
Proceedings of Machine Learning Research vol 75:1–42, 2018 31st Annual Conference on Learning Theory

Subpolynomial trace reconstruction for random strings
and arbitrary deletion probability

Nina Holden NINAH@MATH.MIT.EDU
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA

Robin Pemantle PEMANTLE@MATH.UPENN.EDU
Department of Mathematics, University of Pennsylvania, Philadelphia, PA

Yuval Peres PERES@MICROSOFT.COM

Microsoft Research, Redmond, WA

Editors: Sebastien Bubeck, Vianney Perchet and Philippe Rigollet

Abstract
The deletion-insertion channel takes as input a bit string x ∈ {0, 1}n, and outputs a string where
bits have been deleted and inserted independently at random. The trace reconstruction problem
is to recover x from many independent outputs (called “traces”) of the deletion-insertion channel
applied to x. We show that if x is chosen uniformly at random, then exp(O(log1/3 n)) traces suffice
to reconstruct x with high probability. For the deletion channel with deletion probability q < 1/2

the earlier upper bound was exp(O(log1/2 n)). The case of q ≥ 1/2 or the case where insertions
are allowed has not been previously analysed, and therefore the earlier upper bound was as for
worst-case strings, i.e., exp(O(n1/3)).

A key ingredient in our proof is a delicate two-step alignment procedure where we estimate
the location in each trace corresponding to a given bit of x. The alignment is done by viewing the
strings as random walks, and comparing the increments in the walk associated with the input string
and the trace, respectively.
Keywords: Trace reconstruction; Deletion channel; Sample complexity.

Learning a parameter from a sequence of noisy observations is a basic problem in statistical
inference and machine learning. The amount of data required (known as the sample complexity) to
learn the parameter is of fundamental interest. A natural problem in this class where the missing
parameter is a bit string and it is unknown whether the sample complexity is polynomial, is the
trace reconstruction problem for the deletion-insertion channel. This channel takes as input a string
x = (x0, x1, . . . , xn−1) ∈ {0, 1}n and outputs a noisy version of it, where bits have been randomly
inserted and deleted. Let q ∈ [0, 1) be the deletion probability and let q′ ∈ [0, 1) be the insertion
probability. First, for each j, before the jth bit of x we insert Gj − 1 uniform and independent bits,
where the independent geometric random variables Gj ≥ 1 have parameter 1− q′. Then we delete
each bit of the resulting string independently with probability q. The output string x̃ is called a trace.
An example is shown in Figure 1.

1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0
x x̃

I → I I → I I → I

Figure 1: We obtain a trace x̃ by sending x through the deletion-insertion channel. Inserted bits are shown in
green and deleted bits are shown in red.

c© 2018 N. Holden, R. Pemantle & Y. Peres.

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Suppose that the input string x is unknown. The trace reconstruction problem asks the
following: How many i.i.d. copies of the trace x̃ do we need in order to determine x with high
probability? (See Section 2 and Appendix A for more formal problem descriptions.)

There are two variants of this problem: the “worst case” and the “average case” (also referred to
as the “random case”). In the worst case variant, we want to obtain bounds which hold uniformly
over all possible input strings x. In the average case variant, the input string is chosen uniformly at
random. In this paper, we study the average case.

Holenstein, Mitzenmacher, Panigrahy, and Wieder (2008) gave an algorithm for reconstructing
random strings from the deletion channel using polynomially many traces, assuming the deletion
probability q is sufficiently small. Peres and Zhai (2017) proved that exp(O(log1/2 n)) many traces
suffice for the deletion channel when the deletion probability q is below 1/2. Before the current
work, the upper bound on the number of traces required for q ≥ 1/2 was the same as for worst case
strings, i.e., exp(O(n1/3)) (see works of De, O’Donnell, and Servedio (2017); Nazarov and Peres
(2017)). We improve the upper bound for all q ∈ [0, 1), and prove a result which also holds when
we allow insertions. We remark that the trace reconstruction problem is significantly more difficult
for q > 1/21 and that the alignment algorithm used by Peres and Zhai fails for the case of higher
deletion probability.

Theorem 1 For n ∈ N let x ∈ {0, 1}n be a bit string where the bits are chosen uniformly and
independently at random. Given q, q′ ∈ [0, 1) there exists M > 0 such that for all n we can
reconstruct x with probability 1− on(1) using dexp(M log1/3 n)e traces from the deletion-insertion
channel with parameters q and q′.

We remark that the upper bound exp(O(log1/3 n)) in the main theorem is the best one can obtain
without also improving the upper bound exp(O(n1/3)) for worst case strings. This holds because,
given an arbitrary string of length m = log2+ε n for ε > 0, this string will appear in a random length
n string with probability converging to 1 as n→∞. In particular, a given worst case string of length
m is likely to appear in our random string, and the best known algorithm for reconstructing this
string requires exp(Ω(m1/3)) = exp(Ω(log1/3 n)) traces. See Lemma 10 in McGregor et al. (2014)
for the details of this reduction.

We remark that our methods can be adapted easily to certain other reconstruction problems,
e.g., to the case where one allows substitutions in addition to deletions and insertions, and the case
where the bits in the input x are independent Bernoulli(r) random variables for arbitrary r ∈ (0, 1),
instead of r = 1/2. We also note that there is a simple reduction (described, e.g., in McGregor et al.
(2014) and De et al. (2017)) of the trace reconstruction problem for larger alphabets to the case of
bits. Moreover, as shown in McGregor et al. (2014), trace reconstruction becomes much easier if the
alphabet size grows as Ω(log n).

1. Suppose that q > 1/2, the string w is an arbitrary string of length (1 − q)n, and x is a random string of length n.
Then it holds with probability 1− exp(−cn) that w is a subsequence of x. To see this, observe that the number of bits
in x until we see w0 is a geometric random variable of mean 2. Iterating, existence (with probability 1− exp(−cn))
of an appropriate subsequence holds by concentration for the sum of independent geometric random variables of mean
2. Therefore, by a union bound, if q > 1/2, then any subexponential collection of strings of length (1− q)n (typical
for traces of the deletion channel) are, with high probability, all substrings of a random string x of length n.

2

SUBPOLYNOMIAL TRACE RECONSTRUCTION

1. Related work

The trace reconstruction problem dates back to the early 2000’s in works of Levenshtein (2001a,b);
Batu, Kannan, Khanna, and McGregor (2004). Batu, Kannan, Khanna and McGregor, who were
partially motivated by the study of mutations, considered the case where the deletion probability q is
decreasing in n. They proved that if the original string x is random and the deletion probability q =
O(1/ log n), then x can be constructed with high probability using O(log n) samples. Furthermore,
they proved that if q = O(n−(1/2+ε)), then every string x can be reconstructed with high probability
with O(n log n) samples.

Holenstein, Mitzenmacher, Panigrahy, and Wieder (2008) considered the case of random strings
and constant deletion probability. They gave an algorithm for reconstruction with polynomially many
traces when the deletion probability q is less than some small threshold c. The threshold c is not
given explicitly in the work of Holenstein, Mitzenmacher, Panigrahy, and Wieder (2008), but was
estimated by Peres and Zhai (2017) to be at most 0.07.

The result of Holenstein et al. (2008) was improved by Peres and Zhai (2017). They showed
that a subpolynomial number of traces exp(O(log1/2 n)) is sufficient for reconstruction, and they
extended the range of allowed q to the interval [0, 1/2).

Our work improves the above results in three ways. First, we improve the upper bound to
exp(O(log1/3 n)). Second, we allow for any deletion and insertion probabilities in [0, 1). Third,
unlike Peres and Zhai (2017), our method works not only for the deletion channel, but also for the
case where we allow insertions and substitutions.

It is shown by Holenstein et al. (2008) that exp(O(n1/2 log n)) traces suffice for reconstruction
with high probability with worst case input. This was improved to exp(O(n1/3)) independently by
De, O’Donnell, and Servedio (2017) and by Nazarov and Peres (2017). Until the current work, the
average case upper bound was equal to the worst case upper bound for q ≥ 1/2. The techniques
developed by De et al. (2017); Nazarov and Peres (2017) are applied in the current work and the
work of Peres and Zhai (2017) to certain shorter substrings of our random string.

The best lower bounds for the number of required traces are Ω(log2 n) McGregor, Price, and
Vorotnikova (2014)) in the average case and Ω(n) in the worst case (Batu, Kannan, Khanna, and
McGregor (2004)). Trace reconstruction for the setting which allows insertions and substitution in
addition to deletions was considered by Kannan and McGregor (2005), Viswanathan and Swami-
nathan (2008), De, O’Donnell, and Servedio (2017), and Nazarov and Peres (2017). We refer to the
introduction of the paper by De, O’Donnell, and Servedio (2017) and the survey of Mitzenmacher
(2009) for further background on the deletion channel.

2. Construction of the channel

To simplify notation we will consider bit strings of infinite length (rather than length n ∈ {1, 2, . . . })
throughout the paper. Observe that if we can reconstruct the first n bits of an infinite string, then we
can also reconstruct length n strings. LetN = {0, 1, . . . } and let S := {0, 1}N denote the space of
infinite sequences of zeros and ones. We denote elements of S by x := (x0, x1, . . .).

Fix a deletion probability q and an insertion probability q′ in [0, 1), and let p = 1 − q and
p′ = 1− q′. We construct x̃ from x by the procedure described above, i.e., first, for each j ∈ N we
insert Gj − 1 uniform and independent bits before the jth bit of x. The geometric random variables

3

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Gj are independent and satisfy

P[Gj = v] = (q′)v−1(1− q′), ∀v ∈ {1, 2, . . . }.

Then we delete each bit of the resulting string independently with probability q.
Let µ be the law of i.i.d. Bernoulli random variables with parameter 1/2. We denote Px := Pδx

the law of x̃ when x is fixed; write P := Pµ for the law of x̃ when x is picked according to µ,
We call the string x̃ a trace. An example is given in Figure 2.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x̃0 x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8 x̃9 x̃10 x̃11 x̃12 x̃13 x̃14 x̃15

f(k) 1 1 4 5 5 5 7 7 7 7 9 10 13 13 15

g(k) 1 1 2 2 2 5 9 9 10 10 11 13 13 13 14 14

Figure 2: Illustration of the functions f and g. The arrows indicate bits which are copied from x to x̃.

For x ∈ S and 0 ≤ i ≤ j < ∞ let x(i : j) ∈ {0, 1}j−i+1 denote the subsequence of x from
position i to j. Let x(i :∞) ∈ {0, 1}N denote the substring of x corresponding to the bits in position
i or later. Define f such that f(k) is the location in x̃ of the first bit of x(k :∞) that is preserved by
the channel. Let g be the approximate inverse of f , defined such that g(k′) is the location in x of the
first bit of x̃(k′ :∞) which was copied from x. Observe that g(f(k)) = k if and only if bit k of x
was copied to x̃.

If x ∈ {0, 1}n is a string of finite length, then we construct the trace x̃ similarly: Let q ∈ [0, 1)
be the deletion probability and let q′ ∈ [0, 1) be the insertion probability. First, for each j, before
the jth bit of x we insert Gj − 1 uniform and independent bits, where the independent geometric
random variables Gj ≥ 1 have parameter 1 − q′. Then we delete each bit of the resulting string
independently with probability q.

WORST CASE RECONSTRUCTION PROBLEM

Let q, q′ ∈ [0, 1). For any N ∈ N let PNx denote the probability measure associated with N
independent outputs of the deletion-insertion channel Px with deletion (resp. insertion) probability
q (resp. q′). For n ∈ N and x ∈ {0, 1}n let X denote a collection of Nn ∈ N traces sampled
independently at random. We say that worst case strings of length n can be reconstructed with
probability 1 − on(1) from Nn traces, if there is a function G : SNn → {0, 1}n, such that for all
x ∈ S,

P
Nn
x [G(X) = x(0 : n− 1)] = 1− on(1).

AVERAGE CASE RECONSTRUCTION PROBLEM

Let µn denote uniform measure on {0, 1}n. We say that uniformly random strings of length n
can be reconstructed with probability 1− on(1) from Nn traces if we can find a set Sn ⊂ {0, 1}n
with µn(Sn) = 1 − on(1), and a function G : SNn → {0, 1}n, such that for all x ∈ S for which
x(0 : n− 1) ∈ Sn, we have

P
Nn
x [G(X) = x(0 : n− 1)] = 1− on(1).

4

SUBPOLYNOMIAL TRACE RECONSTRUCTION

In particular, Theorem 1 says that uniformly random strings can be reconstructed from Nn :=
dexp(M log1/3 n)e traces with probability 1− on(1).

3. Outline of proof

We reconstruct the bits of x one by one. For any k, n ∈ N with k < n we assume x(0 : k) is given,
and we show that with probability 1−O(n−2) we can use dexp(M log1/3 n)e traces to determine
the subsequent bit xk+1. Furthermore, we show that the traces can be reused in each step, so the
same set of traces can be used to reconstruct the kth bit and the k + 1st bit. When x is chosen from
µ and the traces are then generated i.i.d. from Px, the algorithm will fail at step k with probability
O(n−2), producing an incorrect guess or no guess at all. Inductively, we see that the probability after
k+ 1 steps that the algorithm has failed to correctly identify x(0 : k) is O(kn−2); setting k = n, the
probability of not correctly identifying x(0 : (n− 1)) is O(n−1), as desired. For most of the paper
we assume, in order to simplify notation, that q = q′. We explain at the end of Appendix A how to
treat the case of general q, q′.

Three ingredients are required, as follows.

(i) A Boolean test T (w, w̃) on pairs (w, w̃) of bit strings of finite equal length, indicating whether
w̃ is a plausible match for the string w sent through the deletion-insertion channel.

(ii) An alignment procedure that uses the test T repeatedly to produce for each of the independent
traces x̃ an estimate τ for a carefully chosen position f(k∗) in x̃ nearby f(k).

(iii) A bit recovery procedure based on a method of Peres and Zhai (2017); De, O’Donnell, and
Servedio (2017); Nazarov and Peres (2017) to produce from the approximately aligned traces
an estimate of the subsequent bit or bits.

The argument of Peres and Zhai (2017) follows the same overall structure, with an alignment step
followed by a reconstruction step for each bit in the original string. However, the greedy alignment
step of Peres and Zhai (2017) relies crucially on the assumption that the deletion probability q < 1/2,
and that no insertions are allowed. We overcome this problem by introducing a new kind of test for
the alignment, which is based on studying correlations between blocks in the input string and in the
trace.

We end the introduction by providing more details on the ingredients (i) − (iii) above (in a
slightly different order: (ii), (i), (iii)). Appendix A contains a proof of the main theorem modulo
two key results, Theorems 2 and 3 below. Appendix B constructs the test T . Appendix C uses this
to construct a good position k∗ in the input to try to align. Appendix D constructs an approximate
alignment τ1 and a good alignment τ2, and establishes properties of these culminating in one of the
two key results (Theorem 2). Finally, Appendix E finishes the proof of the main theorem by proving
the other key result (Theorem 3).

ALIGNMENT: FINDING f(k∗) IN THE TRACE

The following is our key alignment result. Assume x(0 : k) is known for some k ∈ N. We find a
position k∗ < k satisfying |k−k∗| = Θ(log n), and we have an algorithm which finds an estimate τ2

for f(k∗) in the trace x̃. For all x outside some exceptional set Ξbad, the theorem gives a lower bound
for the probability of true positives (meaning |f(k∗)− τ2| ≤ Calign log1/3 n, with Calign as below),

5

SUBPOLYNOMIAL TRACE RECONSTRUCTION

an upper bound for the probability of false positives (meaning |f(k∗)− τ2| > Calign log1/3 n), and
an upper bound for the average discrepancy in the case of true positives. We give a brief outline of the
alignment algorithm mentioned in the following theorem right below the statement of the theorem.

Theorem 2 (proved in Appendix D) Given anyCsep > 0 there are constantsCback, Calign, Cfalse, Ctrue, Cavg ≥
1 such that the following hold for any fixed an integer k ∈ [2Cback log n, n], where we let k∗ and τ2

be the message2 position and alignment pointer, respectively, produced by the alignment algorithm
in Appendix D when the algorithm assumes correctly the value of x(0 : k).

(i) τ2 is bounded above by 2n when finite and (given x(0 : k)), is a stopping time on the filtration
determined by x̃, i.e., for each i,

the event {τ2 ≤ i} is a function of x̃(0 : i) and x(0 : k).

Furthermore, there is a set Ξbad, determined by the first 2n bits of x, such that µ(Ξbad) = O(n−2)
and if x /∈ Ξbad, then the following four properties hold for sufficiently large n.

(ii) k∗ is order log n from the end of the reconstructed input:

k − Cback log n ≤ k∗ ≤ k −
Cback

2
log n.

(iii) The true positive rate is not too tiny:

Px

[
|g(τ2)− k∗| ≤ Calign log1/3 n

]
≥ exp(−Ctrue log1/3 n).

(iv) The false positive rate is much smaller than the true positive rate:

Px

[
∞ > |g(τ2)− k∗| > Calign log1/3 n

]
≤ exp(−Cfalse log1/3 n).

with Cfalse − Ctrue > κ := Csep(8Cavg + C
1/3
back).

(v) The average discrepancy when there is a true positive test is at most a small constant multiple
of the threshold:

Ex

[
|g(τ2)− k∗|1|g(τ2)−k∗|≤Calign log1/3 n

∣∣ τ2 <∞
]
≤ Cavg log1/3 n.

In our proof of the theorem, we find our estimate τ2 for f(k∗) in two steps. In the first step we
tolerate that our initial estimate τ1 has error O(log n), and in the second step we tolerate that our
estimate τ2 has error O(log1/3 n). Both steps are based on defining a function T which takes as input
two substrings w and w̃ (from the string and from the trace, respectively) of the same length ` ∈ N,
and returns the value 1 (resp. 0) if it seems likely (resp. unlikely) that w̃ was obtained by sending w
through the deletion-insertion channel. Each string w and w̃ can be viewed as a length ` random

2. By “message” we mean the input string.

6

SUBPOLYNOMIAL TRACE RECONSTRUCTION

kk0 k∗
x

f(k)f(k0) f(k∗)
x̃

Θ(log n) Θ(log n)

O(log n)O(log1/3 n)

τ1 τ2

w1 w2

Figure 3: Illustration of indices considered in our two alignment steps. In the first alignment step we find an
approximation τ1 to f(k0), and in the second alignment step we find an approximation τ2 to f(k∗).

walk by looking at the partial sums (where 1 gives an increment of +1 and 0 gives an increment of
−1), and our test is based on comparing the increments of these two walks in certain subintervals
(see details below).

In this paragraph we outline the method we use for k at least a large constant multiple of
log5/3 n (the alignment is generally easier for smaller k). In the first step we let w1 be a substring
of length `1 = O(log5/3 n) in x, such that the right end-point k0 of w1 satisfies k0 < k and
|k − k0| = Θ(log n). For each trace we evaluate T (w1, w̃) for each length `1 substring w̃ of x̃,
going from left to right in x̃. Our estimate τ1 for f(k0) is the right end-point of the first substring w̃
for which T (w1, w̃) = 1. If we find no such substring w̃ in x̃(0 : 2k0), then we set τ1 = ∞, and
we do not use this trace when we estimate xk+1. We say that we have a true (resp. false) positive if
τ1 <∞, and if |τ1 − f(k0)| is smaller (resp. larger) than a constant multiple of log n. We prove that,
except for x ∈ Ξbad, the probability of true and false positives satisfy similar bounds as in (iii) and
(iv) of Theorem 2 (but with other constants than Ctrue and Cfalse).

In the second step we let w2 be a substring of length `2 = O(log1/3 n) in x, such that the right
end-point k∗ of w2 satisfies k0 < k∗ < k and |k − k∗|, |k0 − k∗| = O(log n). As above, we go
through a substring of x̃ from left to right, and we let τ2 be the right end-point of the first substring
w̃ of length `2 for which T (w2, w̃) = 1. Using the estimate τ1 to f(k0) from the first step, it is
sufficient to only search through a substring of length O(log n) near τ1.

Since we are using a shorter substring to align than in the first step, the test is less robust. For
example, there may be several substrings w2 and ŵ2 in the input string which are close to each other
(distance O(log n)) and similar in the sense that the associated walks have similar increments. If this
is the case, we risk consistently choosing τ2 such that g(τ2) is near the right end-point of ŵ2 instead
of the right end-point of w2. In order to avoid this, we choose w2 carefully, such that there are no
other nearby substrings ŵ2 with this property.

THE TEST

We will describe a simplified version of the test T . Given strings w and w̃ of the same length
` ∈ N and some λ ∈ {1, . . . , b`1/2c}, divide each string w and w̃ into d`/λe blocks of length
approximately λ. For i = 1, . . . , d`/λe let si (resp. s̃i) denote the sum of (2xj − 1) as j ranges over
positions in the ith block of w (resp. w̃), and we enumerate the blocks from left to right. Observe
that si and s̃i both have expectation 0, and that si > 0 (resp. s̃i > 0) exactly when more than half
of the bits in the ith block of the string (resp. trace) are equal to 1. For some appropriately chosen

7

SUBPOLYNOMIAL TRACE RECONSTRUCTION

c1 ∈ (0, 1) define

T (w, w̃) =


1 if

d`/λe∑
i=1

sign(si) · sign(s̃i) > c1`/λ,

0 otherwise.

(1)

Observe that if w and w̃ are sampled independently and uniformly from {0, 1}`, then T (w, w̃) = 0
except on an event of probability exp(−Θ(`/λ)). On the other hand, if w̃ was obtained by sending
w through the deletion-insertion channel, one can show that with probability exp(−Θ(`/λ2)), for
most blocks i a constant fraction of the bits in the trace were copied from the corresponding block
in the input string. On this event, by choosing c1 sufficiently small, we have T (w, w̃) = 1 with
uniformly positive probability. We will deduce from this that the probability of a false positive is
exp(−Ω(`/λ)), while the probability of a true positive is exp(−O(`/λ2)). In the first alignment
step we use the test with (`, λ) of order (log5/3 n, log2/3 n), and in the second alignment step we use
the test with (`, λ) of order (log1/3 n, 1).

0 1 0 0 0 1 1 0 1 1 0 1 0 0 0

0 0 1 0 1 1 1 1 1 1 0 1 0 1 0

sign(si)

sign(s̃i)

−
−

−
−

−
+

+

+

+

+

w

w̃

Figure 4: Illustration of our test T . We divide the length ` = 15 substrings w and w̃ of x and x̃, respectively,
into blocks of length λ = 3, and find the sign of the sum of the bits in each block (replacing 0 by −1). If many
bits in block i of x̃ were copied from the corresponding block of x, then the sums in block i are positively
correlated, and their signs are the same with probability strictly larger than 1/2. Our test T counts how many
blocks for which the signs match, and use this to predict whether the right end-points of the two substrings are
likely to correspond to each other as described by the functions f and g.

The actual function T we use differs from this simplified test in two ways: First, we need to
prove (v) of Theorem 2, with Cavg sufficiently small as compared to the other constants, in order
for our reconstruction algorithm to work. For the test described above it is not clear that this holds,
due to the effect described in Figure 5. To resolve this, we define a second test similarly as in (1),
but where, for some 0 < c � 1, we use w((` − c`) : `) and w̃((` − c`) : `) instead of w and w̃.
We require that both tests are positive when defining τ2. The first test, which uses the full strings w
and w̃, ensures that the test gives false positives with very small probability, while the second test,
which uses the shorter substrings, ensures that the constant Cavg above is sufficiently small. The
second way in which our test differs from the simplified test above, is that we choose to not sum
over all the blocks i = 1, . . . , d`/λe when defining T . Instead, we choose some θ ∈ (0, 1) and use
only the bθ`/λc blocks for which |si| is largest. This simplifies the proof of our lower bound for the
probability of having true positives.

Consider the setting of the second alignment step above, where we evaluate T (w2, w̃) for all w̃
in a certain interval and k∗ is the right end-point of w2. With the above test, there are three sources
of false positives. First, as described above, w2 might be similar to some nearby substring ŵ2 of
x, such that we often get a positive test when considering the part of the trace corresponding to ŵ2.
Second, we could have unusually many deletions or insertions right before f(k∗), which could make

8

SUBPOLYNOMIAL TRACE RECONSTRUCTION

x

x̃

kk − `

j

f f

k′

k′ − `

Figure 5: The red arrows to the left indicate that bits in first few blocks of x are copied to the corresponding
blocks of x̃. If this happens for many blocks, the test T is likely to be positive, even if j := k′ − f(k) is large.

bits in the ith block of w̃ be copied from the ith block of w2, even if the right end-point of w̃ is
far from f(k∗) (see Figure 5). Third, even if none of the above scenarios occur, there is a small
chance that T (w2, w̃) = 1, due to the randomness of the deletions and insertions. By choosing w2

appropriately, we can ensure that only the two latter sources of error are relevant. Then the errors
are mainly caused by the randomness of the deletions and insertions, and not the randomness of
x, so the errors happen approximately independently for each trace. Both errors have probability
exp(−Ω(log1/3 n)) with the parameter values used above.

FROM ALIGNMENT TO RECONSTRUCTION

Finally, we explain how we can use our estimate τ2 for f(k∗) in each trace to determine xk+1.
De et al. (2017); Nazarov and Peres (2017) proved that strings of length m can be reconstructed
with dexp(O(m1/3))e traces by using single bit statistics for the traces. We prove the following
variant of this result (following Peres and Zhai (2017)) for the case where the input string has been
randomly shifted before being sent through the deletion-insertion channel. The theorem implies that
for different input strings x(1) and x(2) there exists some j, such that we can distinguish between the
two strings by studying the average of the jth bit for the dexp(M log1/3 n)e traces.

Theorem 3 (proved in Appendix E) There are positive constants Csep and Cfwd depending only
on q and q′, not on m, d or σ below, such that the following separation criterion holds. Let
d and m satisfy d ≤ m2/3 and let x(1) and x(2) be any two infinite strings of bits such that
x(1)(0 : d) = x(2)(0 : d) but x(1)(0 : m) 6= x(2)(0 : m). Let θs denote the shift by s on infinite
bit strings and for i = 1, 2 and j ≥ 0 let q(i)

s,j := Pθsx(i) [x̃j = 1] be the probability of a 1 in
position j when x(i) is shifted by s and then run through the deletion-insertion channel. Let σ be
any probability measure on {0, . . . , d} with expected absolute deviation from its mean γ satisfying∑d

s=0 σ(s)|s− γ| ≤ m1/3. Denote the averages of q(i)
s,j under s ∼ σ by

q
(i)
σ,j :=

d∑
s=0

σ(s)q
(i)
s,j .

Then there is some j = j(x(1),x(2),m, d, σ) < Cfwdm, such that∣∣∣q(1)
σ,j − q

(2)
σ,j

∣∣∣ ≥ exp(−Csepm
1/3) . (2)

The proof uses complex analysis techniques similar to those of De et al. (2017); Nazarov and Peres
(2017); Peres and Zhai (2017). We first derive an exact formula where the bit statistics are expressed

9

SUBPOLYNOMIAL TRACE RECONSTRUCTION

as the coefficients of a particular polynomial. Then we deduce the theorem by applying a result of
Borwein and Erdélyi (1997), which says that the modulus of certain polynomials cannot be too small
everywhere on a small boundary arc of the unit disk.

Applying Theorem 3 with m = O(log n) allows us to determine xk+1, using our estimate τ2 to
f(k∗). We apply the theorem repeatedly with all possible pairs of strings x(1) and x(2), such that the
initial part of the strings are given by x(k∗ : k), and we consider the traces x̃(τ2 + blog4/9 nc :∞).
Using the alignment result of Theorem 2 we can show that the random shift satisfies the assumptions
of Theorem 3 with high probability. If one of the strings x(i) is equal to our input string x, then we
can use (2) to determine from our dexp(M log1/3 n)e traces which of the two input strings is correct.
It is sufficient to consider finitely many candidate strings x(1) and x(2), since strings which differ
only for bits very far out are unlikely to affect the part of the trace we consider.

References

Kazuoki Azuma. Weighted sums of certain dependent random variables. Tôhoku Math. J. (2), 19:
357–367, 1967. ISSN 0040-8735. URL https://doi.org/10.2748/tmj/1178243286.

Tuvgkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing strings
from random traces. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 910–918. ACM, New York, 2004.

P. Borwein and T. Erdélyi. Littlewood-type problems on subarcs of the unit circle. Indiana Univ.
Math. J., 46(4):1323–1346, 1997. ISSN 0022-2518. doi: 10.1512/iumj.1997.46.1435. URL
http://dx.doi.org/10.1512/iumj.1997.46.1435.

A. De, R. O’Donnell, and R. Servedio. Optimal mean-based algorithms for trace reconstruction. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 17,
pages 1047–1056, New York, NY, USA, 2017. ACM.

Geoffrey Grimmett. Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition,
1999. ISBN 3-540-64902-6. URL https://doi.org/10.1007/978-3-662-03981-6.

T. E. Harris. A lower bound for the critical probability in a certain percolation process. Proc.
Cambridge Philos. Soc., 56:13–20, 1960.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist.
Assoc., 58:13–30, 1963. ISSN 0162-1459. URL http://links.jstor.org/sici?sici=
0162-1459(196303)58:301<13:PIFSOB>2.0.CO;2-D&origin=MSN.

Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace reconstruction
with constant deletion probability and related results. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 389–398. ACM, New York, 2008.

Sampath Kannan and Andrew McGregor. More on reconstructing strings from random traces:
insertions and deletions. In Proceedings of the International Symposium on Information Theory
(ISIT), pages 297–301. IEEE, 2005.

10

https://doi.org/10.2748/tmj/1178243286
http://dx.doi.org/10.1512/iumj.1997.46.1435
https://doi.org/10.1007/978-3-662-03981-6
http://links.jstor.org/sici?sici=0162-1459(196303)58:301<13:PIFSOB>2.0.CO;2-D&origin=MSN
http://links.jstor.org/sici?sici=0162-1459(196303)58:301<13:PIFSOB>2.0.CO;2-D&origin=MSN

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Vladimir I. Levenshtein. Efficient reconstruction of sequences. IEEE Trans. Inform. Theory, 47(1):
2–22, 2001a. ISSN 0018-9448. doi: 10.1109/18.904499. URL http://dx.doi.org/10.
1109/18.904499.

Vladimir I. Levenshtein. Efficient reconstruction of sequences from their subsequences or su-
persequences. J. Combin. Theory Ser. A, 93(2):310–332, 2001b. ISSN 0097-3165. doi:
10.1006/jcta.2000.3081. URL http://dx.doi.org/10.1006/jcta.2000.3081.

Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction revisited. In Algorithms—
ESA 2014, volume 8737 of Lecture Notes in Comput. Sci., pages 689–700. Springer, Heidel-
berg, 2014. doi: 10.1007/978-3-662-44777-2 57. URL http://dx.doi.org/10.1007/
978-3-662-44777-2_57.

Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probab. Surv., 6:1–33, 2009. ISSN 1549-5787. doi: 10.1214/08-PS141. URL
http://dx.doi.org/10.1214/08-PS141.

F. Nazarov and Y. Peres. Trace reconstruction with exp(O(n1/3)) samples. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 17, pages 1042–1046,
New York, NY, USA, 2017. ACM.

Y. Peres and A. Zhai. Average-case reconstruction for the deletion channel: subpolynomially many
traces suffice, 2017. To appear in FOCS.

Krishnamurthy Viswanathan and Ram Swaminathan. Improved string reconstruction over insertion-
deletion channels. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 399–408. ACM, New York, 2008.

Appendix A. Proof of main theorem modulo two key results

In this appendix we prove Theorem 1 modulo the two key results (Theorems 2 and 3) presented
above. A set Ξbad of bad input strings depending on n will be specified such that µ(Ξbad) = O(n−2).
Fix n and k and the number N = Nn = dexp(M log1/3 n)e of traces for some constant M to be
determined later. As previously seen, it suffices to give an algorithm, which is allowed to seeN traces
and the correct values of x(0 : k), that produces a guess for xk+1 which is wrong with probability
O(n−3) when x /∈ Ξbad and the traces are drawn from PNx . First we give a alternative definition of
the deletion-insertion channel.

A.1. More formal construction of the channel

Recall thatN = {0, 1, . . . } and that S := {0, 1}N denotes the space of infinite sequences of zeros
and ones. Let Ω = S × [0, 1]N. We denote the first coordinate function on Ω by x := (x0, x1, . . .)
and the second by ω := (ω0, ω1, . . .). Let U be the product uniform measure on [0, 1]N. If ρ is any
measure on {0, 1}N, let Pρ := ρ× U . We denote Px := Pδx and P := Pµ, where µ is the law of
i.i.d. Bernoulli random variables with parameter 1/2.

Fix a deletion probability q and an insertion probability q′ in [0, 1), and recall that p = 1 − q
and p′ = 1 − q′. We can construct the output x̃ = (x̃0, x̃1, . . .) of the deletion-insertion channel

11

http://dx.doi.org/10.1109/18.904499
http://dx.doi.org/10.1109/18.904499
http://dx.doi.org/10.1006/jcta.2000.3081
http://dx.doi.org/10.1007/978-3-662-44777-2_57
http://dx.doi.org/10.1007/978-3-662-44777-2_57
http://dx.doi.org/10.1214/08-PS141

SUBPOLYNOMIAL TRACE RECONSTRUCTION

as a function of x and ω as follows, where we view the trace x̃ as the string x run through the
deletion-insertion channel with randomness ω. Temporarily denote a := q(1 − q′)/(1 − qq′) and
b := q′(1− q)/(1− qq′). For each m ∈ N we define s(m), s′(m) ∈ N inductively as follows, with
s(0) = s′(0) = 0, such that s(m) (resp. s′(m)) represents a position in x (resp. x̃) associated with
the randomness of ω(m).

• If ω(m) ∈ [0, a], then define s(m+ 1) = s(m) + 1 and s′(m+ 1) = s′(m) (deletion).

• If ω(m) ∈ (a, a+ b/2], then set s(m+ 1) = s(m), s′(m+ 1) = s′(m) + 1, and x̃s′(m) = 0
(insertion of 0).

• If ω(m) ∈ (a+b/2, a+b], then set s(m+1) = s(m), s′(m+1) = s′(m)+1, and x̃s′(m) = 1
(insertion of 1).

• If ω(m) ∈ (a+b, 1], then set s(m+1) = s(m)+1, s′(m+1) = s′(m)+1, and x̃s′(m) = xs(m)

(copy).

We justify in Lemma 4 that this version of the deletion-insertion channel is equivalent to the one
given in the introduction of the paper. We remark that these two variants of the deletion-insertion
channel are not equivalent to the variant where we first delete bits and then insert a geometric (minus
1) number of bits in the reduced string: Let x̃i and x̃j be the first and second, respectively, bits of x̃
which were copied from x. For the deletion-insertion channel defined in the introduction, the law of
j − i depends on the distance between x̃i and x̃j in the original string; if x̃i and x̃j were d bits apart
in the original string, then j − i− 1 is the sum of d independent geometric random variables (minus
1). For the variant of the channel where we first delete bits and then insert bits, the law of j − i is
independent of d.

Lemma 4 Given x ∈ S, q ∈ [0, 1), and q′ ∈ [0, 1), the following two procedures to produce the
trace x̃ are equivalent:

(a) First, for each j ≥ 0, before the jth bit of x we insert Gj − 1 uniform and independent bits,
where the independent geometric random variables Gj ≥ 1 have parameter 1 − q′. Then
delete each bit of the resulting string independently with probability q.

(b) Construct x̃ by the inductive procedure described right above, by first sampling ω.

Proof First observe that the procedure (b) is equivalent to the following: First mark each bit in the
original string x independently by either D (delete) or C (copy), and then insert a geometric number
minus one i.i.d. bits before each bit of the original string. The probability of D (resp. C) is equal to
q = a/(1− b) (resp. 1− q) in the first step, and the geometric random variables in the second step
have parameter 1− b = 1− q′(1− q)/(1− qq′).

The procedure (a) can be described as follows: First insert a geometric number of bits before
each bit of x, and then mark all bits in the new string independently by either D (delete) or C (copy).
The geometric random variables have parameter 1 − q′, and the probability of D and C is q and
1− q, respectively. The difference from (b) is that the inserted bits may also be deleted in the second
stage of the process.

To conclude that (a) and (b) are equivalent it is sufficient to show that Z ∼ Bin(G− 1, 1− q)
has the law of a geometric random variable of parameter 1− b = 1− q′(1− q)/(1− qq′) minus one,

12

SUBPOLYNOMIAL TRACE RECONSTRUCTION

where G is a geometric random variable of parameter 1− q′. We verify this by direct calculation, by
considering the moment generating function of Z

E[etZ] = E[(q − (1− q)et)G−1] =

1−q′
1−qq′

1− (1−q)q′
1−qq′ e

t
=

1− b
1− bet

.

Define ψ(j) := sup{t ≥ 0 : s′(t) = j}; in other words, ψ(j) is the bit of ω that determines x̃j .
Now we define some σ-fields and record a strong Markov property. Define Gkj to be the σ-field on

Ω generated by x(0 : k) and {ω(t) : t ≤ ψ(j)}. The differences between the σ-fields Gkj for different
k are irrelevant for Px. We use G′j for G∞j . The σ-field Gkj contains G̃kj := σ(x(0 : k), x̃(0 : j)) but
is strictly larger because it contains information about alignment. For events in σ(ω), we use Pω for
the common value of Px and P for all x.

Let θ be the shift operator on bit strings. Let h(j) be the last bit of x examined by the time x̃j
is produced. Observe that applying θh(j)+1 to x and θψ(j)+1 to ω induces the shift θj+1 in x̃. As
usual, if τ is a stopping time on a filtration {Gj}, then Gτ denotes the σ-field of events A such that
A ∩ {τ ≤ i} ∈ Gi for i <∞.

A.2. Back to the proof of the main theorem

The first key result is Theorem 2, which provides an alignment algorithm. See Appendices B, C,
and D for a proof. Given k < n and presumed values of x(0 : k), the algorithm first defines a
position k∗ < k. Then the algorithm scans each trace and either declares failure (for that trace) or
produces an alignment pointer τ2.

The next lemma follows from the construction of x̃ on the canonical space Ω = S × [0, 1]N.

Lemma 5 (tails of the alignment) Let τ be any stopping time with respect to the filtration {G′t}
and suppose q = q′. Then there exists a constant CRW > 0 depending only on q such that for all
x ∈ S, a ≥ 1, and j ∈ {1, 2, . . . },

Px

[
|g(τ + j)− g(τ)− j| ≥ a | τ <∞

]
≤ exp(−CRWa

2/j). (3)

Proof First note that since {g(j)− j : j ≥ 0} is a mean zero random walk with exponential tails, we
have Px[|g(j)− j| ≥ a] ≤ exp(−CRWa

2/j). The inequality (3) follows from a form of the strong
Markov property, where y = θh(τ)+1x:

Px

[
θh(τ)+1x ∈ A, θψ(τ)+1ω ∈ B|G′τ

]
= Py [y ∈ A,ω ∈ B]

on the event {τ <∞}. This shift induces a shift of τ + 1 on x̃, consequently, conditional on G′τ , on
the event {τ <∞}, {g(τ + j)− g(τ)− j : j ≥ 1} is a mean zero random walk with exponential
tails. Since g(τ + 1)− g(τ) also has exponential tails, removing the conditioning on G′τ proves (3).

13

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Corollary 6 (alignment farther out) Fix any ε > 0. Let s := blog4/9 nc and let E1 be the event
{k∗ ≤ g(τ2 + s) ≤ k∗ + ε log2/3 n}. Then for sufficiently large n,

Px[{τ2 <∞} ∩ Ec1] ≤ 2 exp(−Cfalse log1/3 n)

provided that x /∈ Ξbad.

Proof If τ2 <∞ and E1 fails then at least one of the following four events must occur:

(i) g(τ2)− k∗ ≤ −Calign log1/3 n,

(ii) g(τ2 + s) ≤ g(τ2) + Calign log1/3 n,

(iii) g(τ2)− k∗ ≥ Calign log1/3 n, or

(iv) g(τ2 + s) ≥ g(τ2) + ε log2/3 n− Calign log1/3 n.

The first and third of these events combined have probability at most exp(−Cfalse log1/3 n) by (iv)
of Theorem 2. By Lemma 5, the second and fourth of these together have probability at most
2 exp(−CRW(log4/9 n)/2).

The other key result is Theorem 3, which provides a complex analytic estimate and is proved
in Appendix E. It concerns the result of the deletion-insertion channel after the input is randomly
shifted. Under certain conditions, it is possible to conclude that for some j, the jth bit of the resulting
trace will be a good test for the hypothesis x = x(1) versus x = x(2). The result in its original form
is fashioned after results of De, O’Donnell, and Servedio (2017); Nazarov and Peres (2017); Peres
and Zhai (2017). Under hypotheses on the distribution of the shift, the probabilities under Px(1) and
Px(2) of seeing a one in location j differ by at least exp(−Csepm

1/3).
To transfer Theorem 3 to the recovery setting, we require a modified result that finds the separating

shift j using only the trace.

Corollary 7 (random shift in the trace) Let Csep and Cfwd be as in Theorem 3 and let d and m
satisfy d ≤ m2/3. Fix k∗ ∈ N and let x(1) and x(2) be any two infinite strings of bits such that
x(1)(k∗ : k∗ + d) = x(2)(k∗ : k∗ + d) but x(1)(k∗ : k∗ + m) 6= x(2)(k∗ : k∗ + m). Let τ be a
(possibly infinite) stopping time on the filtration {G′j}. Let E ⊆ {τ <∞} be any event measurable
with respect to G′τ for which

Px(i) [Ec|τ <∞] ≤ exp(−cm1/3) (4)

for some constant c > Csep and i = 1, 2. Suppose also that under Px(i) , the conditional law of h(τ)
given E is supported on {k∗, . . . , k∗ + d− 1} and has expected absolute deviation of no more than
m1/3 from its mean. Then there is a j ≤ Cfwdm depending on x(1), x(2), and the law of h(τ), such
that for any ε > 0 and sufficiently large m = m(ε),∣∣Px(1) [x̃τ+j = 1 | τ <∞]−Px(2) [x̃τ+j = 1 | τ <∞]

∣∣ ≥ (1− ε) exp
(
−Csepm

1/3
)
. (5)

14

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Proof First we state an elementary reduction. Because

|Px(i) [x̃τ+j |τ <∞]−Px(i) [x̃τ+j |E]| ≤ Px(i) [Ec|τ <∞],

it follows from (4) and the triangle inequality that a sufficient condition for (5) is

|Px(1) [x̃τ+j = 1|E]−Px(2) [x̃τ+j = 1|E]| ≥ exp
(
−Csepm

1/3
)
. (6)

Next, observe that the deletion-insertion channel is Markovian with respect to the filtration {G′τ}.
In general, this means that the Px-law of the pair (θh(τ)+1x, θτ+1x̃) is the same as the Pθh(τ)+1-law
of (x, x̃). Specifically,

Px[x̃τ+j+1 = 1 | G′τ] = Pθh(τ)+1x[x̃j = 1] . (7)

Because E ∈ G′τ , this implies that Px[x̃τ+j+1 = 1|E] is a mixture of values Pθsx[x̃j = 1] where
the mixing measure on s is the conditional law of h(τ) + 1 given E, which we denote by σ. Observe
that σ is supported on {k∗ + 1, . . . , k∗ + d} and has absolute deviation at most m1/3 from its mean,
i.e., it satisfies the hypotheses on σ from Theorem 3 with the string x(i)(k∗ + 1 :∞) in place of x(i).
The conclusion (5) of Theorem 3 then implies (6), finishing the proof of the corollary.

We use this corollary to show that traces of strings differing somewhere before position k∗ +m
must have distinguishable marginals in some shifted position τ + j where j ≤ Cfwdm. Let N1 count
successful alignments, that is, N1 := #{i ≤ N : τ (i) <∞}. Without loss of generality, renumber
the traces so that the ones for which τ (i) <∞ come first, that is, τ (i) <∞ iff i ≤ N1. Define

Yj :=
1

N1

N1∑
i=1

x̃
(i)

τ (i)+j
(8)

yj(x) := Ex [x̃τ+j |τ <∞] , (9)

so that Yj gives the empirical frequency of ones that occurred in (shifted) position j and yj(x) gives
the expected value of Yj when the input string is x.

Lemma 8 Suppose x,x′ /∈ Ξbad, with x(0 : k) = x′(0 : k) and x(0 : k∗ +m) 6= x′(0 : k∗ +m).
Let

m := b
(
(8Cavg)3 + Cback

)
log nc, (10)

d := bm2/3c,

and recall that

κ := Csep(8Cavg + C
1/3
back),

so that Csepm
1/3 = κ log1/3 n+ on(1). For sufficiently large n there exists some j ≤ Cfwdm such

that ∣∣yj(x)− yj(x′)
∣∣ ≥ 9

10
exp

(
−Csepm

1/3
)
. (11)

15

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Proof This is just a matter of verifying the hypotheses for Corollary 7. The quantities d and m
were chosen to satisfy d ≤ m2/3. The hypotheses that x(1) and x(2) agree to d bits but not to m bits
follows from k∗ + d ≤ k and k∗ +m > k, which follows from (i) of Theorem 2 and the definition
of m. Let τ = τ2 + s and define E be the event E := {k∗ < h(τ) < k∗ + d}. By definition of E,
the conditional law of h(τ) given E is supported on {k∗, . . . , k∗ + d− 1}.

To see why inequality (4) holds, use Corollary 6 with ε = min{1, (8Cavg)2} to see thatP[Ec|τ <
∞] ≤ 2 exp(−Cfalse log1/3 n)P[τ < ∞]−1 which is at most 2 exp(−(Cfalse − Ctrue) log1/3 n) by
part (iii) of Theorem 2 and therefore by (iv) of Theorem 2 is at most (1/2) exp(−Csep(8Cavg +

C
1/3
back)(1 + ε′) log1/3 n) ≤ (1/2) exp(−Csep(1 + ε′)m1/3) for some ε′ > 0 and sufficiently large n,

proving (4).
Let ν denote the conditional law (Px|E) and let h denote the ν-mean of h(τ). We will show

that
∫
|h(τ)− h| dν ≤ m1/3. Applying the conclusion of Corollary 7 with ε = 1/10 will then finish

the proof by establishing (11) for m ≥ m(ε). Let g denote the ν-mean of g(τ). Then

Eν |h(τ)− h| ≤ Eν |h(τ)− g(τ)|+Eν |g(τ)− g|+ |g − h|. (12)

If x̃τ was copied from x then h(τ) = g(τ). Otherwise, by the strong Markov property, the law of
g(τ) − h(τ) is independent of τ . Therefore the first and third term on the right hand of (12) are
independent of τ and bounded by a constant C ′ > 0 depending only on q and q′. To show that
Eν |h(τ)− h| ≤ m1/3, it is therefore sufficient to bound Eν |g(τ)− g|. Observe that for any random
variable Y and y ∈ R, Jensen’s inequality gives E|y −EY | ≤ E|y − Y | and hence

E|Y −EY | ≤ E|Y − y|+E|y −EY | ≤ 2E|Y − y| .

Applying this with Y := g(τ), y = k∗ + s and P = ν gives

Eν |g(τ)− g| ≤ 2Eν |g(τ)− s− k∗|
≤ 2Eν |g(τ)− g(τ2)− s|+ 2Eν |g(τ2)− k∗|
= 2Eν |g(τ)− g(τ2)− s|+ 2Eν |g(τ2)− k∗|1|g(τ2)−k∗|≤Calign log1/3 n . (13)

By Lemma 5 the first term on the right side isO(s1/2) = O(log2/9 n). Using the fact thatPx[E|τ2 <
∞]−1 ≤ 3/2, the second term is bounded above by

3Ex

[
(g(τ2)− k∗)1|g(τ2)−k∗|≤Calign log1/3 n|τ <∞

]
which is at most 3Cavg log1/3 n by (v) of Theorem 2. This verifies Eν |h(τ)− h| ≤ m1/3 whenever
4Cavg log1/3 n+ 2C ′ ≤ m1/3, which holds by the definition of m for sufficiently large n, finishing
the proof.

Lemma 9 For all x,x′ with x /∈ Ξbad and x(0 : k∗+4n) = x′(0 : k∗+4n), and for all j ≤ Cfwdm,
if n is sufficiently large then∣∣yj(x)− yj(x′)

∣∣ ≤ 1

100
exp

(
−Csepm

1/3
)
. (14)

Proof The conclusion of the lemma follows directly from three easily established facts:

16

SUBPOLYNOMIAL TRACE RECONSTRUCTION

(i) The Px and Px′ laws of τ2 differ in total variation by at most e−CRWn.

(ii) Px[τ2 <∞] ≥ exp(−Ctrue log1/3 n).

(iii) Px′ [τ2 <∞] ≥ 1
2 exp(−Ctrue log1/3 n).

Observe from Lemma 5 that the Px and Px′ laws of x̃(0 : 2n) differ in total variation by at most
e−CRWn. Because τ2 is a stopping time and {τ2 > 2n} = {τ2 = ∞}, the Px and Px′ laws of τ2

differ by at most e−CRWn. These two estimates yield (i). Fact (ii) follows from x /∈ Ξbad and (iii)
of Theorem 2, and fact (iii) follows for sufficiently large n by comparing the Px and Px′ laws of τ2.

Proof [Proof of Theorem 1 when q = q′] Fix k and assume for induction we have identified
x(0 : k). Choose M = 4κ + Ctrue and generate a collection of traces x̃(i), for 1 ≤ i ≤ N :=

dexp(M log1/3 n)e. Let k∗ and {τ (i)
2 : 1 ≤ i ≤ N} denote the result of the alignment algorithm

run on the traces x̃(i). Let m, d, and κ be as in Lemma 8. Recall that s := blog4/9 nc and denote
τ (i) := τ

(i)
2 + s. Clearly τ (i) is a stopping time on {G̃k,(i)j }, which denotes the σ-algebra {G̃kj }

defined above the statement of Theorem 2 for the string x(i).
Assume for now that k ≥ 2Cback log n so that we may apply Theorem 2. The case k ≤

2Cback log n will be handled separately at the end of the proof. By (ii) of Theorem 2, we have
k∗ + d < k, once n is sufficiently large so that (Cback/2) log n > d. Therefore, we may assume we
have identified the first d bits of x(k∗ : n).

Lemma 10 For each j < Cfwdm, the supremum over x /∈ Ξbad of

Px[|Yj − yj(x)| ≥ 1

100
exp(−Csepm

1/3)]

decreases faster than any power of n. Consequently,

Px

[
sup

j≤Cfwdm
|Yj − yj(x)| ≥ 1

100
exp(−Csepm

1/3)

]

also decreases faster than any power of n.

Proof The event {|Yj − yj(x)| ≥ 1
100 exp(−Csepm

1/3)} is in the union of two events A∪B where

A := {N1 < exp(3κ log1/3 n)}

B := {N1 ≥ exp(3κ log1/3 n)} ∩ {|Yj − yj(x)| ≥ 1

3
exp(−Csepm

1/3)} .

The random variable N1 is binomial with parameters dexp(M log1/3 n)e and p(x), the latter which
is at least exp(−Ctrue log1/3 n) by (iii) of Theorem 2. By choice of M , the mean of N1 is at
least exp(4κ log1/3 n). The probability of Bin (n, λ/n) ≤ (3/4)λ decreases exponentially in λ,
uniformly in n. Thus Px(A) decreases exponentially in exp(4κ log1/3 n), hence faster than any
power of n.

On the other hand, Px[B] is a mixture over values of N1 and p of probabilities for a Bin (N1, p)
variable to be at least (1/100) exp(−Csepm

1/3)N1 ≥ (1/200) exp(−κ log1/3 n)N1 away from its

17

SUBPOLYNOMIAL TRACE RECONSTRUCTION

mean. Each of these binomials has variance at most N1 ≥ exp(3κ log1/3 n). The probability for
a binomial of variance V to be at least λV 1/2 away from its mean decays exponentially in λ2,
uniformly in V . Therefore Px[B] is exponentially small in

(
(1/100) exp(−Csepm

1/3)N1

)2
/N1 ≥(

(1/100) exp(−Csepm
1/3)

)2
exp(3κ log1/3 n) ≥ exp(κ log1/3 n), hence also decaying faster than

any power of n.

Continuing the proof of Theorem 1, in the case that q = q′ and k > 2Cback log n, we are now
ready to reconstruct xk+1. Let x|4n ∈ S denote the string x(0 : 4n) padded with infinitely many
zeros. Observe that x|4n ∈ Ξbad if and only if x ∈ Ξbad. Let x∗ denote the true input string. Let
S denote the set of strings x|4n /∈ Ξbad such that x(0 : k) = x∗(0 : k) is the part of the message
already recovered. For each x ∈ S we check whether the values {yj(x) : 0 ≤ j ≤ Cfwdm} all agree
with the corresponding observed variables {Yj : 0 ≤ j ≤ Cfwdm} to within 0.45 exp(−Csepm

1/3).
Let S′ be the random set of all strings x ⊆ S that pass this test. If S′ is nonempty and x(0 : k∗+m)
has a common value for all x ∈ S′, then we declare that this common value reconstructs of all bits
up to position k∗ +m, and in particular, reconstructs xk+1.

Reconstruction of xk+1 fails if either S′ is empty or x(0 : k∗ +m) 6= x′(0 : k∗ +m) for some
x,x′ ∈ S. If x∗ /∈ Ξbad, then x∗|4n /∈ Ξbad. On this event, Lemma 9, Lemma 10, and the triangle
inequality imply that if we have reconstructed the first k bits correctly, then the following holds for
all j ≤ Cfwdm except on an event with probability decaying faster than any polynomial in n

|Yj − yj(x∗|4n)| < 0.44 exp(−Csepm
1/3). (15)

Hence when x∗ /∈ Ξbad, reconstruction fails due to empty S′ with probability smaller than any
power of n. But also, if x′ /∈ Ξbad and x′(0 : k∗ + m) 6= x∗(0 : k∗ + m), then applying
Lemma 8 to x′|4n produces a j such that (11) holds. Together with Lemmas 9 and 10, this implies
|Yj − yj(x′|4n)| > 0.45 exp(−Csep log1/3m) except on an event whose probability decays faster
than any power on n. Thus x′ /∈ S′. This shows that the probability of failure at step k and success
up until step k is bounded from above by the probability of x ∈ Ξbad plus a quantity decreasing
faster than any polynomial in n, finishing the proof in the case k ≥ 2Cback log n.

Finally, if k ≤ 2Cback log n, we work directly with the first m′ := b2Cback log nc bits. Applying
Theorem 3, with m′ in place of m and no shift (d = 0), any two distinct strings x and x′ of length
m′ lead to bit statistics differing in some bit, j ≤ Cfwdm

′, by at least ε := exp(−Csep(m′)1/3) =

(1 + on(1)) exp(−21/3CsepC
1/3
back log1/3 n). Increasing M if necessary, exp(M log1/3 n) > ε−2

and therefore this many traces suffice to pick out the correct initial string except with probability
exponentially small in ε−1, hence o(n−2).

Proof [Proof of Theorem 1 when q 6= q′] The proof of the theorem proceeds in exactly the same
manner q 6= q′. The main difference is that our test T takes as input strings w and w̃ which satisfy
|w̃| = d|w|q/q′e, instead of strings of equal length. The factor q/q′ is chosen since the trace obtained
from a string of length ` ∈ N has expected length `q/q′. The test is defined exactly as before, except
that the length of the blocks in the trace is scaled by q/q′.

Appendix B. The test

In the remainder of the paper we assume that q = q′. In this appendix we give the formal definition
of the test T . We also prove some estimates related to the problem of finding appropriate intervals

18

SUBPOLYNOMIAL TRACE RECONSTRUCTION

for the alignment, and some estimates for the probability of getting false positives and true positives
with our test.

B.1. Simplified test

This appendix is expository, describing a simplified version T0 of the test T so that the main ideas
can be outlined and motivated. The test is designed to answer whether a block w̃ of length ` in a
trace is likely to have come from a block w of the same length in the already recovered part of the
input. The test involves subdivision into blocks of size approximately λ ≤

√
`. We will use the term

window to denote an interval of positions of size ` on which a test is being run and the term block
to denote the sub-intervals of size approximately λ within an `-window. For specificity we define
the right endpoints of the blocks {ui} given the values of k, ` and λ ≤

√
`. Let d1 := d`/λe denote

the number of blocks and for 0 ≤ i ≤ d1 define ui := k − `+ di`/d1e. Because λ ≤
√
` ≤ d1, this

definition makes {(ui−1, ui] : 1 ≤ i ≤ d} a partition of (k − `+ 1, . . . , k] into consecutive intervals
of length λ or λ+ 1.

We will need to run tests for pairs (`, λ) on several different scales, namely of order (log5/3 n, log2/3 n)
and (log1/3 n, 1), in addition to scales where the first parameter ` has been multiplied by a small
constant. For this reason ` and λ remain parameters instead of being defined as fixed quantities in
terms of n.

Given strings w := x(u0 + 1 : ud1) = x(k − ` + 1 : k) and w̃ := x(u′0 + 1 : u′d1) (with
u′0, . . . , u

′
d1

defining a partition of a length ` window, similarly as u0, . . . , ud1) of length `, for
1 ≤ i ≤ d1 we let

si :=

ui∑
j=ui−1+1

(2xj − 1)

s̃i :=

u′i∑
j=u′i−1+1

(2x̃j − 1) . (16)

Thus, si > 0 (resp. si < 0) if and only if the majority of the bits in message block i are ones (resp.
zeros), and s̃i is the analogous majority for trace block i. For some appropriately chosen c ∈ (0, 1)
define

T0(w, w̃) =


1 if

d`/λe∑
i=1

sign(si) · sign(s̃i) > c`/λ,

0 otherwise.

The game plan is roughly this. Pick a window length ` and let w be the assumed already recovered
bits in the interval [k − `+ 1, k]. Let w̃ be the trace bits in a window that slides from left to right.
Wait until the test T produces a positive result, and declare the right endpoint location to be the
estimate τ of f(k). If the window slides to the end with no match, set τ =∞ and call this a negative
test result; when τ <∞, a true positive is defined to be the event that τ estimates f(k) to within a
certain constant multiple of log1/3 n; a false positive is when τ <∞ but τ does not estimate f(k) to
the desired accuracy; the algorithm knows when τ <∞ but does not know whether a positive is true
or false. All of the work occurs in getting separation between the false and true positive rates.

The way we bound the true positive rate from below is via those traces in which the λ-blocks
stay unusually well aligned. By Lemma 12 below, this occurs with probability exp(−Θ(`/λ2)) in

19

SUBPOLYNOMIAL TRACE RECONSTRUCTION

each case. When this occurs, for most blocks i, a constant fraction of the bits in the trace were copied
from the corresponding block in the input string. On this event, by and by choosing c sufficiently
small, we will have T0(w, w̃) = 1 with high probability.

To bound the false positive rate from above is more work because there are more ways that this
can happen. One is that the right end of the window is off by more than the desired tolerance, but not
too much more, and due to random fluctuations, most of the `-window is actually well aligned (see
Figure 5). We bound this probability from above in Lemma 14. Another way this can happen is that
w̃ comes from a different substring ŵ of the input but w and ŵ happen to be very similar. This is
the hardest aspect to deal with because in fact there will be pairs of identical substrings of length
Θ(log n) in the input. When k is the right endpoint of an `-window that is too similar to another
nearby `-window, we have no choice but to try to align at a slightly different location, k∗. Much of
the work in the previous appendix was the adaptation of results of Peres and Zhai (2017); Nazarov
and Peres (2017); De, O’Donnell, and Servedio (2017) to show that aligning at k∗ is good enough
to complete the argument. Appendix B.5 formulates a criterion for a position k∗ in the message
string to mark the right end of an `-window sufficiently dissimilar from all other `-windows whose
right endpoint is near and left of k. Appendix C then shows that one can find a k∗ = k −Θ(log n)
satisfying this criterion. The last way for a false positive to occur is by pure chance: w̃ comes from
an input segment looking nothing like w but the number of sign matches is great enough so that
T0(w, w̃) = 1. The probability of this is bounded from above by an elementary large deviation
computation.

B.2. Estimates involving ω but not x

The values of f(t)− t form a mean zero random walk, as do the values of g(s)− s. This random
walk depends only on ω, not x. It may be helpful when discussing alignment to keep in mind that
plugging in g(i) for j in f(j) − j yields f(g(j)) − g(j) which is nearly identical to j − g(j), so
there are multiple ways of defining the closeness of alignment; we will use the most convenient at the
time. The following is a useful formulation for whether the various blocks within a window remain
aligned roughly the way they are aligned at the right endpoint.

Definition 11 Fix a position k, a window length ` and a block length λ and let d1 and {ui : 0 ≤ i ≤
d1} be as in the beginning of Appendix B.1. Say that a trace is λ-aligned in the interval [k− `+ 1, k]
if for all j ∈ {1, . . . , `} such that

f(g(j + f(k)− `)) = j + f(k)− ` and k − f(k) + ui−1 < j ≤ k − f(k) + ui,

it holds that
g(j + f(k)− `) ∈

[
ui−1 −

λ

100
, ui +

λ

100

]
.

Informally, if some bit in the ith block of the trace was copied from the input string, then this bit has
distance at most λ/100 from the ith block of the input string.

Lemma 12 There exists a c ∈ (0, 1) depending only on q, such that for all ` ∈ N, k ∈ {`, `+1, . . . },
and λ ∈ {dc−1e, . . . , b`1/2c}, the probability that the trace is λ-aligned in [k − `+ 1, k] is at least
exp(−`/(10cλ2)).

20

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Proof We will prove a stronger result, namely that the random walk (Xj)1≤j≤` satisfies the following
with probability at least exp(−`/(2cλ2))

|Xj | < λ/200, ∀j ∈ {1, . . . , `} Xj := g(j + f(k)− `)− (j + k − `). (17)

Divide the interval [0, `] into d`/λ2e intervals of length λ2 or λ2 − 1. We say that X is well-aligned
in one of these intervals [t1, t2] if |Xj | < λ

200 for all j ∈ [t1, t2] and |Xt2 | < λ
400 . By Donsker’s

theorem, on each of the d`/λ2e intervals the process (mα)−1/2Xdmte converges in law to a standard
Brownian motion as m→∞. Therefore, given that X is well-aligned in the first m− 1 intervals, it
is well-aligned in the mth interval with uniformly positive probability. If X is well aligned in all
intervals, then the desired property (17) holds, finishing the proof.

The interval in our second alignment step (recalling the description at the end of Section 3) will
be chosen in order to minimize the probability of false positives. The following event E`;k,k′ will
help us to distinguish false positives caused by the deletions and insertions ω, from false positives
caused by particular patterns in the input string x. See Figure 5 for an illustration of the complement
Ec`;k,k′ of the non-overlapping event.

Definition 13 Given `, k ∈ N and k′ ∈ Z we say that the non-overlapping event E`;k,k′ occurs if
k, k′ ≥ `− 1, and if either

(i) f(k − i)− (k′ − i) >
√
` for i = 0, . . . , `, or

(ii) f(k − i)− (k′ − i) < −
√
` for i = 0, . . . , `.

Lemma 14 For c ∈ (0, 1) sufficiently small depending only on q,

Pω[Ec`;k,f(k)+j] ≤ c
−1 exp(−10cj2/`). (18)

Proof The sequence (f(k − i)− (f(k)− i))0≤i≤` is a centered random walk with i.i.d. increments,
and upon rescaling time by ` and space by

√
` it converges to a Brownian motion of duration 1.

Therefore we may bound the probability by considering sup0≤t≤1 |Bt|, which has Gaussian tails.

B.3. Clear robust bias and the real test

Let ` ∈ N, C1 ≥ 1, c1 > 0, and λ ∈ {2, . . . , b`1/2c}. Given a string x ∈ S and a trace x̃ ∈ S
we will define a function T = T λ,C1,`,c1

x,x̃ : {`, `+ 1, . . . }2 → {0, 1}, which indicates for each pair
k, k′ ≥ ` whether we are likely to have f(k) = k′. Recall d1 = d`/λe and the intervals (ui−1, ui],
1 ≤ i ≤ d1. The robust bias of the block x(ui−1 + 1 : ui) is defined by

λ−1/2 inf
t1, t2 ∈ N :

|t1 − ui−1| < λ/100
|t2 − ui| < λ/100

∣∣∣ t2∑
j=t1

(2xj − 1)
∣∣∣. (19)

We say that a block has a clear robust bias if its robust bias is at least 1. See Figure 6 for an
illustration. For some θ ∈ (0, 1/10) let I1 ⊂ {1, . . . , d1} be the dθd1e blocks for which the robust
bias is largest (with draws resolved in some arbitrary way). By Donsker’s Theorem, for θ sufficiently

21

SUBPOLYNOMIAL TRACE RECONSTRUCTION

small and λ sufficiently large compared to θ, it holds with high probability for large ` that all blocks
in I1 have a clear robust bias. We fix such a choice of θ as follows for B a standard Brownian motion

θ :=
1

10
P

[
inf

t1∈[0,1/50],t2∈[1,1+1/50]
|Bt2 −Bt1 | > 1

]
> 0 . (20)

1

λ−1/2
∑

j(2xj − 1)

uiui−1

Figure 6: The length of the vertical arrow describes the robust bias associated with the block x(ui−1 + 1 : ui).
The curve represents the partial sums λ−1/2

∑
j(2xj − 1), renormalized to equal 0 at ui−1. We say that the

robust bias is clear if it is at least 1, such as shown in the given example.

Define T1 = T λ,`,c11;x,x̃ : Z2 → {0, 1} by

T1(k, k′) =

1 if k′, k ≥ `− 1 and
∑
i∈I1

sign(si) · sign(s̃i) > c1|I1| ,

0 otherwise.
(21)

Define d2 := d`/(λC1)e, and let I2 ⊂ {1, . . . , d1} be the set consisting of the dθd2e blocks
which are contained in x(k − d`/C1e + 1 : k) and which have the largest robust bias. Define
T2 = T λ,C1,`,c1

2;x,x̃ : Z2 → {0, 1} by

T2(k, k′) =

1 if k′, k ≥ `− 1 and
∑
i∈I2

sign(si) · sign(s̃i) > c1|I2|,

0 otherwise.

Definition 15 Define T = T λ,C1,`,c1
x,x̃ : Z2 → {0, 1} by

T (k, k′) := T1(k, k′) ∧ T2(k, k′).

Note that the value of T λ,C1,`,c1
x,x̃ (k, k′) depends on x and x̃ only on the windows x(k − ` + 1 : k)

and x̃(k′ − `+ 1 : k′), respectively.

The purpose of requiring both T1(k, k′) = 1 and T2(k, k′) = 1 is the following. We require
T1(k, k′) = 1 since this condition makes it very unlikely that the test gives false positives, due to
the large number of blocks used in the test T1. However, if we had only required T1(k, k′) = 1 (not
also T2(k, k′) = 1) the long length ` of the string would have made it rather likely that |f(k∗)− τ2|
equals a large multiple of log1/3(n) in the second alignment step, due to the effect described in
Figure 5. We require T2(k, k′) = 1 to make sure that |f(k∗)− τ2| is typically not more than a small
constant multiple of log1/3(n), on the event that we have a true positive test.

22

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Lemma 16 Let K1 ∈ σ(ω) be the event that the trace is λ-aligned in [k − ` + 1, k]. There are
δ, λ0, c1 > 0 depending only on q such that for all C1 ≥ 1, we have Px

[
T λ,C1,`,c1(k, f(k)) =

1|K1

]
≥ δ when λ > λ0 and x is such that all the blocks in I1 and I2 have clear robust bias.

Proof Let j1(i) (resp. j2(i)) denote the position of the first (resp. last) bit in x that was copied to
a position in block i of x̃. Let mi denote the number of bits in block i of x̃ that were copied from
x̃. Let H be the σ-field containing each j1(i), j2(i) and mi for all i ≤ d1. Observe that K1 ∈ H.
Under Px, conditional on H, the λ + 1 −mi or λ −mi non-copied bits in the ith block of x̃ are
all inserted bits, therefore are i.i.d. mean zero Rademacher variables (and independent as i varies as
well). Their sum is well approximated by a normal with mean zero and variance λ−mi.

Fix i and without loss of generality assume si > 0, which if the ith block has clear robust bias
implies si > λ1/2. Conditioned onH, the copied bits in the ith block are j1(i) and j2(i) together with
mi− 2 locations uniformly chosen from among all size (mi− 2) subsets of Z∩ [j1(i) + 1, j2(i)− 1].
On K1, we know j1(i) and j2(i) are within λ/100 of ui−1 and ui respectively, and when the
ith block of x has clear robust bias, the number of positive bits of x in this range is at least
(j2(i)− j1(i) + 1 + λ1/2)/2. Therefore the sum of the copied values of 2xj − 1 is approximately
normal with mean at least miλ

−1/2 and variance mi, independently of the sum of the non-copied
bits.

Adding the copied and non copied bits gives approximately a normal with mean at least miλ
−1/2

and variance λ. We know that mi > λp/2 with probability tending to 1 as λ→∞. Therefore, when
all the blocks in I1 and I2 have clear robust bias, there is a λ0 and a c1 > 0 such that for all λ > λ0,
Px[sign(si) = sign(s̃i) > 0] ≥ 1/2 + c1. Furthermore under Px, this holds independently over
all the blocks. In this case the expected sum over i ∈ I1 of sign(si) · sign(s̃i) is at least 2c1|I1|,
conditional on H, when K1 holds. By Markov’s inequality, we obtain a positive lower bound δ0

on Px[T1(k, f(k)] = 1|H) when K1 holds. The same holds for T2, and furthermore, by the Harris
inequality3 Harris (1960); Grimmett (1999),

Px

[
T1(k, f(k)) = 1 and T2(k, f(k)) = 1|H

]
≥ Px[T1(k, f(k)) = 1|H]

· Px[T2(k, f(k)) = 1|H],

because we consider increasing events in conditionally independent variables sign(si) · sign(s̃i).
Taking δ = δ2

0 and removing the conditioning onH finishes the proof.

B.4. Choice of constants

The test T and a number of events used in its analysis depend on the parameter C1. Throughout the
remainder of Appendix B, the constant C1 remains as a free parameter. To make the arguments in
the rest of the paper more transparent, we discuss in advance what relationship is needed between C1

and the constants in Theorem 2, and what choices will be made to ensure the necessary inequalities.
A constant c̃� 1 will be small enough to be a witness for c in Lemmas 12 and 14 as well as ensuring
some properties of the the random walks {g(j)} and {f(j)}. The constant C1 will be sufficiently
large to ensure that a number of other asymptotic behaviors have kicked in. In particular, we will

3. Recall that the Harris inequality says the following: Let d ∈ N, let S = (S1, . . . , Sd) be a collection of independent
real-valued random variables, and let f and g be increasing functions of S, i.e., f(s1, . . . , sk) ≥ f(s′1, . . . , s

′
k) if

s1 ≥ s′1, . . . , sk ≥ s′k, and similarly for g. Then E[f(S)g(S)] ≥ E[f(S)]E[g(S)].

23

SUBPOLYNOMIAL TRACE RECONSTRUCTION

take C1 = 64c̃−12. A constant CBIG will then be chosen that is large compared to C1. The constants
in Theorem 2 will be chosen as follows.

Cback = 5CBIG

Calign =
1

10
CBIG

Ctrue =
2c̃−1

C
10/3
1

CBIG

Cfalse =
c̃

2C
5/3
1

CBIG

Cavg =
2

C2
1

CBIG

With CBIG � C1 � c̃−1 � 1, the necessary inequalities will then result from the relation between
the powers of C1 in Ctrue, Cfalse, and Cavg. We conclude this subsection by specifying C1 and c̃(q).

Definition 17 In the remainder of the paper let θ ∈ (0, 1/10) be given by (20), let c1 ∈ (0, 1/10)
be as in Lemma 16, let C1 = 64c̃−12 with c̃ as we define next, and let c̃ > 0 be a constant depending
only on q and which is sufficiently small such that following properties hold.

(i) c̃ is smaller than the values of c in the conclusion of Lemmas 12 and 14,

(ii) c̃ ≤ c2
1θ/10,

(iii) recalling (19), the probability that the robust bias of the block x(ui−1 + 1 : ui) is clear is at
least 4θ when λ ≥ (10c̃)−1, and the constant λ0 from Lemma 16 satisfies λ0 < (10c̃)−1,

(iv) Var(g(1)− g(0)) ≤ (10c̃)−1,

(v) Pω[f(1)− f(0) > `] ≤ exp(−10c̃`) andPω[|f(k+u)− f(k)−u| ≥ a] ≤ exp

(
−10c̃a2

u

)
for any u ∈ {1, 2 . . . }, and

(vi) 2/c̃3 − c̃15/8 > 7Csep.

B.5. Estimates related to the test T

In the remainder of the appendix we prove various estimates related to the test T . The following
lemma will be used to lower bound the probability that the test gives true positives, i.e., it will be
used to lower bound Px[T (k, f(k)) = 1].

In Definitions 18 and 20 below we define two events Q(k, k̂) andH(k). These are measurable
with respect to x, that is, they depend only on the input; their definitions contain probabilities with
respect to the channel but do not depend on the sample ω. They depend on the parameters λ and `;
additionallyH(k) depends on C1. When we choose an interval for alignment, we will require that
the right end-point k∗ satisfies H(k∗) and Q(k∗, k̂) for all k̂ in a given interval. From this we will
deduce an upper bound for the probability of false positives and a lower bound for the probability
of true positives. Occurrence of the event Q(k, k̂) ensures that the `-windows in x̃ ending between
f(k̂) and f(k̂ + 1) are sufficiently different from x(k∗ − `+ 1 : k∗) that the test T (k, i) is unlikely
to give a positive result when i is close to f(k̂) instead being close to f(k), as desired; see Figure 7.

24

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Definition 18 For a fixed string x ∈ S , ` ∈ N, λ ∈ {1, . . . , b`1/2c}, and k, k̂ ≥ 2`, define the event
Q(k, k̂) = Qλ,`x (k, k̂) to hold when

Px[E] < e−c̃`/λ,

where

E :=

{
f(k̂+1)⋃
i=f(k̂)

{T1(k, i) = 1} ∩ E`;k,i ; |g(i)− g(i− `)| < 11`/10

}
.

Remark The event Q(k, k̂) is measurable with respect to x(k − `+ 1 : k) and x(k̂ − b11`/10c :
k̂ + 2). This ensures independence of the events Q(k1, k̂1) and Q(k2, k̂2) when k1 and k̂1 are
sufficiently far from k2 and k̂2. We will use this independence property and the following lemma to
argue that with high probability we can find a k∗ in a given interval such thatQ(k∗, k̂) occurs for all
k̂ in a given larger interval.

Lemma 19 Define the σ-field Gk,` by

Gk,` = σ(xi : i 6∈ {k − `+ 1, . . . , k}) .

Then for all λ > 3 and ` sufficiently large,

µ
[
Qλ,`x (k, k̂)c | Gk,`

]
≤ exp(−c̃`/λ). (22)

Proof Observe that Q(k, k̂)c = {Px[E] ≥ exp(−c̃`/λ)}. We will show that for ` sufficiently large,

P[E | Gk,`] ≤ exp(−2c̃`/λ) . (23)

This is sufficient to complete the proof, because Markov’s inequality and the identityE[Px[E] | Gk,`] =
P[E | Gk,`] give

µ
[
Q(k, k̂)c | Gk,`

]
≤
P[E | Gk,`]

exp(−c̃`/λ)
≤ exp(−c̃`/λ) .

k̂

f(k̂) f(k∗)

k∗

k′

[
`

C1λ3/5 ,
`
10

]

f f f

w2

length in

Figure 7: The right end-point k∗ of the interval used in the second alignment step is (roughly speaking)
chosen such that Px[T1(k∗, f(k̂)) = 1] ≤ exp(−c̃`/λ), Px[T2(k∗, k

′) = 1] ≤ exp(−c̃`/(C1λ
6/5)), and

Px[T (k∗, f(k∗)) = 1] ≥ exp(−`/(c̃λ2)). See Definitions 18 and 20 for the precise requirements.

25

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Assume k̂ < k; the case k̂ ≥ k can be treated similarly. Let i1, . . . , i|I1| be an enumeration of
the elements of I1 in increasing order. Let i0 = k − `. Define the filtration Fj , j = 0, . . . , |I1|, by

Fj = σ(ω,x(0 : ij),x(k + 1 :∞), I1) .

Observe that F0 = σ(ω,Gk,`). For fixed i ∈ N let M = (Mj)j∈{0,...,|I1|} be the stochastic process
defined by the partial sums in (21), with f(k̂) + i being the right end-point of the considered interval
of the trace, i.e., M0 = 0, and for j = 1, . . . , |I1|,

Mj =

j∑
j′=1

sign
(
sij′ (k, `, λ)

)
· sign

(
s̃ij′ (f(k̂) + i, `, λ)

)
,

where sij′ (k, `, λ) and s̃ij′ (f(k̂) + i, `, λ) are defined as in (16). Observe that for each fixed i, the
sequence {Mj1E

`;k,f(k̂)+i
: 0 ≤ j ≤ |I1|} is a martingale on the filtration Fj with increments

bounded in magnitude by 1. The martingale property follows from the fact that E
`;k,f(k̂)+i

∈ σ(ω),
that s̃ij ∈ Fj−1 on the non-overlapping event E

`;k,f(k̂)+i
, and that sign(sij) has expectation zero

given Fj−1. The Azuma-Hoeffding inequality (Hoeffding (1963); Azuma (1967)) therefore gives
P[Mj1E

`;k,f(k̂)+i
≥ t] ≤ exp(−t2/(2j)). With t = c1|I1| and j = |I1| we may compute t2/(2j) =

c2
1|I1|/2 = c2

1θ`/(2λ), whence

P

[
T1(k, f(k̂) + i) = 1; E

`;k,f(k̂)+i
| Gk,`, ω

]
= P

[
M|I1| > c1|I1|; E`;k,f(k̂)+i

| Gk,`, ω
]
(24)

≤ exp(−c2
1θ`/(2λ)) < exp(−3c̃`/λ),

where the last inequality follows from part (ii) of Definition 17. Define I ′ = |{f(k̂), . . . , f(k̂+ 1)}|.
The inequality (23) now follows from a union bound, using part (v) of Definition 17 and (24) in the
third inequality, with the last inequality following when ` is sufficiently large from λ ≤ `1/2.

P[E | Gk,`] ≤ P

f(k̂+1)⋃
i=f(k̂)

{T1(k, i) = 1} ∩ E`;k,i
∣∣∣Gk,`


≤ P[|I ′| > ` | Gk,`] +

`−1∑
i=0

P

[
T1(k, f(k) + i) = 1 ;E

`;k,f(k̂)+i
| Gk,`

]
≤ exp(−c̃`) + ` exp(−3c̃`/λ) < exp(−2c̃`/λ) .

Part (i) of the event H(k) defined just below will ensure that the probability of true positives
is sufficiently large. Part (ii) of the event will be used to bound from above the probability that
|τ2 − f(k∗)| > c log1/3 n for some small constant c.

Definition 20 Let x ∈ S, ` ∈ N, λ ∈ {1, . . . , b`1/2c}, C1 ≥ 1, and k ≥ 2`. Define the event
H(k) = Hλ,C1,`

x (k) ∈ σ(x) to occur if

(i) Px[T (k, f(k)) = 1; |f(k)− f(k − b11`/10c)| > `] > exp(−`/(2c̃λ2)), and

26

SUBPOLYNOMIAL TRACE RECONSTRUCTION

(ii) for I ′ = I ′1 ∪ I ′2 with

I ′1 :=
{
k′ ∈ N : g(k′) ∈ {k − b`/10c, . . . , k − b`/(C1λ

3/5)c}
}
,

I ′2 :=
{
k′ ∈ N : g(k′) ∈

{
k + b`/(C1λ

3/5)c, . . . , k + b`/10c
}}

,

we have

Px

[⋃
k′∈I′
{T2(k, k′) = 1} ∩ {|f(k − b`/10c − 1)− f(k − `− 2b`/10c)| > `}

]
< exp(−c̃`/(C1λ

6/5)).

Remark In factH(k) is measurable with respect to x(k − `− 2b`/10c : k + b`/10c).

Lemma 21 For ` ∈ N sufficiently large, λ ∈ {10dc̃−1e, . . . , b`1/2c}, and C1 ≥ 1,

µ
[
Hλ,C1,`

x (k)c
]
< exp(−c̃`/(C1λ)). (25)

Proof We verify separately that each property (i) and (ii) of Definition 20 fail on a set of µ-measure
at most half the quantity on the right-hand side of (25). We claim that (i) holds whenever all blocks
in I1 and I2 have clear robust bias. To see this let K1 be the event that the trace is λ-aligned in
[k − `+ 1, k], and let K2 be the event that |f(k)− f(k − b11`/10c)| > `. Then

Px[T (k, f(k)) = 1] ≥ Px(K1)Px[T (k, f(k)) = 1|K1].

Lemma 12 gives usPx[K1] ≥ exp(−`/(10c̃λ2)) and Lemma 16 gives usPx[T (k, f(k)) = 1|K1] ≥
δ when all the blocks in I1 and I2 have clear robust bias. Thus, when all the blocks have clear robust
bias,

Px[T (k, f(k)) = 1;K2] ≥ δ exp

(
− `

10c̃λ2

)
−Px[Kc

2] .

By part (v) of Definition 17 and the hypothesis λ ≥ 10c̃−1 gives

P [|f(k)− f(k − b11`/10c)| ≤ `] ≤ P [|f(k)− f(k − b11`/10c)− (11`/10)| ≥ `/10]

≤ exp

(
−10c̃(`/10)2

12`/10

)
= exp

(
− c̃`

12

)
≤ 1

2
exp

(
− `

c̃λ2

)
,

proving the claim.
To see that all blocks in I1 and I2 have clear robust bias except on a set of µ-measure at most

half the right side of (25), we require the following large deviation bound for binomial variables:

P[Bin (n, 4θ) ≤ 2θn] ≤ exp(−2(1− ln 2)nθ) < exp(−nθ/2) . (26)

27

SUBPOLYNOMIAL TRACE RECONSTRUCTION

To derive this, begin with the well-known Kullback-Leibler bound for Z ∼ Bin (n, p) and r ≤ p,

1

n
logP[Z ≤ rn] ≤ r log

p

r
+ (1− r) log

1− p
1− r

,

which may be obtained, for instance, by applying Markov’s inequality with EeλZ = (1− p+ peλ)n

and λ = log(r/p)− log((1− r)/(1− p)). Plugging in p = 4θ and r = 2θ yields, for θ < 1/4,

1

n
logP[Bin (n, 4θ) ≤ 2θn] ≤ h(θ) := log

1− 4θ

1− 2θ
+ 2θ log

2− 4θ

1− 4θ
.

Observing that h′(0) = −2(1− ln 2) < −1/2 and h′′ < 0 on (0, 1/4) then establishes (26).
Each block has a clear robust bias with probability at least 4θ by part (iii) of Definition 17 and

the requirement λ > 10c̃−1. Furthermore, the event that this holds is independent for any pair of
blocks which are not adjacent. Applying (26) to the `/(2λC1) even numbered blocks from among
which I2 was chosen shows that at least θ`/(λC1) of these, hence all blocks in I2, have clear robust
bias except on an event of probability at most exp(−θ`/(4λC1)) < exp(−2c̃`/(C1λ)). For I1 the
same bound holds without the factor of C1 in the denominator. These negative exponents are both at
least twice the negative exponent on the right side of (25), therefore sum to at most half the right side
of (25) once ` is sufficiently large.

Now we consider (ii) of Definition 20. Let k′1 (resp. k′2) be the largest (resp. smallest) element
of I ′1 (resp. I ′2), and define d = b`/(2C1λ

3/5)c. Recalling Definition 13 and Lemma 14, we have for
` sufficiently large,

P[Ecb`/C1c,k,k′1
] ≤ P

[
Ecb`/C1c,k,f(k)−d

]
+P[|f(k)− k′1| < d]

≤ c̃−1 exp(−10c̃d2C1/`) + exp(−c̃d)

< c̃−1 exp(−2c̃`/(C1λ
6/5)) .

Similarly, P[Ecb`/C1c,k,k′2
] ≤ c̃−1 exp(−2c̃`/(C1λ

6/5)). We also have P[|I ′| ≥ `] < exp(−c̃`) and
P[f(k) ≥ k′2] = P[f(k) = f(k + d)] ≤ exp(−10c̃d), where the last inequality follows from part
(v) of Definition 17. Define the event E ∈ σ(ω) by

E = Eb`/C1c,k,k′1 ∩ Eb`/C1c,k,k′2 ∩
{∣∣I ′∣∣ < `

}
∩ {f(k) < k′2},

and observe that

P[Ec] = Px[Ec] < 3c̃−1 exp(−2c̃`/(C1λ
6/5)). (27)

By a union bound,

Px

[⋃
k′∈I′
{T2(k, k′) = 1} ∩ {|f(k − b`/10c)− f(k − `− 2b`/10c)| > `}

]

≤ Px

[⋃
k′∈I′
{T2(k, k′) = 1}

]

≤ Px[Ec] +

`−1∑
j=0

Px

[
T2(k, k′2 + j) = 1; E

]
+Px

[
T2(k, k′1 − j) = 1; E

]
.

(28)

28

SUBPOLYNOMIAL TRACE RECONSTRUCTION

We bound the first term on the right side of (28) by (27). To bound the other terms on the right
side of (28), observe that the event Eb`/C1c,k,k′2 ∩ {f(k) < k′2} can occur only via (i), not (ii), in
Definition 13. Thus Eb`/C1c,k,k′2 implies Eb`/C1c,k,k′2+j for j ∈ {0, . . . , `− 1}. This implies that no
bit of the original string was copied to the respective block of the trace. Repeating the martingale
argument in the proof of Lemma 19, Azuma’s inequality gives

P
[
T2(k, k′2 + j) = 1; E

]
≤ exp

(
− (c1|I2|)2/(2|I2|)

)
≤ exp

(
− c2

1`θ/(2.1λC1)
)
≤ exp(−4c̃`/(C1λ)).

(29)

Markov’s inequality gives further that except on a set of µ-measure exp(−2c̃`/(C1λ)) we have

Px

[
T2(k, k′2 + j) = 1; E

]
≤ exp(−2c̃`/(C1λ)).

A similar result holds for the terms on the form Px [T2(k, k′1 − j) = 1; E] on the right side of (28).
Therefore, except on an event of µ-measure 2` exp(−2c̃`/(C1λ)) < exp(−c̃`/(C1λ)) for ` suffi-
ciently large, we have

Px

[⋃
k′∈I′
{T2(k, k′) = 1} ∩ {|f(k − b`/10c)− f(k − `− 2b`/10c)| > `}

]
≤ 3c̃−1 exp(−2c̃`/(C1λ

6/5)) + 2` exp(−2c̃`/(C1λ)) ≤ exp(−c̃`/(C1λ
6/5)).

Appendix C. Existence of good positions

Several more technical lemmas and a somewhat intricate definition are needed to finish proving
Theorem 2. To motivate these, we first describe the rest of the proof. The determination of (k∗, τ2)
begins with construction of the rough approximation, τ1.

Set ` = Θ(log5/3 n), λ = b`2/5c = Θ(log2/3 n), and the constant C1 to the value chosen in
Appendix B.4. Slide an `-window from left to right in the trace until the test T (k − 9CBIG log n, k′)
produces a value of 1, and let τ1 be the value of k′ at which this first occurs. Define τ1 to be∞ if this
fails to occur for all k′ ≤ 2n.

What we need from τ1 is that the true positive rate for aligning within 9CBIG log n is at least
exp(−c log1/3 n) and that the false positive rate is at most a similar but smaller function of the same
form, exp(−C log1/3 n) for C � c. However, and this is crucial, we need this to hold not only in
the space Pµ but in the space Px for all strings x other than those in a “bad” set which must have
measure o(1/n) and therefore be much smaller than exp(−Θ(log1/3 n)).

Conditioning on a positive alignment τ1 ≈ f(k − 9CBIG log n), we now retest to find an
alignment of a carefully chosen position k∗, accurate to within Θ(log1/3 n). Set ` = Θ(log1/3 n)
and λ = Θ(1), with the same value of C1 as before. With ` this small, we can no longer expect most
strings x to be free of bad spots where the proportion of traces producing false positive alignments is
intolerably high. For this reason, we will find a k∗ ∈ [k−5CBIG log n, k−4CBIG log n] such that we
can run the test T (k∗, k

′) over a window of length Θ(log n) sitting between τ1 and τ1 + 9CBIG log n.
The argument used to construct (k∗, τ2) is more elaborate but similar to the argument used to

construct τ1. For this reason, we use the same lemmas in both constructions. Some elements of the

29

SUBPOLYNOMIAL TRACE RECONSTRUCTION

argument appear unnecessarily complicated in the case of τ1, but it still saves on space and ideas not
to duplicate the sequence of lemmas. With this in mind, we outline the sequence of lemmas.

The key definition is that of the “good” position, k3 = k∗. This definition takes as input the
test parameter `, λ and C1, as well as an interval I of values of k′ over which the test T (k3, k

′)
is performed. The position k3 is deemed good if the quenched probabilities Px for true and false
positives and the quenched expectation Ex of the truncated discrepancy satisfy inequalities that will
be used to prove (iii)− (v) of Theorem 2. The corresponding key lemma, Lemma 23 below, gives
a lower bound on the probability of finding a good k3 such that the `-window [k2, k3] lies within a
specified interval [k1, k4]. The bound will improve as the ratio b of the length of [k1, k4] to the length
of [k2, k3] grows. In the case of τ1 it is applied in the somewhat degenerate situation that b = 1 to
prove that with high probability we may take k3 = k4.

One further complication is that the restrictions on where to search take place in the trace, not the
message. We would like to restrict the search to positions f(j) corresponding to j in some interval
[k0, k5]. Values of f are not known to the algorithm, therefore I is never guaranteed to be a subset of
[f(k0), f(k5)] and the probability estimates must include a fudge term accounting for failure of this
inclusion. The lemma is proved for all choices of I satisfying some desired inclusion property with
sufficiently high probability but in fact only two choices are required, one when constructing τ1 and
one when constructing τ2.

Definition 22 (good alignment position) Fix a string x and positive integers k0 ≤ k2 < k3 ≤ k5.
Let ` := k3 − k2 + 1 and L := k5 − k0 + 1, and assume k2 − k0 > `. Fix a constant C ≥ 1 and a
positive integer λ ≤ `1/2. For every (possibly random) set I ⊆ N we define an event AI by

AI :=
{
f(k3) ∈ I ⊂ {f(k0), f(k0) + 1, . . . , f(k5)}

}
∩ {f(k3)− ` > f(k0) + dL/9e}, (30)

and a random variable τI by

τI = inf{k′ ∈ I : T (k3, k
′) = 1} , (31)

where T = T λ,C,`,c1x,x̃ . The infimum of the empty set is considered to be +∞. Define the event
GOOD(k3) = GOOD(k0, k2, k3, k5, λ, C,x) to hold if the following three properties (i)− (iii)

are satisfied for all (possibly random) I, for all positive integers a ≤ `, and for all events A(1)
I and

A
(2)
I which satisfy

A
(1)
I ∩A

(2)
I ⊂ AI , Px

[(
A

(2)
I
)c] ≤ exp(−`2),

A
(1)
I ∈ G

k5
f(k0)+dL/9e, Px

[
A

(1)
I
]
> exp

(
− `/(2c̃λ2)

)
.

(i) Px[|k3 − g(τI)| > a; τI <∞;AI] < 2L exp(−c̃`/λ) + 3c̃−1 exp(−c̃a2/`),

(ii) Px[τI <∞;AI] >
1
2 exp(−`/(c̃λ2)), and

(iii) Ex[|k3 − g(τI)|1AI1|k3−g(τI)|≤`/10 | τI <∞] ≤ 3`

2Cλ3/5
.

Remarks

1. The random variable τI is a stopping time with respect to the filtration {Gk5j }.

30

SUBPOLYNOMIAL TRACE RECONSTRUCTION

2. The event GOOD(k3) is measurable with respect to x(0 : k5), since τI is bounded above by
the greatest element of I on the event that τI < ∞, which implies that on the event AI , the
probabilities Px and expectation Ex in (i)− (iii) depend on x only via x(0 : k5).

3. The events A(1)
I and A(2)

I will be used in the second alignment step. If the event A(1)
I occurs

then the first alignment was successful. We will need to bound from below the probability of a
successful second alignment, given that the first alignment step was successful. When we do this
it will be useful to know that A(1)

I depends mainly on the deletions and insertions far away from
the alignment position k3 in the second alignment step. The event A(2)

I has very high probability,
so Px

[(
A

(2)
I
)c] is negligible, and we therefore allow this event to depend on the deletions and

insertions close to k3.

Lemma 23 Let

1 ≤ ` ≤ L, 1 ≤ b ≤ L/`, 2` ≤ k0 ≤ k1 < k4 ≤ k5,

|k4 − k1| ≥ b`− 1, |k5 − k0| = L− 1

be constants with values inN. Assume ` is sufficiently large, and thatC ≥ 1 and λ ∈ {1, . . . , b`1/2c}
satisfy

2
1

c̃λ2
<

c̃

Cλ6/5
. (32)

Then the µ-measure of x such that GOOD(k0, k2, k3, k5, λ, C,x) holds for some k1 ≤ k2 <
k2 + `− 1 = k3 ≤ k4 is at least least 1− Lb exp(−c̃b`/(10Cλ)).

k0 k1 k4 k = k5k30

`

k2
x

b`

L

Figure 8: Illustration of indices and intervals defined in Definition 22 and Lemma 23.

To prove this we identify an event R(k), which is an intersection of events of the form Q(k, k′)
andH(k), that implies GOOD(k) (Lemma 24 below), and that can be shown to happen with high
probability (Lemma 25 below). For k ∈ {k0, . . . , k5}, define

R(k) = Rλ,C,`,k0,k5x (k) := Hλ,C,`x (k) ∩

 k5⋂
k̂=k0

Qλ,`x (k, k̂)

 . (33)

Lemma 24 Let `, L, b, k0, k1, k4, k5, C and λ be as in Lemma 23. For k3 ∈ [k1, k4], the event
R(k3) implies GOOD(k3).

Proof We verify the properties (i)-(iii) of Definition 22 separately.

31

SUBPOLYNOMIAL TRACE RECONSTRUCTION

(i) By a union bound,

Px [|k3 − g(τI)| > a; τI <∞;AI] ≤ Px

f(k3)−da/2e⋃
i=f(k0)

{T (k3, i) = 1} ∩ E`;k3,i


+Px

 f(k5)⋃
i=f(k3)+da/2e

{T (k3, i) = 1} ∩ E`;k3,i


+Px

[
Ec`;k3,f(k3)−da/2e

]
+Px

[
Ec`;k3,f(k3)+da/2e

]
+Px [g(f(k3)− da/2e) < k3 − a]

+Px [g(f(k3) + da/2e) > k3 + a]

+Px [|g(f(k3))− k3| > a] .

Using the definition of R(k) and Lemma 14 we see that this is at most

2L exp

(
− c̃`
λ

)
+ 2c̃−1 exp

(
− c̃a

2

`

)
+ 3 exp(−c̃a) ,

which is at most 2L exp(−c̃`/λ) + 3c̃−1 exp(−c̃a2/`).
(ii) By definition, R(k3) impliesH(k3), which implies that T (k3, f(k3)) = 1 with probability

at least exp(−`/(2c̃λ2)) by part (i) of Definition 20. Also observe that the lower bound on the
latter probability holds (up to multiplication by (1 − on(1))) even if we condition on AI , due to
the requirement that A(1)

I ∈ G
k5
f(k0)+dL/9e, AI ⊂ {f(k0) + dL/9e < f(k3) − `} that A(2)

I is very
unlikely, and the last condition in the definition of AI . Therefore

Px[{τI <∞} ∩AI] = Px[τI <∞|AI] ·Px[AI]

≥ exp(−`/(2c̃λ2)) exp(−`/(2c̃λ2))(1− on(1)).

(iii) Let Z := |g(τI)− k3|. Then,

Ex

[
Z1AI1Z≤`/10 | τI <∞

]
<

Ex

[
Z1AI1Z<`/(Cλ3/5)

]
Px[τI <∞]

+
Ex

[
Z1AI1`/(Cλ3/5)≤Z≤`/10

]
Px[τI <∞]

≤ `

Cλ3/5
+
`Px[`/(Cλ3/5) ≤ Z ≤ `/10;AI]

Px[τI <∞;AI]

≤ `

Cλ3/5
+ `

exp
(
− c̃`
Cλ6/5

)
+ exp(−c̃`)

1
2 exp

(
− `
c̃λ2

) ,

where the last inequality uses part (ii) of Definition 20 (the definition ofH) for the numerator of the
second term and part (ii) of Definition 22 (that we just proved) for the denominator. By (32), this

32

SUBPOLYNOMIAL TRACE RECONSTRUCTION

last quantity is at most the following for all large values of n

3`

2Cλ3/5
.

Lemma 25 Let `, L, b, k0, k1, k4, k5, C and λ be as in Lemma 23. Then for ` sufficiently large,

µ

 k4⋃
k=k1+`−1

R(k)

 ≥ 1− Lb exp

(
− c̃`b

10Cλ

)
.

Proof Define

J :=

{
k1 + `− 1, k1 + 3`− 1, . . . , k1 + 2

⌊
b+ 1

2

⌋
`− `− 1

}
⊂ [k1 + `− 1, k4] .

To conclude, it is sufficient to show that

µ

[⋃
k∈J

R(k)

]
≥ 1− Lb exp

(
− c̃`b

10Cλ

)
. (34)

If the event on the left side of (34) does not occur, then for each k ∈ J at least one of the events
H(k) and Q(k, k′) for some k′ ∈ {k0, . . . , k5} does not occur. Therefore we can write J as the
union of two disjoint sets J = J1 ∪J2, and we can find a function h : J → {k0, . . . , k5}, such that
the following event Ě occurs

Ě :=

 ⋂
k∈J1

Ř(k)c

 ∩
 ⋂
k∈J2

Q(k, h(k))c

 . (35)

There are 2|J | ways to choose the sets J1 and J2, and, given J1 and J2, there are at most L|J |

ways to define the function h. Since |J | = b(b + 1)/2c and 2|J | · L|J | ≤ Lb for L ≥ 2, in order
prove (34), it is sufficient to show that for any fixed choice of J1, J2, and h we have

µ
[
Ě
]
≤ exp

(
− c̃`b

10Cλ

)
. (36)

Define M0 = db/10e, and fix J1, J2, and h as above. For m ∈ N define N (m) := {k − ` −
2b`/10c : k + b`/10c}. We will first argue that for i = 1, . . . ,M0 we can define mi ∈ J iteratively,
such that

mi 6∈
⋃

j∈{1,...,i−1}

N (mj) ∪N (h(mj)) . (37)

Observe that each interval N (mj) intersects one interval N (m) for m ∈ J , and that each interval
N (h(mj)) intersects at most two intervals N (m) for m ∈ J . Therefore the set on the right side
of (37) intersects at most 3(i−1) of the intervalsN (m) form ∈ J . Because 3(i−1) ≤ 3(M0−1) <
b b+1

2 c = |J |, the pigeonhole principle gives the existence of mi satisfying (37).

33

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Define the filtration Ĝi, i = 0, . . . ,M0, by

Ĝi := σ
(
x(j) : j ∈ N (k) ∪N (h(k)), k ∈ {m1, . . . ,mi}

)
.

For i = 1, . . . ,M0 let Ěi be the event Ě, except that we only consider the indices m1, . . . ,mi, that
is,

Ěi =

 ⋂
k∈J1∩{m1,...,mi}

H(k)c

 ∩
 ⋂
k∈J2∩{m1,...,mi}

Q(k, h(k))c

 .

By the remarks following Definitions 18 and 20, we see that Ěi ∈ Ĝi for all i. For i ∈ J1, the event
H(mi) is independent of Ĝi−1, so by Lemma 21,

µ[Ěi | Ĝi−1] = µ[Ěi−1 ∩H(mi)
c | Ĝi−1] = µ[H(mi)

c]1Ěi−1
< exp

(
− c̃`

C1λ

)
.

Similarly, when i ∈ J2 and letting Gmi,` be as in Lemma 19, an application of Lemma 19 and the
observation Ĝi−1 ⊂ Gmi,` give

µ[Ěi | Ĝi−1] = µ[Ěi−1 ∩Q(mi, h(mi))
c | Ĝi−1]

= µ[µ[Q(mi, h(mi))
c | Gmi,`] | Ĝi−1]1Ěi−1

≤ exp

(
− c̃`
λ

)
< exp

(
− c̃`

C1λ

)
.

Using the above and Ěj ∈ Ĝi−1 for j < i, we get (36) via

µ[Ě] ≤ µ[ĚM0] = µ

[
M0⋂
i=1

Ěi

]
=

M0∏
i=1

µ

Ěi ∣∣∣ i−1⋂
j=1

Ěj


≤ exp(−c̃`M0/(C1λ)) ≤ exp(−c̃`b/(10C1λ)).

Appendix D. Two stages of alignment and the proof of Theorem 2

Definition 26 (the rough alignment τ1) Let k ∈ N and x(0 : k) be given, and assume k ≥
d9CBIG log ne. Set C = 1, C0 := 600c̃−1, ` := d(C0 log n)5/3e, and λ := b`2/5c. Let ρ :=
k− d9CBIG log ne. Recalling Definition 17 and that T = T λ,C,`,c1 , define the rough alignment for ρ
in the trace by

τ1 := inf{k′ ∈ [2`, 1.5n] ∩ Z : T (ρ, k′) = 1} .

34

SUBPOLYNOMIAL TRACE RECONSTRUCTION

We remark that ` = `1 and x(ρ − ` : ρ) = w1 in the notation of Section 3. The reader may ask
why we choose ρ = k − d9CBIG log ne instead of ρ = k in the above definition, and the reason for
this is as follows. When analyzing the second alignment step we want to bound from below the
probability of a positive test, conditional on having a positive test in the first alignment step. To
obtain a sufficiently large conditional probability, we want that the part of the trace used in the first
alignment step is not too close to the part of the trace used in the second alignment step. Furthermore,
in the second alignment step we want to use a string w2 for alignment which is not too similar
to any other nearby substrings of x. In order to choose w2 appropriately we need to know x in
an appropriately large interval around w2. Since w2 needs to be in the part of x which is already
reconstructed, and since the part of the trace corresponding to w2 should be bounded away from the
part of the trace used in the first alignment procedure, we see that k − ρ cannot be too small.

Lemma 27 There is a set Ξbad(1, k) ⊂ S of µ-measure at most n−3 such that the following two
inequalities hold for x /∈ Ξbad(1, k) in the setting of Definition 26, with n sufficiently large and
10dCBIG log ne ≤ k ≤ n.

(i) Px [|ρ− g(τ1)| > CBIG log n; τ1 <∞] < exp

(
−
c̃C2

BIG

3C
5/3
0

log1/3 n

)
;

(ii) Px[τ1 <∞] > exp

(
−2C

1/3
0

c̃
log1/3 n

)
;

(iii) Px[{f(k0 − dCBIG log1/3 ne) > τ1} ∪ {f(k0 + dCBIG log1/3 ne) < τ1}; τ1 <∞]

< exp

(
−
c̃C2

BIG

4C
5/3
0

log1/3 n

)
.

Proof First assume k > 3C
5/3
0 log5/3 n+ 9CBIG log n. Use Lemma 23 with the values of `, λ and

C in Definition 26, L = `, b = 1, [k1, k4] = [ρ − ` + 1, ρ] and [k0, k5] = [`, 2n]. Take the set
I to be [2`, 1.5n] ∩ Z, so that τ1 = τI . The last sentence of Lemma 23 in this case requires that
[k2, k3] = [k1, k4]. The conclusion of the lemma is that GOOD holds for k3 = ρ for all x except in
a set Ξbad(k, 1) of µ-measure at most 1− 2n exp(−c̃`/(10λ)). Observing that

c̃`

10λ
≥ c̃

10
C0 log n = 60 log n,

we see that for sufficiently large n,

µ(Ξbad(k, 1)) < n−3 . (38)

When x /∈ Ξbad(k, 1), we deduce from the definition of AI and from clause (i) of the definition
of GOOD(ρ) with a := CBIG log n, that

Px [|ρ− g(τ1)| > CBIG log n; τ1 <∞] < 4n exp

(
− c̃`
λ

)
+ 3c̃−1 exp

(
−
c̃C2

BIG log2 n

`

)
+Pω[f(2`) < `] + Pω[f(b1.5nc) > 2n] .

35

SUBPOLYNOMIAL TRACE RECONSTRUCTION

The first term is bounded above by 4n exp(−600 log n) = exp(−Θ(log n)), the third term is
bounded above by exp(−Θ(log5/3 n)) and last term is bounded above by exp(−Θ(n)). All of these
are asymptotically negligible compared to the second term, which is

exp

(
−(1− on(1))

c̃C2
BIG

C
5/3
0

log1/3 n

)
.

Comparing this to what is needed, the right-hand side in conclusion (i) of the lemma has an extra
factor of 3 in the denominator, therefore conclusion (i) holds for sufficiently large n.

Clause (ii) of the definition of GOOD yields

Px[τ1 <∞] >
1

2
exp

(
− `

c̃λ2

)
= exp(−(1 + o(1))(C

1/3
0 /c̃) log1/3 n),

and the extra factor of 2 on the right-hand side of conclusion (ii) of the lemma ensures it holds for
sufficiently large n.

Finally, if 10CBIG log n < k ≤ 3C
5/3
0 log5/3 n+ 9CBIG log n, we can take τ1 = ρ. The second

conclusion of the lemma is automatically satisfied. For the first,

Px [|ρ− g(τ1)| > CBIG log n; τ1 <∞] = Pω[|g(ρ)− ρ| > CBIG log n]

≤ exp

(
−

10c̃C2
BIG

3C
5/3
0

(1− on(1)) log1/3 n,

)
,

where the second inequality holds by part (v) of Definition 17 with a = CBIG log n.
To prove (iii), we set C = dCBIG log ne and apply a union bound to get

Px[{f(ρ− C) > τ1} ∪ {f(ρ+ C) < τ1}; τ1 <∞]

< Px [|ρ− g(τ1)| > 99C/100; τ1 <∞] +Px[f(ρ− C) = f(ρ− d99C/100e)].

The first term on the right side, which dominates asymptotically, can be bounded as in our proof of
(i).

Finally, we are able to define k∗ and then τ2 from Theorem 2. Recall from the remarks following
Definition 22 that the event GOOD is measurable with respect to x(0 : k5), hence with k5 = k, the
algorithm knows whether GOOD has occurred.

Definition 28 (the good alignment location k∗) Let k ∈ N satisfy k ≥ 9dCBIG log ne, and let
x(0 : k) be given. Set

` = dCBIG log1/3 ne,
λ = C

5/3
1 ,

C = C1, (39)

k0 := k − 9dCBIG log ne,
k5 := k.

Let k∗ be the least k3 ∈ [k−5dCBIG log ne+`, k−4dCBIG log ne]∩Z satisfying GOOD(k0, k3−
`+ 1, k3, k5, λ, C,x

′) where x′(0 : k) = x(0 : k) and x′j = 0 for j > k. If the set is empty we set
k∗ = ∞. Let Ξbad(k, 2) denote the set of x(0 : k) for which k∗ = ∞. For k < 9dCBIG log ne let
Ξbad(k, 2) be empty.

36

SUBPOLYNOMIAL TRACE RECONSTRUCTION

The constant ` in the above definition is denoted by `2 in Section 3, and the interval x(k3 − ` : k3)
is denoted by w2. Recall from Section 3 that we need to choose the interval w2 carefully in order
for our alignment algorithm to work; the above definition guarantees that our choice of w2 will be
appropriate with high probability. We remark that k∗ ∈ σ(x) is a function of the message only, not
the trace. Therefore, when aligning the dexp(−M log1/3 n)e conditionally independent traces, the
position k∗ will be the same for all of them.

Lemma 29 For sufficiently large n, the inequality CBIG ≥ 80c̃−1C
8/3
1 implies

µ(Ξbad(k, 2)) ≤ n−3 .

Proof The definition is built for applying Lemma 23. Define

k1 := k − 5dCBIG log ne,
k4 := k − 4dCBIG log ne,
L = 9dCBIG log ne,
b = d(log2/3 n)/2e,

and observe that b ≤ L/`. Applying Lemma 23, it follows that for all sufficiently large n,

µ(Ξbad(k, 2)) ≤ Lb exp

(
− c̃b`

10C1λ

)
≤ exp

((
log2/3 n log(9CBIG log n)

2
− c̃CBIG log n

20C
8/3
1

)
(1− o1(1))

)

≤ exp

(
log n

2
− 4 log n

)
,

under the hypothesis that c̃CBIG/(20C
8/3
1) ≥ 4.

Definition 30 (the true alignment τ2) Let τ1 be as in Definition 26, let [k2, k3] := [k∗ − `+ 1, k∗]
and let k0, k5, `, λ and C be as in (39). If τ1 <∞ define the set

I := [j1, j2] ∩ Z := [τ1 + 2dCBIG log ne , τ1 + 7dCBIG log ne] ∩ Z,

and if τ1 =∞ set I = ∅. Define τ2 to be τI in (31), that is,

τ2 = inf{k′ ∈ I : T (k3, k
′) = 1} .

Proof [Proof of Theorem 2] Choose CBIG ≥ 80c̃−1C
8/3
1 so that Lemma 29 may be applied. Let

Ξbad :=
n⋃
k=1

(Ξbad(k, 1) ∪ Ξbad(k, 2)). If AI fails, then because k3 ∈ [k1, k4], one of the following

must occur: f(k0) > j1 or f(k5) < j2 or f(k1) > j1 or f(k4) < j2 or f(k3)− ` ≤ f(k0) + C. Let

37

SUBPOLYNOMIAL TRACE RECONSTRUCTION

C = dCBIG log ne. Let A(1)
I be the event that f(k0 − C) ≤ τ1 and f(k0 + C) ≥ τ1, and let A(2)

I be
the event that none of the following inequalities are satisfied

f(k0)− f(k0 − C) ≥ 2C,
f(k0 + 9C)− f(k0 + C) ≤ 7C,
f(k0 + 4C)− f(k0 + C) ≤ 2C,
f(k0 + 5C)− f(k0 − C) ≥ 7C.

(40)

We will first verify that A(1)
I and A(2)

I satisfy the assumptions of Definition 22. It is immediate by
definition that A(1)

I ∩ A
(2)
I ⊂ AI . Each of the events in (40) have probability bounded above by

exp(−10c̃ (2C)2/(8C)) = n−5 c̃ CBIG , which implies that Px[(A
(2)
I)c] decays at least polynomially

in exp(−`3). Observe that A(1)
I ∈ G

k5
f(k0)+dL/9e = Gk5f(k0)+C . We see from Lemma 27(ii)− (iii) that

Px[A
(1)
I] ≥ Px[τ1 <∞]−Px

[
τ1 <∞;

(
A

(1)
I
)c]

≥ exp

(
−2C

1/3
0

c̃
log1/3 n

)
− exp

(
−
c̃C2

BIG

4C
5/3
0

log1/3 n

)
≥ exp

(
− `

2c̃λ2

)
.

(41)

We now check, slightly out of order, that the conclusions (i)− (v) of Theorem 2 and the inequality
in conclusion (iv) hold when the constants are as described in Appendix B.4.

(i) By construction τ2 is bounded above by 2n when finite and is a stopping time on {G̃ki }. Also
by construction the set Ξbad depends only on the first 2n bits of x. From (38) and Lemma 29, we see
that for n sufficiently large, µ(Ξbad) ≤

∑n
k=1 µ(Ξbad(k, 1)) + µ(Ξbad(k, 2)) ≤ 2n−2.

(ii) Recall Cback = 5CBIG. By construction k∗ ∈ [k − 5C, k − 4C], therefore (ii) is satisfied.
(iv) Recall Calign = CBIG/10 and Cfalse = c̃ CBIG/(2C

5/3
1). Applying clause (i) in the

definition of GOOD gives

Px[∞ > |g(τ2)− k∗| > Calign log1/3 n] ≤ Px[AcI ; τ1 <∞] + 18C exp

(
− c̃CBIG

C
5/3
1

log1/3 n

)

+3c̃−1 exp

(
−

c̃C2
BIG log2/3 n

100CBIG log1/3 n

)
.

We observe that the second term on the right side dominates, and for n sufficiently large, the right
side is bounded above by exp(−Cfalse log1/3 n).

(iii) Recall Cavg = 2CBIG/C
2
1 and Ctrue = 2CBIG/(c̃C

10/3
1). Applying clause (ii) of the

definition of GOOD gives

Px[|g(τ2)− k∗| ≤ Calign log1/3 n] ≥ Px[τ2 <∞;AI]−Px[∞ > |g(τ2)− k∗| > Calign log1/3 n]

≥ 1

2
exp

(
−CBIG log1/3 n

c̃C
10/3
1

)
− exp(−Cfalse log1/3 n)

≥ 1

2
exp

(
−1

2
Ctrue log1/3 n

)
− exp(−Cfalse log1/3 n)

≥ exp(−Ctrue log1/3 n)

38

SUBPOLYNOMIAL TRACE RECONSTRUCTION

for n sufficiently large, once we verify that Cfalse > Ctrue.
(v) Recall Cavg = 3CBIG/C

2
1 . Applying clause (iii) of the definition of GOOD gives, with

Z := |k3 − g(τ2)|,

Ex

[
Z1Z≤`/101AI | τ2 <∞

]
≤ 3`

2C1λ3/5
.

Removing the restriction to AI adds at most (`/10)Px[Z > `/10 | τ2 <∞]. Therefore, substituting
` = d10Calign log1/3 ne = dCBIG log1/3 ne gives

Ex

[
Z1Z≤Calign log1/3 n | τ2 <∞

]
≤ 3dCBIG log1/3 ne

2C2
1

+
dCBIG log1/3 ne

10

Px[Z > Calign log1/3 n]

Px[τ2 <∞]
.

Conclusions (iii) and (iv), along with Cfalse > Ctrue, imply that
Px[Z > Calign log1/3 n]

Px[τ2 <∞]
≤

exp(−Θ(log1/3 n)), therefore, for n sufficiently large,

Ex

[
Z1Z≤Calign log1/3 n | τ2 <∞

]
≤ 3.1CBIG log1/3 n

2C2
1

as required.
Finally, we check the inequality in conclusion (iv),

Cfalse − Ctrue

CBIG
=

c̃

2C
5/3
1

− 2

c̃C
10/3
1

,

Csep(8Cavg + C
1/3
back)

CBIG
= Csep

(
2

C2
1

+ 5C
−2/3
BIG

)
.

Multiplying through by C2
1 , we require

c̃

2
C

1/3
1 − 2

c̃
C
−4/3
1 > 2Csep + 5CsepC

−2/3
BIG C2

1 .

Having chosen C1 = 64c̃−12, and with CBIG sufficiently large, this is satisfied when

2

c̃ 3
− c̃ 15

8
> 7Csep,

which is assumption (vi) in Definition 17.

Appendix E. Reconstruction from approximately aligned strings: Proof of
Theorem 3

Lemma 31 Let a = (a0, a1, . . .) ∈ [−1, 1]N, and let ã be the output from the deletion-insertion
channel with deletion (resp. insertion) probability q (resp. q′), applied to the randomly shifted
string θSa, where the shift S is as in Theorem 3. Let φ1(w) = pw + q, φ2(w) = p′w

1−q′w , and
σ(s) = P[S = s] for s ∈ N. Define

P (z) :=

d∑
s=0

σ(s)zs, Q(z) :=

∞∑
j=0

ajz
j .

39

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Then, for any |w| < 1,

E

∑
j≥0

ãjw
j

 = p · P
(

1

φ2 ◦ φ1(w)

)
·Q(φ2 ◦ φ1(w)). (42)

Proof Recall the construction of x̃ from x mentioned in Section 2, where we first insert a geometric
number (minus one) bits before each bit of x and then delete each bit independently with probability
q. From this description we see that we can sample ã by first setting ã(2) = θSa, then letting a(3) be
the string we get when sending a(2) through the insertion channel with insertion probability q′ (and no
deletions), and finally obtain ã by sending ã(3) through the deletion channel with deletion probability
q (and no insertions). Three elementary generating function manipulations (see, respectively, ((Peres
and Zhai, 2017, Lemma 4.2), (Nazarov and Peres, 2017, Lemma 5.2), and (Nazarov and Peres, 2017,
Lemma 2.1)) give

E

∑
j≥0

a
(2)
j wj

 = P (w−1)Q(w), E

∑
j≥0

a
(3)
j wj

∣∣∣∣ a(2)

 =
∑
j≥0

a
(2)
j φ2(w)j ,

E

∑
j≥0

ãjw
j

∣∣∣∣ a(3)

 =
∑
j≥0

a
(3)
j φ1(w)j .

Combining these identifies we get (42):

E

∑
j≥0

ãjw
j

 = E

∑
j≥0

a
(3)
j φ1(w)j

 = E

p∑
j≥0

a
(2)
j

(
φ2 ◦ φ1(w)

)j
= pP

(
1

φ2 ◦ φ1(w)

)
Q(φ2 ◦ φ1(w)).

The following result is Corollary 3.2 of Borwein and Erdélyi (1997) with M = 1, a = ` and
c1 = CBE, observing that the class of polynomials whose coefficients have modulus at most 1 are in
their class K1

1 and that their statement KM := K0
M after their definition of KµM should be ignored in

favor of the correct statement KM := K1
M occurring in their Corollary 3.2.

Lemma 32 (Borwein and Erdélyi 1997) There is a universal constant CBE such that for any
polynomial f satisfying |f(0)| = 1 and whose coefficients have modulus at most 1, and for any arc
α of the unit circle whose angular length is denoted s ∈ (0, 2π),

sup
z∈α
|f(z)| ≥ e−CBE/s .

�

Proof [Proof Theorem 3] Let a = x(1)−x(2) ∈ {−1, 0, 1}N, L = m1/3, and ρ = 1− 1/L2. Define
j0 := inf{j ∈ N : aj 6= 0} ∈ {d, d+ 1, . . . ,m} and Q̃(z) := z−j0Q(z) with |Q̃(0)| = 1.

40

SUBPOLYNOMIAL TRACE RECONSTRUCTION

Claim: There is a c2 ∈ (0, 1/20) depending only on q, q′ such that if | arg(z)| ≤ c2/L,
|z| = 1, and w = φ−1

1 (φ−1
2 (ρ · z)), then |w| ≤ 1− c2/L

2.

Proof: Observe that φ2 (resp. φ1) is a Möbius transformation mappingD to a smaller
disk which is contained inD, which is tangent to ∂D at 1, and which mapsR toR. In
particular, defining Ψ := φ−1

1 ◦ φ
−1
2 , we get by linearizing the map around z = 1 that

Ψ(1 + z̃) = 1 + az̃ +O(|z̃|2) for a > 1 depending only on q, q′. Writing z = eiθ, we
have

w = Ψ(ρeiθ)

= 1 + a(ρeiθ − 1) +O(|ρeiθ − 1|2)

= 1 + a
(
(1− L−2)(1 + iθ)− 1

)
+O(θ2 + L−4)

= 1 + a(−L−2 + iθ) +O(θ2 + L−4),

so |w| < 1− c2/L
2 when c2 = c2(q, q′) is sufficiently small, and the claim is proved.

Observe that z 7→ Q̃(ρ · z) has coefficients of modulus at most 1, hence we may apply Lemma 32
to find z0 = eiθ with |θ| ≤ c2/L such that |Q̃(ρz0)| ≥ e−CBEL/c2 . By definition of c2, we see that
w0 := Ψ(ρ · z0) satisfies |w0| ≤ 1 − c2/L

2. An illustration of the points z0 and w0 is given in
Figure 9. We show next that ∣∣∣∣P (1

ρz0

)∣∣∣∣ ≥ 1

2
. (43)

To see this, define P̃ (z) = z−ESP (z), which is an analytic function in the right half-plane. For all
z in the right half-plane satisfying 1 ≤ |z| ≤ ρ−1, differentiating P̃ and using E[|S −ES|] ≤ L and

Ψ(ρD)

ρD

D

ρz0

w0 = Ψ(ρz0)

Figure 9: Illustration of the points z0, w0 ∈ C defined in the proof of Theorem 3. We first choose z0 = eiθ

for |θ| ≤ c2/L, such that |Q̃(ρ·)| is bounded from below. Then we observe that |w0| < 1 − c2/L2, which
helps us to bound the modulus of E[

∑
j≥0 ãjw

j
0] from below.

41

SUBPOLYNOMIAL TRACE RECONSTRUCTION

d ≤ L2 gives

|P̃ ′(z)| =

∣∣∣∣∣∣
d∑
j=0

(j −ES)σ(j)zj−ES−1

∣∣∣∣∣∣ ≤
d∑
j=0

|j −ES| · σ(j) · |z|j−ES−1

≤ ρ−d ·E[|S −ES|] ≤ ρ−dL ≤ e
1.1d
L2 · L ≤ 4L,

We also have

|ρ−1z−1
0 − 1| = ρ−1|1− ρz0| ≤ |z0 − 1|+ ρ−1(1− ρ) ≤ c2

L
+

2

L2
.

Therefore, for all sufficiently large m,∣∣P (ρ−1z−1
0)
∣∣ = ρ−ES

∣∣∣P̃ (ρ−1z−1
0)
∣∣∣ ≥ 1− |P̃ (ρ−1z−1

0)− 1|

= 1−

∣∣∣∣∣
∫ ρ−1z−1

0

1
P̃ ′(z) dz

∣∣∣∣∣ ≥ 1− |ρ−1z−1
0 − 1| · 4L

≥ 1−
(
c2

L
+

2

L2

)
· 4L ≥ 1

2
,

proving (43).
Using Lemma 31 and the above estimates, it follows that∣∣∣∣∣∣E

∑
j≥0

ãjw
j
0

∣∣∣∣∣∣ ≥ p ·
∣∣∣∣P (1

ρz0

)∣∣∣∣ · ρj0 · |Q̃(ρz0)| (44)

≥ p
1

2

(
1− 1

L2

)m
e−CBEL/c2

≥ e−CsepL

for a constant Csep > 1 depending only on q, q′. Since |w0| ≤ 1− c2/L
2, for any Cfwd > 1,∣∣∣∣∣∣

∑
j≥Cfwdm

E[ãj]w
j
0

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

j≥Cfwdm

(
1− c2

L2

)j∣∣∣∣∣∣ ≤ L2c−1
2 e−CfwdL/c2 . (45)

Combining (44) and (45), for Cfwd a sufficiently large constant multiple of Csep,

E

dCfwdme−1∑
j=0

∣∣∣ãjwj0∣∣∣
 ≥

∣∣∣∣∣∣E
dCfwdme−1∑

j=0

ãjw
j
0

∣∣∣∣∣∣ ≥ 1

2
exp(−CsepL). (46)

It follows that there is a j < Cfwdm for which

|E[ãj]| ≥ |E[ãj]w
j
0| ≥ (2dCfwdme)−1 exp(−CsepL) .

Increasing Csep if necessary finishes the proof.

Acknowledgments

We thank Margalit Glasgow for her careful reading and comments.

42

	Related work
	Construction of the channel
	Outline of proof
	Proof of main theorem modulo two key results
	More formal construction of the channel
	Back to the proof of the main theorem

	The test
	Simplified test
	Estimates involving but not x
	Clear robust bias and the real test
	Choice of constants
	Estimates related to the test T

	Existence of good positions
	Two stages of alignment and the proof of Theorem 2
	Reconstruction from approximately aligned strings: Proof of Theorem 3

