EW on the losses ˜̀
t, which recursively satisfies

p̃t(i) := π(i)
t−1∏
s=1

(1 + ηisrs(i)) = p̃t−1(i) + w̃t−1,irt−1(i) = . . . = π(i) +
t−1∑
s=1

w̃s,irs(i).

Interestingly, Orabona and Pál (2016) interpret the unnormalized EW probabilities p̃t(i) as the
Wealth for expert i that is achieved by a gambler.

The interpretation in Theorem 9 explains three design choices by Orabona and Pál (2016): first,
their choice of potential function, which naturally arises in our proof when we bound the regret
SiT (R+

T (i)/T ) for EW using Lemma 1. Second, the choice for a, which in the original analysis
comes from defining a shifted potential function, is simply specifying a prior with most mass in a
region of order 1/

√
T around η = 0. And, third, the clipping of the unnormalized weights w̃t,i to 0

whenRt−1(i) < 0, which in our presentation happens automatically because the learning rate ηit is
projected to be 0 if it would otherwise become negative. Defining a prior on positive learning rates

11
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directly would be possible in theory, but not with a conjugate prior, so the computational efficiency
of the algorithm is made possible by the projections.

There is one slight difference between the algorithm we obtain here and the original Coin Betting
algorithm of Orabona and Pál (2016): in the original method the instantaneous regrets are clipped to
max{rt(i), 0} whenRt−1(i) < 0, which our method does not do. Apparently there is some amount
of freedom in the design of this type of algorithm.

6. Online Linear Optimization with Bandit Feedback

A benefit of the EW interpretation of MD is that it opens up the possibility of sampling from the EW
posterior distribution instead of playing the mean. Here we show how this option can be leveraged to
obtain an algorithm for online linear optimization with bandit feedback (Dani et al., 2007; Abernethy
et al., 2008), which recovers the best known rateO(d

√
T lnT ). A proof of this fact has already been

outlined by Bubeck and Eldan (2015), but here we fill in the technical details.
The linear bandit setting consists of linear losses ft(w) = 〈w, gt〉 ∈ [−1,+1], but instead of

seeing the vectors gt we only observe ft(wt) for the algorithm’s choice wt. The algorithm can
randomize its choice wt, and gt is fixed before the outcome of this randomization. The goal is to
minimize the expected regret E[RT (u)], where the expectation is with respect to the algorithm’s
randomness.

We consider the EW algorithm with fixed learning rate η and uniform prior distribution P1

over W . In each round t, after observing ft(wt) = 〈wt, gt〉, the algorithm constructs a random,
unbiased estimate g̃t of the loss vector gt and uses this estimate to update Pt to Pt+1. It is easy to
verify that, for each t, Pt is a member of the exponential family with cumulant generating function
F (θ) = ln

∫
W e〈w,θ〉 dw. At trial t, the algorithm sampleswt ∼ Qt, where Qt = (1− γ)Pt + γR

is a mixture of the EW distribution Pt and a fixed “exploration” distribution R, chosen to be John’s
exploration (Bubeck et al., 2012). Using that the convex conjugate of F is a universal O(d)-self
concordant barrier onW (Bubeck and Eldan, 2015), it can be shown that, when η and γ are appro-
priately chosen, this algorithm achieves expected regret of order O(d

√
T lnT ) (see Appendix F).

It is interesting to compare with the SCRiBLe algorithm (Abernethy et al., 2012), which re-
places EW by MD. By the results of Section 3.3, this is an essentially equivalent approach, except
that SCRiBLe employs a sampling strategy based on the spectrum of the Hessian of F ∗, without
reference to the EW distribution, and achieves a regret bound that is suboptimal in d. This shows
that the EW interpretation of MD is clearly beneficial in the bandit setting.

7. Discussion

We conclude with several remarks: first, we point out that there may be computational reasons
to avoid defining the prior directly on the domain W of interest: as shown for instance in Sec-
tions 3.2 and 4, defining a Gaussian prior on all of Rd and then projecting the mean onto W can
be computationally more efficient. In the context of sampling from the EW distribution, discussed
in Section 6, this might also make sense if we project onto the alternative (smaller) set of distribu-
tions P = {P | P (W) = 1} ⊂ {P | EP [w] ∈ W} that are supported on W , which amounts to
conditioning onW . Second, there seems to be a discrepancy between the body of work for the log
loss cited in the introduction, which strongly suggests using Jeffreys’ prior, and the uniform prior
suggested in Section 6 in the context of the universal barrier.
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Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. In Advances in
Neural Information Processing Systems 29 (NIPS), pages 577–585, 2016.
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Appendix A. Proof of Lemma 1 from Section 2

In the following we make use of the generalized Pythagorean inequality for Kullback-Leibler diver-
gence (Csiszár, 1975): for Pt = arg minP∈P KL(P‖P̃t) and any Q ∈ P:

KL(Q‖P̃t) ≥ KL(Q‖Pt) + KL(Pt‖P̃t). (17)
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For greedy EW we have

1

ηt

(
KL(Q‖Pt)−KL(Q‖Pt+1)

)
≥ 1

ηt

(
KL(Q‖Pt)−KL(Q‖P̃t+1)

)
(from (17))

= E
Q

[ft(w)]− 1

ηt
ln E
Pt

[
e−ηtft(w)

]
(from (2))

in any trial t. Summing over trials gives:

T∑
t=1

E
Q

[ft(w)]− 1

ηt
ln E
Pt

[
e−ηtft(w)

]
≤

T∑
t=1

1

ηt

(
KL(Q‖Pt)−KL(Q‖Pt+1)

)
=

1

η1
KL(Q‖P1)− 1

ηT
KL(Q‖PT+1) +

T∑
t=2

KL(Q‖Pt)
(

1

ηt
− 1

ηt−1

)
≤ 1

η1
KL(Q‖P1) + max

t=2,...,T
KL(Q‖Pt)

(
1

ηT
− 1

η1

)
.

Rearranging the terms and adding
∑T

t=1 ft(wt) on both sides results in (4).
We now proceed with the proof of lazy EW, starting from:

− 1

ηt−1
ln E
Pt

[e−ηt−1ft(w)] = min
P

{
E
P

[ft(w)] +
1

ηt−1
KL(P‖Pt)

}
≤ E

Pt+1

[ft(w)] +
1

ηt−1
KL(Pt+1‖Pt)

≤ E
Pt+1

[ft(w)] +
1

ηt−1
KL(Pt+1‖P̃t)−

1

ηt−1
KL(Pt‖P̃t), (18)

where the last inequality is from the Pythagorean inequality (17) applied with Q = Pt+1. By (1):

ln
dP̃t(w)

dP1(w)
= −ηt−1

t−1∑
s=1

fs(w)− ln E
P1

[
e−ηt−1

∑t−1
s=1 fs(w)

]
,

which gives:

1

ηt−1
KL(Pt+1‖P̃t)−

1

ηt−1
KL(Pt‖P̃t) =

1

ηt−1
KL(Pt+1‖P1)− 1

ηt−1
KL(Pt‖P1)

+ E
Pt+1

[ t−1∑
s=1

fs(w)

]
− E
Pt

[ t−1∑
s=1

fs(w)

]
.

Plugging this into (18) and using ηt ≤ ηt−1 results in:

− 1

ηt−1
ln E
Pt

[e−ηt−1ft(w)] ≤ 1

ηt
KL(Pt+1‖P1)− 1

ηt−1
KL(Pt‖P1)

+ E
Pt+1

[ t∑
s=1

fs(w)

]
− E
Pt

[ t−1∑
s=1

fs(w)

]
.
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Summing over trials makes the terms on the right-hand side telescope and gives:

T∑
t=1

− 1

ηt−1
ln E
Pt

[e−ηt−1ft(w)] ≤ 1

ηT
KL(PT+1‖P1) + E

PT+1

[ T∑
t=1

ft(w)

]

= min
P∈P

{
E
P

[ T∑
t=1

ft(w)

]
+

1

ηT
KL(P‖P1)

}

≤ E
Q

[ T∑
t=1

ft(w)

]
+

1

ηT
KL(Q‖P1),

where the equality expresses an equivalent way to define lazy EW. Rearranging the terms and
adding

∑T
t=1 ft(wt) on both sides results in (3).

Appendix B. Proof of Theorem 2

Proof Rather than scaling canonical vectors ei, i = 1, . . . , d and the comparator u by M , we scale
the loss vectors by defining g′t = Mgt, so that the losses remain the same: 〈ei, g′t〉 = 〈Mei, gt〉 for
all i and all t. Let w1 = (w+

1 ,w
−
1 ), and let w+

t , w−t be the result of running EG plus-minus on g′t.
For any u with

∑2d
i=1 ui = 1 and ui ≥ 0 invoking Lemma 1 gives:

T∑
t=1

〈wt − u, g′t〉 ≤
1

η
KL(u‖w1)

+
T∑
t=1

〈w+
t , g

′
t〉 − 〈w−t , g′t〉+

1

η
ln
( d∑
i=1

(w+
t,ie
−ηt〈ei,g′t〉 + w−t,ie

ηt〈ei,g′t〉)
)
. (19)

The first term on the right-hand side of (19) can be bounded by: maxu:
∑2d
i=1 ui=1, ui≥0 KL(u‖w1) =

ln(2d). To bound the second term on the right-hand side of (19), we make use of Hoeffding’s
Lemma (Cesa-Bianchi and Lugosi, 2006, Lemma A.1), which together with |〈ei, g′t〉| ≤MG gives:

T∑
t=1

〈w+
t , g

′
t〉 − 〈w−t , g′t〉+

1

η
ln
( d∑
i=1

(w+
t,ie
−ηt〈ei,g′t〉 + w−t,ie

ηt〈ei,g′t〉)
)
≤ ηM2G2

2
.

Summing over trials results in a bound on the regret:

T∑
t=1

〈wt − u, g′t〉 ≤
ln(2d)

η
+ η

TM2G2

2
.

Plugging in the optimal η =
√

2 ln(2d)
TM2G2 yields the desired result.

Appendix C. Proof of Theorem 4

Before proving the theorem, we need two lemmas:

17
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Lemma 10 (Banerjee et al. (2005); Nielsen and Nock (2010)) The KL divergence between two
members, P and Q, of the same regular exponential family E with cumulant generating function F
can be expressed by the Bregman divergence between their natural parameters, θP and θQ, or their
expectation parameters, µP and µQ. The first Bregman divergence is generated by the cumulant
generating function F and the second Bregman divergence is generated by the convex conjugate of
the cumulant generating function F ∗:

KL(P‖Q) = BF (θQ‖θP ) = BF ∗(µP ‖µQ).

Lemma 11 (Ihara, 1993, Theorem 3.1.4) Let µ be arbitrary and define P = {P : EP [w] = µ}.
Then, for any member Q of an exponential family E ,

min
P∈P

KL(P‖Q)

is achieved by P ∈ E such that EP [w] = µ, provided such a P exists.

Proof [of Theorem 4] Let wt be the weights produced by the greedy version of MD. Then

min
P∈P

{
E
P

[〈w, gt〉] +
1

ηt
KL(P‖Pt)

}
= min
µ∈W

min
P :EP [w]=µ

{
E
P

[〈w, gt〉] +
1

ηt
KL(P‖Pt)

}
= min
µ∈W

min
P∈E :EP [w]=µ

{
〈µ, gt〉+

1

ηt
KL(P‖Pt)

}
,

where in the second step we can restrict to minimization over E by Lemma 11. Introducing the
short-hand notation µP = EP [w], we thus get for the greedy version of EW:

Pt+1 = arg min
P∈E:µP∈W

{
〈µP , gt〉+

1

ηt
KL(P‖Pt)

}
= arg min

P∈E:µP∈W

{
〈µP , gt〉+

1

ηt
BF ∗(µP ‖µPt)

}
,

where we used Lemma 10. But the last expression coincides with the definition of the greedy MD
weight update, and since it applies to all t, we have µPt+1 = wt+1 for all t, provided µP1 = w1

(which holds by assumption). An analogous argument can be made to show the equivalence of the
lazy versions of MD and EW.

Appendix D. Proofs for Section 4

D.1. Proof of Theorem 5

Proof P̃t = N (w̃t,Σt) may be verified analytically from (1) and (2). The fact that projec-
tions Pt onto P preserve Gaussianity with the same covariance matrix follows from Lemma 9 in
Van Erven and Koolen (2016). Lemma 1 gives a bound on the regret w.r.t. randomized forecaster
Q = N (u,ΣQ):

T∑
t=1

ft(wt)−
T∑
t=1

E
Q

[ft(w)] ≤ 1

η
KL(Q‖P1) +

T∑
t=1

ft(wt) +
1

η
ln E
Pt

[
e−ηft(w)

]
.
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The KL divergence between two Gaussians is given by (Ihara, 1993, Theorem 1.8.2):

KL(Q‖P1) =
1

2
(ln

(
det(ΣQ)

det(Σ1)

)
+ Tr(ΣQΣ−1

1 ) + (u−w1)ᵀΣ−1
1 (u−w1)− d.

The mixability gap can be evaluated in closed form by calculating the Gaussian integral:

ln E
Pt

[
eη(ft(wt)−ft(w))

]
=
η2

2
gᵀt Σt+1gt −

1

2
ln

(
det(Σt)

det(Σt+1)

)
.

Also, the expectation of the instantaneous regret can be computed exactly:

ft(wt)− E
Q

[ft(w)] = ft(wt)− ft(u)− 1

2
Tr(ΣQMt).

Summing the above over the trials, we get the following upper bound on the regret:

T∑
t=1

ft(wt)−
T∑
t=1

ft(u) ≤
ln
(

det(ΣT+1)
det(ΣQ)

)
+ Tr(ΣQΣ−1

T+1)− d+ (w1 − u)ᵀΣ−1
1 (w1 − u)

2η

+ η

T∑
t=1

gᵀt Σt+1gt,

which holds for all ΣQ. By plugging in the optimal value ΣQ = ΣT+1, the bound simplifies to:

T∑
t=1

ft(wt)−
T∑
t=1

ft(u) ≤ 1

2η
(w1 − u)ᵀΣ−1

1 (w1 − u) +
η

2

T∑
t=1

gᵀt Σt+1gt,

which concludes the proof.

D.2. Proof of Corollary 6

Proof Using Theorem 5 gives:

T∑
t=1

ft(wt)−
T∑
t=1

ft(u) ≤ 1

2ησ2
‖u‖22 +

η

2

T∑
t=1

1
1
σ2 + αηt

‖gt‖22

≤ 1

2ησ2
D2 +

η

2
G2

T∑
t=1

1
1
σ2 + αηt

≤ 1

2ησ2
D2 +

ηG2

2( 1
σ2 + αη)

+
η

2
G2

∫ T

1

1
1
σ2 + αηt

dt

=
1

2ησ2
D2 +

G2

2( 1
ησ2 + α)

+
G2

2α

(
ln( 1

ησ2 + αT )− ln( 1
ησ2 + α)

)
,

which was to be shown.
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D.3. Proof of Corollary 7

Proof Using Theorem 5 gives:

RT (u) ≤ D2

2ησ2
+
η

2

T∑
t=1

gᵀt Σt+1gt. (20)

We start by bounding the second term on the right-hand side of (20). Using Lemma 11.11 from
Cesa-Bianchi and Lugosi (2006) and the basic inequality 1− x ≤ − lnx, we bound:

ηβgᵀt Σt+1gt = 1− det(Σ−1
t )

det(Σ−1
t+1)

≤ ln
det(Σ−1

t+1)

det(Σ−1
t )

,

which after summing over trials gives:

T∑
t=1

ηβgᵀt Σt+1gt ≤ ln
det(Σ−1

T+1)

det(Σ−1
1 )

= ln det
(
I + ησ2β

T∑
t=1

gtg
ᵀ
t

)
=

d∑
i=1

ln(1 + λi) ≤ d ln

(
1 +

ησ2βG2T

d

)
,

where λ1, . . . , λd are the eigenvalues of ησ2β
∑T

t=1 gtg
ᵀ
t , and the last inequality follows by max-

imizing under the constraint that
∑

i λi = Tr(ησ2β
∑T

t=1 gtg
ᵀ
t ) ≤ σ2ηβG2T . As discussed by

Cesa-Bianchi and Lugosi (2006, proof and discussion of Theorem 11.7), the maximum is achieved
when λi = σ2ηβG2T/d for all i.

All together we find:

RT (u) ≤ D2

2ησ2
+

d

2β
ln

(
1 +

ησ2βG2T

d

)
,

which was to be shown.

Appendix E. Proofs for Section 5

E.1. Proof of Theorem 8

Abbreviate mt(P ) = − lnEP
[
e−`t(η,i)

]
and define the potential ΦT = e−

∑T
t=1mt(Pt). Then

ΦT = ΦT−1 = · · · = Φ0 = 1 since

ΦT − ΦT−1 = e−
∑T−1
t=1 mt(Pt) E

PT

[
ηrT (i)

]
= 0,

where the last identity holds for any loss vector gt by the definition of wT . For any comparator Q
on (η, i), it follows that

0 =

T∑
t=1

mt(Pt) =

T∑
t=1

E
Q

[`t(η, i)] + S(Q) ≤
T∑
t=1

E
Q

[−ηrt(i) + η2rt(i)
2] + S(Q),
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where the last inequality is an application of the ‘prod-bound’ − ln(1 + x) ≤ −x + x2 with x =
ηrt(i), which holds for any x ≥ −1

2 (Cesa-Bianchi et al., 2007, Lemma 1). The result (11) is a
direct consequence, and (12) follows upon bounding EQ[η] ≥ η̂/2 and EQ[η2] ≤ η̂2 and plugging
in that S(Q) ≤ KL(Q‖P1) = KL(π̂‖π)− ln γ([η̂/2, η̂]) for EW.

E.2. Proof of Theorem 12

Theorem 12 (Squint Reduction to EW) The exact same statement as in Theorem 8 also holds
when we replace the surrogate loss (10) by (14).

Thus (13) also holds, and we recover the results of (Koolen and Van Erven, 2015) for Squint.

Remark 13 The Metagrad algorithm (Van Erven and Koolen, 2016) is similar to Squint on a con-
tinuous set of experts indexed byw ∈ Rd with losses ft(w) = wᵀgt, and the analysis of Theorem 12
can be extended to handle this case.

Proof Letmt(P ) and ΦT be as in the proof of Theorem 8, but for the new surrogate loss (14). Then
ΦT ≤ ΦT−1 ≤ . . . ≤ Φ0 = 1, because

ΦT − ΦT−1 = e−
∑T−1
t=1 mt(Pt)

(
E
PT

[
e−ft(η,i)

]
− 1

)
≤ e−

∑T−1
t=1 mt(Pt) E

PT

[
ηrT (i)

]
= 0,

where the inequality follows from the ‘prod bound’ (see the proof of Theorem 8) and the final
equality is again by definition of wT . For any Q, it follows that

0 ≤
T∑
t=1

mt(Pt) =
T∑
t=1

E
Q

[`t(η, i)] + S(Q) =
T∑
t=1

E
Q

[−ηrt(i) + η2rt(i)
2] + S(Q),

which implies that (11) also holds for Squint. Since (12) is a corollary, it also follows directly.

E.3. Proof of Theorem 9

The proof of Theorem 9 follows the same general steps as the proofs for Theorems 8 and 12.
However, bounding the mix-regret SiT (η) using a similar analysis as for the Krichevsky-Trofimov
estimator from Example 1 would lead to an extra lnT factor in the regret. This is avoided using
a more delicate analysis that holds specifically for the regret with respect to η = R+

T (i)/T , which
requires a technical analytic inequality by Orabona and Pál (2016, Lemma 16).
Proof For `t as in (10), let mt = − lnEi∼Pt

[
e−`t(η

i
t,i)
]
. Then, by the same argument as in the

proof of Theorem 8, ΦT = e−
∑T
t=1mt = 1. For any distribution π̂ on i and any η̂i ∈ [0, 1], we

therefore have

0 =

T∑
t=1

mt = E
π̂

[
T∑
t=1

`t(η
i
t, i)

]
+ S̃T (π̂) ≤ E

π̂

[
T∑
t=1

`it(η
i
t)

]
+ S̃T (π̂)

= E
π̂

[
T∑
t=1

`it(η̂
i) + SiT (η̂i)

]
+ S̃T (π̂). (21)
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The minimizer of
∑T

t=1 `
i
t(η) over η ∈ [0, 1] is η̂i = R+

T (i)/T . Plugging this in, we find that

T∑
t=1

`it(η̂
i) = −T B(1

2 +
R+
T (i)
2T ‖

1
2). (22)

Substituting (22) in (21) and reorganizing we obtain (15).
If we specialize to EW, then S̃T (π̂) ≤ KL(π̂‖π) by the same argument as for iProd. In addition,

to bound SiT (η̂i), let β̃(x, y) be the distribution on η ∈ [−1,+1] such that (1 + η)/2 has a β(x, y)
distribution. Then Lemma 1 and the observation that the mixability gap is at most 0 because `it is
1-exp-concave, together imply that

SiT (η̂i) ≤ min
Q∈P

{
E
η∼Q

[ T∑
t=1

`it(η)
]

+ KL(Q‖β̃(a, a))︸ ︷︷ ︸
A(Q,i)

}
−

T∑
t=1

`it(η̂
i)︸ ︷︷ ︸

B(i)

.

We first rewrite B(i) using (22). Then it remains to bound the term with A(Q, i) in expectation
under π̂. To this end we may assume that RT (π̂) := Eπ̂[RT (i)] ≥ 0 without loss of generality
(otherwise (16) holds trivially). Hence

E
i∼π̂

[
min
Q∈P

A(Q, i)
]
≤ min

Q∈P
E
i∼π̂

[
A(Q, i)

]
= min

Q∈P

{
E
η∼Q

[
− T +RT (π̂)

2
ln

1 + η

2
− T −RT (π̂)

2
ln

1− η
2
− T ln 2

]
+ KL(Q‖β̃(a, a))

}
= − ln

(
2T E

X∼β(a,a)

[
X

T+RT (π̂)

2 (1−X)
T−RT (π̂)

2

])
= − ln

(
2TΓ(2a)Γ

(T+RT (π̂)
2 + a

)
Γ
(T−RT (π̂)

2 + a
)

Γ(a)2Γ(T + 2a)

)

≤ −RT (π̂)2

2T + 4a− 2
+

1

2
ln
T + 2a− 1

2a
+ ln(e

√
π),

where we have plugged in the minimizing Q = β̃(T+RT (π̂)
2 + a, T−RT (π̂)

2 + a), which has nonneg-
ative mean under our assumption thatRT (π̂) ≥ 0, and where the last inequality holds by (Orabona
and Pál, 2016, Lemma 16), which applies for a ≥ 1/2,RT (π̂) ∈ [−T, T ] and T ≥ 1.

With these regret bounds for EW, (15) specializes to

RT (π̂) ≤

√
(2T + 4a− 2)

(
1

2
ln
T + 2a− 1

2a
+ ln(e

√
π) + KL(π̂‖π)

)
.

The result so far holds for any a ≥ 1
2 . Plugging in the choice a = T

4 + 1
2 , suggested by Orabona

and Pál (2016), and using 1
2 ln 3T

T+2 + ln(e
√
π) ≤ 3 completes the proof.
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Appendix F. Analysis of the Algorithm from Section 6

LetW ⊂ Rd be a compact convex set. Following Bubeck et al. (2012), we assume without loss of
generality that W is full rank, meaning that the linear combinations of W span Rd (otherwise we
can express the elements ofW in a lower dimensional space).

At trials t = 1, 2, . . . , T , the algorithm plays with a randomized choice wt ∈ W , the adversary
chooses an unobserved loss vector gt, which is not allowed to depend on the realization of wt, and
the learner suffers and observes bounded loss 〈wt, gt〉. The goal is to minimize the expected regret:
E[RT (u)] = E

[∑T
t=1〈wt − u, gt〉

]
for any choice of the comparator u ∈ W . We consider EW

with a fixed learning rate η and a prior distribution P1 that is uniform over W . At each trial t,
after observing the loss 〈wt, gt〉, the algorithm constructs a random, unbiased estimate g̃t of the
loss vector gt (described below), and uses this estimate to update the posterior. Since the projection
step can be dropped (as P1 is supported on W), the greedy and lazy versions of EW coincide
and the posterior is given by dPt(w) ∝ exp(−η

∑t−1
s=1〈w, g̃s〉)dw for all w ∈ W . Defining

θt = −η
∑t−1

s=1 g̃s (with θ1 = 0), we can concisely write:

dPt+1(w) = e〈w,θt〉−F (θt)dw ∀w ∈ W, where F (θ) = ln

∫
W
e〈w,θ〉 dw

is the cumulant generating function. At trial t, the EW algorithm samples wt ∼ Qt, where Qt =
(1−γ)Pt+γR for γ ∈ (0, 1) is a mixture of the posterior Pt and a fixed “exploration” distributionR.
The exploration distribution is chosen to be John’s exploration, defined as follows (Bubeck et al.,
2012). Let K be the ellipsoid of minimal volume enclosingW:

K = {w ∈ Rd : (w −w0)ᵀH−1(w −w0) ≤ 1} (23)

for some positive definite matrix H and w0 ∈ Rd. In what follows we assume without loss of
generality that W is centered in the sense that w0 = 0 (otherwise all w ∈ W need to be shifted
by w0). Bubeck et al. (2012) show that one can choose M ≤ d(d + 1)/2 + 1 contact points
u1, . . . ,uM ∈ K ∩W , and a distribution R over these points that satisfies:

E
w∼R

[wwᵀ] =
1

d
H. (24)

The estimate g̃t is constructed based on the observed loss 〈wt,xt〉, by:

g̃t = 〈wt, gt〉
(
E
Qt

[wwᵀ]

)−1

wt.

We now show the following regret bound for the resulting algorithm:

Theorem 14 Assume the losses are bounded: |〈w, gt〉| ≤ 1 for all w ∈ W and all t. Let η =√
ν lnT
3dT , where ν = O(d) is the self-concordant barrier parameter of F ∗, and let γ = ηd. Then the

expected regret for the EW algorithm described above is bounded by

E[RT (u)] ≤ 2
√

3νdT lnT + 2 = O(d
√
T lnT ).
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Proof We first verify that the estimate g̃t of gt is unbiased:

E
wt∼Qt

[g̃t] = E
wt∼Qt

[(
E

w∼Qt
[wwᵀ]

)−1

wt〈wt, gt〉

]
=

(
E

w∼Qt
[wwᵀ]

)−1

E
wt∼Qt

[wtw
ᵀ
t ] gt = gt.

Furthermore, due to the inclusion of the exploration distribution R, we have:

E
w∼Qt

[wwᵀ] = (1− γ) E
w∼Pt

[wwᵀ] + γ E
w∼R

[wwᵀ] � γ

d
H,

(whereA � B meansA−B is positive semidefinite), and hence for any u ∈ W:〈
u,
(

E
w∼Qt

[wwᵀ]
)−1

u

〉
≤
〈
u,
d

γ
H−1u

〉
≤ d

γ
, (25)

where the last inequality is from the fact that W ⊆ K and from the definition of K in (23). This,
however, implies that the linear losses induced by g̃t are bounded for any u ∈ W:

〈u, g̃t〉 = 〈wt, gt〉
〈
u,
(

E
w∼Qt

[wwᵀ]
)−1

wt

〉
≤ |〈wt, gt〉|

〈
wt,

(
E

w∼Qt
[wwᵀ]

)−1
wt

〉1/2〈
u,
(

E
w∼Qt

[wwᵀ]
)−1

u

〉1/2

≤ d

γ
, (26)

where the first inequality is from the Cauchy-Schwarz inequality (for positive semidefinite A,
xᵀAy ≤ (xᵀAx)1/2(yᵀAy)1/2), while the second inequality is due to assumption |〈w, gt〉| ≤ 1
and due to (25) applied twice (first to u and then to wt).

Let µt be the mean value of Pt: µt = EPt [w]. As a general property of exponential families
or as a consequence of Theorem 4, we have µt = ∇F (θt), and µt and θt are conjugate parameters
of the exponential family. Let us fix a comparator u ∈ W and define Pu to be the member of
the exponential family with cumulant generating function F that has mean value u: Ew∼Pu [w] =
u. We now apply Lemma 1 for the EW algorithm on the sequence of linear losses induced by
g̃1, . . . , g̃T to get:

T∑
t=1

〈µt − u, g̃t〉 =
T∑
t=1

〈µt, g̃t〉 −
T∑
t=1

E
w∼Pu

[〈w, g̃t〉]

≤ 1

η
KL(Pu‖P1) +

T∑
t=1

〈µt, g̃t〉+
1

η
ln E
w∼Pt

[
e−η〈w,g̃t〉

]
(note that in this section we useµt to denote the mean of Pt, whilewt is reserved for the randomized
action at trial t sampled from Qt). Since Pu and P1 are members of the same exponential family,
the KL-term can be re-expressed using Lemma 10:

KL(Pu‖P1) = DF ∗(u‖µ1) = F ∗(u)− F ∗(µ1)−∇F ∗(µ1)ᵀ︸ ︷︷ ︸
0

(µ− µ1) = F ∗(u)− F ∗(µ1),

where we used the fact that µ1 has conjugate parameter θ1 = 0, and thus ∇F ∗(µ1) = θ1 = 0.
To bound the mixability gap, we will now use that by assumption η = γ

d , so that by (26) we have
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|η〈w, g̃t〉| ≤ 1 for any w ∈ W . Using the fact that e−s ≤ 1 − s + s2 holds for s ≥ −1, and
combining with ln(1 + x) ≤ x gives:

〈µt, g̃t〉+
1

η
ln E
w∼Pt

[
e−η〈w,g̃t〉

]
≤ 〈µt, g̃t〉+

1

η
ln

(
1 + E

w∼Pt

[
−η〈w, g̃t〉+ η2〈w, g̃t〉2

])
≤ 〈µt, g̃t〉 − E

w∼Pt
[〈w, g̃t〉]︸ ︷︷ ︸

=0

+η E
w∼Pt

[
〈w, g̃t〉2

]
= ηg̃ᵀt E

w∼Pt
[wwᵀ] g̃t.

Combining the bounds on the KL-term and the mixability gap gives:

T∑
t=1

〈µt − u, g̃t〉 ≤
F ∗(u)− F ∗(µ1)

η
+ η

T∑
t=1

g̃ᵀt E
w∼Pt

[wwᵀ] g̃t. (27)

We can use this result to bound the regret of the original algorithm in the following way. First, note
that:

E
wt∼Qt

[〈wt − u, gt〉] = γ〈 E
wt∼R

[wt]− u, gt〉+ (1− γ)〈 E
wt∼Pt

[wt]− u, gt
〉

≤ 2γ + (1− γ)〈µt − u, gt
〉

= 2γ + (1− γ) E
wt∼Qt

[〈µt − u, g̃t〉] ,

where the random quantity in the last expectation is g̃t, because it depends on wt. Therefore:

T∑
t=1

E
wt∼Qt

[〈wt − u, gt〉] ≤ 2γT + (1− γ)

T∑
t=1

E
wt∼Qt

[〈µt − u, g̃t〉]

≤ 2γT +
F ∗(u)− F ∗(µ1)

η
+ η(1− γ)

T∑
t=1

E
wt∼Qt

[
g̃ᵀt E

w∼Pt
[wwᵀ] g̃t

]

≤ 2γT +
F ∗(u)− F ∗(µ1)

η
+ η

T∑
t=1

E
wt∼Qt

[
g̃ᵀt E

w∼Qt
[wwᵀ] g̃t

]
, (28)

where the second inequality is from (27), while the last inequality is due to:

E
w∼Qt

[wwᵀ] = (1− γ) E
w∼Pt

[wwᵀ] + γ E
w∼R

[wwᵀ] � (1− γ) E
w∼Pt

[wwᵀ].

Using the definition of g̃t and 〈wt, gt〉2 ≤ 1, we further bound:

E
wt∼Qt

[
g̃ᵀt E

w∼Qt
[wwᵀ] g̃t

]
≤ E
wt∼Qt

[
wᵀ
t

(
E

w∼Qt
[wwᵀ]

)−1

E
w∼Qt

[wwᵀ]

(
E

w∼Qt
[wwᵀ]

)−1

wt

]

=

T∑
t=1

E
wt∼Qt

[
Tr

((
E

w∼Qt
[wwᵀ]

)−1

wtw
ᵀ
t

)]

=
T∑
t=1

Tr (I) = Td.
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Plugging the above into (28) and taking expectation with respect to the randomness of the algorithm
results in the following bound on the expected regret:

E[RT (u)] = E

[
T∑
t=1

E
wt∼Qt

[〈wt − u, gt〉]

]
≤ 2γT +

F ∗(u)− F ∗(µ1)

η
+ ηTd.

What is left to bound is F ∗(u) − F ∗(µ1). To this end, define the Minkowski function (Abernethy
et al., 2012) onW as:

πµ(w) = inf{t ≥ 0: µ+ t−1(w − µ) ∈ W}.

Bubeck and Eldan (2015) show that F ∗ is a ν-self concordant barrier onW with ν = O(d). Using
this property and Theorem 2.2 from Abernethy et al. (2012) we get:

F ∗(u)− F ∗(µ1) ≤ ν ln

(
1

1− πµ1(u)

)
.

If u is such that πµ1(u) ≤ 1− 1
T , then F ∗(u)−F ∗(µ1) ≤ ν lnT . On the other hand, if πµ1(u) ≤

1− 1
T , we define a new comparator u′ = (1− 1

T )u+ 1
T µ1, for which πµ1(u′) ≤ 1− 1

T (Abernethy
et al., 2012), and use the regret bound above for u′ to get:

E[RT (u)] = E[RT (u′)] +
T∑
t=1

〈u′ − u, gt〉 = E[RT (u′)] +
1

T

T∑
t=1

〈µ1 − u, gt〉

≤ 2γT +
F ∗(u′)− F ∗(µ1)

η
+ ηTd+ 2 ≤ 2γT +

ν lnT

η
+ ηTd+ 2.

Recalling that γ = ηd and tuning η =
√

ν lnT
3dT gives the claimed bound.
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