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Abstract
There is widespread sentiment that fast gradient methods (e.g. Nesterov’s acceleration, conju-

gate gradient, heavy ball) are not effective for the purposes of stochastic optimization due to their
instability and error accumulation. Numerous works have attempted to quantify these instabilities
in the face of either statistical or non-statistical errors (Paige, 1971; Proakis, 1974; Polyak, 1987;
Greenbaum, 1989; Devolder et al., 2014). This work considers these issues for the special case of
stochastic approximation for the least squares regression problem, and our main result refutes this
conventional wisdom by showing that acceleration can be made robust to statistical errors. In par-
ticular, this work introduces an accelerated stochastic gradient method that provably achieves the
minimax optimal statistical risk faster than stochastic gradient descent. Critical to the analysis is a
sharp characterization of accelerated stochastic gradient descent as a stochastic process. We hope
this characterization gives insights towards the broader question of designing simple and effective
accelerated stochastic methods for more general convex and non-convex optimization problems.
Keywords: Stochastic Approximation, Acceleration, Stochastic Gradient Descent, Accelerated
Stochastic Gradient Descent, Least Squares Regression.

1. Introduction

Stochastic gradient descent (SGD) is the workhorse algorithm for optimization in machine learning
and stochastic approximation problems; improving its runtime dependencies is a central issue in
large scale stochastic optimization that often arise in machine learning problems at scale (Bottou
and Bousquet, 2007), where one can only resort to streaming algorithms.

This work examines these broader runtime issues for the special case of stochastic approxima-
tion in the following least squares regression problem:

min
x∈Rd

P (x), where, P (x)
def
= 1

2 · E(a,b)∼D
[
(b− 〈x,a〉)2

]
, (1)

where we have access to a stochastic first order oracle, which, when provided with x as an input,
returns a noisy unbiased stochastic gradient using a tuple (a, b) sampled from D(Rd × R), with d
being the dimension of the problem. A query to the stochastic first-order oracle at x produces:

∇̂P (x) = −(b− 〈a,x〉) · a. (2)
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Algorithm Final error Runtime Memory
Accelerated SVRG
(Allen-Zhu, 2016)

O
(
σ2d
n

)
(n+

√
nκ)d log

(
P (x0)−P (x∗)

(σ2d/n)

)
nd

Streaming SVRG
(Frostig et al., 2015b)
Iterate Averaged SGD

(Jain et al., 2016)

O
(

exp
(−n
κ

)
·
(
P (x0)− P (x∗)

)
+ σ2d

n

)
nd O(d)

Accelerated Stochastic Gradient Descent
(this paper)

O∗
(

exp
(
−n√
κκ̃

) (
P (x0)− P (x∗)

))
+O

(
σ2d
n

)
nd O(d)

Table 1: Comparison of this work to the best known non-asymptotic results (Frostig et al., 2015b;
Jain et al., 2016) for the least squares stochastic approximation problem. Here, d, n are the
problem dimension, number of samples; κ, κ̃ denote the condition number and statistical
condition number of the distribution; σ2, P (x0)−P (x∗) denote the noise level and initial
excess risk, O∗ hides lower order terms in d, κ, κ̃ (see section 2 for definitions and a proof
for κ̃ ≤ κ). Note that Accelerated SVRG (Allen-Zhu, 2016) is not a streaming algorithm.

Note E
[
∇̂P (x)

]
= ∇P (x) (i.e. eq(2) is an unbiased estimate). Note that nearly all practical

stochastic algorithms use sampled gradients of the specific form as in equation 2. We discuss differ-
ences to the more general stochastic first order oracle (Nemirovsky and Yudin, 1983) in section 1.4.

Let x∗
def
= arg minx P (x) be a population risk minimizer. Given any estimation procedure

which returns x̂n using n samples, define the excess risk (which we also refer to as the generalization
error or the error) of x̂n as E [P (x̂n)] − P (x∗). Now, equipped a stochastic first-order oracle
(equation (2)), our goal is to provide a computationally efficient (and streaming) estimation method
whose excess risk is comparable to the optimal statistical minimax rate.

In the limit of large n, this minimax rate is achieved by the empirical risk minimizer (ERM),
which is defined as follows. Given n i.i.d. samples Sn = {(ai, bi)}ni=1 drawn from D, define

x̂ERM
n

def
= arg min

x
Pn(x), where Pn(x)

def
=

1

n

n∑
i=1

1
2

(
bi − a>i x

)2
,

where x̂ERM
n denotes the ERM over the samples Sn. For the case of additive noise models (i.e. where

b = a>x∗ + ε, with ε being independent of a), the minimax estimation rate is dσ2/n (Kushner and
Clark, 1978; Polyak and Juditsky, 1992; Lehmann and Casella, 1998; van der Vaart, 2000), i.e.:

lim
n→∞

ESn [P (x̂ERM
n )]− P (x∗)

dσ2/n
= 1, (3)

where σ2 = E
[
ε2
]

is the variance of the additive noise and the expectation is over the samples Sn
drawn from D. The seminal works of Ruppert (1988); Polyak and Juditsky (1992) proved that a
certain averaged stochastic gradient method enjoys this minimax rate, in the limit. The question we
seek to address is: how fast (in a non-asymptotic sense) can we achieve the minimax rate of dσ2/n?

1.1. Review: Acceleration with Exact Gradients

Let us review results in convex optimization in the exact first-order oracle model. Running t−steps
of gradient descent (Cauchy, 1847) with an exact first-order oracle yields the following guarantee:

P (xt)− P (x∗) ≤ exp
(
− t/κo

)
·
(
P (x0)− P (x∗)

)
,

where x0 is the starting iterate, κo = λmax(H)/λmin(H) is the condition number of P (.), where,
λmax(H), λmin(H) are the largest and smallest eigenvalue of the hessian H = ∇2P (x) = E

[
aa>

]
.
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(a) Discrete Distribution (b) Gaussian Distribution

Figure 1: Plot of total error vs number of samples for averaged SGD and the minimax risk (green)
of dσ2/n for the discrete and Gaussian distributions with d = 50, κ ≈ 105 (see sec-
tion 1.2 for details on the distribution). The kink in the SGD curve represents when the
tail-averaging phase begins (Jain et al., 2016); this point is chosen appropriately. The ver-
tical dashed line shows the sample size at which the empirical covariance, 1

n

∑n
i=1 aia

>
i ,

becomes full rank, which is shown at 1
mini pi

in the discrete case and d in the Gaussian
case. With fewer samples than this (i.e. before the dashed line), it is information the-
oretically not possible to guarantee non-trivial risk (without further assumptions). For
the Gaussian case, note how the behavior of SGD is far from the minimax risk; it is this
behavior that one might hope to improve upon. See the text for more discussion.

Thus gradient descent requires O(κo) oracle calls to solve the problem to a given target accuracy,
which is sub-optimal amongst the class of methods with access to an exact first-order oracle (Nes-
terov, 2004). This sub-optimality can be addressed through Nesterov’s Accelerated Gradient De-
scent (Nesterov, 1983), which when run for t-steps, yields the following guarantee:

P (xt)− P (x∗) ≤ exp
(
− t/
√
κo
)
·
(
P (x0)− P (x∗)

)
,

which implies that O(
√
κo) oracle calls are sufficient to achieve a given target accuracy. This

matches the oracle lower bounds (Nesterov, 2004) that state that Θ(
√
κo) calls to the exact first order

oracle are necessary to achieve a given target accuracy. The conjugate gradient method (Hestenes
and Stiefel, 1952) and heavy ball method (Polyak, 1964) are also known to obtain this convergence
rate for solving a system of linear equations and for quadratic functions. These methods are termed
fast gradient methods owing to the improvements offered by these methods over Gradient Descent.
This paper seeks to address the question: “Can we accelerate stochastic approximation in a manner
similar to what has been achieved with the exact first order oracle model?”

1.2. A thought experiment: Is Accelerating Stochastic Approximation possible?

Let us recollect known results in stochastic approximation for the least squares regression prob-
lem (in equation 1). Running n-steps of tail-averaged SGD (Jain et al., 2016) (or, streaming
SVRG (Frostig et al., 2015b)1) provides an output x̂n that satisfies the following excess risk bound:

1. Streaming SVRG does not function in the stochastic first order oracle model (Frostig et al., 2015b)
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(a) Discrete Distribution (b) Gaussian Distribution

Figure 2: Plot of total error vs number of samples for averaged SGD, (this paper’s) accelerated SGD
method and the minimax risk for the discrete and Gaussian distributions with d = 50, κ ≈
105 (see section 1.2 for details on the distribution). For the discrete case, accelerated SGD
mimics SGD, which nearly matches the minimax risk (when it becomes well defined). For
the Gaussian case, accelerated SGD significantly improves upon SGD.

E [P (x̂n)]− P (x∗) ≤ exp(−n/κ) ·
(
P (x0)− P (x∗)

)
+ 2σ2d/n, (4)

where κ is the condition number of the distribution, which can be upper bounded as L/λmin(H),
assuming that ‖a‖ ≤ L with probability one (refer to section 2 for a precise definition of κ). Under
appropriate assumptions, these are the best known rates under the stochastic first order oracle model
(see section 1.4 for further discussion). A natural implication of the bound implied by averaged SGD
is that with Õ(κ) oracle calls (Jain et al., 2016) (where, Õ(·) hides log factors in d, κ), the excess
risk attains (up to constants) the (asymptotic) minimax statistical rate. Note that the excess risk
bounds in stochastic approximation consist of two terms: (a) bias: which represents the dependence
of the generalization error on the initial excess risk P (x0) − P (x∗), and (b) the variance: which
represents the dependence of the generalization error on the noise level σ2 in the problem.

A precise question regarding accelerating stochastic approximation is: “is it possible to improve
the rate of decay of the bias term, while retaining (up to constants) the statistical minimax rate?”
The key technical challenge in answering this question is in sharply characterizing the error accu-
mulation of fast gradient methods in the stochastic approximation setting. Common folklore and
prior work suggest otherwise: several efforts have attempted to quantify instabilities in the face of
statistical or non-statistical errors (Paige, 1971; Proakis, 1974; Polyak, 1987; Greenbaum, 1989;
Roy and Shynk, 1990; Sharma et al., 1998; d’Aspremont, 2008; Devolder et al., 2013, 2014; Yuan
et al., 2016). Refer to section 1.4 for a discussion on robustness of acceleration to error accumu-
lation. Optimistically, as suggested by the gains enjoyed by accelerated methods in the exact first
order oracle model, we may hope to replace the Õ(κ) oracle calls achieved by averaged SGD to
Õ(
√
κ). We now provide a counter example, showing that such an improvement is not possible.

Consider a (discrete) distribution D where the input a is the ith standard basis vector with probabil-
ity pi, ∀ i = 1, 2, ..., d. The covariance of a in this case is a diagonal matrix with diagonal entries
pi. The condition number of this distribution is κ = 1

mini pi
. In this case, it is impossible to make

non-trivial reduction in error by observing fewer than κ samples, since with constant probability,
we would not have seen the vector corresponding to the smallest probability.
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(a) Discrete Distribution (b) Gaussian Distribution

Figure 3: Comparison of averaged SGD with this paper’s accelerated SGD in the absence of noise
(σ2 = 0) for the Discrete and Gaussian distributions with d = 50, κ ≈ 105. Acceleration
yields substantial gains over averaged SGD for the Gaussian case, while degenerating to
SGD’s behavior for the discrete case. See section 1.2 for discussion.

On the other hand, consider a case where the distribution D is a Gaussian with a large condition
number κ. Matrix concentration informs us that (with high probability and irrespective of how large
κ is) after observing n = O(d) samples, the empirical covariance matrix will be a spectral approx-
imation to the true covariance matrix, i.e. for some constant c > 1, H/c � 1

n

∑n
i=1 aia

>
i � cH.

Here, we may hope to achieve a faster convergence rate, as information theoretically O(d) samples
suffice to obtain a non-trivial statistical estimate (see Hsu et al. (2014) for further discussion).

Figure 1 shows the behavior of SGD in these cases; both are synthetic examples in 50−dimensions,
with a condition number κ ≈ 105 and noise level σ2 = 100. See the figure caption for more details.

These examples suggest that if acceleration is indeed possible, then the degree of improvement
(say, over averaged SGD) must depend on distributional quantities that go beyond the condition
number κ. A natural conjecture is that this improvement must depend on the number of samples
required to spectrally approximate the covariance matrix of the distribution; below this sample size
it is not possible to obtain any non-trivial statistical estimate due to information theoretic reasons.
This sample size is quantified by a notion which we refer to as the statistical condition number κ̃
(see section 2 for a precise definition and for further discussion about κ̃). As we will see in section 2,
we have κ̃ ≤ κ, κ̃ is affine invariant, unlike κ (i.e. κ̃ is invariant to linear transformations over a).

1.3. Contributions

This paper introduces an accelerated stochastic gradient descent scheme, which can be viewed as
a stochastic variant of Nesterov’s accelerated gradient method (Nesterov, 2012). As pointed out
in Section 1.2, the excess risk of this algorithm can be decomposed into two parts namely, bias
and variance. For the stochastic approximation problem of least squares regression, this paper
establishes bias contraction at a geometric rate of O(1/

√
κκ̃), improving over prior results (Frostig

et al., 2015b; Jain et al., 2016),which prove a geometric rate of O(1/κ), while retaining statistical
minimax rates (up to constants) for the variance. Here κ is the condition number and κ̃ is the
statistical condition number of the distribution, and a rate of O(1/

√
κκ̃) is an improvement over

O(1/κ) since κ̃ ≤ κ (see Section 2 for definitions and a short proof of κ̃ ≤ κ).
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See Table 1 for a theoretical comparison. Figure 2 provides an empirical comparison of the
proposed (tail-averaged) accelerated algorithm to (tail-averaged) SGD (Jain et al., 2016) on our two
running examples. Our result gives improvement over SGD even in the noiseless (i.e. realizable)
case where σ = 0; this case is equivalent to the setting where we have a distribution over a (possibly
infinite) set of consistent linear equations. See Figure 3 for a comparison on the case where σ = 0.

On a more technical note, this paper introduces two new techniques in order to analyze the
proposed accelerated stochastic gradient method: (a) the paper introduces a new potential function
in order to show faster rates of decaying the bias, and (b) the paper provides a sharp understanding of
the behavior of the proposed accelerated stochastic gradient descent updates as a stochastic process
and utilizes this in providing a near-exact estimate of the covariance of its iterates. This viewpoint
is critical in order to prove that the algorithm achieves the statistical minimax rate.

We use the operator viewpoint for analyzing stochastic gradient methods, introduced in Défossez
and Bach (2015). This viewpoint was also used in Dieuleveut and Bach (2015); Jain et al. (2016).

1.4. Related Work

Non-asymptotic Stochastic Approximation: Stochastic gradient descent (SGD) and its variants
are by far the most widely studied algorithms for the stochastic approximation problem. While
initial works (Robbins and Monro, 1951) considered the final iterate of SGD, later works (Rup-
pert, 1988; Polyak and Juditsky, 1992) demonstrated that averaged SGD obtains statistically opti-
mal estimation rates. Several works provide non-asymptotic analyses for averaged SGD and vari-
ants (Bach and Moulines, 2011; Bach, 2014; Frostig et al., 2015b) for various stochastic approxi-
mation problems. For stochastic approximation with least squares regression Bach and Moulines
(2013); Défossez and Bach (2015); Needell et al. (2016); Frostig et al. (2015b); Jain et al. (2016)
provide non-asymptotic analysis of the behavior of SGD and its variants. Défossez and Bach (2015);
Dieuleveut and Bach (2015) provide non-asymptotic results which achieve the minimax rate on the
variance (where the bias is lower order, not geometric). Needell et al. (2016) achieves a geometric
rate on the bias (and where the variance is not minimax). Frostig et al. (2015b); Jain et al. (2016)
obtain both the minimax rate on the variance and a geometric rate on the bias, as seen in equation 4.

Acceleration and Noise Stability: While there have been several attempts at understanding if
it is possible to accelerate SGD , the results have been largely negative. With regards to accel-
eration with adversarial (non-statistical) errors in the exact first order oracle model, d’Aspremont
(2008) provide negative results and Devolder et al. (2013, 2014) provide lower bounds showing that
fast gradient methods do not improve upon standard gradient methods. There is also a series of
works considering statistical errors. Polyak (1987) suggests that the relative merits of heavy ball
(HB) method (Polyak, 1964) in the noiseless case vanish with noise unless strong assumptions on
the noise model are considered; an instance of this is when the noise variance decays as the iter-
ates approach the minimizer. The Conjugate Gradient (CG) method (Hestenes and Stiefel, 1952)
is suggested to face similar robustness issues in the face of statistical errors (Polyak, 1987); this
is in addition to the issues that CG is known to suffer from owing to roundoff errors (due to finite
precision arithmetic) (Paige, 1971; Greenbaum, 1989). In the signal processing literature, where
SGD goes by Least Mean Squares (LMS) (Widrow and Stearns, 1985), there have been efforts that
date to several decades (Proakis, 1974; Roy and Shynk, 1990; Sharma et al., 1998) which study
accelerated LMS methods (stochastic variants of CG/HB) in the same oracle model as the one con-
sidered by this paper (equation 2). These efforts consider the final iterate (i.e. no iterate averaging)
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of accelerated LMS methods with a fixed step-size and conclude that while it allows for a faster
decay of the initial error (bias) (which is unquantified), their steady state behavior (i.e. variance)
is worse compared to that of LMS. Yuan et al. (2016) considered a constant step size accelerated
scheme with no iterate averaging in the same oracle model as this paper, and conclude that these do
not offer any improvement over standard SGD. More concretely, Yuan et al. (2016) show that the
variance of their accelerated SGD method with a sufficiently small constant step size is the same
as that of SGD with a significantly larger step size. Note that none of the these efforts (Proakis,
1974; Roy and Shynk, 1990; Sharma et al., 1998; Yuan et al., 2016) achieve minimax error rates or
quantify (any improvement whatsoever on the) rate of bias decay.

Oracle models and optimality: With regards to notions of optimality, there are (at least) two
lines of thought: one is a statistical objective where the goal is (on every problem instance) to match
the rate of the statistically optimal estimator (Anbar, 1971; Fabian, 1973; Kushner and Clark, 1978;
Polyak and Juditsky, 1992); another is on obtaining algorithms whose worst case upper bounds (un-
der various assumptions such as bounded noise) match the lower bounds provided in Nemirovsky
and Yudin (1983). The work of Polyak and Juditsky (1992) are in the former model, where they
show that the distribution of the averaged SGD estimator matches, on every problem, that of the
statistically optimal estimator, in the limit (under appropriate regularization conditions standard
in the statistics literature, where the optimal estimator is often referred to as the maximum likeli-
hood estimator/the empirical risk minimizer/an M -estimator (Lehmann and Casella, 1998; van der
Vaart, 2000)). Along these lines, non-asymptotic rates towards statistically optimal estimators are
given by Bach and Moulines (2013); Bach (2014); Défossez and Bach (2015); Dieuleveut and Bach
(2015); Needell et al. (2016); Frostig et al. (2015b); Jain et al. (2016). This work can be seen as
improving this non-asymptotic rate (to the statistically optimal estimation rate) using an accelerated
method. As to the latter (i.e. matching the worst-case lower bounds in Nemirovsky and Yudin
(1983)), there are a number of positive results on using accelerated stochastic optimization pro-
cedures; the works of Lan (2008); Hu et al. (2009); Ghadimi and Lan (2012, 2013); Dieuleveut
et al. (2016) match the lower bounds provided in Nemirovsky and Yudin (1983). We compare these
assumptions and works in more detail.

In stochastic first order oracle models (see Kushner and Clark (1978); Kushner and Yin (2003)),
one typically has access to sampled gradients of the form:

∇̂P (x) = ∇P (x) + η, (5)

where varying assumptions are made on the noise η. The worst-case lower bounds in Nemirovsky
and Yudin (1983) are based on that η is bounded; the accelerated methods in Lan (2008); Hu et al.
(2009); Ghadimi and Lan (2012, 2013); Dieuleveut et al. (2016) which match these lower bounds
in various cases, all assume either bounded noise or, at least E

[
‖η‖2

]
is finite. In the least squares

setting (such as the one often considered in practice and also considered in Polyak and Juditsky
(1992); Bach and Moulines (2013); Défossez and Bach (2015); Dieuleveut and Bach (2015); Frostig
et al. (2015b); Jain et al. (2016)), this assumption does not hold, since E

[
‖η‖2

]
is not bounded. To

see this, η in our oracle model (equation 2) is:

η = ∇̂P (x)−∇P (x) = (aa> −H)(x− x∗)− ε · a (6)

which implies that E
[
‖η‖2

]
is not uniformly bounded (unless additional assumptions are enforced

to ensure that the algorithm’s iterates x lie within a compact set). Hence, the assumptions made
in Hu et al. (2009); Ghadimi and Lan (2012, 2013); Dieuleveut et al. (2016) do not permit one to
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obtain finite n-sample bounds on the excess risk. Suppose we consider the case of ε = 0, i.e. where
the additive noise is zero and b = a>x∗. For this case, this paper provides a geometric rate of
convergence to the minimizer x∗, while the results of Ghadimi and Lan (2012, 2013); Dieuleveut
et al. (2016) at best indicate a O(1/n) rate. Finally, in contrast to all other existing work, our result
is the first to provide finer distribution dependent characteristics of the improvements offered by
accelerating SGD (e.g. refer to the Gaussian and discrete examples in section 1.2).

Acceleration and Finite Sums: As a final remark, there have been results (Shalev-Shwartz and
Zhang, 2014; Frostig et al., 2015a; Lin et al., 2015; Lan and Zhou, 2015; Allen-Zhu, 2016) that
provide accelerated rates for offline stochastic optimization which deal with minimizing sums of
convex functions; these results are almost tight due to matching lower bounds (Lan and Zhou, 2015;
Woodworth and Srebro, 2016). These results do not immediately translate into rates on the gener-
alization error. Furthermore, these algorithms are not streaming, as they require making multiple
passes over a dataset stored in memory. Refer to Frostig et al. (2015b) for more details.

2. Main Results

We now provide our assumptions and main result, before which, we have some notation. For a
vector x ∈ Rd and a positive semi-definite matrix S ∈ Rd×d (i.e. S � 0), denote ‖x‖2S

def
= x>Sx.

2.1. Assumptions and Definitions

Let H denote the second moment matrix of the input, which is also the hessian∇2P (x) of (1):

H
def
= E(a,b)∼D [a⊗ a] = ∇2P (x).

(A1) Finite second and fourth moment: The second moment matrix H and the fourth moment
tensorM (= E(a,b)∼D [a⊗ a⊗ a⊗ a]) of the input a ∼ D exist and are finite.

(A2) Positive Definiteness: The second moment matrix H is strictly positive definite, i.e. H � 0.

We assume (A1) and (A2). (A2) implies that P (x) is strongly convex and admits a unique mini-

mizer x∗. Denote the noise ε in a sample (a, b) ∼ D as: ε def
= b−〈a,x∗〉. First order optimality con-

ditions of x∗ imply ∇P (x∗) = E [ε · a] = 0. Let Σ denote the covariance of gradient at optimum

x∗ (or noise covariance matrix), Σ
def
= E(a,b)∼D

[
∇̂P (x∗)⊗ ∇̂P (x∗)

]
= E(a,b)∼D

[
ε2 · a⊗ a

]
.

We define the noise level σ2, condition number κ, statistical condition number κ̃ below.
Noise level: The noise level is defined to be the smallest positive number σ2 such that Σ � σ2H.The
noise level σ2 quantifies the amount of noise in the stochastic gradient oracle and has been utilized
in previous work (e.g., see Bach and Moulines (2011, 2013)) in providing non-asymptotic bounds
for the stochastic approximation problem. In the homoscedastic (additive noise) case, where ε is
independent of the input a, this condition is satisfied with equality, i.e. Σ = σ2 H with σ2 = E

[
ε2
]
.

Condition number: Let µ def
= λmin(H). µ > 0 by (A2). Now, let R2 be the smallest positive

number such that E
[
‖a‖2 aa>

]
� R2 H. The condition number κ of the distribution D (Défossez

and Bach, 2015; Jain et al., 2016) is κ def
= R2/µ.

Statistical condition number: The statistical condition number κ̃ is defined as the smallest positive
number such that E

[
‖a‖2H−1 aa>

]
� κ̃ H.
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Algorithm 1 (Tail-Averaged) Accelerated Stochastic Gradient Descent (ASGD)
Input: n oracle calls to 2, initial iterate x0 = v0, Unaveraged (burn-in) phase t, Step sizes α, β, γ, δ
Output: x̄t,n ← 1

n−t
∑n

j=t+1 xj
for j ← 1 to n do

yj−1 ← αxj−1 + (1− α)vj−1
xj ← yj−1 − δ∇̂P (yj−1)
zj−1 ← βyj−1 + (1− β)vj−1
vj ← zj−1 − γ∇̂P (yj−1)

end

Remarks on κ̃ and κ: Unlike κ, it is straightforward to see that κ̃ is affine invariant (i.e. unchanged
with linear transformations over a). Since E

[
‖a‖2H−1 aa>

]
� 1

µE
[
‖a‖22 aa>

]
� κH, we note

κ̃ ≤ κ. For the discrete case (from Section 1.2), it is straightforward to see that both κ and κ̃ are
equal to 1/mini pi. In contrast, for the Gaussian case (from Section 1.2), κ̃ is O(d), while κ is
O(Trace(H)/µ) which may be arbitrarily large (based on choice of the coordinate system).

κ̃ governs how many samples ai require to be drawn from D so that the empirical covariance is
spectrally close to H, i.e. for some constant c > 1, H/c � 1

n

∑n
i=1 aia

>
i � cH. In comparison to

the matrix Bernstein inequality where stronger (yet related) moment conditions are assumed in order
to obtain high probability results, our results hold only in expectation (refer to Hsu et al. (2014) for
this definition, wherein κ̃ is referred to as bounded statistical leverage in theorem 1 and remark 1).

2.2. Algorithm and Main Theorem

Algorithm 1 presents the pseudo code of the proposed algorithm. ASGD can be viewed as a variant
of Nesterov’s accelerated gradient method (Nesterov, 2012), working with a stochastic gradient
oracle (equation 2) and with tail-averaging the final n− t iterates. The main result now follows:

Theorem 1 Suppose (A1) and (A2) hold. Set α = 3
√
5·
√
κκ̃

1+3
√
5·
√
κκ̃
, β = 1

9
√
κκ̃
, γ = 1

3
√
5·µ
√
κκ̃
, δ =

1
5R2 . After n calls to the stochastic first order oracle (equation 2), ASGD outputs x̄t,n satisfying:

E [P (x̄t,n)]− P (x∗) ≤ C · (κκ̃)9/4dκ

(n− t)2
· exp

(
−t

9
√
κκ̃

)
·
(
P (x0)− P (x∗)

)
︸ ︷︷ ︸

Leading order bias error

+ 5
σ2d

n− t︸ ︷︷ ︸
Leading order variance error

+

C · (κκ̃)5/4dκ · exp

(
−n

9
√
κκ̃

)(
P (x0)− P (x∗)

)
︸ ︷︷ ︸

Exponentially vanishing lower order bias term

+ C · σ2d

(n− t)2
√
κκ̃︸ ︷︷ ︸

Lower order variance error term

+

C · exp

(
− n

9
√
κκ̃

)
·
(
σ2d · (κκ̃)7/4 +

σ2d

(n− t)2
· (κκ̃)7/2κ̃

)
+ C · σ

2d

n− t
(κκ̃)11/4 exp

(
− (n− t− 1)

30
√
κκ̃

)
︸ ︷︷ ︸

Exponentially vanishing lower order variance error terms

,

where C is a universal constant, σ2, κ and κ̃ are the noise level, condition number and statistical
condition number respectively.

The following corollary holds if the iterates are tail-averaged over the last n/2 samples and n >
O(
√
κκ̃ log(dκκ̃)). The second condition lets us absorb lower order terms into leading order terms.

9
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Corollary 2 Assume the parameter settings of theorem 1 and let t = bn/2c and n > C ′
√
κκ̃ log(dκκ̃)

(for an appropriate universal constants C,C ′). We have that with n calls to the stochastic first order
oracle, ASGD outputs a vector x̄t,n satisfying:

E [P (x̄t,n)]− P (x∗) ≤ C · exp

(
− n

20
√
κκ̃

)
·
(
P (x0)− P (x∗)

)
+ 11

σ2d

n
.

A few remarks about the result of theorem 1 are due: (i) ASGD decays the initial error at
a geometric rate of O(1/

√
κκ̃) during the unaveraged phase of t iterations, which presents the

first improvement over the O (1/κ) rate offered by SGD (Robbins and Monro, 1951)/averaged
SGD (Polyak and Juditsky, 1992; Jain et al., 2016) for the least squares stochastic approximation
problem, (ii) the second term in the error bound indicates that ASGD obtains (up to constants) the
minimax rate once n > O(

√
κκ̃ log(dκκ̃)). Note that this implies that Theorem 1 provides a sharp

non-asymptotic analysis (up to log factors) of the behavior of Algorithm 1.

2.3. Discussion and Open Problems

A challenging problem in this context is in formalizing a finite sample size lower bound in the oracle
model considered in this work. Lower bounds in stochastic oracle models have been considered in
the literature (see Nemirovsky and Yudin (1983); Raginsky and Rakhlin (2011); Agarwal et al.
(2012)), though it is not evident these oracle models and lower bounds are sharp enough to imply
statements in our setting (see section 1.4 for a discussion of these oracle models).

Let us now understand theorem 1 in the broader context of stochastic approximation. Under cer-
tain regularity conditions, it is known that (Lehmann and Casella, 1998; van der Vaart, 2000) that the
rate described in equation 3 for the homoscedastic case holds for a broader set of misspecified mod-
els (i.e., heteroscedastic noise case), with an appropriate definition of the noise variance. By defining

σ2ERM
def
= E

[∥∥∥∇̂P (x∗)
∥∥∥2

H−1

]
, the rate of the ERM is guaranteed to approach σ2ERM/n (Lehmann

and Casella, 1998; van der Vaart, 2000) in the limit of large n, i.e.:

lim
n→∞

ESn [Pn(x̂ERM
n )]− P (x∗)

σ2ERM/n
= 1, (7)

where x̂ERM
n is the ERM over samples Sn = {ai, bi}ni=1. Averaged SGD (Jain et al., 2016) and

streaming SVRG (Frostig et al., 2015b) are known to achieve these rates for the heteroscedastic case.
Neglecting constants, Theorem 1 is guaranteed to achieve the rate of the ERM for the homoscedastic
case (where Σ = σ2H) and is tight when the bound Σ � σ2H is nearly tight (upto constants). We
conjecture ASGD achieves the rate of the ERM in the heteroscedastic case by appealing to a more
refined analysis as is the case for averaged SGD (see Jain et al. (2016)). It is also an open question
to understand acceleration for smooth stochastic approximation (beyond least squares), in situations
where the rate represented by equation 7 holds (Polyak and Juditsky, 1992).

3. Proof Outline

Recall the variables in Algorithm 1. We begin by defining the centered estimate θj as:

θj
def
=

[
xj − x∗

yj − x∗

]
∈ R2d.

Recall that the stepsizes in Algorithm 1 are α = 3
√
5·
√
κκ̃

1+3
√
5·
√
κκ̃
, β = 1

9
√
κκ̃
, γ = 1

3
√
5·µ
√
κκ̃
, δ = 1

5R2 .
The accelerated SGD updates of Algorithm 1 can be written in terms of θj as:

10
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θj = Âjθj−1 + ζj , where,

Âj
def
=

[
0 (I− δaja

>
j )

−α(1− β) I (1 + α(1− β))I− (αδ + (1− α)γ)aja
>
j

]
, ζj

def
=

[
δ · εjaj

(αδ + (1− α)γ) · εjaj

]
,

where εj = bj − 〈aj ,x∗〉. The tail-averaged iterate x̄t,n is associated with θ̄t,n
def
= 1

n−t
∑n

j=t+1 θj .

Let A
def
= E

[
Âj |Fj−1

]
, where Fj−1 is a filtration generated by (a1, b1), · · · , (aj−1, bj−1). Let

B,AL,AR be linear operators acting on a matrix S ∈ R2d×2d so that BS
def
= E

[
ÂjSÂ>j |Fj−1

]
,

ALS
def
= AS, ARS

def
= SA. Denote Σ̂

def
= E

[
ζjζ
>
j |Fj−1

]
and matrices G,Z, G̃ as:

G
def
= G̃>ZG̃,where, G̃ def

=

[
I 0
−α
1−αI 1

1−αI

]
, Z

def
=

[
I 0
0 µH−1

]
.

Bias-variance decomposition: The proof of theorem 1 employs the bias-variance decomposition,
which is well known in the context of stochastic approximation (see Bach and Moulines (2011);
Frostig et al. (2015b); Jain et al. (2016)) and is re-derived in the appendix. The bias-variance decom-
position allows for the generalization error to be upper-bounded by analyzing two sub-problems: (a)
bias, analyzing the algorithm’s behavior on the noiseless problem (i.e. ζj = 0 ∀ j a.s.) while start-
ing at θbias

0 = θ0 and (b) variance, analyzing the algorithm’s behavior by starting at the solution
(i.e. θvariance

0 = 0) and allowing the noise ζ· to drive the process. In a similar manner as θ̄t,n, the
bias and variance sub-problems are associated with θ̄bias

t,n and θ̄variance
t,n , and these are related as:

E
[
θ̄t,n ⊗ θ̄t,n

]
� 2 ·

(
E
[
θ̄bias
t,n ⊗ θ̄bias

t,n

]
+ E

[
θ̄variance
t,n ⊗ θ̄variance

t,n

])
. (8)

Since we deal with the square loss, the generalization error of the output x̄t,n of algorithm 1 is:

E [P (x̄t,n)]− P (x∗) =
1

2
·
〈[

H 0
0 0

]
,E
[
θ̄t,n ⊗ θ̄t,n

]〉
, (9)

indicating that the generalization error can be bounded by analyzing the bias and variance sub-
problem. We now present the lemmas that bound the bias error.

Lemma 3 The covariance E
[
θ̄bias
t,n ⊗ θ̄bias

t,n

]
of the bias part of averaged iterate θ̄bias

t,n satisfies:

E
[
θ̄bias
t,n ⊗ θ̄bias

t,n

]
=

1

(n− t)2

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1(Bt+1 − Bn+1) (θ0 ⊗ θ0)

− 1

(n− t)2
n∑

j=t+1

(
(I − AL)−1An+1−j

L + (I − A>R)−1(A>R)n+1−j
)
Bj(θ0 ⊗ θ0).

The quantity that needs to be bounded in the term above is Bt+1θ0⊗ θ0. Lemma 4 presents a result
that can be applied recursively to bound Bt+1θ0 ⊗ θ0 (= Bt+1θbias

0 ⊗ θbias
0 since θbias

0 = θ0).

Lemma 4 (Bias contraction) For any two vectors x,y ∈ Rd, let θ
def
=

[
x− x∗

y − x∗

]
∈ R2d. We have:

〈
G,B

(
θθ>

)〉
≤
(

1− 1

9
√
κκ̃

)〈
G,θθ>

〉

11
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Remarks: (i) the matrices G̃ and G̃> appearing in G are due to the fact that we prove contraction
using the variables x−x∗ and v−x∗ instead of x−x∗ and y−x∗, as used in defining θ. (ii) The key
novelty in lemma 4 is that while standard analyses of accelerated gradient descent (in the exact first
order oracle) use the potential function ‖x− x∗‖2H + µ ‖v − x∗‖22 (e.g. Wilson et al. (2016)), we
consider it crucial for employing the potential function ‖x− x∗‖22 + µ ‖v − x∗‖2H−1 (this potential

function is captured using the matrix Z) to prove accelerated rates (of O
(

1/
√
κκ̃
)

) for bias decay.
We now present the lemmas associated with bounding the variance error:

Lemma 5 The covariance E
[
θ̄variance
t,n ⊗ θ̄variance

t,n

]
of the variance error θ̄variance

t,n satisfies:

E
[
θ̄variance
t,n ⊗ θ̄variance

t,n

]
=

1

n− t
(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1Σ̂

− 1

(n− t)2
(
(I − AL)−2(AL −An+1−t

L ) + (I − A>R)−2(A>R − (A>R)n+1−t)
)
(I − B)−1Σ̂

− 1

(n− t)2
(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−2(Bt+1 − Bn+1)Σ̂

+
1

(n− t)2
n∑

j=t+1

(
(I − AL)−1An+1−j

L + (I − A>R)−1(A>R)n+1−j)(I − B)−1BjΣ̂.

The covariance of the stationary distribution of the iterates i.e., limj→∞ θvariance
j requires a precise

bound to obtain statistically optimal error rates. Lemma 6 presents a bound on this quantity.

Lemma 6 (Stationary covariance) The covariance of limiting distribution of θvariance satisfies:

E
[
θvariance
∞ ⊗ θvariance

∞
]

= (I− B)−1Σ̂ � 5σ2
(

(2/3) ·
(1

κ̃
H−1

)
+ (5/6) · (δI)

)
⊗
[
1 0
0 1

]
.

A crucial implication of this lemma is that the limiting final iterate θvariance
∞ has an excess riskO(σ2).

This result naturally lends itself to the (tail-)averaged iterate achieving the minimax optimal rate of
O(dσ2/n). Refer to the appendix E and lemma 17 for more details in this regard.

4. Conclusion

This paper introduces an accelerated stochastic gradient method, which presents the first improve-
ment in achieving minimax rates faster than averaged SGD (Robbins and Monro, 1951; Polyak and
Juditsky, 1992; Jain et al., 2016)/Streaming SVRG (Frostig et al., 2015b) for the stochastic approx-
imation problem of least squares regression. To obtain this result, the paper presented the need to
rethink what acceleration has to offer when working with a stochastic gradient oracle: the statistical
condition number (an affine invariant distributional quantity) is shown to characterize the improve-
ments that acceleration offers in the stochastic first order oracle model. In essence, this paper serves
to provide the first provable analysis of the claim that fast gradient methods are stable when dealing
with statistical errors, in stark contrast to efforts that date to several decades indicating negative
results in various statistical or non-statistical settings.
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Appendix A. Appendix setup

We will first provide a note on the organization of the appendix and follow that up with introducing
the notations.

A.1. Organization

• In subsection A.2, we will recall notation from the main paper and introduce some new nota-
tion that will be used across the appendix.

• In section B, we will write out expressions that characterize the generalization error of the
proposed accelerated SGD method. In order to bound the generalization error, we require
developing an understanding of two terms namely the bias error and the variance error.

• In section C, we prove lemmas that will be used in subsequent sections to prove bounds on
the bias and variance error.

• In section D, we will bound the bias error of the proposed accelerated stochastic gradient
method. In particular, lemma 4 is the key lemma that provides a new potential function with
which this paper achieves acceleration. Further, lemma 16 is the lemma that bounds all the
terms of the bias error.

• In section E, we will bound the variance error of the proposed accelerated stochastic gradient
method. In particular, lemma 6 is the key lemma that considers a stochastic process view
of the proposed accelerated stochastic gradient method and provides a sharp bound on the
covariance of the stationary distribution of the iterates. Furthermore, lemma 20 bounds all
terms of the variance error.

• Section F presents the proof of Theorem 1. In particular, this section aggregates the result of
lemma 16 (which bounds all terms of the bias error) and lemma 20 (which bounds all terms
of the variance error) to present the guarantees of Algorithm 1.

A.2. Notations

We begin by introducingM, which is the fourth moment tensor of the input a ∼ D, i.e.:

M def
= E(a,b)∼D [a⊗ a⊗ a⊗ a]

Applying the fourth moment tensorM to any matrix S ∈ Rd×d produces another matrix in Rd×d
that is expressed as:

MS
def
= E

[
(a>Sa)aa>

]
.

With this definition in place, we recall R2 as the smallest number, such that M applied to the
identity matrix I satisfies:

MI = E
[
‖a‖22 aa>

]
� R2 H
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Moreover, we recall that the condition number of the distribution κ = R2/µ, where µ is the smallest
eigenvalue of H. Furthermore, the definition of the statistical condition number κ̃ of the distribution
follows by applying the fourth moment tensorM to H−1, i.e.:

MH−1 = E
[
(a>H−1a) · aa>

]
� κ̃ H

We denote by AL and AR the left and right multiplication operator of any matrix A ∈ Rd×d,
i.e. for any matrix S ∈ Rd×d, ALS = AS and ARS = SA.

Parameter choices: In all of appendix we choose the parameters in Algorithm 1 as

α =

√
κκ̃

c2
√

2c1 − c21 +
√
κκ̃
, β = c3

c2
√

2c1 − c21√
κκ̃

, γ = c2

√
2c1 − c21
µ
√
κκ̃

, δ =
c1
R2

where c1 is an arbitrary constant satisfying 0 < c1 <
1
2 . Furthermore, we note that c3 =

c2
√

2c1−c21
c1

,
c22 = c4

2−c1 and c4 < 1/6. Note that we recover Theorem 1 by choosing c1 = 1/5, c2 =
√

5/9, c3 =√
5/3, c4 = 1/9. We denote

c
def
= α(1− β) and, q def

= αδ + (1− α)γ.

Recall that x∗ denotes unique minimizer ofP (x), i.e. x∗ = arg minx∈Rd E(a,b)∼D
[
(b− 〈x,a〉)2

]
.

We track θk =

[
xk − x∗

yk − x∗

]
. The following equation captures the updates of Algorithm 1:

θk+1 =

[
0 I− δĤk+1

−c · I (1 + c) · I− q · Ĥk+1

]
θk +

[
δ · εk+1ak+1

q · εk+1ak+1

]
def
= Âk+1θk + ζk+1, (10)

where, Ĥk+1
def
= ak+1a

>
k+1, Âk+1

def
=

[
0 I− δĤk+1

−c · I (1 + c) · I− q · Ĥk+1

]
and ζk+1

def
=

[
δ · εk+1ak+1

q · εk+1ak+1

]
.

Furthermore, we denote by Φk the expected covariance of θk, i.e.:

Φk
def
= E [θk ⊗ θk] .

Next, let Fk denote the filtration generated by samples {(a1, b1), · · · , (ak, bk)}. Then,

A
def
= E

[
Âk+1|Fk

]
=

[
0 I− δH
−cI (1 + c)I− qH

]
.

By iterated conditioning, we also have

E [θk+1|Fk] = Aθk. (11)

Without loss of generality, we assume that H is a diagonal matrix. We now note that we can
rearrange the coordinates through an eigenvalue decomposition so that A becomes a block-diagonal
matrix with 2× 2 blocks. We denote the jth block by Aj :

Aj
def
=

[
0 1− δλj
−c 1 + c− qλj

]
,
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where λj denotes the jth eigenvalue of H. Next,

B def
= E

[
Âk+1 ⊗ Âk+1|Fk

]
, and

Σ̂
def
= E [ζk+1 ⊗ ζk+1|Fk] =

[
δ2 δ · q
δ · q q2

]
⊗Σ � σ2 ·

[
δ2 δ · q
δ · q q2

]
⊗H.

Finally, we observe the following:

E
[
(A− Âk+1)⊗ (A− Âk+1)|Fk

]
= A⊗A− E

[
Âk+1 ⊗A|Fk

]
− E

[
Âk+1 ⊗A|Fk

]
+ E

[
Âk+1 ⊗ Âk+1|Fk

]
= −A⊗A + E

[
Âk+1 ⊗ Âk+1|Fk

]
=⇒ E

[
Âk+1 ⊗ Âk+1|Fk

]
= E

[
(A− Âk+1)⊗ (A− Âk+1)|Fk

]
+ A⊗A

We now define:

R def
= E

[
(A− Âk+1)⊗ (A− Âk+1)|Fk

]
, and

D def
= A⊗A.

Thus implying the following relation between the operators B,D andR:

B = D +R.

Appendix B. The Tail-Average Iterate: Covariance and bias-variance decomposition

We begin by considering the first-order Markovian recursion as defined by equation 10:

θj = Âjθj−1 + ζj .

We refer by Φj the covariance of the jth iterate, i.e.:

Φj
def
= E [θj ⊗ θj ] (12)

Consider a decomposition of θj as θj = θbias
j + θvariance

j , where θbias
j and θvariance

j are defined as
follows:

θbias
j

def
= Âjθ

bias
j−1; θbias

0
def
= θ0, and (13)

θvariance
j

def
= Âjθ

variance
j−1 + ζj ; θvariance

0
def
= 0. (14)

We note that

E
[
θbias
j

]
= AE

[
θbias
j−1
]
, (15)

E
[
θvariance
j

]
= AE

[
θvariance
j−1

]
. (16)
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Note equation 16 follows using a conditional expectation argument with the fact that E [ζk] = 0 ∀ k
owing to first order optimality conditions.

Before we prove the decomposition holds using an inductive argument, let us understand what
the bias and variance sub-problem intuitively mean.

Note that the bias sub-problem (defined by equation 13) refers to running algorithm on the
noiseless problem (i.e., where, ζ· = 0 a.s.) by starting it at θbias

0 = θ0. The bias essentially
measures the dependence of the generalization error on the excess risk of the initial point θ0 and
bears similarities to convergence rates studied in the context of offline optimization.

The variance sub-problem (defined by equation 14) measures the dependence of the general-
ization error on the noise introduced during the course of optimization, and this is associated with
the statistical aspects of the optimization problem. The variance can be understood as starting the
algorithm at the solution (θvariance

0 = 0) and running the optimization driven solely by noise. Note
that the variance is associated with sharp statistical lower bounds which dictate its rate of decay as
a function of the number of oracle calls n.

Now, we will prove that the decomposition θj = θbias
j +θvariance

j captures the recursion expressed
in equation 10 through induction. For the base case j = 1, we see that

θ1 = Â1θ0 + ζ1

= Â1θ
bias
0︸ ︷︷ ︸

∵ θbias
0 =θ0

+ Â1θ
variance
0︸ ︷︷ ︸

=0, ∵ θvariance
0 =0

+ζ1

= θbias
1 + θvariance

1

Now, for the inductive step, let us assume that the decomposition holds in the j − 1st iteration, i.e.
we assume θj−1 = θbias

j−1 + θvariance
j−1 . We will then prove that this relation holds in the jth iteration.

Towards this, we will write the recursion:

θj = Âjθj−1 + ζj

= Âj(θ
bias
j−1 + θvariance

j−1 ) + ζj (using the inductive hypothesis)

= Âjθ
bias
j−1 + Âjθ

variance
j−1 + ζj

= θbias
j + θvariance

j .

This proves the decomposition holds through a straight forward inductive argument.
In a similar manner as θj , the tail-averaged iterate θ̄t,n

def
= 1

n−t
∑n

j=t+1 θj can also be written

as θ̄t,n = θ̄bias
t,n + θ̄variance

t,n , where θ̄bias
t,n

def
= 1

n−t
∑n

j=t+1 θ
bias
j and θ̄variance

t,n
def
= 1

n−t
∑n

j=t+1 θ
variance
j .

Furthermore, the tail-averaged iterate θ̄t,n and its bias and variance counterparts θ̄bias
t,n , θ̄

variance
t,n are

associated with their corresponding covariance matrices Φ̄t,n, Φ̄
bias
t,n , Φ̄

variance
t,n respectively. Note that

Φ̄t,n can be upper bounded using Cauchy-Shwartz inequality as:

E
[
θ̄t,n ⊗ θ̄t,n

]
� 2 ·

(
E
[
θ̄bias
t,n ⊗ θ̄bias

t,n

]
+ E

[
θ̄variance
t,n ⊗ θ̄variance

t,n

])
=⇒ Φ̄t,n � 2 · (Φ̄bias

t,n + Φ̄variance
t,n ). (17)

The above inequality is referred to as the bias-variance decomposition and is well known from
previous work Bach and Moulines (2013); Frostig et al. (2015b); Jain et al. (2016), and we re-
derive this decomposition for the sake of completeness. We will now derive an expression for the
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covariance of the tail-averaged iterate and apply it to obtain the covariance of the bias (Φ̄bias
t,n ) and

variance (Φ̄variance
t,n ) error of the tail-averaged iterate.

B.1. The tail-averaged iterate and its covariance

We begin by writing out an expression for the tail-averaged iterate θ̄t,n as:

θ̄t,n =
1

n− t

n∑
j=t+1

θj

To get the excess risk of the tail-averaged iterate θ̄t,n, we track its covariance Φ̄t,n:

Φ̄t,n = E
[
θ̄t,n ⊗ θ̄t,n

]
=

1

(n− t)2
n∑

j,l=t+1

E [θj ⊗ θl]

=
1

(n− t)2
∑
j

 j−1∑
l=t+1

E [θj ⊗ θl] + E [θj ⊗ θj ] +

n∑
l=j+1

E [θj ⊗ θl]


=

1

(n− t)2
∑
j

 j−1∑
l=t+1

Aj−lE [θl ⊗ θl] + E [θj ⊗ θj ] +

n∑
l=j+1

E [θj ⊗ θj ] (A>)l−j

 ( from (11))

=
1

(n− t)2

( n∑
l=t+1

n∑
j=l+1

Aj−lE [θl ⊗ θl] +
n∑

j=t+1

E [θj ⊗ θj ] +
n∑

j=t+1

n∑
l=j+1

E [θj ⊗ θj ] (A>)l−j
)

=
1

(n− t)2

( n∑
j=t+1

n∑
l=j+1

Al−jE [θj ⊗ θj ] +

n∑
j=t+1

E [θj ⊗ θj ] +

n∑
j=t+1

n∑
l=j+1

E [θj ⊗ θj ] (A>)l−j
)

=
1

(n− t)2

( n∑
j=t+1

(I−A)−1(A−An+1−j)E [θj ⊗ θj ] +
n∑

j=t+1

E [θj ⊗ θj ]

+
n∑

j=t+1

E [θj ⊗ θj ] (I−A>)−1(A> − (A>)n+1−j)

)

=
1

(n− t)2
n∑

j=t+1

(
I + (I − AL)−1(AL −An+1−j

L ) + (I − A>R)−1(A>R − (A>R)n+1−j)

)
E [θj ⊗ θj ]

=
1

(n− t)2
n∑

j=t+1

(
I + (I − AL)−1(AL −An+1−j

L ) + (I − A>R)−1(A>R − (A>R)n+1−j)

)
Φj .

(18)

Note that the above recursion can be applied to obtain the covariance of the tail-averaged iterate for
the bias (Φ̄bias

t,n ) and variance (Φ̄variance
t,n ) error, since the conditional expectation arguments employed

in obtaining equation 18 are satisfied by both the recursion used in tracking the bias error (i.e.
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equation 13) and the variance error (i.e. equation 14). This implies that,

Φ̄bias
t,n

def
=

1

(n− t)2
n∑

j=t+1

(
I + (I − AL)−1(AL −An+1−j

L ) + (I − A>R)−1(A>R − (A>R)n+1−j)

)
Φbias
j

(19)

Φ̄variance
t,n

def
=

1

(n− t)2
n∑

j=t+1

(
I + (I − AL)−1(AL −An+1−j

L ) + (I − A>R)−1(A>R − (A>R)n+1−j)

)
Φvariance
j

(20)

B.2. Covariance of Bias error of the tail-averaged iterate

Proof [Proof of Lemma 3] To obtain the covariance of the bias error of the tail-averaged iterate, we
first need to obtain Φbias

j , which we will by unrolling the recursion of equation 13:

θbias
k = Âkθ

bias
k−1

=⇒ Φbias
k = E

[
θbias
k ⊗ θbias

k

]
= E

[
E
[
θbias
k ⊗ θbias

k |Fk−1
]]

= E
[
E
[
Âkθ

bias
k−1 ⊗ θbias

k−1Â
>
k |Fk−1

]]
= B E

[
θbias
k−1 ⊗ θbias

k−1
]

= B Φbias
k−1

=⇒ Φbias
k = Bk Φbias

0 (21)

Next, we recount the equation for the covariance of the bias of the tail-averaged iterate from equa-
tion 19:

Φ̄bias
t,n =

1

(n− t)2
n∑

j=t+1

(
I + (I − AL)−1(AL −An+1−j

L ) + (I − A>R)−1(A>R − (A>R)n+1−j)

)
Φbias
j

Now, we substitute Φbias
j from equation 21:

Φ̄bias
t,n =

1

(n− t)2
n∑

j=t+1

(
I + (I − AL)−1(AL −An+1−j

L ) + (I − A>R)−1(A>R − (A>R)n+1−j)

)
BjΦ0

=
1

(n− t)2
n∑

j=t+1

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
BjΦ0

− 1

(n− t)2
n∑

j=t+1

(
(I − AL)−1An+1−j

L + (I − A>R)−1(A>R)n+1−j
)
BjΦ0

=
1

(n− t)2

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1(Bt+1 − Bn+1)Φ0︸ ︷︷ ︸

Leading order term
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− 1

(n− t)2
n∑

j=t+1

(
(I − AL)−1An+1−j

L + (I − A>R)−1(A>R)n+1−j
)
BjΦ0. (22)

There are two points to note here: (a) The second line consists of terms that constitute the lower-
order terms of the bias. We will bound the summation by taking a supremum over j. (b) Note that
the burn-in phase consisting of t unaveraged iterations allows for a geometric decay of the bias,
followed by the tail-averaged phase that allows for a sublinear rate of bias decay.

B.3. Covariance of Variance error of the tail-averaged iterate

Proof [Proof of Lemma 5] Before obtaining the covariance of the tail-averaged iterate, we note that
E
[
θvariance
j

]
= 0 ∀ j. This can be easily seen since θvariance

0 = 0 and E
[
θvariance
k

]
= AE

[
θvariance
k−1

]
(from equation 16).

Next, in order to obtain the covariance of the variance of the tail-averaged iterate, we first need
to obtain Φvariance

j , and we will obtain this by unrolling the recursion of equation 14:

θvariance
k = Âkθ

variance
k−1 + ζk

=⇒ Φvariance
k = E

[
θvariance
k ⊗ θvariance

k

]
= E

[
E
[
θvariance
k ⊗ θvariance

k |Fk−1
]]

= E
[
E
[
Âkθ

variance
k−1 ⊗ θvariance

k−1 Â>k + ζk ⊗ ζk|Fk−1
]]

= B E
[
θvariance
k−1 ⊗ θvariance

k−1
]

+ Σ̂ = B Φvariance
k−1 + Σ̂

=⇒ Φvariance
k =

k−1∑
j=0

Bj Σ̂

= (I− B)−1(I − Bk)Σ̂ (23)

Note that the cross terms in the outer product computations vanish owing to the fact that E
[
θvariance
k−1

]
=

0 ∀ k. We then recount the expression for the covariance of the variance error from equation 20:

Φ̄variance
t,n =

1

(n− t)2
n∑

j=t+1

(
I + (I − AL)−1(AL −An+1−j

L ) + (I − A>R)−1(A>R − (A>R)n+1−j)

)
Φvariance
j

We will substitute the expression for Φvariance
j from equation 23.

Φ̄variance
t,n =

1

(n− t)2
n∑

j=t+1

(
I + (I − AL)−1(AL −An+1−j

L ) + (I − A>R)−1(A>R − (A>R)n+1−j)

)
(I − B)−1(I − Bj)Σ̂

Evaluating this summation, we have:

Φ̄variance
t,n =

1

n− t
(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1Σ̂︸ ︷︷ ︸

Leading order term

− 1

(n− t)2
(
(I − AL)−2(AL −An+1−t

L ) + (I − A>R)−2(A>R − (A>R)n+1−t)
)
(I − B)−1Σ̂
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− 1

(n− t)2
(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−2(Bt+1 − Bn+1)Σ̂

+
1

(n− t)2
n∑

j=t+1

(
(I − AL)−1An+1−j

L + (I − A>R)−1(A>R)n+1−j)(I − B)−1BjΣ̂

(24)

Equations 17, 22, 24 wrap up the proof of lemmas 3, 5.
The parameter error of the (tail-)averaged iterate can be obtained using a trace operator 〈·,·〉

to the tail-averaged iterate’s covariance Φ̄t,n with the matrix
[
I 0
0 0

]
, i.e.

‖x̄t,n − x∗‖22 =

〈[
I 0
0 0

]
, Φ̄t,n

〉
In order to obtain the function error, we note the following taylor expansion of the function P (·)
around the minimizer x∗:

P (x) = P (x∗) +
1

2
‖x− x∗‖2∇2P (x∗)

= P (x∗) +
1

2
‖x− x∗‖2H

This implies the excess risk can be obtained as:

P (x̄t,n)− P (x∗) =
1

2
·
〈[

H 0
0 0

]
, Φ̄t,n

〉
≤
〈[

H 0
0 0

]
, Φ̄bias

t,n

〉
+

〈[
H 0
0 0

]
, Φ̄variance

t,n

〉

Appendix C. Useful lemmas

In this section, we will state and prove some useful lemmas that will be helpful in the later sections.

Lemma 7 (
I−A>

)−1 [H 0
0 0

]
=

1

q − cδ

[
−(cI− qH) 0

(I− δH) 0

]
Proof Since we assumed that H is a diagonal matrix (with out loss of generality), we note that A is
a block diagonal matrix after a rearrangement of the co-ordinates (via an eigenvalue decomposition).

In particular, by considering the jth block (denoted by Aj corresponding to the jth eigenvalue
λj of H), we have:

I−A>j =

[
1 c

−(1− δλj) −(c− qλj)

]
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Implying that the determinant
∣∣∣I−A>j

∣∣∣ = (q − cδ)λj , using which:

(I−A>j )−1 =
1

(q − cδ)λj

[
−(c− qλj) −c

1− δλj 1

]
(25)

Thus,

(I−A>j )−1
[
λj 0
0 0

]
=

1

q − cδ

[
−(c− qλj) 0
(1− δλj) 0

]
Accumulating the results of each of the blocks and by rearranging the co-ordinates, the result fol-
lows.

Lemma 8 (
I−A>

)−1 [H 0
0 0

]
(I−A)−1 =

1

(q − cδ)2

(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
Proof

In a similar manner as in lemma 7, we decompose the computation into each of the eigen-
directions and subsequently re-arrange the results. In particular, we note:

(I−Aj)
−1 =

1

(q − cδ)λj

[
−(c− qλj) (1− δλj)
−c 1

]
Multiplying the above with the result of lemma 7, we have:

(I−A>j )−1
[
λj 0
0 0

]
(I−Aj)

−1 =
1

(q − cδ)2

(
⊗2

[
−(c− qλj)λ−1/2j

(1− δλj)λ−1/2j

])
From which the statement of the lemma follows through a simple re-arrangement.

Lemma 9(
I−A>

)−2
A>

[
H 0
0 0

]
=

1

(q − cδ)2

[
H−1(−c(1− c)I− cqH)(I− δH) 0
H−1((1− c)I− cδH)(I− δH) 0

]
Proof In a similar argument as in previous two lemmas, we analyze the expression in each eigendi-
rection of H through a rearrangement of the co-ordinates. Utilizing the expression of I−A>j from
equation 25, we get:

(I−A>j )−1A>j

[
λj 0
0 0

]
=

1

(q − cδ)

[
−c(1− δλj) 0

(1− δλj) 0

]
(26)

thus implying:

(I−A>j )−2A>j

[
λj 0
0 0

]
=

(1− δλj)
(q − cδ)2λj

[
−c(1− c)− cqλj 0

(1− c)− cδλj 0

]
Rearranging the co-ordinates, the statement of the lemma follows.
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Lemma 10 The matrix A satisfies the following properties:

1. Eigenvalues q of A satisfy |q| ≤
√
α, and

2.
∥∥Ak

∥∥
2
≤ 3
√

2 · k · α
k−1
2 ∀ k ≥ 1.

Proof Since the matrix is block-diagonal with 2 × 2 blocks, after a rearranging the coordinates,
we will restrict ourselves to bounding the eigenvalues and eigenvectors of each of these 2 × 2
blocks. Combining the results for different blocks then proves the lemma. Recall that Aj =[

0 1− δλj
−c 1 + c− qλj

]
.

Part I: Let us first prove the statement about the eigenvalues of A. There are two scenarios
here:

1. Complex eigenvalues: In this case, both eigenvalues of Aj have the same magnitude which is
given by

√
det(Aj) =

√
c(1− δλj) ≤

√
c ≤
√
α.

2. Real eigenvalues: Let q1 and q2 be the two real eigenvalues of Aj . We know that q1 + q2 =
Tr (Aj) = 1 + c− qλj > 0 and q1 · q2 = det(Aj) > 0. This means that q1 > 0 and q2 > 0.

Now, consider the matrix Gj
def
= (1− β)I−Aj =

[
(1− β) −1 + δλj

c −1 + (1− β)(1− α) + qλj

]
.

We see that ((1−β)− q1)((1−β)− q2) = det(Gj) = (1−β)(1−α) ((1− β)− 1) + (1−
β) (q − αδ)λj = (1−β) (1− α) (γλj − β) ≥ 0. This means that there are two possibilities:
either q1, q2 ≥ (1− β) or q1, q2 ≤ (1− β). If the second condition is true, then we are done.
If not, if q1, q2 ≥ (1 − β), then maxi qi =

det(Aj)
mini qi

≤ c(1−δλj)
(1−β) ≤ α(1 − δλj). Since

√
α ≥ α ≥ 1− β, this proves the first part of the lemma.

Part II: Let Aj = VQV> be the Schur decomposition of Aj where Q =

[
q1 q
0 q2

]
is an upper

triangular matrix with eigenvalues q1 and q2 of Aj on the diagonal and V is a unitary matrix i.e.,

VV> = V>V = I. We first observe that |q| ≤ ‖Q‖2
(ζ1)
= ‖Aj‖2 ≤ ‖Aj‖F ≤

√
6, where (ζ1)

follows from the fact that V is a unitary matrix. V being unitary also implies that Ak
j = VQkV>.

On the other hand, a simple proof via induction tells us that

Qk =

[
qk1 q

(∑k−1
`=1 q

`
1q
k−`
2

)
0 qk2

]
.

So, we have
∥∥∥Ak

j

∥∥∥
2

=
∥∥Qk

∥∥
2
≤
∥∥Qk

∥∥
F
≤
√

3k |q|max
(
|q1|k−1 , |q2|k−1

)
≤ 3
√

2 · k · α
k−1
2 ,

where we used |q| ≤
√

6 and max (|q1| , |q2|) ≤
√
α.

Finally, we state and prove the following lemma which is a relation between left and right multipli-
cation operators.

Lemma 11 Let A be any matrix withAL = A⊗ I andAR = I⊗A representing its left and right
multiplication operators. Then, the following expression holds:(

I + (I − AL)−1AL + (I − A>R)−1A>R
)

(I − ALA>R)−1 = (I − AL)−1(I − A>R)−1
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Proof Let us assume that A can be written in terms of its eigen decomposition as A = VΛV−1.
Then the first claim is that I,AL,AR are diagonalized by the same basis consisting of the eigen-
vectors of A, i.e. in particular, the matrix of eigenvectors of I,AL,AR can be written as V⊗V. In
particular, this implies, ∀ i, j ∈ {1, 2, ..., d} × {1, 2, ..., d}, we have, applying vi ⊗ vj to the LHS,
we have: (

I + (I − AL)−1AL + (I − A>R)−1A>R
)

(I − ALA>R)−1vi ⊗ vj

= (1− λiλj)−1
(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
vi ⊗ vj

= (1 + λi(1− λi)−1 + λj(1− λj)−1) · (1− λiλj)−1vi ⊗ vj

Applying vi ⊗ vj to the RHS, we have:

(I − AL)−1(I − A>R)−1vi ⊗ vj

= (1− λi)−1(1− λj)−1vi ⊗ vj

The next claim is that for any scalars (real/complex) x, y 6= 1, the following statement holds
implying the statement of the lemma:

(1 + (1− x)−1x+ (1− y)−1y) · (1− xy)−1 = (1− x)−1(1− y)−1

Lemma 12 Recall the matrix G defined as G
def
=

[
I −α

1−αI

0 1
1−αI

] [
I 0
0 µH−1

] [
I 0
−α
1−αI 1

1−αI

]
. The

condition number of G, κ(G) satisfies κ(G) ≤ 4κ√
1−α2

.

Proof Since the above matrix is block-diagonal after a rearrangement of coordinates, it suffices to
compute the smallest and largest singular values of each block. Let λi be the ith eigenvalue of H.

Let C
def
=

[
1 0
−α
1−α

1
1−α

]
and consider the matrix Gi

def
= C

[
1 0
0 µ

λi

]
C>. The largest eigenvalue of

Gi is at most σmax (C)2, while the smallest eigenvalue, σmin (Gi) is at least µ
λi
· σmin (C)2. We

obtain the following bounds on σmin (C) and σmax (C).

σmax (C) ≤ ‖C‖F ≤
2√

1− α2
(∵ α ≤ 1)

σmin (C) ≥
√

det (CC>)

‖C‖F
≥ 1

2
,(

∵ det
(
CC>

)
= σmax (C)2 σmin (C)2

)
where we used the computation that det

(
CC>

)
= 1

1−α . This means that σmin (Gi) ≥ µ
2λi

and
σmax (Gi) ≤ 2√

1−α2
. Combining all the blocks, we see that the condition number of G is at most

4κ√
1−α2

, proving the lemma.
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Appendix D. Lemmas and proofs for bias contraction

Proof [Proof of Lemma 4] Let v
def
= 1

1−α (y − αx) and consider the following update rules corre-
sponding to the noiseless versions of the updates in Algorithm 1:

x+ = y − δĤ(y − x∗)

z = βy + (1− β)v

v+ = z− γĤ(y − x∗)

y+ = αx+ + (1− α)v+,

where Ĥ
def
= aa> where a is sampled from the marginal on (a, b) ∼ D. We first note that

E
[
⊗2

[
x+ − x∗

y+ − x∗

]]
= E

[
Â

(
⊗2

[
x− x∗

y − x∗

])
Â>
]

= B
(
⊗2

[
x− x∗

y − x∗

])

Letting G̃
def
=

[
I 0
−α
1−αI 1

1−αI

]
, we can verify that

[
x− x∗

v − x∗

]
= G̃

[
x− x∗

y − x∗

]
, similarly

[
x+ − x∗

v+ − x∗

]
=

G̃

[
x+ − x∗

y+ − x∗

]
. Recall that G

def
= G̃>

[
I 0
0 µH−1

]
G̃. With this notation in place, we prove the

statement below, and substitute the values of c1, c2, c3 to obtain the statement of the lemma:〈[
I 0
0 µ ·H−1

]
,⊗2

([
x+ − x∗

v+ − x∗

])〉
≤

(
1− c3

c2
√

2c1 − c21√
κκ̃

)
·
〈[

I 0
0 µ ·H−1

]
,⊗2

([
x− x∗

v − x∗

])〉
(27)

To establish this result, let us define two quantities: e def
= ‖x− x∗‖22, f def

= ‖v − x∗‖2H−1 and

similarly, e+ def
= ‖x+ − x∗‖22 and f+ def

= ‖v+ − x∗‖2H−1 . The potential function we consider is
e+ µ · f . Recall that the parameters are chosen as:

α =

√
κκ̃

c2
√

2c1 − c21 +
√
κκ̃
, β = c3

c2
√

2c1 − c21√
κκ̃

, γ = c2

√
2c1 − c21
µ
√
κκ̃

, δ =
c1
R2

with c1 < 1/2, c3 =
c2
√

2c1−c21
c1

, c22 = c4
2−c1 . Consider e+ and employ the simple gradient descent

bound:

e+ = E
[∥∥x+ − x∗

∥∥2
2

]
= E

[∥∥∥y − δ · Ĥ(y − x∗)− x∗
∥∥∥2
2

]
= E

[
‖y − x∗‖22

]
− 2δ · E

[
‖y − x∗‖2H

]
+ δ2E

[
‖y − x∗‖2MI

]
≤ E

[
‖y − x∗‖22

]
− 2δ · E

[
‖y − x∗‖2H

]
+R2δ2E

[
‖y − x∗‖2H

]
= E

[
‖y − x∗‖22

]
− 2c1 − c21

R2
E
[
‖y − x∗‖2H

]
(28)
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Next, consider f+:

f+ = E
[∥∥v+ − x∗

∥∥2
H−1

]
= E

[∥∥∥z− γĤ(y − x∗)− x∗
∥∥∥2

H−1

]
= E

[
‖z− x∗‖2H−1

]
+ γ2E

[
‖y − x∗‖2MH−1

]
− 2γE [〈z− x∗,y − x∗〉]

≤ E
[
‖z− x∗‖2H−1

]
+ γ2κ̃ · E

[
‖y − x∗‖2H

]
− 2γ · E [〈z− x∗,y − x∗〉]

(29)

Where, we use the fact that MH−1 � κ̃H, where κ̃ is the statistical condition number.
Consider E

[
‖z− x∗‖2H−1

]
and use convexity of the weighted 2−norm to get:

E
[
‖z− x∗‖2H−1

]
≤ βE

[
‖y − x∗‖2H−1

]
+ (1− β)E

[
‖v − x∗‖2H−1

]
≤ β

µ
E
[
‖y − x∗‖22

]
+ (1− β) · f (30)

Next, consider E [〈z− x∗,y − x∗〉], and first write z in terms of x and y. This can be seen as two
steps:

• v = 1
1−α · y −

α
1−α · x

• z = βy + (1− β)v = y + (1− β)(v− y). Then substituting v in terms of x and y as in the
equation above, we get: z = y +

(
α·(1−β)
1−α

)
(y − x)

Then, E [〈z− x∗,y − x∗〉] can be written as:

E [〈z− x∗,y − x∗〉] = E
[
‖y − x∗‖22

]
+

(
α(1− β)

1− α

)
E [〈y − x,y − x∗〉] (31)

Then, we note:

E [〈y − x,y − x∗〉] = E
[
‖y − x∗‖22

]
− E [〈x− x∗,y − x∗〉]

≥ E
[
‖y − x∗‖22

]
− 1

2
·
(
E
[
‖y − x∗‖22

]
+ E

[
‖x− x∗‖22

])
=

1

2
·
(
E
[
‖y − x∗‖22

]
− E

[
‖x− x∗‖22

])
Re-substituting in equation 31:

E [〈z− x∗,y − x∗〉] ≥
(

1 +
1

2
· α(1− β)

1− α

)
E
[
‖y − x∗‖22

]
− 1

2
· α(1− β)

1− α
E
[
‖x− x∗‖22

]
=

(
1 +

1

2
· α(1− β)

1− α

)
E
[
‖y − x∗‖22

]
− 1

2
· α(1− β)

1− α
· e (32)

Substituting equations 30, 32 into equation 29, we get:

µ · f+ ≤
(
β − 2γµ− γµα(1− β)

1− α

)
E
[
‖y − x∗‖22

]
+ µ(1− β) · f

28



ACCELERATING STOCHASTIC GRADIENT DESCENT

+
γµα(1− β)

1− α
· e+ µγ2κ̃ · E

[
‖y − x∗‖2H

]
Rewriting the guarantee on e+ as in equation 28:

e+ ≤ E
[
‖y − x∗‖22

]
− 2c1 − c21

R2
· E
[
‖y − x∗‖2H

]
By considering e+ + µ · f+, we see the following:

• The coefficient of E
[
‖y − x∗‖2H

]
≤ 0 by setting γ = c2

√
2c1−c21
µ
√
κκ̃

, where, 0 < c2 ≤ 1,

κ = R2

µ .

• Set γµα1−α = 1 implying α = 1
1+γµ =

√
κκ̃

c2
√

2c1−c21+
√
κκ̃

With these in place, we have the final result:

e+ + µ · f+ ≤ (2β − 2γµ)E
[
‖y − x∗‖22

]
+ (1− β) · (e+ µ · f)

In particular, setting β = c3γµ = c3
c2
√

2c1−c21√
κκ̃

, we have a per-step contraction of 1 − β which

is precisely 1 − c3
c2
√

2c1−c21√
κκ̃

, from which the claimed result naturally follows by substituting the
values of c1, c2, c3.

Lemma 13 For any psd matrix Q � 0, we have:∥∥∥BkQ∥∥∥
2
≤ 4κ√

1− α2

(
1−

(
c2c3

√
2c1 − c21√
κκ̃

))k
‖Q‖2 .

Proof From Lemma 4, we conclude that
〈
G,BkQ

〉
≤
(

1 −
(
c2c3
√

2c1−c21√
κκ̃

))k
〈G,Q〉. This

implies that
∥∥BkQ∥∥

2
≤
(

1 −
(
c2c3
√

2c1−c21√
κκ̃

))k
‖Q‖2 κ(G). Plugging the bound on κ(G) from

Lemma 12 proves the lemma.

Lemma 14 We have:

(I−D) (I− B)−1Bt+1
(
I− Bn−t

)
θ0θ

>
0

� 4κ√
1− α2

exp

(
−tc2c3

√
2c1 − c21/

√
κκ̃

)
‖θ0‖2

(
I +

√
κκ̃

c2c3
√

2c1 − c21
(R2/σ2)Σ̂

)
.

Proof The proof follows from Lemma 4. Since B = D + R, we have (I − D) (I − B)−1 =
I +R(I − B)−1. SinceR,B and (I − B)−1 are all PSD operators, we have

(I − D) (I − B)−1Bt+1
(
I − Bn−t

)
θ0θ

>
0
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=
(
I +R(I − B)−1

)
Bt+1

(
I − Bn−t

)
θ0θ

>
0

� Bt+1θ0θ
>
0︸ ︷︷ ︸

S1
def
=

+R(I − B)−1Bt+1θ0θ
>
0︸ ︷︷ ︸

S2
def
=

.

Applying Lemma 13 with Q = θ0θ
>
0 tells us that S1 � 4κ√

1−α2
exp

(
−tc2c3

√
2c1 − c21/

√
κκ̃
)
‖θ0‖22 I.

For S2, we have〈
G, (I − B)−1Bt+1θ0θ

>
0

〉
=

〈
G,

∞∑
j=t+1

Bjθ0θ>0

〉

≤
∞∑

j=t+1

(
1−

(
c2c3

√
2c1 − c21√
κκ̃

))j 〈
G,θ0θ

>
0

〉
≤

√
κκ̃

c2c3
√

2c1 − c21
exp

(
−tc2c3

√
2c1 − c21/

√
4κκ̃

)〈
G,θ0θ

>
0

〉
.

This implies

(I − B)−1Bt+1θ0θ
>
0 � κ(G)(

√
κκ̃/(c2c3

√
2c1 − c21)) exp

(
−tc2c3

√
2c1 − c21/

√
4κκ̃

)
‖θ0‖2 I,

which tells us that

S2 � κ(G)(
√
κκ̃/(c2c3

√
2c1 − c21)) exp

(
−tc2c3

√
2c1 − c21/

√
4κκ̃

)
‖θ0‖2 (R2/σ2)Σ̂

Combining the bounds on S1 and S2, we obtain

(I − D) (I − B)−1Bt+1
(
I − Bn−t

)
θ0θ

>
0

� κ(G) exp

(
−tc2c3

√
2c1 − c21/

√
4κκ̃

)
‖θ0‖2

(
I +

√
κκ̃

c2c3
√

2c1 − c21
(R2/σ2)Σ̂

)
.

Plugging the bound for κ(G) from Lemma 12 finishes the proof.

Corollary 15 For any psd matrix Q � 0, we have:

∥∥An+1−jBjQ
∥∥ ≤ 12

√
2(n+ 1− j)κ√

1− α2
α
n−j
2

(
1− c2c3

√
2c1 − c21√
κκ̃

)j
‖Q‖2

≤ 12
√

2(n+ 1− j)κ√
1− α2

α
n−j
2 exp

(
−jc2c3

√
2c1 − c21√
κκ̃

)
‖Q‖2 .

Proof This corollary follows directly from Lemmas 10 and 13 and using the fact that 1− x ≤ e−x

The following lemma bounds the total error of θ̄bias
t,n .
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Lemma 16〈[
H 0
0 0

]
,E
[
θ̄bias
t,n ⊗ θ̄bias

t,n

]〉
≤ C · (κκ̃)9/4dκ

(n− t)2
· exp

(
− (t+ 1)

c2c3
√

2c1 − c21√
κκ̃

)
·
(
P (x0)− P (x∗)

)
+ C · (κκ̃)5/4dκ · exp

(
−nc2c3

√
2c1 − c21√
κκ̃

)
·
(
P (x0)− P (x∗)

)
Where, C is a universal constant.

Proof Lemma 3 tells us that

E
[
θ̄bias
t,n ⊗ θ̄bias

t,n

]
=

1

(n− t)2

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1(Bt+1 − Bn+1) (θ0 ⊗ θ0)

− 1

(n− t)2
n∑

j=t+1

(
(I − AL)−1An+1−j

L + (I − A>R)−1(A>R)n+1−j
)
Bjθ0 ⊗ θ0.

(33)

We now use lemmas in this section to bound inner product of the two terms in the above expression

with
[
H 0
0 0

]
, i.e. we seek to bound,

〈[
H 0
0 0

]
,E
[
θ̄bias
t,n ⊗ θ̄bias

t,n

]〉
=

〈[
H 0
0 0

]
,

1

(n− t)2

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1(Bt+1 − Bn+1) (θ0 ⊗ θ0)

〉
+

〈[
H 0
0 0

]
,− 1

(n− t)2
n∑

j=t+1

(
(I − AL)−1An+1−j

L + (I − A>R)−1(A>R)n+1−j
)
Bjθ0 ⊗ θ0

〉
(34)

For the first term of equation 34, we have〈[
H 0
0 0

]
,

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1(Bt+1 − Bn+1) (θ0 ⊗ θ0)

〉
=

〈[
H 0
0 0

]
,

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)(
I − ALA>R

)−1 (
I − ALA>R

)
(I − B)−1(Bt+1 − Bn+1) (θ0 ⊗ θ0)

〉
=

〈[
H 0
0 0

]
, (I − AL)−1(I − A>R)−1

(
I − ALA>R

)
(I − B)−1(Bt+1 − Bn+1) (θ0 ⊗ θ0)

〉
(using Lemma 11)

=

〈
(I−A>)−1

[
H 0
0 0

]
(I−A)−1, (I − D) (I − B)−1(Bt+1 − Bn+1) (θ0 ⊗ θ0)

〉
≤ 1

(q − cδ)2
4κ√

1− α2
exp

(
−(t+ 1)c2c3

√
2c1 − c21/

√
κκ̃

)
‖θ0‖2
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〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, I + 2

√
κκ̃(R2/σ2)Σ̂

〉
.

The two terms above can be bounded as〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, I

〉
≤ 7 · Tr

(
H−1

)
≤ 7d

µ
and,

2
√
κκ̃(R2/σ2)

〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, Σ̂

〉
= 2
√
κκ̃R2(q − cδ)2d.

Combining the above and noting the fact that 2
√
κκ̃R2(q − cδ)2d < 7d

µ , we have〈[
H 0
0 0

]
,

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1(Bt+1 − Bn+1) (θ0 ⊗ θ0)

〉
≤ 56κd√

1− α2
· ‖θ0‖2

µ (q − cδ)2
· exp

(
−(t+ 1)c2c3

√
2c1 − c21/

√
κκ̃

)
. (35)

We now note the following facts:

1

1− α
=

c2
√

2c1 − c21√
κκ̃+ c2

√
2c1 − c21

≤ 2
√
c1c4

·
√
κκ̃

1

q − cδ
≤ 1

γ(1− α)
≤ µ

(1− α)2
≤ 4κ̃

c4δ

This implies, equation 35 can be bounded as:〈[
H 0
0 0

]
,

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1(Bt+1 − Bn+1) (θ0 ⊗ θ0)

〉
≤ 1792

(c1c4)5/4
· (κκ̃)9/4d

δc4
· exp

(
− (t+ 1)

c2c3
√

2c1 − c21√
κκ̃

)
‖θ0‖2

≤ 1792

(c1c4)5/4
· (κκ̃)9/4dκ

c1c4
· exp

(
− (t+ 1)

c2c3
√

2c1 − c21√
κκ̃

)
µ ‖θ0‖2

≤ 3584

(c1c4)5/4
· (κκ̃)9/4dκ

c1c4
· exp

(
− (t+ 1)

c2c3
√

2c1 − c21√
κκ̃

)
·
(
P (x0)− P (x∗)

)
≤ C · (κκ̃)9/4dκ · exp

(
− (t+ 1)

c2c3
√

2c1 − c21√
κκ̃

)
·
(
P (x0)− P (x∗)

)
. (36)

Where, C is a universal constant.
Consider now a term in the summation in the second term of (34).〈[

H 0
0 0

]
,

(
(I − AL)−1An+1−j

L + (I − A>R)−1(A>R)n+1−j
)
Bj (θ0 ⊗ θ0)

〉
=

〈
(I−A>)−1

[
H 0
0 0

]
,An+1−jBj (θ0 ⊗ θ0)

〉
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+

〈[
H 0
0 0

]
(I−A)−1,

(
Bj (θ0 ⊗ θ0)

)
(A>)n+1−j

〉
≤ 4d

∥∥∥∥(I−A>)−1
[
H 0
0 0

]∥∥∥∥ ∥∥An+1−jBj (θ0 ⊗ θ0)
∥∥

≤ 4d

q − cδ

∥∥∥∥[−(cI− qH) 0
(I− δH) 0

]∥∥∥∥ · 12
√

2(n+ 1− j)κ√
1− α2

α
n−j
2 exp

(
−jc2c3

√
2c1 − c21√
κκ̃

)
‖θ0‖2

(Lemma 8 and Corollary 15)

≤ 672(n− t)dκ
(q − cδ)

√
1− α2

· exp

(
−nc2c3

√
2c1 − c21√
κκ̃

)
· ‖θ0‖2

≤ 5376

(c1c4)1/4
(κκ̃)5/4d

δc4
(n− t) exp

(
−nc2c3

√
2c1 − c21√
κκ̃

)
· ‖θ0‖2

≤ 5376

(c1c4)1/4
(κκ̃)5/4dκ

c1c4
(n− t) exp

(
−nc2c3

√
2c1 − c21√
κκ̃

)
· µ ‖θ0‖2

≤ 10752

(c1c4)1/4
(κκ̃)5/4dκ

c1c4
(n− t) exp

(
−nc2c3

√
2c1 − c21√
κκ̃

)
·
(
P (x0)− P (x∗)

)
≤ C · (κκ̃)5/4dκ · (n− t) exp

(
−nc2c3

√
2c1 − c21√
κκ̃

)
·
(
P (x0)− P (x∗)

)
. (37)

Where, C is a universal constant. Plugging (36) and (37) into (34), we obtain〈[
H 0
0 0

]
,E
[
θ̄bias
t,n ⊗ θ̄bias

t,n

]〉
≤ C · (κκ̃)9/4dκ

(n− t)2
· exp

(
− (t+ 1)

c2c3
√

2c1 − c21√
κκ̃

)
·
(
P (x0)− P (x∗)

)
+ C · (κκ̃)5/4dκ · exp

(
−nc2c3

√
2c1 − c21√
κκ̃

)
·
(
P (x0)− P (x∗)

)
This proves the lemma.

Appendix E. Lemmas and proofs for Bounding variance error

Before we prove lemma 6, we recall old notation and introduce new notations that will be employed
in these proofs.

E.1. Notations

We begin with by recalling that we track θk =

[
xk − x∗

yk − x∗

]
. Given θk, we recall the recursion

governing the evolution of θk:

θk+1 =

[
0 I− δĤk+1

−c · I (1 + c)I− q · Ĥk+1

]
θk +

[
δ · εk+1ak+1

q · εk+1ak+1

]
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= Âk+1θk + ζk+1 (38)

where, recall, c = α(1− β), q = αδ + (1− α)γ, and Ĥk+1 = ak+1a
>
k+1. Furthermore, we recall

the following definitions, which will be heavily used in the following proofs:

A = E
[
Âk+1|Fk

]
B = E

[
Âk+1 ⊗ Âk+1|Fk

]
Σ̂ = E [ζk+1 ⊗ ζk+1|Fk] =

[
δ2 δ · q
δ · q q2

]
⊗Σ � σ2 ·

[
δ2 δ · q
δ · q q2

]
⊗H

We recall:

R = E
[
(A− Âk+1)⊗ (A− Âk+1)|Fk

]
D = A⊗A

And the operators B,D,R being related by:

B = D +R

Furthermore, in order to compute the steady state distribution with the fourth moment quantities in
the mix, we need to rely on the following re-parameterization of the update matrix Â:

Â =

[
0 I− δĤ
−c · I (1 + c) · I− q · Ĥ

]

=

[
0 I
−c · I (1 + c) · I

]
+

[
0 −δ · Ĥ
0 −q · Ĥ

]
def
= V1 + V̂2

This implies in particular:

Â⊗ Â = (V1 + V̂2)⊗ (V1 + V̂2)

= V1 ⊗V1 + V1 ⊗ V̂2 + V̂2 ⊗V1 + V̂2 ⊗ V̂2

Note in particular, the fourth moment part resides in the operator V̂2 ⊗ V̂2. Terms such as V1 ⊗
V1 are deterministic, or terms such as V1 ⊗ V̂2 or V̂2 ⊗ V1 contain second moment quantities.
Furthermore, note that the operator B = E

[
Â⊗ Â

]
where the expectation is taken with respect to

a single random draw from the distribution D.
Considering the expectation of Â⊗ Â with respect to a single draw from the distribution D, we

have:

B = E
[
Â⊗ Â

]
= V1 ⊗V1 + E

[
V1 ⊗ V̂2

]
+ E

[
V̂2 ⊗V1

]
+ E

[
V̂2 ⊗ V̂2

]
= V1 ⊗V1 + V1 ⊗V2 + V2 ⊗V1 + E

[
V̂2 ⊗ V̂2

]
,

where V2
def
= E

[
V̂2

]
=

[
0 −δ ·H
0 −q ·H

]
.

Finally, we let nr and dr to denote the numerator and denominator respectively.
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E.2. An exact expression for the stationary distribution

Note that a key term appearing in the expression for covariance of the variance equation (24) is
(I − B)−1Σ̂. This is in fact nothing but the covariance of the error when we run accelerated SGD
forever starting at x∗ (i.e., at steady state). This can be seen by considering the base variance
recursion using equation (38):

θk = Âkθk−1 + ζk

=⇒ Φk
def
= E [θk ⊗ θk]

= E
[
E
[(

Âkθk−1 ⊗ θk−1Â
>
k + ζk ⊗ ζk

)
|Fk−1

]]
= E

[
E
[(

Âkθk−1 ⊗ θk−1Â
>
k

)
|Fk−1

]]
+ Σ̂

= B · E [θk−1 ⊗ θk−1] + Σ̂

= B ·Φk−1 + Σ̂

This recursion on the covariance operator Φk can be unrolled until the start i.e. k = 0 to yield:

Φk = BkΦ0 +
k−1∑
l=0

Bl · Σ̂

= (I − B)−1(I − Bk)Σ̂ (∵ Φ0 = 0)

=⇒ Φ∞ = lim
k→∞

Φk = (I − B)−1Σ̂ (39)

E.3. Computing the steady state distribution

We now proceed to compute the stationary distribution. Recall that

B = V1 ⊗V1 + V1 ⊗V2 + V2 ⊗V1 + E
[
V̂2 ⊗ V̂2

]
=⇒ I − B =

(
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)
− E

[
V̂2 ⊗ V̂2

]
Where the expectation is over a single sample drawn from the distribution D. This implies in
particular,

(I − B)−1 =

((
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)
− E

[
V̂2 ⊗ V̂2

])−1
=

∞∑
k=0

((
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)−1E [V̂2 ⊗ V̂2

])k
·
(
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)−1 (40)

Since Σ̂ � σ2 ·
[
δ2 δ · q
δ · q q2

]
⊗H, and (I − B)−1 is a PSD operator, the steady state distribution

Φ∞ is bounded by:

Φ∞ = (I − B)−1Σ̂ � σ2(I − B)−1
([

δ2 δ · q
δ · q q2

]
⊗H

)
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= σ2
∞∑
k=0

((
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)−1E [V̂2 ⊗ V̂2

])k
·

(
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)−1([ δ2 δ · q
δ · q q2

]
⊗H

)
. (41)

Note that the Taylor expansion above is guaranteed to be correct if the right hand side is finite. We
will understand bounds on the steady state distribution by splitting the analysis into the following
parts:

• Obtain U
def
=
(
I−V1⊗V1−V1⊗V2−V2⊗V1

)−1([ δ2 δ · q
δ · q q2

]
⊗H

)
(in section E.3.1).

• Obtain bounds on E
[
V̂2 ⊗ V̂2

]
U (in section E.3.2)

• Combine the above to obtain bounds on Φ∞ (lemma 6).

Before deriving these bounds, we will present some reasoning behind the validity of the upper
bounds that we derive on the stationary distribution Φ∞:

Φ∞ = (I − B)−1Σ̂

� σ2
∞∑
k=0

((
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)−1E [V̂2 ⊗ V̂2

])k
U (∗ ∗ ∗)

= σ2U + σ2
∞∑
k=1

((
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)−1E [V̂2 ⊗ V̂2

])k
U

= σ2U + σ2
∞∑
k=0

((
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)−1E [V̂2 ⊗ V̂2

])k
·
(
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)−1E [V̂2 ⊗ V̂2

]
U

= σ2U + σ2(I − B)−1 · E
[
V̂2 ⊗ V̂2

]
U (using equation 40),

(42)

with (∗ ∗ ∗) following through using equation 41 and through the definition of U. Now, with this in
place, we clearly see that since (I−B)−1 and E

[
V̂2 ⊗ V̂2

]
are PSD operators, we can upper bound

right hand side to create valid PSD upper bounds on Φ∞. In particular, in section E.3.1, we derive
with equality what U is, and follow that up with computation of an upper bound on E

[
V̂2 ⊗ V̂2

]
U

in section E.3.2. Combining this will enable us to present a valid PSD upper bound on Φ∞ owing
to equation 42.

E.3.1. UNDERSTANDING THE SECOND MOMENT EFFECTS

This part of the proof deals with deriving the solution to:

U =
(
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)−1([ δ2 δ · q
δ · q q2

]
⊗H

)
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This is equivalent to solving the (linear) equation:

(
I −V1 ⊗V1 −V1 ⊗V2 −V2 ⊗V1

)
·U =

([
δ2 δ · q
δ · q q2

]
⊗H

)
=⇒ U−V1UV>1 −V1UV>2 −V2UV>1 =

([
δ2 δ · q
δ · q q2

]
⊗H

)
(43)

Note that all the known matrices above i.e., V1,V2 and H are all diagonalizable with respect to H,
and thus, the solution of this system can be computed in each of the eigenspaces (λj ,uj) of H. This
implies, in reality, we deal with matrices U(j), one corresponding to each eigenspace. However, for
this section, we will neglect the superscript on U, since it is clear from context for the purpose of
this section.

V1UV>1 =

[
0 1
−c 1 + c

] [
u11 u12
u12 u22

] [
0 −c
1 1 + c

]
=

[
u22 −cu12 + (1 + c)u22

−cu12 + (1 + c)u22 c2u11 − 2c(1 + c)u12 + (1 + c)2u22

]
Next,

V1UV>2 =

[
0 1
−c 1 + c

] [
u11 u12
u12 u22

] [
0 0
−δ −q

]
λj

=

[
u12 u22

−cu11 + (1 + c)u12 −cu12 + (1 + c)u22

] [
0 0
−δ −q

]
λj

=

[
−δu22 −qu22

−δ(−cu12 + (1 + c)u22) −q(−cu12 + (1 + c)u22)

]
λj

It follows that:

V2UV>1 = (V1UV>2 )>

=

[
−δu22 −δ(−cu12 + (1 + c)u22)
−qu22 −q(−cu12 + (1 + c)u22)

]
λj

Given all these computations, comparing the (1, 1) term on both sides of equation 43, we get:

u11 − u22 + 2δλju22 = δ2λj

u11 = u22(1− 2δλj) + δ2λj (44)

Next, comparing (1, 2) term on both sides of equation 43, we get:

u12 − (−cu12 + (1 + c)u22) + qλju22 + δλj(−cu12 + (1 + c)u22) = δ qλj

u12 − (1− δλj)(−cu12 + (1 + c)u22) + qλju22 = δ qλj

(1 + c(1− δλj)) · u12 + (qλj − (1 + c)(1− δλj)) · u22 = δ qλj (45)

Finally, comparing the (2, 2) term on both sides of equation 43, we get:

u22 − (c2u11 − 2c(1 + c)u12 + (1 + c)2u22) + 2qλj(−cu12 + (1 + c)u22) = q2λj
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=⇒ −c2u11 + (2c(1 + c)− 2cqλj)u12 + (1− (1 + c)2 + 2(1 + c)qλj)u22 = q2λj (from equation 44)

=⇒ −c2(u22(1− 2δλj) + δ2λj) + (2c(1 + c)− 2cqλj)u12 + (1− (1 + c)2 + 2(1 + c)qλj)u22 = q2λj

=⇒ (2c(1 + c)− 2cqλj)u12 + (1− (1 + c)2 − c2(1− 2δλj) + 2(1 + c)qλj)u22 = (q2 + c2δ2)λj

=⇒ 2c((1 + c)− qλj)u12 + 2((1 + c)(qλj − c) + δλjc
2)u22 = (q2 + c2δ2)λj (46)

Now, we note that equations 45, 46 are linear systems in two variables u12 and u22. Denoting the
system in the following manner,

a11u12 + a12u22 = b1

a21u12 + a22u22 = b2

For analyzing the variance error, we require u22, u12:

u22 =
b1a21 − b2a11
a12a21 − a11a22

, u12 =
b1a22 − b2a12
a11a22 − a12a21

Substituting the values from equations 45 and 46, we get:

u22 =

2cqδ

(
1 + c− qλj

)
− (q2 + c2δ2)

(
1 + c(1− δλj)

)
2c

((
1 + c− qλj

)
·
(
λjq − (1 + c)(1− δλj)

))
− 2 ·

((
1 + c− cδλj

)
·
(
(1 + c)(qλj − c) + δλjc2

)) · λj
(47)

u12 =

2qδ

(
(1 + c)(qλj − c) + δλjc

2

)
− (q2 + c2δ2)

(
λjq − (1 + c)(1− δλj)

)
2

((
1 + c− cδλj

)
·
(
(1 + c)(qλj − c) + δλjc2

))
− 2c

((
1 + c− qλj

)
·
(
λjq − (1 + c)(1− δλj)

)) · λj
(48)

Denominator of u22: Let us consider the denominator of u22 (from equation 47) to write it in a
concise manner.

dr(u22) = 2

( (
1 + c− qλj

)
· k1 −

(
1 + c− cδλj

)
· k2
)

with

k1 = c ·
(
λjq − (1 + c)(1− δλj)

)
=
(
cλjq − (c+ c2)(1− δλj)

)
=
(
cqλj − c− c2 + cδλj + c2δλj

)
k2 =

(
(1 + c)(qλj − c) + δλjc

2
)

=
(
qλj − c+ cqλj − c2 + δλjc

2
)

Plugging in expressions for q = αδ + (1− α)γ and c = α(1− β), in dr(u22) we get:

dr(u22) = 2 ·
( (

1 + c− αδλj
)
(k1 − k2)− λj ·

(
(1− α)γk1 + αβδk2

) )
(49)
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Next, considering k1 − k2, we have:

k1 − k2 = cλjq − c− c2 + cδλj + c2δλj − qλj + c− cqλj + c2 − c2δλj
= (cδ − q)λj
= −(αβδ + γ(1− α))λj (50)

Next, considering γ(1− α)k1 + αβδ k2, we have:

γ(1− α)k1 + αβδ k2

= γ(1− α)(cλjq − c− c2 + c2δλj + cδλj)

+ αβδ(cλjq − c− c2 + c2δλj + qλj)

= (αβδ + (1− α)γ)(cλjq − c− c2 + c2δλj) + λjδ(cγ(1− α) + αβq)

Consider cγ(1− α) + αβq:

cγ(1− α) + αβq = α(1− β)γ(1− α) + αβ(αδ + (1− α)γ)

= α(1− β)γ(1− α) + αβγ(1− α) + α2βδ

= αγ(1− α) + α2βδ

= α(αβδ + (1− α)γ)

Re-substituting this in the expression for γ(1− α)k1 + αβδk2, we have:

γ(1− α)k1 + αβδ k2 = (αβδ + (1− α)γ)(cλjq − c− c2 + c2δλj) + λjδ(cγ(1− α) + αβq)

= (αβδ + (1− α)γ)(cλjq − c− c2 + c2δλj) + αλjδ(αβδ + (1− α)γ)

= (αβδ + (1− α)γ)(cλjq − c− c2 + c2δλj + αλjδ) (51)

Substituting equations 50, 51 into equation 49, we have:

dr(u22) = −2λj(αβδ + γ(1− α)) · (1 + c− αδλj + cλjq − c− c2 + c2δλj + αδλj)

= −2λj(αβδ + γ(1− α)) · (1− c2 + cλj(q + cδ)) (52)

We note that the denominator of u12 (in equation 48) is just the negative of the denominator of u22
as represented in equation 52.

Numerator of u22: We begin by writing out the numerator of u22 (from equation 47):

nr(u22) = λj ·
(

2cqδ
(
1 + c− qλj

)
− (q2 + c2δ2)

(
1 + c(1− δλj)

))
= λj ·

(
2cqδ

(
1 + c− αδλj − γ(1− α)λj

)
− (q2 + c2δ2)

(
1 + c− αδλj + αβδλj

))
= λj ·

(
− (1 + c− αδλj)(q − cδ)2 − λj ·

(
2cqδγ(1− α) + (q2 + (cδ)2)αβδ

))
(53)

We now consider 2cqδγ(1− α) + (q2 + (cδ)2)αβδ:

2cqδγ(1− α) + (q2 + (cδ)2)αβδ
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= 2cqδ · (γ(1− α) + αβδ) + (q2 + (cδ)2 − 2cqδ)αβδ

= 2cqδ(q − cδ) + (q − cδ)2αβδ (54)

Substituting equation 54 into equation 53 and grouping common terms, we obtain:

nr(u22) = λj ·
(
− (1 + c− αδλj)(q − cδ)2 − λj ·

(
2cqδ(q − cδ) + (q − cδ)2αβδ

))
= λj ·

(
− (1 + c− cδλj)(q − cδ)2 − λj ·

(
2cqδ(q − cδ)

))
= −λj ·

(
(1 + c− cδλj)(q − cδ)2 + 2cqδλj(q − cδ)

)
(55)

With this, we can write out the exact expression for u22:

u22 =

(
1 + c− cδλj

)
(q − cδ) + 2cqδλj

2 · (1− c2 + cλj · (q + cδ))
(56)

Numerator of u12: We begin by rewriting the numerator of u12 (from equation 48):

nr(u12) = λj ·
(

2qδ
(
(1 + c)(qλj − c) + δλjc

2
)
− (q2 + c2δ2)

(
λjq − (1 + c)(1− δλj)

))
(57)

We split the simplification into two parts: one depending on (1 + c) and the other part representing
terms that don’t contain (1 + c). In particular, we consider the terms that do not carry a coefficient
of (1 + c):

2qδ2λjc
2 − (q2 + c2δ2) · (qλj)

= qλj · (2δ2c2 − q2 − δ2c2)
= −qλj · (q2 − (cδ)2) (58)

Next, we consider the other term containing the (1 + c) part:

(1 + c) ·
(

2qδ · (qλj − c) + (q2 + (cδ)2) · (1− δλj)
)

= (1 + c) ·
(

2q2δλj − 2qδc+ q2 + (cδ)2 − q2δλj − c2δ3λj
)

= (1 + c) ·
(

(q − cδ)2 + δλj (q2 − (cδ)2)

)
(59)

Substituting equations 58, 59 into equation 57, we get:

nr(u12) = λj ·
(
(1 + c)δλj(q

2 − (cδ)2) + (1 + c)(q − cδ)2 − qλj(q2 − (cδ)2)
)

= λj ·
(
(1 + c)(q − cδ)2 + λj

(
(1 + c)δ − q

)
· (q2 − (cδ)2)

)
= λj ·

(
(1 + c)(q − cδ)2 + λj

(
δ − (q − cδ)

)
· (q2 − (cδ)2)

)
= λj ·

(
(1 + c)(q − cδ)2 + δλj · (q2 − (cδ)2)− λj(q + cδ)(q − cδ)2

)
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= λj ·
(
(1 + c− λj · (q + cδ)) · (q − cδ)2 + δλj · (q2 − (cδ)2)

)
(60)

With which, we can now write out the expression for u12:

u12 =

(
1 + c− λj(q + cδ)

)
(q − cδ) + δλj(q + cδ)

2 · (1− c2 + cλj · (q + cδ))
(61)

Obtaining u11: We revisit equation 44 and substitute u22 from equation 56:

u11 = u22(1− 2δλj) + δ2λj

=

(
1 + c− cδλj

)
(q − cδ) + 2cqδλj

2 · (1− c2 + cλj · (q + cδ))
· (1− 2δλj) + δ2λj

From which, we consider the numerator of u11 and begin simplifying it:

nr(u11) = (1 + c− cδλj)(q − cδ)(1− 2δλj) + 2cqδλj(1− 2δλj) + 2δ2λj(1− c2 + cλj(q + cδ))

= (1 + c− cδλj)(q − cδ)(1− 2δλj) + 2δ2λj + 2cδλj(q − cδ)(1− δλj)
= (1 + c+ cδλj)(q − cδ)(1− δλj) + 2δ2λj − δλj(1 + c− cδλj)(q − cδ)
= (1 + c+ cδλj)(q − cδ)− 2δλj(q − cδ)(1 + c) + 2δ2λj

= (1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj (62)

This implies,

u11 =
(1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj

2 · (1− c2 + cλj · (q + cδ))
(63)

Obtaining a bound on U22

For obtaining a PSD upper bound on U22, we will write out a sharp bound of u22 in each eigen
space:

u22 =

(
1 + c− cλjδ

)
(q − cδ) + 2cqδλj

2 · (1− c2 + cλj · (q + cδ))

=

(
1− c2 + cλj(q + cδ) + qλj + (1 + c)(c− λj(q + cδ))

)
(q − cδ) + 2cqδλj

2 · (1− c2 + cλj · (q + cδ))

=
q − cδ

2
+

qλj(q − cδ)
2 · (1− c2 + cλj · (q + cδ))

+
(1 + c)(c− λj(q + cδ))(q − cδ) + 2cqδλj

2 · (1− c2 + cλj · (q + cδ))

≤ q − cδ
2

+
qλj(q − cδ)

2 · (cλj · (q + cδ))
+

(1 + c)(c− λj(q + cδ))(q − cδ) + 2cqδλj
2 · (1− c2 + cλj · (q + cδ))

≤ q − cδ
2
· 1 + c

c
+

(1 + c)(c− λj(q + cδ))(q − cδ) + 2cqδλj
2 · (1− c2 + cλj · (q + cδ))

Let us consider bounding the numerator of the 2nd term:

(1 + c)(c− λj(q + cδ))(q − cδ) + 2cqδλj

= c(1 + c)(q − cδ)− (1 + c)λj(q + cδ)(q − cδ) + 2cqδλj
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= c(1 + c)(q − cδ)− (1 + c)λj(q − cδ)2 − 2cδλj(1 + c)(q − cδ) + 2cqδλj

= c(1 + c)(q − cδ)− (1 + c)λj(q − cδ)2 − 2cδλj(1 + c)(q − cδ) + 2c(q − cδ)δλj + 2c2δ2λj

= c(1 + c)(q − cδ) + 2c2δ2λj − (1 + c)λj(q − cδ)2 − 2c2δλj(q − cδ)
≤ c(1 + c)(q − cδ) + 2c2δ2λj

Implying,

u22 ≤
q − cδ

2
· 1 + c

c
+
c(1 + c)(q − cδ) + 2c2δ2λj
2 · (1− c2 + cλj · (q + cδ))

≤ q − cδ
2
· 1 + c

c
+

c(1 + c)(q − cδ)
2 · (1− c2 + cλj · (q + cδ))

+
c2δ2λj

(1− c2 + cλj · (q + cδ))

We will first upper bound the third term:

c2δ2λj
(1− c2 + cλj · (q + cδ))

≤ cδ2

(q + cδ)

=
cδ2

(q − cδ + 2cδ)

≤ cδ2

2cδ
=
δ

2

This implies,

u22 ≤
q − cδ

2
· 1 + c

c
+
δ

2
+

c(1 + c)(q − cδ)
2 · (1− c2 + cλj · (q + cδ))

=
q − cδ

2
· 1 + c

c
+
δ

2
+

c2(q − cδ)
1− c2 + cλj · (q + cδ)

+
c(1− c)(q − cδ)

2 · (1− c2 + cλj · (q + cδ))

≤ q − cδ
2
· 1 + c

c
+
δ

2
+

c2(q − cδ)
1− c2 + cλj · (q + cδ)

+
c(1− c)(q − cδ)

2 · (1− c2)

=
q − cδ

2
· 1 + c

c
+
δ

2
+

c2(q − cδ)
1− c2 + cλj · (q + cδ)

+
c(q − cδ)
2 · (1 + c)

=
q − cδ

2
·
(

1 + c

c
+

c

1 + c

)
+
δ

2
+

c2(q − cδ)
1− c2 + cλj · (q + cδ)

≤ q − cδ
2
· 3

c
+
δ

2
+

c2(q − cδ)
1− c2 + cλj · (q + cδ)

≤ q − cδ
2
· 3

c
+
δ

2
+

c(q − cδ)
λj · (q + cδ)

=
q − cδ

2
· 3

c
+
δ

2
+

c(q − cδ)
λj · (q − cδ + 2cδ)

≤ q − cδ
2
· 3

c
+
δ

2
+
q − cδ
2λjδ

≤ 4

c
· q − cδ

2δλj
+
δ

2
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Let us consider bounding q−cδ
2δλj

:

q − cδ
2δλj

=
αβδ + γ(1− α)

2δλj

Substituting the values for α, β, γ, δ applying 1
1+γµ ≤ 1, c3 =

c2
√

2c1−c21
c1

and, c22 = c4
2−c1 with

0 < c4 < 1/6 we get:

q − cδ
2δλj

≤
(
c3c2

√
2c1 − c21
2

√
κ̃

κ
+
c22(2c1 − c21)

2c1

)
· 1

λj κ̃

≤
(
c3c2

√
2c1 − c21
2

+
c22(2c1 − c21)

2c1

)
· 1

λj κ̃

= c22(2− c1) ·
1

κ̃λj
= c4 ·

1

λj κ̃

Which implies the bound on u22:

u22 ≤
4

c
· c4
λj κ̃

+
δ

2

Now, consider the following bound on 1/c:

1

c
=

1

α(1− β)

= 1 +
(1 + c3)c2

√
2c1 − c21√

κκ̃− c2c3
√

2c1 − c21

≤ 1 +
(1 + c3)c2

√
2c1 − c21

1− c2c3
√

2c1 − c21

= 1 +

√
c1c4 + c4
1− c4

=
1 +
√
c1c4

1− c4
(64)

Substituting values of c1, c4 we have: 1/c ≤ 1.5. This implies the following bound on u22:

u22 ≤ 6 · c4
λj κ̃

+
δ

2
(65)

Alternatively, this implies that U22 can be upper bounded in a psd sense as:

U22 �
6c4
κ̃
·H−1 +

δ

2
· I

E.3.2. UNDERSTANDING FOURTH MOMENT EFFECTS

We wish to obtain a bound on:

E
[
V̂2 ⊗ V̂2

]
U = E

[
V̂2UV̂>2

]
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=

[
δ2 δ · q
δ · q q2

]
⊗MU22

We need to understandMU22.

MU22 �
6c4
κ̃
· MH−1 +

δ

2
· MI

� (6c4 +
δR2

2
) ·H

= s ·H (66)

where, s def
= (6c4 + δR2

2 ) = 23/30 ≤ 4
5 . This implies (along with the fact that for any PSD matrices

A,B,C, if A � B, then, A⊗C � B⊗C)),

E
[
V̂2 ⊗ V̂2

]
U � s ·

[
δ2 δ · q
δ · q q2

]
⊗H � 4

5
·
[
δ2 δ · q
δ · q q2

]
⊗H. (67)

This will lead us to obtaining a PSD upper bound on Φ∞, i.e., the proof of lemma 6
Proof [Proof of lemma 6] We begin by recounting the expression for the steady state covariance
operator Φ∞ and applying results derived from previous subsections:

Φ∞ = (I − B)−1Σ̂

� σ2U + σ2(I − B)−1 · E
[
V̂2 ⊗ V̂2

]
U (from equation 42)

� σ2U +
4

5
σ2(I − B)−1

([
δ2 δ · q
δ · q q2

]
⊗H

)
(from equation 67)

= σ2U +
4

5
(I − B)−1Σ̂

= σ2U +
4

5
·Φ∞

=⇒ Φ∞ � 5σ2U. (68)

Now, given the upper bound provided by equation 68, we can now obtain a (mildly) looser upper
PSD bound on U that is more interpretable, and this is by providing an upper bound on U11 and
U22 by considering their magnitude along each eigen direction of H. In particular, let us consider
the max of u11 and u22 along the jth eigen direction (as implied by equations 63, 56):

max(u11, u22) =
(1 + c− cδλj)(q − cδ) + 2δ2λj

2 · (1− c2 + cλj · (q + cδ))

=
(1 + c− cδλj)(q − cδ) + 2δ2λj

2 · (1− c2 + cλj · (q + cδ))

=
(1 + c− cδλj)(q − cδ) + 2cqλj − 2cqλj + 2δ2λj

2 · (1− c2 + cλj · (q + cδ))

= u22 +
−2cqλj + 2δ2λj

2 · (1− c2 + cλj · (q + cδ))

≤ 6c4
κ̃λj

+
δ

2
+

δ2λj − cqλj
(1− c2 + cλj · (q + cδ))

(using equation 65)
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This implies, we can now consider upper bounding the term in the equation above and this will yield
us the result:

δ2λj − cqλj
(1− c2 + cλj · (q + cδ))

≤ δ2λj − cqλj
cλj · (q + cδ)

≤ δ2λj − cqλj
2c2δλj

=
δ2λj − c(αδ + γ(1− α))λj

2c2δλj

≤ δ2λj − cαδλj
2c2δλj

=
1− cα
c2

· δ
2

=
(1− c
c2

+
1− α
c

)
· δ

2

=
((1 + c3)(1− α)

c2
+

1− α
c

)
· δ

2

=
1− α
c

((1 + c3)

c
+ 1
)
· δ

2

≤ 3
1− α
c
· 1

c
· δ

2

≤ 3
1− α
c
·

1 +
√
c1c4

1− c4
· δ

2

= 3 · c1c3√
κκ̃− c1c23

·
1 +
√
c1c4

1− c4
· δ

2

≤ 3 · c1c3
1− c1c23

·
1 +
√
c1c4

1− c4
· δ

2

≤ (2/3)
δ

2

Plugging this into the bound for maxu11, u22, we get:

max(u11, u22) ≤
6c4
κ̃λj

+ (5/3)
δ

2
= (2/3)

1

κ̃λj
+ (5/3)

δ

2

This implies the bound written out in the lemma, that is,

U �
[
1 0
0 1

]
⊗
(

2

3

(1

κ̃
H−1

)
+

5

6
·
(
δ I
))

Lemma 17〈[
H 0
0 0

]
,

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
· E [θl ⊗ θl]

〉
≤〈[

H 0
0 0

]
,

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
· E [θ∞ ⊗ θ∞]

〉
≤ 5σ2d.

Where, d is the dimension of the problem.
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Before proving Lemma 17, we note that the sequence of expected covariances of the centered
parameters E [θl ⊗ θl] when initialized at the zero covariance (as in the case of variance analysis)
only grows (in a psd sense) as a function of time and settles at the steady state covariance.

Lemma 18 Let θ0 = 0. Then, by running the stochastic process defined using the recursion as in
equation 38, the covariance of the resulting process is monotonically increasing until reaching the
stationary covariance E [θ∞ ⊗ θ∞].

Proof As long as the process does not diverge (as defined by spectral norm bounds of the expected
update B = E

[
Â⊗ Â

]
being less than 1), the first-order Markovian process converges geometri-

cally to its unique stationary distribution θ∞ ⊗ θ∞. In particular,

E [θl ⊗ θl] = BE [θl−1 ⊗ θl−1] + Σ̂

= (

l−1∑
k=0

Bk)Σ̂

Thus implying the fact that

E [θl ⊗ θl] = E [θl−1 ⊗ θl−1] + Bl−1Σ̂

Owing to the PSD’ness of the operators in the equation above, the lemma concludes with the claim
that E [θl ⊗ θl] � E [θl−1 ⊗ θl−1]

Given these lemmas, we are now in a position to prove lemma 17.
Proof [Proof of Lemma 17]

〈[
H 0
0 0

]
,

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
· E [θl ⊗ θl]

〉
=

〈[
H 0
0 0

]
,

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − ALA>R)−1(I − ALA>R) · E [θl ⊗ θl]

〉
=

〈[
H 0
0 0

]
,

(
(I − AL)−1(I − A>R)−1

)
(I − ALA>R) · E [θl ⊗ θl]

〉
(using Lemma 11)

=

〈(
(I − A>L)−1(I − AR)−1

)[
H 0
0 0

]
, (I − ALA>R) · E [θl ⊗ θl]

〉
=

〈
(I−A>)−1

[
H 0
0 0

]
(I−A)−1, (I − ALA>R) · E [θl ⊗ θl]

〉
=

〈
(I−A>)−1

[
H 0
0 0

]
(I−A)−1, (I − D) · E [θl ⊗ θl]

〉
=

1

(q − cδ)2

〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − D) · E [θl ⊗ θl]

〉
(using lemma 8)

=
1

(q − cδ)2

〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − D)(I − B)−1(I − Bl)Σ̂

〉
=

1

(q − cδ)2

〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − B +R)(I − B)−1(I − Bl)Σ̂

〉
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=
1

(q − cδ)2

〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, Σ̂− BlΣ̂ +R(I − B)−1Σ̂−R(I − B)−1BlΣ̂

〉
≤ 1

(q − cδ)2

〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, Σ̂ + σ2R · (5U)

〉
(69)

So, we need to understandRU:

RU = E
([

0 δ · (H− aa>)
0 q · (H− aa>)

]
U

[
0 0

δ · (H− aa>) q · (H− aa>)

])
=

[
δ2 δ · q
δ · q q2

]
⊗ E

[
(H− aa>)U22(H− aa>)

]
=

[
δ2 δ · q
δ · q q2

]
⊗
(
M−HLHR

)
U22

�
[
δ2 δ · q
δ · q q2

]
⊗MU22

� 4

5
·
[
δ2 δ · q
δ · q q2

]
⊗H (from equation 66).

Then,〈[
H 0
0 0

]
,

(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
· θl ⊗ θl

〉
≤ 1

(q − cδ)2

〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, Σ̂ + σ2R · (5U)

〉
(from equation 69)

≤ 5σ2

(q − cδ)2
·
〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
,

[
δ2 δ · q
δ · q q2

]
⊗H

〉
=

5

(q − cδ)2
· d σ2 · (q − cδ)2

= 5σ2d. (70)

Lemma 19 ∣∣∣∣ 〈[H 0
0 0

]
,

(
(I − AL)−2AL + (I − A>R)−2A>R

)
Φ∞

〉 ∣∣∣∣ ≤ C · σ2d√κκ̃
Where, C is a universal constant.

Proof We begin by noting the following while considering the left side of the above expression:〈[
H 0
0 0

]
,

(
(I − A>R)−2A>R + (I − AL)−2AL

)
Φ∞

〉
=

〈[
H 0
0 0

]
A(I−A)−2 + (I−A>)−2A>

[
H 0
0 0

]
,Φ∞

〉
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The inner product above is a sum of two terms, so let us consider the first of the terms:〈[
H 0
0 0

]
A(I−A)−2,Φ∞

〉
= Tr

(
(I−A>)−2A>

[
H1/2

0

] [
H1/2 0

]
Φ∞

)
= Tr

(([
H1/2

0

]>
Φ∞(I−A>)−2A>

[
H1/2

0

]))

=

d∑
j=1

Tr
(([

λ
1/2
j

0

]>
(Φ∞)j(I−A>j )−2A>j

[
λ
1/2
j

0

]))

=

d∑
j=1

Tr
(([

λ
1/2
j

0

]>
(Φ1/2
∞ )j

)
·
(

(Φ1/2
∞ )>j (I−A>j )−2A>j

[
λ
1/2
j

0

]))
,

where (Φ∞)j is the 2 × 2 block of Φ∞ corresponding to the jth eigensubspace of H, (Φ
1/2
∞ )j

denotes the 2× 2d submatrix (i.e., 2 rows) of Φ
1/2
∞ corresponding to the jth eigensubspace and Aj

denotes the jth diagonal block of A. Note that (Φ
1/2
∞ )j(Φ

1/2
∞ )>j = (Φ∞)j . It is very easy to observe

that the second term in the dot product can be written in a similar manner, i.e.:〈
(I−A>)−2A>

[
H 0
0 0

]
,Φ∞

〉

=

d∑
j=1

Tr
((

(Φ1/2
∞ )>j

[
λ
1/2
j

0

])
·
([

λ
1/2
j

0

]>
Aj(I−Aj)

−2(Φ1/2
∞ )j

))
So, essentially, the expression in the left side of the lemma can be upper bounded by using cauchy-
shwartz inequality:

Tr
(([

λ
1/2
j

0

]>
(Φ1/2
∞ )j

)
·
(

(Φ1/2
∞ )>j (I−A>j )−2A>j

[
λ
1/2
j

0

]))

+ Tr
((

(Φ1/2
∞ )>j

[
λ
1/2
j

0

])
·
([

λ
1/2
j

0

]>
Aj(I−Aj)

−2(Φ1/2
∞ )j

))

≤ 2

∥∥∥∥∥
[
λ
1/2
j

0

]∥∥∥∥∥
(Φ∞)j

·

∥∥∥∥∥(I−A>j )−2A>j

[
λ
1/2
j

0

]∥∥∥∥∥
(Φ∞)j

(71)

The advantage with the above expression is that we can now begin to employ psd upper bounds on
the covariance of the steady state distribution Φ∞ and provide upper bounds on the expression on
the right hand side. In particular, we employ the following bound provided by the taylor expansion
that gives us an upper bound on Φ∞:

Φ∞
def
=

[
Û11 Û12

Û>12 Û22

]
� 5σ2U = 5σ2

[
U11 U12

U>12 U22

]
(using equation 68)
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This implies in particular that (Φ∞)j � 5σ2Uj for every j ∈ [d] and hence, for any vector
‖a‖(Φ∞)j

≤
√

5σ2 ‖a‖Uj
. The important property of the matrix U that serves as a PSD upper

bound is that it is diagonalizable using the basis of H, thus allowing us to bound the computations
in each of the eigen directions of H.∥∥∥∥∥(I−A>j )−2A>j

[
λ
1/2
j

0

]∥∥∥∥∥
(Φ∞)j

=

√√√√[λ1/2j 0
]

Aj(I−Aj)−2(Φ∞)j(I−A>j )−2A>j

[
λ
1/2
j

0

]

≤

√√√√5σ2
[
λ
1/2
j 0

]
Aj(I−Aj)−2Uj(I−A>j )−2A>j

[
λ
1/2
j

0

]

=
√

5σ2

∥∥∥∥∥(I−A>j )−2A>j

[
λ
1/2
j

0

]∥∥∥∥∥
Uj

(72)

So, let us consider
[
λ
1/2
j 0

]
Aj(I−Aj)

−2 and write out the following series of equations:[
λ
1/2
j 0

]
Aj =

[
0
√
λj(1− δλj)

]
I−Aj =

[
1 −(1− δλj)
c −(c− qλj)

]
det(I−Aj) = (q − cδ)λj

(I−Aj)
−1 =

1

(q − cδ)λj

[
−(c− qλj) 1− δλj
−c 1

]
=⇒

[
λ
1/2
j 0

]
Aj(I−Aj)

−1 =

√
λj(1− δλj)
(q − cδ)λj

[
−c 1

]
=⇒

[
λ
1/2
j 0

]
Aj(I−Aj)

−2 =

√
λj(1− δλj)

((q − cδ)λj)2
[
−c(1− c+ qλj) 1− c+ cδλj

]
=

√
λj(1− δλj)

((q − cδ)λj)2
·
(

(1− c+ cδλj)
[
−c 1

]
− cλj(q − cδ)

[
1 0

])
This implies,∥∥∥∥∥(I−A>j )−2A>j

[
λ
1/2
j

0

]∥∥∥∥∥
Uj

≤
√
λj(1− δλj)

((q − cδ)λj)2
· (1− c+ cδλj)

∥∥∥∥[−c1
]∥∥∥∥

Uj

+
c
√
λj(1− δλj)

((q − cδ)λj)

∥∥∥∥[10
]∥∥∥∥

Uj

(73)

Next, let us consider
∥∥∥∥[−c1

]∥∥∥∥2
Uj

:

∥∥∥∥[−c1
]∥∥∥∥2

Uj

= c2u11 + u22 − 2c · u12
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Note that u11, u12, u22 share the same denominator, so let us evaluate the numerator nr(c2u11 −
2cu12 + u22). For this, we have, from equations 63, 61, 56 respectively: Furthermore,

nr(u11) = (1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj

nr(u12) = (1 + c− λj(q + cδ))(q − cδ) + δλj(q + cδ)

nr(u22) = (1 + c− cδλj)(q − cδ) + 2cqδλj

Combining these, we have:

c2nr(u11)− 2c · nr(u12) + nr(u22)

=
(
(1 + c− cδλj)(1− c)2 + 2cqλj

)
(q − cδ)− 2c2δλj(q − cδ)

=
(
(1 + c− cδλj)(1− c)2(q − cδ)

)
+ 2cλj(q − cδ)2

Implying, ∥∥∥∥[−c1
]∥∥∥∥2

Uj

=
(1 + c− cδλj)(1− c)2(q − cδ) + 2cλj(q − cδ)2

1− c2 + cλj(q + cδ)

In a very similar manner,∥∥∥∥[10
]∥∥∥∥2

Uj

= u11

=
(1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj

1− c2 + cλj(q + cδ)

This implies, plugging into equation 73∥∥∥∥∥(I−A>j )−2A>j

[
λ
1/2
j

0

]∥∥∥∥∥
Uj

≤
√
λj(1− δλj)

((q − cδ)λj)2
· (1− c+ cδλj)

√
(1 + c− cδλj)(1− c)2(q − cδ) + 2cλj(q − cδ)2

1− c2 + cλj(q + cδ)

+
c
√
λj(1− δλj)

((q − cδ)λj)

√
(1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj

1− c2 + cλj(q + cδ)
(74)

Finally, we need, ∥∥∥∥[H1/2

0

]∥∥∥∥
Φ∞

≤
√

5σ2
∥∥∥∥[H1/2

0

]∥∥∥∥
U

Again, this can be analyzed in each of the eigen directions (λj ,uj) of H to yield:∥∥∥∥∥
[
λ
1/2
j

0

]∥∥∥∥∥
Uj

=
√
λju11
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=

√
λj ·

(1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj
1− c2 + cλj(q + cδ)

(75)

Now, we require to bound the product of equation 74 and 75:∥∥∥∥∥(I−A>j )−2A>j

[
λ
1/2
j

0

]∥∥∥∥∥
Uj

·

∥∥∥∥∥
[
λ
1/2
j

0

]∥∥∥∥∥
Uj

= T1 + T2 (76)

Where,

T1 =
λj(1− δλj)

((q − cδ)λj)2
· (1− c+ cδλj)

(√
(1 + c− cδλj)(1− c)2(q − cδ) + 2cλj(q − cδ)2

1− c2 + cλj(q + cδ)

)

·
(√

(1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj
1− c2 + cλj(q + cδ)

)
And,

T2 =
c(1− δλj)
q − cδ

·
(

(1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj
1− c2 + cλj(q + cδ)

)
We begin by considering T1:

T1 =
λj(1− δλj)

((q − cδ)λj)2
· (1− c+ cδλj)

(√
(1 + c− cδλj)(1− c)2(q − cδ) + 2cλj(q − cδ)2

1− c2 + cλj(q + cδ)

)

·
(√

(1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj
1− c2 + cλj(q + cδ)

)
=

(
λj(1− δλj)

((q − cδ)λj)2

)
·
(

1− c+ cδλj
1− c2 + cλj(q + cδ)

)
·(√

(1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj ·
√

(1 + c− cδλj)(1− c)2(q − cδ) + 2cλj(q − cδ)2
)

≤
(

λj
((q − cδ)λj)2

)
·
(

1− c+ cδλj
1− c2 + cλj(q + cδ)

)
·(√

(1 + c− cδλj)(q − cδ) + 2δ2λj ·
√

(1 + c− cδλj)(1− c)2(q − cδ) + 2cλj(q − cδ)2
)

(77)

We will consider the four terms within the square root and bound them separately:

T 11
1 =

(1 + c− cδλj)(1− c)
(q − cδ)λj

≤ 2(1− c)
λj · (q − cδ)

≤ 2(1 + c3)

λjγ

≤ 2(1 + c3)

c2
√

2c1 − c21

√
κκ̃
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Next,

T 21
1 =

√
2δ2λj

√
(1 + c− cδλj)(1− c)2(q − cδ)

(q − cδ)2λj

≤ 2δ(1− c)√
(q − cδ)3λj

=
2δ√

(q − cδ)λj
1− c
q − cδ

=
2(1 + c3)δ

γ
· 1√

(q − cδ)λj

≤ 2(1 + c3)δ

γ
· 1√

γ(1− α)µ

≤ 2
√

2(1 + c3)

c22(2− c1)
· κ̃

Next,

T 12
1 =

√
(1 + c− cδλj)(q − cδ)3 · 2cλj

(q − cδ)2λj

≤ 2
√

2

c2
√

2c1 − c21
·
√
κκ̃

Finally,

T 22
1 =

√
2δ2λj · 2 cλj(q − cδ)2

(q − cδ)2λj

≤ 2δ

q − cδ
≤ 4

c22(2− c1)
· κ̃

Implying,

T1 ≤
(

1− c+ cδλj
1− c2 + cλj(q + cδ)

)
· (T 11

1 + T 12
1 + T 21

1 + T 22
1 )

≤
(

1− c+ cδλj
1− c2 + cλj(q + cδ)

)
· 2 · (1 +

√
2 + c3)

( √
κκ̃

c2
√

2c1 − c21
+
√

2
κ̃

c22(2− c1)

)
≤
(

1

1 + c
+

1

2c

)
· 2 · (1 +

√
2 + c3)

( √
κκ̃

c2
√

2c1 − c21
+
√

2
κ̃

c22(2− c1)

)
=

(
1

1 + c
+

1

2c

)
· 2 · (1 +

√
2 + c3)

( √
κκ̃

√
c1c4

+

√
2κ̃

c4

)
≤ 3

c
· (1 +

√
2 + c3)

( √
κκ̃

√
c1c4

+

√
2κ̃

c4

)
Recall the bound on 1/c from equation 64:

1

c
≤

1 +
√
c1c4

1− c4
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Implying,

T1 ≤
3

c
· (1 +

√
2 + c3)

( √
κκ̃

√
c1c4

+

√
2κ̃

c4

)
≤ 3

c
· (1 +

√
2 + c3)

(
1

√
c1c4

+

√
2

c4

)√
κκ̃

≤ 3(1 +
√

2 + c3)

(
1

√
c1c4

+

√
2

c4

)
·

1 +
√
c1c4

1− c4

√
κκ̃

≤ 3(1 +
√

2 +
√

(c4/c1))

(
1

√
c1c4

+

√
2

c4

)
·

1 +
√
c1c4

1− c4

√
κκ̃ (78)

Next, we consider T2:

T2 =
c(1− δλj)
q − cδ

·
(

(1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj
1− c2 + cλj(q + cδ)

)
≤
(

(1 + c− cδλj)(q − cδ)− 2δλj(q − cδ) + 2δ2λj
(q − cδ) · (1− c2 + cλj(q + cδ))

)
≤
(

(1 + c− cδλj)(q − cδ) + 2δ2λj
(q − cδ) · (1− c2 + cλj(q + cδ))

)
We split T2 into two parts:

T 1
2 =

(1 + c− cδλj)
(1− c2 + cλj(q + cδ))

≤ 1

1− c
=

1

1− α+ αβ

=
1

(1 + c3)(1− α)

≤ 2
√
κκ̃

(1 + c3)c2
√

2c1 − c21

≤ 2
√
κκ̃

(1 +
√
c4/c1)

√
c1c4

=
2
√
κκ̃

√
c1c4 + c4

Then,

T 2
2 =

2δ2λj
(q − cδ)(1− c2 + cλj(q + cδ))

≤ δ2λj
γ(1− α)c2λjδ

=
δ

c2γ(1− α)

=
2κ̃

c4
· 1

c2
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Implying,

T2 ≤ 2 ·
( √

κκ̃

c4 +
√
c1c4

+
κ̃

c2c4

)
≤ 2 ·

(
1

√
c1c4 + c4

+
(1 +

√
c1c4

1− c4
)2 · 1

c4

)√
κκ̃

≤ 2

c4
·
(

1 +
(1 +

√
c1c4

1− c4
)2)√

κκ̃ (79)

We add T1 and T2 and revisit equation 76:∥∥∥∥∥(I−A>j )−2A>j

[
λ
1/2
j

0

]∥∥∥∥∥
Uj

·

∥∥∥∥∥
[
λ
1/2
j

0

]∥∥∥∥∥
Uj

= T1 + T2

≤
(

2

c4
·
(

1 +
(1 +

√
c1c4

1− c4
)2)

+ 3 ·
1 +
√
c1c4

1− c4
·

1 +
√

2 +
√
c4/c1

c4
· (
√

2 +
√
c4/c1)

)√
κκ̃

(80)

Then, we revisit equation 71:([
H1/2

0

]>
Φ1/2
∞

)
·
(

Φ1/2
∞ (I−A>)−2A>

[
H1/2

0

])
+

(
Φ1/2
∞

[
H1/2

0

])
·
([

H1/2

0

]>
A(I−A)−2Φ1/2

∞

)
≤ 2

d∑
j=1

∥∥∥∥∥
[
λ
1/2
j

0

]∥∥∥∥∥
(Φ∞)j

·

∥∥∥∥∥(I−A>j )−2A>j

[
λ
1/2
j

0

]∥∥∥∥∥
(Φ∞)j

≤ 10σ2
d∑
j=1

∥∥∥∥∥
[
λ
1/2
j

0

]∥∥∥∥∥
Uj

·

∥∥∥∥∥(I−A>j )−2A>j

[
λ
1/2
j

0

]∥∥∥∥∥
Uj

(using equation 68)

≤ 10σ2 · d ·
(

2

c4
·
(

1 +
(1 +

√
c1c4

1− c4
)2)

+ 3 ·
1 +
√
c1c4

1− c4
·

1 +
√

2 +
√
c4/c1

c4
· (
√

2 +
√
c4/c1)

)√
κκ̃

≤ Cσ2d
√
κκ̃ (81)

Where the equation in the penultimate line is obtained by summing over all eigen directions the
bound implied by equation 80, and C is a universal constant.

Lemma 20〈[
H 0
0 0

]
,E
[
θ̄variance
t,n ⊗ θ̄variance

t,n

]〉
≤ 5

σ2d

n− t
+ C · σ2d

(n− t)2
·
√
κκ̃

+ C · σ
2d

n− t
(κκ̃)11/4 exp

(
− (n− t− 1)c2

√
2c1 − c21

4
√
κκ̃

)
+ C · σ2d

(n− t)2
· exp

(
−(n+ 1)

c1c
2
3√
κκ̃

)
· (κκ̃)7/2κ̃+ C · σ2d · (κκ̃)7/4 exp

(
−(n+ 1) · c2c3

√
2c1 − c21√
κκ̃

)
where, C is a universal constant.
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Proof We begin by recounting the expression for the covariance of the variance error of the tail-
averaged iterate θ̄variance

t,n from equation 24:

E
[
θ̄variance
t,n ⊗ θ̄variance

t,n

]
=

1

n− t
(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1Σ̂︸ ︷︷ ︸

E1
def
=

− 1

(n− t)2
(
(I − AL)−2AL + (I − A>R)−2A>R

)
(I − B)−1Σ̂︸ ︷︷ ︸

E2
def
=

+
1

(n− t)2
(
(I − AL)−2An+1−t

L + (I − A>R)−2(A>R)n+1−t)(I − B)−1Σ̂︸ ︷︷ ︸
E3

def
=

− 1

(n− t)2
(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−2(Bt+1 − Bn+1)Σ̂︸ ︷︷ ︸

E4
def
=

+
1

(n− t)2
n∑

j=t+1

(
(I − AL)−1An+1−j

L + (I − A>R)−1(A>R)n+1−j)(I − B)−1BjΣ̂︸ ︷︷ ︸
E5

def
=

The goal is to bound
〈[

H 0
0 0

]
, Ei
〉

, for i = 1, .., 5.

For the case of E1, combining the fact that E [θ∞ ⊗ θ∞] = (I −B)−1Σ̂ and lemma 17, we get:〈[
H 0
0 0

]
, E1
〉

=
1

n− t

〈[
H 0
0 0

]
,
(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−1Σ̂

〉
=

1

n− t

〈[
H 0
0 0

]
,
(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
E [θ∞ ⊗ θ∞]

〉
≤ 5

σ2d

n− t
(82)

For the case of E2, we employ the result from lemma 19, and this gives us:

∣∣∣∣ 〈[H 0
0 0

]
, E2
〉 ∣∣∣∣ ≤ C · σ2d

√
κκ̃

(n− t)2
(83)

For i = 3, we have:〈[
H 0
0 0

]
, E3
〉

=
1

(n− t)2

〈[
H 0
0 0

]
,
(
(I − AL)−2An+1−t

L + (I − A>R)−2(A>R)n+1−t)(I − B)−1Σ̂

〉
=

1

(n− t)2

(〈
(I−A>)−2A>

[
H 0
0 0

]
,An−t(I − B)−1Σ̂

〉
+

〈[
H 0
0 0

]
A(I−A)−2, (I − B)−1Σ̂ (A>)n−t

〉)
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=
4d

(n− t)2
· ‖(I−A>)−2A>

[
H 0
0 0

]
‖ · ‖An−t(I − B)−1Σ̂‖ (84)

We will consider bounding ‖An−t(I − B)−1Σ̂‖:

‖An−t(I − B)−1Σ̂‖ ≤
∞∑
i=0

‖An−tBiΣ̂‖

≤ 12
√

2√
1− α2

κ(n− t)α(n−t−1)/2
(∑

i

(
1− c2c3

√
2c1 − c21√
κκ̃

)i)‖Σ̂‖
(using corollary 15)

=
12
√

2√
1− α2

κ(n− t)α(n−t−1)/2 ·
√
κκ̃

c2c3
√

2c1 − c21
· ‖Σ̂‖

=
12
√

2σ2√
1− α2

κ(n− t)α(n−t−1)/2 ·
√
κκ̃

c2c3
√

2c1 − c21
· (q + cδ)2‖H‖

≤ 108
√

2σ2√
1− α2

κ(n− t)α(n−t−1)/2 ·
√
κκ̃

c2c3
√

2c1 − c21
· δ2‖H‖ (85)

We also upper bound α as:

α = 1− c2
√

2c1 − c21√
κκ̃+ c2

√
2c1 − c21

≤ 1− c2
√

2c1 − c21
2
√
κκ̃

= e
−
c2

√
2c1−c21

2
√
κκ̃ (86)

Furthermore, for ‖(I − A>)−2A>
[
H 0
0 0

]
‖, we consider a bound in each eigendirection j and

accumulate the results subsequently:

‖(I−A>j )−2A>j

[
λj 0
0 0

]
‖

≤ 1

(q − cδ)2
· 1− δλj

λj
·
√

(1 + c2)(1− c)2 + c2λ2j (q
2 + δ2)

(using lemma 9)

≤
√

7

(q − cδ)2
· 1

λj

≤
√

7

(γ(1− α))2
· 1

λj

≤ 48(κκ̃)2

(c1c4)2
µ2

λj
=

48κ̃2

(δc4)2
1

λj

=⇒ ‖(I−A>)−2A>
[
H 0
0 0

]
‖ ≤ 48κ̃2

(δc4)2
· 1

µ
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Plugging this into equation 84, we obtain:〈[
H 0
0 0

]
, E3
〉
≤ 41472

σ2d

n− t
(κκ̃)11/4α(n−t−1)/2 1

c3c24(c1c3)
3/2

≤ C σ2d

n− t
(κκ̃)11/4α(n−t−1)/2

≤ C σ2d

n− t
(κκ̃)11/4 exp

−
(n−t−1)c2

√
2c1−c21

4
√
κκ̃ (87)

Next, let us consider E4:〈[
H 0
0 0

]
, E4
〉

= − 1

(n− t)2

〈[
H 0
0 0

]
,
(
I + (I − AL)−1AL + (I − A>R)−1A>R

)
(I − B)−2(Bt+1 − Bn+1)Σ̂

〉
= − 1

(n− t)2

〈
(I−A>)−1

[
H 0
0 0

]
(I−A)−1, (I − D)(I − B)−2(Bt+1 − Bn+1)Σ̂

〉
= − 1

(q − cδ)2(n− t)2

〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − B +R)(I − B)−2(Bt+1 − Bn+1)Σ̂

〉
(using lemma 8)

≤ 1

(q − cδ)2(n− t)2

〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − B +R)(I − B)−2Bn+1Σ̂

〉
≤ 1

(q − cδ)2(n− t)2
·
(〈(

⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − B)−1Bn+1Σ̂

〉
+

〈
R>
(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − B)−2Bn+1Σ̂

〉)
=

1

(q − cδ)2(n− t)2
·
(〈(

⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − B)−1Bn+1Σ̂

〉
+

〈
⊗2

[
δ
q

]
⊗
(
M−HLHR

)
(I− δH)H−1(I− δH), (I − B)−2Bn+1Σ̂

〉)
≤ 1

(q − cδ)2(n− t)2
·
(〈(

⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − B)−1Bn+1Σ̂

〉
+ κ̃ ·

〈
(Σ̂/σ2), (I − B)−2Bn+1Σ̂

〉)
(88)

To bound ‖⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

]
‖, we will consider a bound along each eigendirection and

accumulate the results:

‖ ⊗2

[
−(c− qλj)λ−1/2j

(1− δλj)λ−1/2j

]
‖ ≤ (c− qλj)2 + (1− δλj)2

λj
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≤ 2 ·
(1 + c2) + (q2 + δ2)λ2j

λj

≤ 2 ·
2 + 5δ2λ2j

λj
≤ 14

λj

=⇒ ‖⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

]
‖ ≤ 14

µ

Next, we bound ‖Bk(I − B)−1Σ̂‖ (as a consequence of lemma 13 with Q = Σ̂):

‖Bk(I − B)−1Σ̂‖ ≤ 1

λmin(G)
‖G>Bk(I − B)−1Σ̂‖

≤ 1

λmin(G)

∞∑
l=k

‖G>BkΣ̂‖

≤
√
κκ̃

c2c3
√

2c1 − c21
κ(G) exp(−kc2c3

√
2c1 − c21√
κκ̃

)‖Σ̂‖

≤ 4σ2κ√
1− α2

·
√
κκ̃

c1c23
exp(−k c1c

2
3√
κκ̃

) · 9δ2‖H‖2

≤ 36σ2κ√
1− α2

·
√
κκ̃

c1c23
exp(−k c1c

2
3√
κκ̃

) · δ

This implies, 〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − B)−1Bn+1Σ̂

〉
≤

504 · κ√
1− α2

·
√
κκ̃

c1c23
exp

(
−(n+ 1)

c1c
2
3√
κκ̃

)
· δ
µ
· σ2d

Furthermore,

κ̃

σ2

〈
Σ̂, (I − B)−2Bn+1Σ̂

〉
=

κ̃

σ2

〈
(I − B)−1B(n+1)/2Σ̂, (I − B)−1B(n+1)/2Σ̂

〉
≤ κ̃

σ2
‖(I − B)−1B(n+1)/2Σ̂‖2 · d

≤ 1296
σ2d

1− α2

(
κ

√
κκ̃

c1c23

)2

δ2κ̃ exp(−(n+ 1)
c1c

2
3√
κκ̃

)

This implies that,〈(
⊗2

[
−(cI− qH)H−1/2

(I− δH)H−1/2

])
, (I − B)−1Bn+1Σ̂

〉
+

κ̃

σ2

〈
Σ̂, (I − B)−2Bn+1Σ̂

〉
≤ 2592

σ2d

1− α2

(
κ

√
κκ̃

c1c23

)2

δ2κ̃ exp(−(n+ 1)
c1c

2
3√
κκ̃

)

≤ 2592 · σ2d ·
(√

κκ̃

c1c23

)3

exp(−(n+ 1)
c1c

2
3√
κκ̃

) · δ2κ2κ̃ (89)
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Finally, we also note the following:

1

(q − cδ)
≤ 1

(γ(1− α))
≤ µ

(1− α)2
≤ 4κ̃

δc4

Plugging equation 89 into equation 88, we get:〈[
H 0
0 0

]
, E4
〉

= 2592 · σ2d

(n− t)2(q − cδ)2
·
(√

κκ̃

c1c23

)3

exp(−(n+ 1)
c1c

2
3√
κκ̃

) · δ2κ2κ̃

≤ 41472 · σ2d

(n− t)2
· 1

c24
·
(√

κκ̃

c1c23

)3

exp(−(n+ 1)
c1c

2
3√
κκ̃

) · κ2κ̃3

= 41472 · σ2d

(n− t)2
· 1

c24(c1c
2
3)

3
· exp

(
−(n+ 1)

c1c
2
3√
κκ̃

)
· (κκ̃)7/2κ̃

≤ C · σ2d

(n− t)2
· exp

(
−(n+ 1)

c1c
2
3√
κκ̃

)
· (κκ̃)7/2κ̃ (90)

Next, we consider E5:〈[
H 0
0 0

]
, E5
〉

=
1

(n− t)2
n∑

j=t+1

〈[
H 0
0 0

]
,
(
(I − AL)−1An+1−j

L + (I − A>R)−1(A>R)n+1−j)(I − B)−1BjΣ̂
〉

=
1

(n− t)2
n∑

j=t+1

(〈
(I −A>)−1A>

[
H 0
0 0

]
,An−j(I − B)−1BjΣ̂

〉

+

〈[
H 0
0 0

]
A(I −A)−1, (I − B)−1BjΣ̂(A>)n−j

〉)
≤ 4d

(n− t)2
n∑

j=t+1

‖(I−A>)−1A>
[
H 0
0 0

]
‖ · ‖An−j(I − B)−1BjΣ̂‖ (91)

In a manner similar to bounding ‖An−t(I − B)−1Σ̂‖ as in equation 85, we can bound ‖An−j(I −
B)−1BjΣ̂‖ as:

‖An−j(I − B)−1BjΣ̂‖ ≤ 108
√

2σ2√
1− α2

κ(n− j)α(n−j−1)/2 ·
√
κκ̃

c2c3
√

2c1 − c21
· exp

−(
jc2c3

√
2c1−c21√
κκ̃

) ·δ2‖H‖

Furthermore, we will consider the bound ‖(I−A>)−1A>
[
H 0
0 0

]
‖ along one eigen direction (by

employing equation 26) and collect the results:

‖(I−A>j )−1A>j

[
λj 0
0 0

]
‖ ≤ 1 + c2

q − cδ
≤ 2

q − cδ

≤ 2

γ(1− α)
≤ 4κ̃

δc4
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=⇒ ‖(I−A>)−1A>
[
H 0
0 0

]
‖ ≤ 4κ̃

δc4

Plugging this into equation 91, and upper bounding the sum by (n− t) times the largest term of the
series: 〈[

H 0
0 0

]
, E5
〉
≤ 6912 · σ2d · (κκ̃)7/4

c3c4(c1c3)3/2
exp
−(n+1)·

c2c3

√
2c1−c21√
κκ̃

≤ C · σ2d · (κκ̃)7/4 · exp
−(n+1)·

c2c3

√
2c1−c21√
κκ̃ (92)

Summing up equations 82, 83, 87, 90, 92, the statement of the lemma follows.

Appendix F. Proof of Theorem 1

Proof [Proof of Theorem 1] The proof of the theorem follows through various lemmas that have
been proven in the appendix:

• Section B provides the bias-variance decomposition and provides an exact tensor expression
governing the covariance of the bias error (through lemma 3)and the variance error (lemma 5).

• Section D provides a scalar bound of the bias error through lemma 16. The technical contri-
bution of this section (which introduces a new potential function) is in lemma 4.

• Section E provides a scalar bound of the variance error through lemma 20. The key technical
contribution of this section is in the introduction of a stochastic process viewpoint of the pro-
posed accelerated stochastic gradient method through lemmas 6, 17. These lemmas provide
a tight characterization of the stationary distribution of the covariance of the iterates of the
accelerated method. Lemma 19 is necessary to show the sharp burn-in (up to log factors),
beyond which the leading order term of the error is up to constants the statistically optimal
error rate O(σ2d/n).

Combining the results of these lemmas, we obtain the following guarantee of algorithm 1:

E [P (x̄t,n)]− P (x∗) ≤ C · (κκ̃)9/4dκ

(n− t)2
· exp

(
− t+ 1

9
√
κκ̃

)
·
(
P (x0)− P (x∗)

)
+ C · (κκ̃)5/4dκ · exp

(
−n

9
√
κκ̃

)
·
(
P (x0)− P (x∗)

)
+ 5

σ2d

n− t

+ C · σ2d

(n− t)2
√
κκ̃+ C · σ2d · (κκ̃)7/4 · exp

(
−(n+ 1)

9
√
κκ̃

)
+ C · σ

2d

n− t
(κκ̃)11/4 exp

(
− (n− t− 1)

30
√
κκ̃

)
+ C · σ2d

(n− t)2
· exp

(
−(n+ 1)

9
√
κκ̃

)
· (κκ̃)7/2κ̃

Where, C is a universal constant.
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