
Proceedings of Machine Learning Research vol 75:1–25, 2018 31st Annual Conference on Learning Theory

Approximate Nearest Neighbors in Limited Space

Piotr Indyk INDYK@MIT.EDU
CSAIL, MIT

Tal Wagner TALW@MIT.EDU

CSAIL, MIT

Editors: Sebastien Bubeck, Vianney Perchet and Philippe Rigollet

Abstract
We consider the (1 + ε)-approximate nearest neighbor search problem: given a set X of n points
in a d-dimensional space, build a data structure that, given any query point y, finds a point x ∈ X
whose distance to y is at most (1 + ε) minx∈X ‖x − y‖ for an accuracy parameter ε ∈ (0, 1).
Our main result is a data structure that occupies only O(ε−2n log(n) log(1/ε)) bits of space, as-
suming all point coordinates are integers in the range {−nO(1) . . . nO(1)}, i.e., the coordinates
have O(log n) bits of precision. This improves over the best previously known space bound of
O(ε−2n log(n)2), obtained via the randomized dimensionality reduction method of Johnson and
Lindenstrauss (1984). We also consider the more general problem of estimating all distances from
a collection of query points to all data points X , and provide almost tight upper and lower bounds
for the space complexity of this problem.
Keywords: nearest neighbor, quantization, distance estimation, metric compression, distance sketches,
dimension reduction

1. Introduction

The nearest neighbor search problem is defined as follows: given a set X of n points in a d-
dimensional space, build a data structure that, given any query point y, returns the point in X
closest to y. For efficiency reasons, the problem is often relaxed to approximate nearest neighbor
search, where the goal is to find a point x ∈ X whose distance to y is at most cminx∈X ‖x − y‖
for some approximation factor c > 1. Both problems have found numerous applications in machine
learning, computer vision, information retrieval and other areas. In machine learning in particular,
nearest neighbor classifiers are popular baseline methods whose classification error often comes
close to that of the best known techniques (Efros (2017)).

Developing fast approximate nearest neighbor search algorithms have been a subject of exten-
sive research efforts over the last last two decades, see e.g., Shakhnarovich et al. (2006); Andoni and
Indyk (2017) for an overview. More recently, there has been increased focus on designing nearest
neighbor methods that use a limited amount of space. This is motivated by the need to fit the data set
in the main memory (Johnson et al. (2017b,a)) or an Internet of Things device (Gupta et al. (2017)).
Furthermore, even a simple linear scan over the data is more time-efficient if the data is compressed.
The data set compression is most often achieved by developing compact representations of data that
approximately preserve the distances between the points (see Wang et al. (2016) for a survey). Such
representations are smaller than the original (uncompressed) representation of the data set, while
approximately preserving the distances between points.

c© 2018 P. Indyk & T. Wagner.

Most of the approaches in the literature are only validated empirically. The currently best known
theoretical tradeoffs between the representation size and the approximation quality are summarized
in Table 1, together with their functionalities and constraints.

Bits per point Comments
No compression d log n
Johnson and Lindenstrauss (1984) ε−2 log2(n) Estimates distances between any y and all x ∈ X
Kushilevitz et al. (2000) ε−2 log(n) log(R) Estimates distances between any y and all x ∈ X ,

assuming ‖x− y‖ ∈ [r,Rr]
Indyk and Wagner (2017) ε−2 log(n) log(1/ε) Estimates distances between all x, y ∈ X ,

does not provably support out-of-sample queries
This paper ε−2 log(n) log(1/ε) Returns an approximate nearest neighbor of y in X

Table 1: Comparison of Euclidean metric sketches with distortion 1 ± ε. We assume that all point
coordinates are represented using log Φ bits, or alternatively that each coordinate is an
integer in the range {−Φ . . .Φ}. For the sake of exposition, the results depicted in the
table assume Φ = nO(1). Furthermore, the compression algorithm can be randomized,
and the compressed representation must enable approximating distances up to a factor of
1± ε with probability 1/nO(1).

Unfortunately, in the context of approximate nearest neighbor search, the above representations
lead to sub-optimal results. The result from the last row of the table (from Indyk and Wagner
(2017)) cannot be used to obtain provable bounds for nearest neighbor search, because the distance
preservation guarantees hold only for pairs of points in the pointset X .1 The second-to-last result
(from Kushilevitz et al. (2000)) only estimates distances in a certain range; extending this approach
to all distances would multiply the storage by a factor of log Φ. Finally, the representations obtained
via a direct application of randomized dimensionality reduction (Johnson and Lindenstrauss (1984))
are also larger than the bound from Indyk and Wagner (2017) by almost a factor of log Φ.

Our results In this paper we show that it is possible to overcome the limitations of the previous
results and design a compact representation that supports (1 + ε)-approximate nearest neighbor
search, with a space bound essentially matching that of Indyk and Wagner (2017). This constitutes
the first reduction in the space complexity of approximate nearest neighbor below the “Johnson-
Lindenstrauss bound”. Specifically, we show the following. Suppose that we want the data structure
to answer q approximate nearest neighbor queries in a d-dimensional dataset of size n, in which
coordinates are represented by log Φ bits each. All q queries must be answered correctly with
probability 1− δ. (See Section 2 for the formal problem definition).

Theorem 1.1 For the all-nearest-neighbors problem, there is a sketch of size

O

(
n

(
log n · log(1/ε)

ε2
+ log log Φ + log

(q
δ

))
+ d log Φ + log

(q
δ

)
log

(
log(q/δ)

ε

))
bits.

1. We note, however, that a simplified version of this method, described in Indyk et al. (2017), was shown to have good
empirical performance for nearest neighbor search.

2

The proof is given in Section 4. We also give a lower bound of Ω(n log(n)/ε2) for q = 1 and
δ = 1/nO(1) (Section B), which shows that the first term in the above theorem is almost tight.

Interestingly, the representation by itself does not return the (approximate) distance between the
query point and the returned neighbor. Thus, we also consider the problem of estimating distances
from a query point to all data points. In this setting, a result of Molinaro et al. (2013) shows that the
Johnson-Lindenstrauss space bound is optimal when the number of queries is equal to the number
of data points. However, in many settings, the number of queries is often substantially smaller than
the dataset size. We give nearly tight upper and lower bounds (up to a factor of log(1/ε)) for this
problem, showing it is possible to smoothly interpolate between Indyk and Wagner (2017), which
does not support out-of-sample distance queries, and the Johnson-Lindenstrauss bound.

Specifically, we show the following. Suppose that we want the data structure to estimate all
cross-distances between a set of q queries and all points in X , all of which must be estimated
correctly with probability 1− δ (see Section 2 for the formal problem definition).

Theorem 1.2 For the all-cross-distances problem, there is a sketch of size

O
(n
ε2

(
log n · log(1/ε) + log(dΦ) log

(q
δ

))
+ poly(d, log Φ, log(q/δ), log(1/ε))

)
bits.

Note that the dependence per point on Φ is logarithmic, as opposed to doubly logarithmic in Theo-
rem 1.1. We show this dependence is necessary, as per the following theorem.

Theorem 1.3 Suppose that d1−ρ ≥ ε−2 log(nq/δ), Φ ≥ 1/ε, and 1/n0.5−ρ′ ≤ ε ≤ ε0 for some
constants ρ, ρ′ > 0 and a sufficiently small constant ε0. Then, for the all-cross-distances problem,
any sketch must use at least

Ω
(n
ε2

(
log n+ log(dΦ) log

(q
δ

)))
bits.

The proofs are given in Section 5 and Appendix C, respectively.

Practical variant Indyk et al. (2017) presented a simplified version of Indyk and Wagner (2017),
which has slightly weaker size guarantees, but on the other hand is practical to implement and
was shown to work well empirically. However, it did not provably support out-of-sample queries.
Our techniques in this paper can be adapted to their algorithm and endow it with such provable
guarantees, while retaining its simplicity and practicality. We elaborate on this in Appendix D.

Our techniques The starting point of our representation is the compressed tree data structure
from Indyk and Wagner (2017). The structure is obtained by constructing a hierarchical clustering
of the data set, forming a tree of clusters. The position of each point corresponding to a node in
the tree is then represented by storing a (quantized) displacement vector between the point and its
“ancestor” in the tree. The resulting tree is further compressed by identifying and post-processing
“long” paths in the tree. The intuition is that a subtree at the bottom of such a path corresponds to
a cluster of points that is “sufficiently separated” from the rest of the points (see Figure 1). This
means that the data structure does not need to know the exact position of this cluster in order to
estimate the distances between the points in the cluster and the rest of the data set. Thus the data
structure replaces each long path by a quantized displacement vector, where the quantization error

3

Figure 1: Compression and decompression of a two-dimensional dataset. The location of the well-
separated cluster {x2, x3} can be perturbed by the lossy compression algorithm, without
significantly changing the distances to x1.

does not depend on the length of the path. This ensures that the tree does not have long paths, which
bounds its total size.

Unfortunately, this reasoning breaks down if one of the points is not known in advance, as it
is the case for the approximate nearest neighbor problem. In particular, if the query point y lies in
the vicinity of the separated cluster, then small perturbations to the cluster position can dramatically
affect which points in the cluster are closest to y (see Figure 2 for an illustration).

In this paper we overcome this issue by maintaining extra information about the geometry of
the point set. First, for each long path, we store not only the quantized displacement vector (which
preserves the “global” position of the subtree with respect to the rest of the tree) but also the suffix of
the path. Intuitively, this allows us to recover both the most significant bits and the least significant
bits of points in the subtree corresponding to the “separated” clusters, which allows us to avoid
cases as depicted in Figure 2. However, this intuition breaks down when the diameter of the cluster
is much larger than the amount of “separation”. Thus we also need to store extra information about
the position of the subtree points. This is accomplished by storing a hashed representation of a
representative point of the subtree (called “the center”). We note that this modification makes our
data structure inherently randomized; in contrast, the data structure of Indyk and Wagner (2017)
was deterministic.

Given the above information, the approximate nearest neighbor search is performed top down,
as follows. In each step, we recover and enumerate points in the current subtree, some of which
could be centers of “separated” clusters as described above. The “correct” center, guaranteed to
contain an approximate nearest neighbor of the query point, is identified by its hashed value (if no
hash match is found, then any center is equally good). Note that our data structure does not allow
us to compute all distances from the query point y to all points in X (in fact, as mentioned earlier,
this task is not possible to achieve within the desired space bound). Instead, it stores just enough
information to ensure that the procedure never selects a “wrong” subtree to iterate on.

Lastly, suppose we also wish to estimate all distances from y toX . To this end, we augment each
subtree with the distance sketches due to Kushilevitz et al. (2000) and Johnson and Lindenstrauss
(1984). The former allows us to identify the cluster of all approximate nearest neighbors of y
(whereas the above algorithm was only guaranteed to return one approximate nearest neighbor).
The latter stores the approximate distance from that cluster. These are the smallest distances from
y to X , which are the most challenging to estimate; the remaining distances can be estimated based
on the hierarchical partition into well-separated clusters, which is already present in the sketch.

4

Figure 2: Compression and decompression of a dataset x1, x2, x3 in the presence of a new query
point y, which is unknown during compression. The same small perturbation in the loca-
tion of {x2, x3} as in Figure 1 fails to preserve x3 as the nearest neighbor of y.

2. Formal Problem Statements

We formalize the problems in terms of one-way communication complexity. The setting is as fol-
lows. Alice has n data points, X = {x1, . . . , xn} ⊂ {−Φ . . .Φ}d, while Bob has q query points,
Y = {y1, . . . , yq} ⊂ {−Φ . . .Φ}d, where 1 ≤ q ≤ n. Distances are Euclidean, and we can as-
sume w.l.o.g. that d ≤ n.2 Let ε, δ ∈ (0, 1) be given parameters. In the one-way communication
model, Alice computes a compact representation (called a sketch) of her data points and sends it
to Bob, who then needs to report the output. We define two problems in this model (with private
randomness), each parameterized by n, q, d,Φ, ε, δ:3

Problem 1 – All-nearest-neighbors: Bob needs to report a (1 + ε)-approximate nearest neighbor
in X for all his points simultaneously, with probability 1− δ. That is, for every j ∈ [q], Bob reports
an index ij ∈ [n] such that

Pr

[
∀j ∈ [q], ‖yj − xij‖ ≤ (1 + ε) min

i∈[n]
‖yj − xi‖

]
≥ 1− δ.

Our upper bound for this problem is stated in Theorem 1.1.

Problem 2 – All-cross-distancess: Bob needs to estimate all distances ‖xi − yj‖ up to distortion
(1± ε) simultaneously, with probability 1− δ. That is, for every i ∈ [n] and j ∈ [q], Bob reports an
estimate E(i, j) such that

Pr
[
∀i ∈ [n], j ∈ [q], (1− ε)‖xi − yj‖ ≤ E(i, j) ≤ (1 + ε)‖xi − yj‖

]
≥ 1− δ.

Our upper and lower bounds for this problem are stated in Theorems 1.2 and 1.3.

3. Basic Sketch

In this section we describe the basic data structure (generated by Alice) used for all of our results.
The data structure augments the representation from Indyk and Wagner (2017), which we will now
reproduce. For the sake of readability, the notions from the latter paper (tree construction via hier-
archical clustering, centers, ingresses and surrogates) are interleaved with the new ideas introduced

2. Any N -point Euclidean metric can be embedded into N − 1 dimensions.
3. Throughout we use [m] to denote {1, . . . ,m}, for an integer m > 0.

5

in this paper (top-out compression, grid quantization and surrogate hashing). Proofs in this section
are deferred to Appendix A.

3.1. Hierarchical Clustering Tree

The sketch consists of an annotated hierarchical clustering tree, which we now describe with our
modified “top-out compression” step.

Tree construction We construct the inter-link hierarchical clustering tree of X: In the bottom
level (numbered 0) every point is a singleton cluster, and level ` > 0 is formed from level ` − 1
by recursively merging any two clusters whose distance is at most 2`, until no two such clusters are
present. We repeat this until level dlog(2

√
dΦ)e, even if all points in X are already joined in one

cluster at a lower level. The following observation is immediate.

Lemma 3.1 If x, x′ ∈ X are in different clusters at level `, then ‖x− x′‖ ≥ 2`.

Notation Let T ∗ denote the tree. For every tree node v, we denote its level by `(v), its associated
cluster by C(v) ⊂ X , and its cluster diameter by ∆(v). For a point xi ∈ X , let leaf(xi) denote the
tree leaf whose associated cluster is {xi}.

Top-out compression The degree of a node in T ∗ is its number of children. A 1-path with k edges
in T ∗ is a downward path u0, u1, . . . , uk, such that (i) each of the nodes u0, . . . , uk−1 has degree
1, (ii) uk has degree either 0 or more than 1, (iii) if u0 is not the root of T ∗, then its ancestor has
degree more than 1.

For every node v denote Λ(v) := log(∆(v)/(2`(v)ε)). If v is the bottom of a 1-path with more
than Λ(v) edges, we replace all but the bottom Λ(v) edges with a long edge, and annotate it by
the length of the path it represents. More precisely, if the downward 1-path is u0, . . . , uk = v and
k > Λ(v), then we connect u0 directly to uk−Λ(v) by the long edge, and the nodes u1, . . . , uk−Λ(v)−1

are removed from the tree, and the long edge is annotated with length k − Λ(v).

Lemma 3.2 The compressed tree has O(n log(1/ε)) nodes.

We henceforth refer only to the compressed tree, and denote it by T . However, for every node v
in T , `(v) continues to denote its level before compression (i.e., the level where the long edges are
counted according to their lengths). We partition T into subtrees by removing the long edges. Let
F(T) denote the set of subtrees.

Lemma 3.3 Let v be the bottom node of a long edge, and x, x′ ∈ C(v). Then ‖x− x′‖ ≤ 2`(v)ε.

Lemma 3.4 Let u be a leaf of a subtree in F(T), and x, x′ ∈ C(u). Then ‖x− x′‖ ≤ 2`(u)ε.

3.2. Surrogates

The purpose of annotating the tree is to be able to recover a list of surrogates for every point in X .
A surrogate is a point whose location approximates x. Since we will need to compare x to a new
query point, which is unknown during sketching, we define the surrogates to encompass a certain
amount information about the absolute point location, by hashing a coarsened grid quantization of
a representative point in each subtree.

6

Centers With every tree node v we associate an index c(v) ∈ [n] such that xc(v) ∈ C(v), and we
call xc(v) the center of C(v). The centers are chosen bottom-up in T as follows. For a leaf v, C(v)
contains a single point xi ∈ X , and we set c(v) = i. For a non-leaf v with children u1, . . . , uk, we
set c(v) = min{c(ui) : i ∈ [k]}.

Ingresses Fix a subtree T ′ ∈ F(T). To every node u in T ′, except the root, we will now assign
an ingress node, denoted in(u). Intuitively this is a node in the same subtree whose center is close
to u, and the purpose is to store the location of u by its quantized displacement from that center
(whose location will have been already stored, by induction).

We will now assign ingresses to all children of a given node v. (Doing this for every v in
T ′ defines ingresses for all nodes in T ′ except its root.) Let u1, . . . , uk be the children of v, and
w.l.o.g. c(v) = c(u1). Consider the graph Hv whose nodes are u1, . . . , uk, and ui, uj are neighbors
if there are points x ∈ C(ui) and x′ ∈ C(uj) such that ‖x− x′‖ ≤ 2`(v). By the tree construction,
Hv is connected. We fix an arbitrary spanning tree τ(v) of Hv which is rooted at u1.

For u1 we set in(u1) := v. For ui with i > 1, let uj be its (unique) direct ancestor in the tree
τ(v). Let x ∈ C(uj) be the closest point to C(ui) in C(uj). Note that in T there is a downward
path from uj to leaf(x). Let ux be the bottom node in that path that belongs to T ′. (Equivalently, ux
is the bottom node on that downward path that is reachable from u without traversing a long edge.)
We set in(ui) := ux.

Grid net quantization Assume w.l.o.g. that Φ is a power of 2. We define a hierarchy of grids
aligned with {−Φ . . .Φ}d as follows. We begin with the single hypercube whose corners are
(±Φ, . . . ,±Φ)d. We generate the next grid by halving along each dimension, and so on. For
every γ > 0, letNγ be the coarsest grid generated, whose cell side is at most γ/

√
d. Note that every

cell inNγ has diameter at most γ. For a point x ∈ Rd, we denote byNγ [x] the closest corner of the
grid cell containing it.

We will rely on the following fact about the intersection size of a grid and a ball; see, for
example, Har-Peled et al. (2012).

Claim 3.5 For every γ > 0, the number of points in Nγ at distance at most 2γ from any given
point, is at most O(1)d.

Surrogates Fix a subtree T ′ ∈ F(T). With every node v in T ′ we will now associate a surrogate
s∗(v) ∈ Rd. Define the following for every node v in T ′:

γ(v) =


(

5 + d∆(v)

2`(v)
e
)−1
· ε if v is a leaf in T ′,(

5 + d∆(v)

2`(v)
e
)−1

otherwise.

The surrogates are defined by induction on the ingresses.
Induction base: For the root v of T ′ we set s∗(v) := N2`(v) [xc(v)].
Induction step: For a non-root v we denote the quantized displacement of c(v) from its ingress

by η(v) = Nγ(v)

[
γ(v)

2`(v)
(xc(v) − s∗(in(v)))

]
, and set s∗(v) := s∗(in(v)) + 2`(v)

γ(v) · η(v).

Lemma 3.6 For every node v, ‖xc(v) − s∗(v)‖ ≤ 2`(v). Furthermore if v is a leaf of a subtree in
F(T), then ‖xc(v) − s∗(v)‖ ≤ 2`(v)ε.

7

Hash functions For every level ` in the tree, we pick a hash function H` : N2` → [m], from a
universal family (Carter and Wegman (1979)), wherem = O(1)d · log(2

√
dΦ) ·q/δ. TheO(1) term

is the same constant from Claim 3.5 above. For every subtree root v, we store its hashed surrogate
H`(v)(N2`(v) [xc(v)]). We also store the description of each hash function H` for every level `.

3.3. Sketch Size

The sketch contains the tree T , with each node v annotated by its center c(v), ingress in(u), preci-
sion γ(v) and quantized displacement η(v) (if applicable). For subtree roots we store their hashed
surrogate, and for long edges we store their length. We also store the hash functions {H`}.

Lemma 3.7 The total sketch size is

O
(
n
(

(d+ log n) log(1/ε) + log log Φ + log
q

δ

)
+ d log Φ

)
bits.

As a preprocessing step, Alice can reduce the dimension of her points to O(ε−2 log(qn/δ)) by
a Johnson-Lindenstrauss projection. She then augments the sketch with the projection, in order for
Bob to be able to project his points as well. By Kane et al. (2011), the projection can be stored with
O(log d+ log(q/δ) · log log((q/δ)/ε)) bits. This yields the sketch size stated in Theorem 1.1.

Remark Both the hash functions and the projection map can be sampled using public random-
ness. If one is only interested in the communication complexity, one can use the general reduction
from public to private randomness due to Newman (1991), which replaces the public coins by aug-
menting O(log(ndΦ)) bits to the sketch (since Alice’s input has size O(ndΦ) bits). The bound
in Theorem 1.1 then improves to O

(
n
(

logn·log(1/ε)
ε2

+ log log Φ + log
(q
δ

))
+ log Φ

)
bits, and the

bound in Theorem 1.2 improves to O
(
n
ε2

(
log n · log(1/ε) + log(dΦ) log

(q
δ

)))
bits. However, that

reduction is non-constructive; we state our bounds so as to describe explicit sketches.

4. Approximate Nearest Neighbor Search

We now describe our approximate nearest neighbor search query procedure, and prove Theorem 1.1.
Suppose Bob wants to report a (1 + ε)-approximate nearest neighbor in X for a point y ∈ Y .

Algorithm Report Nearest Neighbor:

1. Start at the subtree T ′ ∈ F(T) that contains the root of T .

2. Recover all surrogates {s∗(v) : v ∈ T ′}, by the subroutine below.

3. Let v be the leaf of T ′ that minimizes ‖y − s∗(v)‖.

4. If v is the head of a long edge, recurse on the subtree under that long edge. Otherwise v is a
leaf in T , and in that case return c(v).

8

Subroutine Recover Surrogates: This is a subroutine that attempts to recover all surrogates
{s∗(v) : v ∈ T ′} in a given subtree T ′ ∈ F(T), using both Alice’s sketch and Bob’s point y.

Observe that to this end, the only information missing from the sketch is the root surrogate
s∗(r), which served as the induction base for defining the rest of the surrogates. The induction steps
are fully defined by `(v), in(v), γ(v), and η(v), which are stored in the sketch for every node v 6= r
in the subtree. The missing root surrogate was defined as s∗(r) = N2`(r) [xc(r)]. Instead, the sketch
stores its hashed value H`(r)(N2`(r) [xc(r)]) and the hash function H`(r).4

The subroutine attempts to reverse the hash. It enumerates over all points p ∈ N2`(r) such
that ‖p − y‖ ≤ 2 · 2`(r). For each p it computes H`(r)(p). If H`(r)(xc(r)) = H`(r)(p) then it
sets s∗(r) = p and recovers all surrogates accordingly. If either no p, or more than one p, satisfy
H`(r)(xc(r)) = H`(r)(p), then it proceeds with s∗(r) set to an arbitrary point (say, the origin in Rd).

Analysis. Let r0, r1, . . . be the roots of the subtrees traversed on the algorithm. Note that they
reside on a downward path in T .

Claim 4.1 ‖xc(r0) − y‖ ≤ 2`(r0).

Proof Since X ∪ Y ⊂ {−Φ . . .Φ}d, we have ‖xc(r0) − y‖ ≤ 2
√
dΦ ≤ 2dlog(2

√
dΦ)e = 2`(r0).

Let t be the smallest such that rt satisfies ‖xc(rt)−y‖ > 2`(rt). (The algorithm does not identify
t, but we will use it for the analysis.)

Lemma 4.2 With probability 1 − δ/q, for every i = 0, . . . , t − 1 simultaneously, the subroutine
recovers s∗(ri) correctly as N2`(r) [xc(r)]. (Consequently, all surrogates in the subtree rooted by ri
are also recovered correctly.)

Proof Fix a subtree T ′ ∈ F(T) rooted in r, that satisfies ‖y − xc(r)‖ ≤ 2`(r). Since ‖xc(r) −
s∗(r)‖ ≤ 2`(r) (by Lemma 3.6), we have ‖y − s∗(r)‖ ≤ 2 · 2`(r). Hence the surrogate recovery
subroutine tries s∗(r) as one of the hash pre-image candidates, and will identify that H`(r)(s

∗(r))
matches the hash stored in the sketch. Furthermore, by Claim 3.5, the number of candidates is at
most O(1)d. Since the range of H`(r) has size m = O(1)d · log(2

√
dΦ) · q/δ, then with probability

1 − δ/(q log(2
√
dΦ)) there are no collisions, and s∗(r) is recovered correctly. The lemma follows

by taking a union bound over the first t subtrees traversed by the algorithm, i.e. those rooted by ri for
i = 0, 1, . . . , t− 1. Noting that t is upper-bounded by the number of levels in the tree, log(2

√
dΦ),

we get that all the s∗(ri)’s are recovered correctly simultaneously with probability 1− δ/q.

From now on we assume that the event in Lemma 4.2 succeeds, meaning in steps 0, 1, . . . , t −
1, the algorithm recovers all surrogates correctly. We henceforth prove that under this event, the
algorithm returns a (1 + ε)-approximate nearest neighbor of y. In what follows, let x∗ ∈ X be a
fixed true nearest neighbor of y in X .

Lemma 4.3 Let T ′ ∈ F(T) be a subtree rooted in r, such that x∗ ∈ C(r). Let v a leaf of T ′ that
minimizes ‖y − s∗(v)‖. Then either x∗ ∈ C(v), or every z ∈ C(v) is a (1 + O(ε))-approximate
nearest neighbor of y.

4. Note that fully storing the root surrogates is prohibitive: N2`(r) has Θ(2
√
dΦ/2`(r))d cells, hence storing a cell ID

takes Ω(d log d) bits, and since there can be Ω(n) subtree roots, this would bring the total sketch size to Ω(nd log d).

9

Proof Suppose w.l.o.g. by scaling that ε < 1/6. If x∗ ∈ C(v) then we are done. Assume now
that x∗ ∈ C(u) for a leaf u 6= v of T ′. Let ` := max{`(v), `(u)}. We start by showing that
‖y − x∗‖ > 1

4 · 2
`. Assume by contradiction this is not the case. Since u is a subtree leaf and

x∗ ∈ C(u), we have ‖x∗ − xc(u)‖ ≤ 2`ε by Lemma 3.4. We also have ‖xc(u) − s∗(u)‖ ≤ 2`ε by
Lemma 3.6. Together, ‖y − s∗(u)‖ ≤ (1

4 + 2ε)2`. On the other hand, by the triangle inequality,
‖y − s∗(v)‖ ≥ ‖x∗ − xc(v)‖ − ‖y − x∗‖ − ‖xc(v) − s∗(v)‖. Noting that ‖x∗ − xc(v)‖ ≥ 2` (by
Lemma 3.1, since x∗ and xc(v) are separated at level `), ‖y − x∗‖ ≤ 1

4 · 2
` (by the contradiction

hypothesis) and ‖xc(v) − s∗(v)‖ ≤ 2`ε (by Lemma 3.6), we get ‖y − s∗(v)‖ ≥ (3
4 − ε)2` >

(1
4 + 2ε)2` ≥ ‖y − s∗(u)‖. This contradicts the choice of v.

The lemma now follows because for every z ∈ C(v),

‖y − z‖ ≤ ‖y − s∗(v)‖+ ‖s∗(v)− xc(v)‖+ ‖xc(v) − z‖ (1)

≤ ‖y − s∗(u)‖+ ‖s∗(v)− xc(v)‖+ ‖xc(v) − z‖ (2)

≤ ‖y − x∗‖+ ‖x∗ − xc(u)‖+ ‖xc(u) − s∗(u)‖+ ‖s∗(v)− xc(v)‖+ ‖xc(v) − z‖ (3)

≤ ‖y − x∗‖+ 4 · 2`ε (4)

≤ (1 + 16ε)‖y − x∗‖, (5)

where (1) and (3) are by the triangle inequality, (2) is since ‖y−s∗(v)‖ ≤ ‖y−s∗(u)‖ by choice of
v, (4) is by Lemmas 3.4 and 3.6, and (5) is since we have shown that ‖y − x∗‖ > 1

4 · 2
`. Therefore

z is a (1 + 16ε)-approximate nearest neighbor of y.

Proof of Theorem 1.1. We may assume w.l.o.g. that ε is smaller than a sufficiently small con-
stant. Suppose that the event in Lemma 4.2 holds, hence all surrogates in the subtrees rooted by
r0, r1, . . . , rt−1 are recovered correctly. We consider two cases. In the first case, x∗ /∈ C(rt). Let
i ∈ {1, . . . , t} be the smallest such that x∗ /∈ C(ri). By applying Lemma 4.3 on ri−1, we have
that every point in C(ri) is a (1 + O(ε))-approximate nearest neighbor of y. After reaching ri, the
algorithm would return the center of some leaf reachable from ri, and it would be a correct output.

In the second case, x∗ ∈ C(rt). We will show that every point in C(rt) is a (1 + O(ε))-
approximate nearest neighbor of y, so once again, once the algorithm arrives at rt it can return
anything. By Lemma 3.3, every x ∈ C(rt) satisfies

‖x− x∗‖ ≤ 2`(rt)ε. (6)

In particular, ‖xc(rt)−x∗‖ ≤ 2`(rt)ε. By definition of twe have ‖xc(rt)−y‖ > 2`(rt). Combining the
two yields ‖y−x∗‖ ≥ ‖y−xc(rt)‖−‖xc(rt)−x∗‖ > (1− ε)2`(rt). Combining this with eq. (6), we
find that every x ∈ C(rt) satisfies ‖x−x∗‖ ≤ ε

1−ε‖y−x
∗‖, and hence ‖y−x‖ ≤ (1+2ε)‖y−x∗‖

(for ε ≤ 1/2). Hence x is a (1 + 2ε)-nearest neighbor of y.
The proof assumes the event in Lemma 4.2, which occurs with probability 1− δ/q. By a union

bound, the simultaneous success probability of the q query points of Bob is 1− δ as required. �

5. Distance Estimation

We now prove theorem 1.2. To this end, we augment the basic sketch from Section 3 with additional
information, relying on the following distance sketches due to Achlioptas (2001) (following Johnson
and Lindenstrauss (1984)) and Kushilevitz et al. (2000).

10

Lemma 5.1 (Achlioptas (2001)) Let ε, δ′ > 0. Let d′ = cε−2 log(1/δ′) for a sufficiently large
constant c > 0. Let M be a random d′ × d matrix in which every entry is chosen independently
uniformly at random from {−1/

√
d′, 1/

√
d′}. Then for every x, y ∈ Rd, with probability 1 − δ′,

‖Mx−My‖ = (1± ε)‖x− y‖.

Lemma 5.2 (Kushilevitz et al. (2000)) LetR > 0 be fixed and let ε, δ′ > 0. There is a randomized
map skR of vectors in Rd into O(ε−2 log(1/δ′)) bits, with the following guarantee. For every
x, y ∈ Rd, given skR(x) and skR(y), one can output the following with probability 1− δ′:
• If R ≤ ‖x− y‖ ≤ 2R, output a (1 + ε)-estimate of ‖x− y‖.

• If ‖x− y‖ ≤ (1− ε)R, output “Small”.

• If ‖x− y‖ ≥ (1 + ε)R, output “Large”.

We augment the basic sketch from Section 3 as follows. We sample a matrixM from Lemma 5.1,
with δ′ = δ/q. In addition, for every level ` in the tree T , we sample a map sk2` from Lemma 5.2,
with δ′ = δ/(q log(2

√
dΦ)). For every subtree root r in T , we store Mxc(r) and sk2`(r)(xc(r)) in

the sketch. Let us calculate the added size to the sketch:

• Since xc(r) has d coordinates of magnitude O(Φ) each, Mxc(r) has d′ coordinates of mag-
nitude O(dΦ) each. Since there are O(n) subtree roots (cf. Lemma 3.7), storing Mxc(r) for
every r adds O(nd′dΦ) = O(ε−2n log(q/δ) log(dΦ)) bits to the sketch. In addition we store
the matrix M , which takes O(d′d) bits to store, which is dominated by the previous term.

• By Lemma 5.2, each sk2`(r)(xc(r)) adds O(ε−2 log(q log(2
√
dΦ)/δ)) bits to the sketch, and

as above there are O(n) of these. In addition we store the map sk2`(r) for every `. Each map
takes poly(d, log Φ, log(q/δ), 1/ε) bits to store.

In total, we get the sketch size stated in Theorem 1.2. Next we show how to compute all distances
from a new query point y.

Query algorithm. Given the sketch, an index k ∈ [n] of a point in X , and a new query point y,
the algorithm needs to estimate ‖y − xk‖ up to 1±O(ε) distortion. It proceeds as follows.

1. Perform the approximate nearest neighbor query algorithm from Section 4. Let r0, r1, . . . be
the downward sequence of subtree roots traversed by it.

2. For each rj , estimate from the sketch whether ‖y − xc(rj)‖ ≤ 2`(rj). This can be done by
Lemma 5.2, since the sketch stores sk

2`(rj)
(xc(rj)) and also the map sk

2`(rj)
, with which we

can compute sk
2`(rj)

(y).

3. Let t be the smallest j that satisfies ‖y−xc(rj)‖ > 2`(rj) according the estimates of Lemma 5.2.
(This attempts to recover from the sketch the same t as defined in the analysis in Section 4.)

4. Let tk ∈ {0, . . . , t} be the maximal such that xk ∈ C(rtk).

(In words, rtk is the root of the subtree in which xk and y “part ways”.)

5. If tk = t, return ‖My −Mxc(rt)‖. Note that M and Mxc(rt) are stored in the sketch.

6. If tk < t, let vk be the bottom node on the downward path from rtk to leaf(xk) that does not
traverse a long edge. Return ‖y − s∗(vk)‖.

11

Analysis. Fix a query point y. Define the “good event” A(y) as the intersection of the following:

1. For every subtree root rj traversed by the query algorithm above, the invocation of Lemma 5.2
on sk

2`(rj)
(xc(rj)) and sk

2`(rj)
(y) succeeds in deciding whether ‖y−xc(rj)‖ ≤ 2`(rj). Specif-

ically, this ensures that ‖y−xc(rj)‖ ≤ 2`(rj) for every j < t, and ‖y−xc(rt)‖ ≥ (1− ε)2`(rt).
Recalling that we invoked the lemma with δ′ = δ/(q log(2

√
dΦ)), we can take a union bound

and succeed in all levels simultaneously with probability 1− δ/q.

2. ‖My −Mxc(rt)‖ = (1± ε)‖y − xc(rt)‖. By Lemma 5.1 this holds with probability 1− δ/q.

Altogether, A(y) occurs with probability 1−O(δ/q).

Lemma 5.3 Conditioned onA(y) occuring, with probabiliy 1−δ/q, Lemma 4.2 holds. Namely, the
query algorithm correctly recovers all surrogrates in the subtrees rooted by rj for j = 0, 1, . . . , t−1.

Proof The proof of Lemma 4.2 in Section 4 relied on having ‖y− xc(rj)‖ ≤ 2`(rj) for every j < t.
Conditioning on A(y) ensures this holds.

Proof of Theorem 1.2. LetA∗(y) denote the event in which bothA(y) occurs and the conclusion
of Lemma 4.2 occurs. By the above lemma,A∗(y) happens with probability 1−O(δ/q). From now
on we will assume that A∗(y) occurs, and conditioned on this, we will show that the distance from
y to any data point can be deterministically estimated correctly. To this end, fix k ∈ [n] and suppose
our goal is to estimate ‖y−xk‖. Let tk and vk be as defined by the distance query algorithm above.
We handle the two cases of the algorithm separately.

Case I: tk = t. This means xk ∈ C(rt). By Lemma 3.3 we have ‖xk − xc(rt)‖ ≤ 2`(rt)ε. By
the occurance ofA∗(y) we have ‖y− xc(rt)‖ > (1− ε)2`(rt). Together, ‖y− xk‖ = ‖y− xc(rt)‖±
‖xk−xc(rt)‖ = (1± 2ε)‖y−xc(rt)‖. This means that ‖y−xc(rt)‖ is a good estimate for ‖y−xk‖.
Since A∗(y) occurs, it holds that ‖My−Mxc(rt)‖ = (1± ε)‖y− xc(rt)‖, hence ‖My−Mxc(rt)‖
is also a good estimate for ‖y − xk‖, and this is what the algorithm returns.

Case II: tk < t. Let Ttk be the subtree rooted by rtk . By the occurance of A∗(y), all surrogates
in Ttk are recovered correctly, and in particular s∗(vk) is recovered correctly. By Lemma 3.6 we
have ‖xc(vk) − s∗(vk)‖ ≤ 2`(vk)ε, and by Lemma 3.4 (noting that xk ∈ C(vk) by choice of vk) we
have ‖xk − xc(vk)‖ ≤ 2`(vk)ε. Together, ‖xk − s∗(vk)‖ ≤ 2 · 2`(vk)ε.

Let v be the leaf in Ttk that minimizes ‖y − s∗(v)‖ (over all leaves of Ttk). Equivalently, v
is the top node of the long edge whose bottom node is rtk+1. Let ` := max{`(v), `(vk)}. By
choice of tk we have v 6= vk, hence the centers of these two leaves are separated already at level `,
hence ‖xc(vk) − xc(v)‖ ≥ 2` by Lemma 3.1. By two applications of Lemma 3.6 we have ‖xc(vk) −
s∗(vk)‖ ≤ 2`ε and ‖xc(v) − s∗(v)‖ ≤ 2`ε. Together, ‖s∗(vk) − s∗(v)‖ ≥ (1 − 2ε) · 2`. Since y is
closer to s∗(v) than to s∗(vk) (by choice of v), we have ‖y − s∗(vk)‖ ≥ 1

2 · ‖s
∗(vk) − s∗(v)‖ ≥(

1
2 − ε

)
· 2`. Combining this with ‖xk − s∗(vk)‖ ≤ 2 · 2`(vk)ε, which was shown above, yields

‖xk − s∗(vk)‖ ≤ ε · 1
1/2−ε · ‖y − s∗(vk)‖ = O(ε) · ‖y − s∗(vk)‖. Therefore, ‖y − xk‖ =

‖y − s∗(vk)‖ ± ‖xk − s∗(vk)‖ = (1±O(ε)) · ‖y − s∗(vk)‖, which means ‖y − s∗(vk)‖ is a good
estimate for ‖y − xk‖, and this is what the algorithm returns.

Conclusion: Combining both cases, we have shown that for any query point y, all distances
from y to X can be estimated correctly with probability 1− O(δ/q). Taking a union bound over q
queries, and scaling δ and ε appropriately by a constant, yields the theorem. �

12

Acknowledgments

This work was supported by grants from the MITEI-Shell program, Amazon Research Award and
Simons Investigator Award.

References

Dimitris Achlioptas. Database-friendly random projections. In Proceedings of the twentieth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 274–281.
ACM, 2001.

Alexandr Andoni and Piotr Indyk. Nearest neighbors in high-dimensional spaces. CRC Handbook
of Discrete and Computational Geometry, 2017.

J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. Journal of computer
and system sciences, 18(2):143–154, 1979.

A. Efros. How to stop worrying and learn to love nearest neighbors. https://nn2017.mit.edu/wp-
content/uploads/sites/5/2017/12/Efros-NIPS-NN-17.pdf, 2017.

Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape,
Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, and Prateek Jain. Protonn:
Compressed and accurate knn for resource-scarce devices. In International Conference on Ma-
chine Learning, pages 1331–1340, 2017.

Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards re-
moving the curse of dimensionality. Theory of computing, 8(1):321–350, 2012.

Piotr Indyk and Tal Wagner. Near-optimal (euclidean) metric compression. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 710–723. SIAM,
2017.

Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Practical data-dependent metric compression with
provable guarantees. In Advances in Neural Information Processing Systems, pages 2614–2623,
2017.

Thathachar S Jayram and David P Woodruff. Optimal bounds for johnson-lindenstrauss transforms
and streaming problems with subconstant error. ACM Transactions on Algorithms (TALG), 9(3):
26, 2013.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Faiss: A library for efficient simi-
larity search. https://code.facebook.com/posts/1373769912645926/faiss-a-library-for-efficient-
similarity-search/, 2017a.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017b.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

13

Daniel Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit johnson-lindenstrauss fam-
ilies. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, pages 628–639. Springer, 2011.

Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. SIAM Journal on Computing, 30(2):457–474, 2000.

Marco Molinaro, David P Woodruff, and Grigory Yaroslavtsev. Beating the direct sum theorem in
communication complexity with implications for sketching. In Proceedings of the twenty-fourth
annual ACM-SIAM symposium on Discrete algorithms, pages 1738–1756. Society for Industrial
and Applied Mathematics, 2013.

Ilan Newman. Private vs. common random bits in communication complexity. Information pro-
cessing letters, 39(2):67–71, 1991.

Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-neighbor methods in learning
and vision: theory and practice (neural information processing). The MIT press, 2006.

Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. A survey on learning to hash. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(4):769–790, 2018.

Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big data: a
survey. Proceedings of the IEEE, 104(1):34–57, 2016.

14

Appendix A. Deferred Proofs from Section 3

Proof [Proof of Lemma 3.2] Charging the degree-1 nodes along every maximal 1-path to its bottom
(non-degree-1) node, the total number of nodes after top-out compression is bounded by∑

v:deg(v)6=1

Λ(v).

Indyk and Wagner (2017) show this is at most O(n log(1/ε)). The difference is that their compres-
sion replaces summands larger than Λ(v) by zero, while our (top-out) compression trims them to
Λ(v).

Proof [Proof of Lemma 3.3] By top-out compression, v is the top of a downward 1-path of length
Λ(v′) whose bottom node is v′. Since no clusters are joined along a 1-path, we have C(v′) = C(v),
hence x, x′ ∈ C(v′) and hence ‖x − x′‖ ≤ ∆(v′). Noting that `(v) = `(v′) + Λ(v′) = `(v′) +
log(∆(v′)/(2`(v

′)ε)) = log(∆(v′)/ε) and rearranging, we find ∆(v′) = 2`(v)ε, which yields the
claim.

Proof [Proof of Lemma 3.4] If u is a leaf in T then C(u) is a singleton cluster, hence x = x′.
Otherwise u is the top node of a long edge, and the claim follows by Lemma 3.3 on the bottom node
of that long edge.

Proof [Proof of Lemma 3.6] The first part of the lemma (where v is any node, not necessarily a
subtree leaf) is proved by induction on the ingresses. In the base case we use that ‖xc(v)−s∗(v)‖ ≤
2`(v) by the choice of grid net. The induction step is identical to Indyk and Wagner (2017). The
“furthermore” part of the lemma then follows as a corollary due to the refined definition of γ(v) for
a subtree leaf v, in the induction step leading to it.

Proof [Proof of Lemma 3.7] The sketch of Indyk and Wagner (2017) stores the compressed tree T ′,
with each node annotated by its center c(v), ingress in(v), precision γ(v) and quantized displace-
ment η(v). Every long edge is annotated by its length. They show this takes

O (n ((d+ log n) log(1/ε) + log log Φ))

bits; note that by Lemma 3.2, top-out compression did not effect this bound.
We additionally store the hashed surrogates of subtree roots. There are O(n) subtrees,5 and

each hash takes logm bits to store, which adds O(n(d + log log Φ + log(q/δ))) bits to the above.
Finally, we store the hash functionsH` for every `. The domain of eachH` isN2` , which is a subset
of {−Φ . . .Φ}d, and hence H` can be specified by O(log(Φd)) random bits (Carter and Wegman
(1979)). Since we do not require independence between hash functions of different levels, we can
use the same random bits for all hash functions, adding a total of O(d log Φ) bits to the sketch.

5. By construction, the tree of subtrees in T has no degree-1 nodes. Since T has n leaves, there are at most 2n − 1
subtrees.

15

Appendix B. Approximate Nearest Neighbor Sketching Lower Bound

Theorem B.1 Suppose that d ≥ Ω(ε−2 log n), Φ ≥ 1/ε, and 1/n0.5−β ≤ ε ≤ ε0 for a constant
β > 0 and a sufficiently small constant ε0. Suppose also that δ < 1/n2. Then, for the all-nearest-
neighbors problem, Alice must use a sketch of at least Ω(βε−2n log n) bits.

Proof We start with dimension d = n + 1 + log n; it can then be reduced by standard dimension
reduction. Fix k = 1/ε2 and assume w.l.o.g. that k is a square integer (by taking ε to be appropriately
small). Note that since ε > 1/

√
n we have k ≤ n, and that since Φ ≥ 1/ε we have

√
k ≤ Φ.

The data set will consist of 2n points, x1, . . . , xn and z1, . . . , zn. Let i ∈ [n]. We choose the
first n coordinates of xi to be an arbitrary k-sparse vector, in which each nonzero coordinate equals
1/
√
k. Note that the norm of this part is 1. The (n+ 1)th coordinate of xi is set to 0. The remaining

log n coordinates encode the binary encoding of i, with each coordinate multiplied by 10.
Next we define zi. The first n coordinates are 0. The (n+ 1)th coordinate equals

√
1− ε. The

remaining log n coordinates encode i similarly to xi.
The number of different choices for {x1, . . . , xn} is

(
n
k

)n. Therefore if we show that one can
fully recover x1, . . . , xn from a given all-nearest-neighbor sketch of the dataset, we would get the
desired lower bound

log

((
n

k

)n)
≥ nk log(n/k) = ε−2n log(ε2n) = ε−2n log(n2β) = 2βε−2n log n.

Suppose we have such a sketch. For given i, j ∈ [n] we now show how to recover the jth
coordinate of xi, denoted xi(j), with a single approximate nearest neighbor query. Let yij be the
following vector in Rd: The first n+1 coordinates are all zeros, except for the jth coordinate which
is set to 1. The last log n coordinates encode i similary to xi and zi.

Consider the distances from yij to all data points. We start with xi. It is identical to yi in
the last log n + 1 coordinates, so we will restrict both to the first n coordinates and denote the
restricted vectors by x:n

i and y:n
ij . x:n

i is a k-sparse vector with nonzero entries equal to 1/
√
k, hence

‖x:n
i ‖ = 1. y:n

ij is just the standard basis vector ej in Rn. Hence,

‖xi − yij‖2 = ‖x:n
i − y:n

ij ‖2 = ‖x:n
i ‖2 + ‖y:n

ij ‖2 − 2(x:n
i)>y:n

ij = 2− 2xi(j).

This equals 2 if xi(j) = 0 and 2− 2/
√
k = 2− 2ε if xi(j) = 1/

√
k.

Next consider zi. It is identical to yij in all except the jth coordinate, which is 0 in zi and 1 in
yij , and the (n+1)th coordinate, which is 0 for yij and

√
1− ε for zi. Therefore, ‖zi−yij‖2 = 2−ε.

Finally, for every i′ 6= i, both xi′ and zi′ are at distance at least 10 from yij due to the encoding
of i (as binary multiplied by 10) in the last log n coordinates.

In summation we have established the following:

• If xi(j) 6= 0, then the closest point to yij in the dataset is xi at distance
√

2− 2ε, and the next
closest point is zi at distance

√
2− ε.

• If xi(j) = 0, then the closest point to yij in the dataset is zi at distance
√

2− ε, and the next
closest point is xi at distance 2.

Therefore, if the sketch supports (1 + 1
8ε)-approximate nearest neighbors, we can recover the true

nearest neighbor of yij and thus recover xi(j). By hypothesis, the query succeeds with probability

16

δ < 1/n2. By a union bound over all i, j ∈ [n] we can recover all of x1, . . . , xn simultaneously,
and the theorem follows.

Appendix C. Lower Bound for Distance Estimation

In this section we prove Theorem 1.3. We handle the two terms in the lower bound separately.

C.1. First Lower Bound Term

Lemma C.1 Suppose that d ≥ Ω(ε−2 log n); Φ ≥ 1/ε; ε is at most a sufficiently small constant;
and ε ≥ 1/n0.5−ρ′ for a constant ρ′ > 0. Then, for the all-cross-distances problem, Alice must use
a sketch of at least Ω(ρ′ε−2n log n) bits.

Proof Consider the following problem: Given a dataset X ⊂ {−Φ . . .Φ}d consisting of n points,
we need to produce a sketch, from which we can recover (deterministically) all distances {‖x−x′‖ :
x, x′ ∈ X} up to distortion 1± ε. This is the problem considered in Indyk and Wagner (2017), and
they show a lower bound of Ω(ρ′ε−2n log n) under the asssumptions of the current lemma. We will
obtain the same lower bound by reducing this problem to all-cross-distances.

To this end, suppose we have a given sketching procedure for the all-cross-distances problem
that uses s = s(n, d,Φ, 1, ε, δ) amortized bits per point. We invoke it on X and denote the resulting
sketch by S0. For every point y ∈ {−Φ . . .Φ}d, with probabiliy 1− δ, all distances {‖x− y‖ : x ∈
X} can be recovered from S0. In particular, this holds in expectation for (1 − δ)n of the points in
X . By Markov’s inequality, this holds for 1

2(1 − δ)n > 1
4n of the points in X with probability at

least 1/2. We proceed by recursion on the remaining 3
4n points inX . The sketch produced in the ith

step of the recursion is denoted by Si and has total size (3
4)ins bits. After t = O(log n) steps, with

nonzero probability 1/nO(1), we have produced a sequence of sketches S0, . . . , St from which every
distance in {‖x− x′‖ : x, x′ ∈ X} can be recovered, with a total size of O(

∑t
i=0(3

4)ins) = O(ns)
bits. This yields the desired lower bound.

C.2. Second Lower Bound Term

Lemma C.2 Suppose that d1−ρ ≥ ε−2 log(q/δ) for a constant ρ > 0, and ε is at most a suffi-
ciently small constant. Then, for the all-cross-distances problem, Alice must use a sketch of at least
Ω(ε−2n log(dΦ) log(q/δ)) bits.

The proof is by adapting the framework of Molinaro et al. (2013), who proved (among other
results) this statement for the case q = n. We describe the adaption and refer to Molinaro et al.
(2013) for missing details that remain similar.

C.2.1. Preliminaries

We follow the approach of Jayram and Woodruff (2013), of proving one-way communication lower
bounds by reduction to variants of the augmented indexing problem, defined next.

17

Definition C.3 (Augmented Indexing) In the Augmented Indexing problem AugInd(k, δ), Alice
gets a vector A with k entries, whose elements are entries of a universe of size 20/δ. Bob gets an
index i ∈ [k], an element e, and the elements A(i′) for every i′ < i. Bob needs to decide whether
e = A(i), and succeed with probability 1− δ.

Jayram and Woodruff (2013) give a one-way communication lower bound of Ω(k log(1/δ)) for
this problem. The main component in Molinaro et al. (2013) is a modified one-way communication
model, in which the protocol is allowed to abort with a substantially larger (constant) probability
than it is allowed to err. We will refer to it simply as the abortion model and refer to Molinaro et al.
(2013) for the exact definition (which we will not require). They prove the same lower bound for
Augmented Indexing.

Lemma C.4 (informal) In the abortion model, the one-way communication complexity ofAugInd(k, δ)
is Ω(k log(1/δ)).

C.2.2. Variants of Augmented Indexing

We start by defining a variant of augmented indexing that will be suitable for out purpose.

Definition C.5 In the Matrix Augmented Indexing problemMatAugInd(k,m, δ), Alice gets a ma-
trix A of order k×m, whose entries are elements of a universe of size 1/δ. Bob gets indices i ∈ [k]
and j ∈ [m], an element e, and the elements A(i, j′) for every j < j′. Bob needs to decide whether
e = A(i, j), and succeed with probability 1− δ.

This problem is clearly at least as difficult as AugInd(km, δ) from Definition C.3, since in
the latter Bob gets more information (namely, if we arrange the vector A in AugInd(km, δ) as a
k ×m matrix, then Bob gets all entries of A which lexicographically precede A(i, j)). We get the
following immediate corollary from Lemma C.4.

Corollary C.6 In the abortion model, the one-way communication complexity ofMatAugInd(k,m, δ)
is Ω(km log(1/δ)).

Molinaro et al. (2013) reformulate Augmented Indexing so that Alice’s input is a set instead of
vector. Similary, we reformulate Matrix Augmented Indexing as follows.

Definition C.7 Let m > 0 and k > 0 be integers, and δ ∈ (0, 1). Partition the interval [m/δ] into
m intervals I1, . . . , Im of size 1/δ each.

In the Augmented Set List problemAugSetList(k,m, δ), Alice gets a list of subsets S1, . . . , Sk ⊂
[m/δ], such that each Si has size exactly m and contains exactly one element from each interval
I1, . . . , Im. Bob gets an index i ∈ [k], an element e ∈ [m/δ] and a subset T of Si that contains
exactly the elements of Si that are smaller than e. Bob needs to decide whether e ∈ Si, and succeed
with probability at least 1− δ.

The equivalence to Matrix Augmented Indexing is not hard to show; the details are similar
to Molinaro et al. (2013) and we omit them here. By the equivalence, we get the following corollary
from Corollary C.6.

18

Corollary C.8 In the abortion model, the one-way communication complexity ofAugSetList(k,m, δ)
is Ω(km log(1/δ)).

Next we define the q-fold version of the same problem.

Definition C.9 In the problem q-AugSetList(k,m, δ), Alice and Bob get q instances of AugSetList(k,m, δ/q),
and Bob needs to answer correctly on all of them simoultaneously with probability at least 1− δ.

The main tehcnical result of Molinaro et al. (2013) is, loosely speaking, a direct-sum theorem
which lifts a lower bound in the abortion model to a q-fold lower bound in the usual model. Applying
their theorem to Corollary C.8, we obtain the following.

Corollary C.10 The one-way communication complexity of q-AugSetList(k,m, δ) is Ω(qkm log(q/δ)).

Finally, we construct a “generalized augmented indexing” problem over r copies of the above
problem.

Definition C.11 In the problem r-Ind(q-AugSetList(k,m, δ)), Alice gets r instances A1, . . . , Ar
of q-AugSetList(k,m, δ). Bob gets an index j ∈ [r], his part Bj of instance j, and Alice’s
instances A1, . . . , Aj−1. Bob needs to solve instance j with success probability at least 1− δ.

By standard direct sum results in communication complexity (reproduced in Molinaro et al.
(2013)) we obtain from Corollary C.10 the final lower bound we need.

Proposition C.12 The one-way communication complexity of r-Ind(q-AugSetList(k,m, δ)) is
Ω(rqkm log(q/δ)).

C.2.3. Reductions to All-Cross-Distances

We now prove Lemma C.2, by reducing r-Ind(q-AugSetList(k,m, δ)) to the all-cross-distances
problem. We will use two reductions, to get a lower bound once in terms of d and once in terms
of Φ. Specifically, in the first reduction we will set m = 1/ε2, k = n/q and r = ρ log d (where
ρ is the constant from the statement of Lemma C.2). Then the lower bound we would get by
Proposition C.12 is Ω

(
ε−2n log d log(q/δ)

)
. In the second reduction we will set r = ρ log Φ,

yielding the lower bound Ω
(
ε−2n log Φ log(q/δ)

)
. Together they lead to Lemma C.2.

In both settings, recall we are reducing to the following problem: For dimension d = Ω(ε−2 log(q/δ))
and aspect ratio Φ, Alice gets n points, Bob gets q points, and Bob needs to estimate all cross-
distances up to distortion 1± ε.

Consider an instance of r-Ind(q-AugSetList(k,m, δ)). It can be visualized as follows: Alice
gets a matrix S with n = qk rows and r columns, where each entry contains a set of size m. Bob
gets an index j ∈ [r], indices i1, . . . , iq ∈ [k], elements e1, . . . , eq, subsets T1 ⊂ S(i1, j), . . . , Tq ⊂
S(iq, j), and the first j − 1 columns of the matrix S.

We now use the encoding scheme of Jayram and Woodruff (2013), in the set formulation which
was given in Molinaro et al. (2013). We restate the result.

Lemma C.13 (Jayram and Woodruff (2013)) Let m = 1/ε2 and 0 < η < 1. Suppose we have
the following setting:

• Alice has subsets S1, . . . , Sr of [m/η].

19

• Bob has an index j ∈ [r], an element e ∈ [m/η], the subset T ⊂ Sj of elements smaller than
e, and the sets S1, . . . , Sj−1.

There is a shared-randomness mapping of their inputs into points vA, vB and a scale Ψ > 0 (the
scale is known to both), such that

1. vA, vB ∈ {0, 1}D for D = O(ε−2 log(1
η) exp(r)).

2. If e ∈ Sj (YES instance) then w.p. 1− η, ‖vA − vB‖2 ≤ (1− 2ε)Ψ.

3. If e /∈ Sj (NO instance) then w.p. 1− η, ‖vA − vB‖2 ≥ (1− ε)Ψ

C.2.4. Lower Bound in terms of d

We start with the first reduction that yields a lower bound in terms of d.

Lemma C.14 Under the assumptions of Lemma C.2, for the all-cross-distances problem, Alice
must use a sketch of at least Ω(ε−2n log(d) log(q/δ)) bits.

Proof We invoke Lemma C.13 with r = ρ log d and η = δ/q. Note that the latter is the desired
success probability in each instance of q-AugSetList(k,m, δ) (cf. Definition C.9). Alice encodes
each row of the matrix, (S(i, 1), . . . , S(i, r)), into a point xi, thus n points x1, . . . , xn. Bob encodes
(S(i, 1), . . . , S(iz, j − 1), Ti, j, ez) for each z ∈ [q] into a point yz , thus q points y1, . . . , yz . For
every z ∈ [q], the problem represented by row iz in the matrix S is reduced by Lemma C.13 to esti-
mating the distance ‖xiz − yz‖. By Item 1 of Lemma C.13, the points {xi}i∈[n], {yz}z∈[q] have bi-
nary coordinates and dimension D = O(ε−2 log(q/δ)dρ). By the hypothesis d1−ρ ≥ ε−2 log(q/δ)
of Lemma C.2, D = O(d). Therefore Alice and Bob can now feed them into a given black-box
solution of the all-cross-distances problem, which estimates all the required distances and solves
r-Ind(q-AugSetList(k,m, δ)).

Let us establish the success probability of the reduction. Since we set η = δ/q in Lemma C.13,
it preserves each distance ‖xiz − yz‖ for z ∈ [q] with probability 1 − δ/q. By a union bound, it
preserves all of them simultaneously with probability 1−δ. The success probability of the all-cross-
distances problem, simultaneously on all query points {ỹz : z ∈ [q]}, is again 1− δ. Altogether, the
reduction succeeds with probability 1 − O(δ). As a result, the all-cross-distances problem solves
the given instance of r-Ind(q-AugSetList(k,m, δ)), and Lemma C.14 follows.

C.2.5. Lower Bound in terms of Φ

We proceed to the second reduction that would yield a lower bound in terms of Φ.

Lemma C.15 Under the assumptions of Lemma C.2, for the all-cross-distances problem, Alice
must use a sketch of at least Ω(ε−2n log(Φ) log(q/δ)) bits.

Proof We may assume that Φ ≥ d since otherwise Lemma C.15 already follows from Lemma C.14.
Therefore Φ1−ρ ≥ ε−2 log(q/δ).

The reduction is very similar to the one in Lemma C.14. Again we evoke Lemma C.13 with η =
δ/q, but this time we set r = ρ log Φ. Again we denote Alice’s encoded points by x1, . . . , xn, and
Bob’s by y1, . . . , yq. By Item 1 of Lemma C.13, the points have binary coordinates and dimension

20

D = O(ε−2 log(q/δ)Φρ). The difference from Lemma C.14 is that since it is possible that Φ� d,
the dimension D is too large for the given black-box solution of the all-cross-distances problem
(which is limited to dimension O(d)).

To solve this, Alice and Bob project their points into dimension D′ = O(ε−2 log(q/δ)) by a
Johnson-Lindenstrauss transform, using shared randomness. Let x̃1, . . . , x̃n and ỹ1, . . . , ỹz denote
the projected points. After the projection each coordinate has magnitude at mostO(ε−2 log(q/δ)Φρ).
By our assumption Φ1−ρ ≥ Ω(ε−2 log(q/δ)), this is at mostO(Φ). Since the dimensionD′ isO(d),
Alice and Bob can now feed x̃1, . . . , x̃n and ỹ1, . . . , ỹz into a given black-box solution of the all-
cross-distances problem with dimension O(d) and aspect ratio O(Φ).

Let us establish the success probability of the reduction. As before, Lemma C.13 preserves all
the required distances, ‖xiz − yz‖ for z ∈ [q], with probability 1 − δ. The Johnson-Lindenstrauss
transform into dimension D′ preserves each distance as ‖x̃iz − ỹz‖ with probability at least 1 − δ,
since we picked the dimension to be D′ = O(ε−2 log(qδ)). The success probability of the all-
cross-distances problem simultaneously is again 1 − δ. Altogether, the reduction succeeds with
probability 1 − O(δ). As a result, the all-cross-distances problem solves the given instance of
r-Ind(q-AugSetList(k,m, δ)), and Lemma C.15 follows.

C.2.6. Conclusion

Lemmas C.14 and C.15 together imply Lemma C.2. The latter, together with Lemma C.1, im-
plies Theorem 1.3. �

Appendix D. Practical Variant

Indyk et al. (2017) presented a simplified version of the sketch of Indyk and Wagner (2017), which is
lossier by a factorO(log log n) in the size bound (more precisely it usesO(ε−2 log(n)(log log(n)+
log(1/ε)) + log log Φ) bits per point; compare this to Table 1), but on the other hand is practical to
implement and was shown to work well empirically. Both variants do not provably support out-of-
sample queries.

In the main part of this work, we showed how to adapt the framework of Indyk and Wagner
(2017) to support out-of-sample queries with nearly optimal size bounds. The goal of this section
is to show that our techniques can also be applied in a simplified way to Indyk et al. (2017) in order
to obtain a practical algorithm. Specifically, focusing on the all-nearest-neighbors problem, we
will show that a slight modification to Indyk et al. (2017) yields provable support in out-of-sample
approximate nearest neighbor queries, with a size bound that is the same as in Theorem 1.1 plus an
additive O(ε−2 log(n) log log(n)) term.

Technique: Middle-out compression In Indyk et al. (2017), every 1-path is pruned (i.e. re-
placed by a long edge) except for its top Λ nodes, where Λ is an integer parameter. Combining
this “bottom-out” compression with the “top-out” compression which was introduced in Section 3,
we obtain middle-out compression: every long 1-path longer than 2Λ is replaced by a long edge,
except for its top and bottom Λ nodes. As we will show in the remainder of this section, applying

21

this pruning rule to the quadtree of Indyk et al. (2017) (instead of their “bottom-out” rule) is suffi-
cient to obtain a sketch that provably supports out-of-sample approximate nearest neighbor queries.
Thus, the sketching algorithm is nearly unchanged.

We remark that in Section 3 we introduced two additional modifications: grid-net quantization
and surrogate hashing. These were required in order to prove Theorems 1.1 and 1.2, but in the
framework of Indyk et al. (2017) they turn out to be unnecessary: grid-net quantization is already
organically built into the quadtree approach of Indyk et al. (2017), and surrogate hashing only served
to avoid aO(log log n) factor in the sketch size (see footnote 4), but in Indyk et al. (2017) this factor
is tolerated anyway.

D.1. Sketching Algorithm Recap

For completeness, let us briefly describe the sketching algorithm of Indyk et al. (2017) (the reader
is referred to that paper for more formal details), with our modification. To this end, set

Λ = dlog

(
16d1.5 log Φ

εδ

)
e.

Suppose w.l.o.g. that Φ is a power of 2. The sketching algorithm proceeds in three steps:

1. Random shifted grids: Impose a randomly shifted enclosing hypercube on the data points X .
More precisely, choose a uniformly random shift σ ∈ {−Φ, . . . ,Φ}d, and set the enclosing
hypercube to beH = [−2Φ+σ1, 2Φ+σ1]×[−2Φ+σ2, 2Φ+σ2]×. . .×[−2Φ+σd, 2Φ+σd].
SinceX ⊂ {−Φ, . . . ,Φ}d, it is indeed enclosed byH . We then halfH along every dimension
to create a finer grid with 2d cells, and proceed so (recursively halving every cell along every
dimension) to create a hierarchy of nested grids, with log(4Φ) + Λ hierarchy levels. The
top level is numbered Φ + 2, which is the log the side length of H , and the next levels are
decrementing, so that the grid cells in level ` have side length 2`.

2. Quadtree construction: Construct the quadtree which is naturally associated with the nested
grids: the root corresponds to H , its children correspond to the non-empty cells of the next
grid in the hierarchy (a cell is non-empty if it contains a point in X), and so on. Each tree
edge is annotated by a bitstring of length d, that marks whether the child cell coincides with
the bottom half (bit 0) or the top half (bit 1) of the parent cell in each dimension.

3. Middle-out compression: For every path of degree-1 tree nodes whose length is more than
2Λ, we keep its top Λ and bottom Λ, and replace its remaining middle portion by a long edge.
This removes the edge annotations of the middle section (this achieving compression). We
label each long edge with the length of the path it replaces.

In the remainder of this section we prove the following.

Theorem D.1 The above algorithm, with the above setting of Λ, runs in time Õ(nd(log Φ + Λ))
and produces a sketch for the all-nearest-neighbors problem, whose size in bits is

O

(
n

(
log n · (log log n+ log(1/ε))

ε2
+ log log Φ + log

(q
δ

))
+ d log Φ + log

(q
δ

)
log

(
log(q/δ)

ε

))
.

The sketch size is the same as in Indyk et al. (2017), except that we keep at most 2Λ instead of
Λ nodes per 1-path, which increases the sketch size by only a factor of 2.

22

D.2. Basic lemmas

We start with some useful properties of the above sketch, which are analogous to lemmas from in
Section 3. In the notation below, for a node v in the quadtree, C(v) denotes the subset of points in
X that are contained in the grid cell associated with v. As in Section 3, the quadtree is partitioned
into a set F(T) of subtrees by removing the long edges.

Lemma D.2 (analog of Lemma 3.1) For every point x ∈ X , with probability 1− δ, the following
holds. If z ∈ Rd is any point outside the grid cell that contains x in level ` of the quadtree, then
‖x− x′‖ ≥ 8ε−1 · 2`−Λ

√
d.

Proof The setting of Λ is such that with probability 1− δ, in every level ` of the quadtree, the grid
cell that contains x also contains the ball at radius 8ε−1 ·2`−Λ

√
d around x. (This property is known

as “padding”.) The lemma is just a restatement of this property. See Lemma 1 and Equation (1)
in Indyk et al. (2017) for details.

Lemma D.3 (analog of Lemmas 3.3, 3.4, 3.6) Let v be a node in the quadtree, and x, x′ ∈ Rd
points contained in the grid cell associated with v. Then ‖x− x′‖ ≤ 2`(v)

√
d.

Proof The grid cell associated with v is a hypercube with side 2`(v) and diameter 2`(v)
√
d.

Before proceeding let us make the following point about the quadtree.

Claim D.4 For every leaf v of the quadtree, C(v) contains a single point of X , and v is the bottom
of a 1-path of length at least Λ.

Proof Refining the quadtree grid hierarchy for log(4Φ) levels ensures that each grid cell contains
at most one point from X , and refining for Λ additional levels ensures that each leaf is the bottom
of a 1-path of length at least Λ.

Claim D.5 Every subtree leaf in the quadtree is the bottom of a 1-path of length at least Λ.

Proof If v is a leaf of the quadtree, this follows from Claim D.4. Otherwise this follows from
middle-out compression.

Next we define centers and surrogates. Centers c(v) are chosen similarly to Section 3. The
surrogate s∗(v) of every tree node v is simply defined to be the “bottom-left” (i.e. minimal in all
dimensions) corner of the grid cell associated with v.

D.3. Approximate Nearest Neighbor Search

Finally, we can describe the query algorithm and complete its analysis. Let y be a query point for
which we need to report an approximate nearest neighbor from the sketch. The query algorithm is
the same as in Section 4: starting with the subtree that contains the quadtree root, it recovers the
surrogates in the current subtree and chooses the subtree v whose surrogate is the closest to y. If v is
a quadtree leaf, its center is returned as the approximate nearest neighbor. Otherwise, the algorithm
proceeds by recursion on the subtree under v.

23

Surrogate recovery The difference is in the way we recover the surrogates of a given subtree.
In Section 4 this was done using the surrogate hashes. Here we will use a simpler, deterministic
surrogate recovery subroutine. Let s∗(H) ∈ Rd the surrogate of the quadtree root. (We store this
point explicitly in the sketch, and it will be convenient to think of it w.l.o.g. as the the origin in
Rd.) As observed in Indyk et al. (2017), for every tree node v, if we concatenate the bits annotating
the edges on the path from the root to v, we get the binary expansion of the point s∗(H) + s∗(v).
Therefore, we can recover s∗(v) from the sketch, as long as the path from the root to v does not
traverse a long edge.

If the path to v contains long edges (and thus missing bits in the binary expansion of s∗(v)), the
algorithm completes these bits from the binary expansion of y. Let r0, r1, . . . be the subtree roots
traversed by the algorithm, and let T0, T1, . . . be the corresponding subtrees. Let t be the smallest
such that the algorithm does not recover the surrogates in Tt correctly (because the bits missing on
the long edge connecting Tt−1 to Tt are not truly equal to those of y). As in Section 4, the query
algorithm does not know t (it simply always assumes that the bits of y are the correct missing ones),
but we will use it for analysis. Note that by definition of t, all surrogates in the subtrees rooted at
r0, . . . , rt−1 are recovered correctly. Thus, the event from Lemma 4.2 holds deterministically.

Proof of Theorem D.1 Let x∗ ∈ X be a fixed true nearest neighbor of y in X (chosen arbitrarily
if there is more than one). We shall assume that the event in Lemma D.2 occurs for x∗.

Lemma D.6 (analog of Lemma 4.3) Let T ′ ∈ F(T) be a subtree rooted in r, such that x∗ ∈ C(r).
Let v a leaf of T ′ that minimizes ‖y − s∗(v)‖. Then either x∗ ∈ C(v), or every z ∈ C(v) is a
(1 +O(ε))-approximate nearest neighbor of y.

Proof If x∗ ∈ C(v) then we are done. Assume now that x∗ ∈ C(u) for a leaf u 6= v of T ′. Let
` := max{`(v), `(u)}. We start by showing that ‖y − x∗‖ > ε−12`

√
d. Assume by contradiction

this is not the case. Since x∗ ∈ C(u) we have ‖x∗ − xc(u)‖ ≤ 2`
√
d by Lemma D.3, and similarly

‖xc(u)−s∗(u)‖ ≤ 2`
√
d. Together, ‖y−s∗(u)‖ ≤ (ε−1+2)2`

√
d. On the other hand, by the triangle

inequality, ‖y−s∗(v)‖ ≥ ‖x∗−xc(v)‖−‖y−x∗‖−‖xc(v)−s∗(v)‖. By Claim D.5, both v and u are
the bottom of 1-paths of length at least Λ, This means that x∗ and xc(v) are separated already at level
`+Λ, and by Lemma D.2 this implies ‖x∗−xc(v)‖ ≥ 8ε−1 ·2`

√
d. By the contradiction hypothesis

we have ‖y−x∗‖ ≤ ε−12`
√
d, and by Lemma D.3, ‖xc(v)−s∗(v)‖ ≤ 2`

√
d. Putting these together

yields ‖y − s∗(v)‖ ≥ 8ε−1 · 2`
√
d− ε−12`

√
d− 2`

√
d > (ε−1 + 2)2`

√
d ≥ ‖xc(u) − s∗(u)‖. This

contradicts the choice of v.
The lemma now follows because for every z ∈ C(v),

‖y − z‖ ≤ ‖y − s∗(v)‖+ ‖s∗(v)− xc(v)‖+ ‖xc(v) − z‖ (7)

≤ ‖y − s∗(u)‖+ ‖s∗(v)− xc(v)‖+ ‖xc(v) − z‖ (8)

≤ ‖y − x∗‖+ ‖x∗ − xc(u)‖+ ‖xc(u) − s∗(u)‖+ ‖s∗(v)− xc(v)‖+ ‖xc(v) − z‖ (9)

≤ ‖y − x∗‖+ 4 · 2`
√
d (10)

≤ (1 + 4ε)‖y − x∗‖, (11)

where (7) and (9) are by the triangle inequality, (8) is since ‖y − s∗(v)‖ ≤ ‖y − s∗(u)‖ by choice
of v, (10) is by applying Lemma D.3 to each of the last four summands, and (11) is since we have
shown that ‖y − x∗‖ > ε−12`

√
d. Therefore z is a (1 + 4ε)-approximate nearest neighbor of y.

24

Now we prove that the query algorithm returns an approximate nearest neighbor for y. We may
assume w.l.o.g. that ε is smaller than a sufficiently small constant. We consider two cases. In the first
case, x∗ /∈ C(rt). Let i ∈ {1, . . . , t} be the smallest such that x∗ /∈ C(ri). By applying Lemma D.6
on ri−1, we have that every point in C(ri) is a (1 +O(ε))-approximate nearest neighbor of y. After
reaching ri, the algorithm would return the center of some leaf reachable from ri, and it would be a
correct output.

In the second case, x∗ ∈ C(rt) contains a true nearest neighbor of y. We will show that every
point in C(rt) is a (1 +O(ε))-approximate nearest neighbor of y, so once again, once the algorithm
arrives at rt it can return anything. By definition of t, we know that y does not reside in the grid
cell associated with rt. Since y does reside in that cell, we have ‖y − x∗‖ ≥ 8ε−12`(rt)−Λ

√
d by

Lemma D.2. On the other hand, by Claim D.5, rt is the bottom of a 1-path of length at least Λ,
and therefore any two points in C(rt) are contained in the same grid cell at level `(rt)− Λ, whose
diameter is 2`(rt)−Λ

√
d. In particular, for every x ∈ C(rt) we have ‖x − x∗‖ ≤ 2`(rt)−Λ

√
d ≤

1
8ε‖y − x

∗‖. Altogether we get ‖y − x‖ ≤ ‖y − x∗‖ + ‖x∗ − x‖ ≤ (1 + 1
8ε)‖y − x

∗‖, so every
x ∈ C(rt) is a (1 + ε)-approximate nearest neighbor of y in X .

The proof assumes the event in Lemma D.2 holds for x∗, which happens with probability 1− δ.
To handle q queries, we can scale δ down to δ/q and take a union bound over the q nearest neighbors
of the q query points �

25

	Introduction
	Formal Problem Statements
	Basic Sketch
	Hierarchical Clustering Tree
	Surrogates
	Sketch Size

	Approximate Nearest Neighbor Search
	Distance Estimation
	Deferred Proofs from Section 3
	Approximate Nearest Neighbor Sketching Lower Bound
	Lower Bound for Distance Estimation
	First Lower Bound Term
	Second Lower Bound Term
	Preliminaries
	Variants of Augmented Indexing
	Reductions to All-Cross-Distances
	Lower Bound in terms of d
	Lower Bound in terms of
	Conclusion

	Practical Variant
	Sketching Algorithm Recap
	Basic lemmas
	Approximate Nearest Neighbor Search

