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Abstract
The free energy is a key quantity which is associated to Markov random fields. Classical results in
statistical physics show how, given an analytic formula of the free energy, it is possible to compute
many key quantities associated with Markov random fields including quantities such as magneti-
zation and the location of various phase transitions. Given a massive Markov random field on n
nodes, can a small sample from it provide a rough approximation to the free energy Fn = logZn?

Results in the graph limit literature by Borgs, Chayes, Lovász, Sós, and Vesztergombi show that
for Ising models on n nodes and interactions of strength Θ(1/n), an ε approximation to logZn/n

can be achieved by sampling a randomly induced model on 2O(1/ε2) nodes. We show that the sam-
pling complexity of this problem is polynomial in 1/ε. We further show a polynomial dependence
on ε cannot be avoided.

Our results are very general as they apply to higher order Markov random fields. For Markov
random fields of order r, we obtain an algorithm that achieves ε approximation using a number of
samples polynomial in r and 1/ε and running time that is 2O(1/ε2) up to polynomial factors in r
and ε. For ferromagnetic Ising models, the running time is polynomial in 1/ε.

Our results are intimately connected to recent research on the regularity lemma and property
testing, where the interest is in finding which properties can tested within ε error in time polynomial
in 1/ε. In particular, our proofs build on results of Alon, de la Vega, Kannan and Karpinski, who
also introduced the notion of polynomial vertex sample complexity. Another critical ingredient of
the proof is an effective bound by the authors of this paper relating the variational free energy and
the free energy.

1. Introduction

One of the major problems in the areas of Markov Chain Monte Carlo (MCMC), statistical in-
ference, and machine learning is approximating the partition function of Ising models (and more
generally, Markov random fields). An Ising model is specified by a probability distribution on the
discrete cube {±1}n of the form

P [X = x] :=
1

Z
exp(

∑
i,j

Ji,jxixj) =
1

Z
exp(xTJx),

where the collection {Ji,j}i,j∈{1,...,n} are the entries of an arbitrary real, symmetric matrix with ze-
ros on the diagonal. The distribution P is referred to as the Boltzmann distribution. The normalizing
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constant Z =
∑

x∈{±1}n exp(
∑n

i,j=1 Ji,jxixj) is called the partition function of the Ising model
and the quantity F := logZ is known as the free energy.

The free energy is a key physical quantity which has long been studied in statistical physics due
to the wealth of information it reveals about the underlying Ising model. Some textbook applications
of the analysis of the free energy include the computation of fundamental quantities like the net
magnetization (this is discussed in detail in Appendix F), and the location of phase transitions in
parameterized families of Ising models. We refer the reader to (Ellis, 2007) for much more on this.
In recent years, the study of the free energy has also proved to be very fruitful in non-physical
applications of the Ising model. For instance, consider the problem in combinatorial optimization
of maximizing the quadratic form x 7→ xTMx over the hypercube {±1}n; this is essentially the
problem of estimating the cut norm of a matrix and has MAX-CUT as the special case when all of
the entries are negative. The free energy of the model with interaction matrix Jβ := βM provides a
natural tempering of this optimization problem in the following sense:

1

β
Fβ =

1

β
log

∑
x∈{±1}n

exp

β n∑
i,j=1

Mijxixj

→ max
x∈{±1}n

n∑
i,j=1

Mijxixj

as β →∞.
In fact, for every finite β, the free energy corresponds to the objective value of a natural op-

timization problem of its own. More precisely the free energy is characterized by the following
variational principle (dating back to Gibbs, see the references in Ellis (2007)):

F = max
µ

∑
i,j

JijEµ[XiXj ] +H(µ)

 , (1)

where µ ranges over all probability distributions on the boolean hypercube {±1}n. This can be seen
by noting that

KL(µ||P ) = F −
∑
i,j

JijEµ[XiXj ]−H(µ), (2)

and recalling that KL(µ||P ) ≥ 0 with equality if and only if µ = P .
By substituting J = βM in equation Eq. (1), we see that the Boltzmann distribution is simply

the maximum entropy distribution µ for a fixed value of the expected energy Eµ[xTMx]. Thus,
studying the free energy for different values of β provides much richer information about the op-
timization landscape of x 7→ xTMx over the hypercube than just the maximum value, e.g. in the
MAX-CUT case, the free energies encode information about non-maximal cuts as well (see e.g.
Borgs et al. (2012) for related discussion).

Apart from the applications mentioned above, it is clear by definition that knowledge of the free
energy (or equivalently, the partition function) allows one to perform fundamental inference tasks
like computing marginals and posteriors in Ising models. Unfortunately, the partition function,
which is defined as a sum of exponentially many terms, turns out to be both theoretically and
computationally intractable. For instance, it is known that approximating the partition function
is NP-hard, even for graphs with degrees bounded by a small constant (Sly and Sun, 2012), whereas
providing a closed form expression for the partition function of the Ising model on the standard
3-dimensional lattice remains one of the outstanding problems in statistical physics. In light of this,

2



THE VERTEX SAMPLE COMPLEXITY OF FREE ENERGY IS POLYNOMIAL

providing efficient approximation schemes for the free energy, which have provable guarantees, has
naturally attracted considerable interest over the years.

The work (Sinclair and Jerrum, 1989) showed that it is possible to approximate the partition
function for “self-reducible” models for which a rapidly mixing Markov chain exists. Moreover,
for such models, a (1 + ε) approximation of the partition function results in a rapidly mixing chain.
Some key results in the theory of MCMC provide conditions for the existence of a rapidly mixing
chain, and therefore allow for efficient approximations of the partition functions e.g. (Jerrum and
Sinclair, 1989, 1990; Jerrum et al., 2004) and follow up work.

On the other hand, even in interesting regimes where correlation decay does not hold (and
therefore, MCMC techniques do not provide non-trivial guarantees), much less is known. (Risteski,
2016) used variational methods (based on Eq. (1)) and convex programming hierarchies to provide
an O(εn)-additive approximation to the free energy of suitably dense Ising models in time nO(1/ε2).
In (Jain et al., 2018), the authors of this paper provided an algorithm with similar guarantees which
works under weaker density assumptions, and additionally, runs in constant time 2Õ(1/ε2). We note
that both Risteski’s algorithm and the algorithm in (Jain et al., 2018) generalize to order r Markov
random fields (MRFs) – for fixed r, his algorithm provides an O(εn)- additive approximation to
the free energy of sufficiently dense MRFs in time nO(1/ε2), whereas our algorithm provided a
similar guarantee under weaker density assumptions either in time nr2Õ(1/ε2), or in constant time
2Õ(1/ε2r−2). As one of the applications of our main result, we will improve this running time guar-
antee to 2Õ(1/ε2) for all order r MRFs.

1.1. The vertex sample complexity: main results

Most relevant to our paper is the work of Alon, de la Vega, Kannan and Karpinski (Alon et al.,
2003), who provided the following scheme for approximating MAX-CUT to additive error εn2 for
any ε > 0: sample a random subset of vertices of size q, solve MAX-CUT on the graph induced on
the sampled vertices, and rescale this value by n2/q2. They defined the vertex sample complexity
to be the value of q needed to achieve such an approximation (say, with probability 0.9). Their key
result showed that q can be taken to be polynomial in ε−1. Moreover, they obtained a similar result
for general MAX-rCSPs with vertex sample complexity q = Crpoly(1/ε), where we emphasize
that the only way q depends on r is through the constant Cr. We refer the reader to the discussion
in (Alon, 2006) for an overview of similar results.

Vertex sample complexity is also one of the central parameters of interest in graph property
testing, where it is more commonly known as query complexity. Roughly speaking, in the area of
graph property testing initiated by Goldreich, Goldwasser and Ron (Goldreich et al., 1998), the goal
is to efficiently test when a given graph satisfies some property Π (defined to be a set of graphs
closed under graph isomorphisms) versus when it is ‘sufficiently far’ from satisfying this property,
by selecting a small number of vertices at random and inspecting the graph induced on these sampled
vertices. For instance, a model result in graph property testing would give an upper bound on the
number of vertices q = q(ε) that one needs to sample in order to say with high probability that
either a given graph is triangle-free, or that one needs to remove at least εn2 edges from it to
make it triangle-free. The question of which graph properties have query complexity q = q(ε)
independent of the size of the graph was the focus of considerable effort by many researchers,
culminating in the work (Alon and Shapira, 2008), which provided a characterization of ‘natural’
graph properties which are testable with one-sided error. However, their proof relied on the so-
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called strong regularity lemma, and gave Ackermann type bounds. In recent years, there has been
much work (see, e.g. Gishboliner and Shapira (2016, 2017) and the references therein) to determine
which graph properties are testable with a number of queries which is polynomial in ε−1.

Our main result is that the vertex sample complexity of free energy is polynomial. Fix an Ising
model J on the vertex set [n], and denote its free energy by F . Consider a random subset Q of [n]
of size |Q| = q. Consider also the Ising model JQ on the vertex set Q whose matrix of interaction
strengths is given by the restriction of the matrix n

q J to Q × Q. We will denote the free energy of
this Ising model by FQ.

Theorem 1 Let ε > 0 and suppose q ≥ 128000ω, where ω := log(1/ε)/ε8. Then, with probability
at least 19/20: ∣∣∣∣F − n

q
FQ
∣∣∣∣ ≤ 4000εn (‖J‖F + εn‖J‖∞ + ω/q) .

Here, ‖J‖F :=
√∑

i,j J
2
i,j denotes the Frobenius norm of the matrix J and ‖J‖∞ denotes its

largest entry in absolute value. Note that we assume that ω/q ≤ 1/128000, so that the last term is
almost always negligible.

This result is tight up to the power of ε in ω. More precisely, we show the following lower
bound:

Theorem 2 Let ε > 0 and suppose q ≤ 1/
√

60000ε. Then, there exists an Ising model J for which,
with probability at least 1/4:∣∣∣∣F − n

q
FQ
∣∣∣∣ > 4000εn (‖J‖F + εn‖J‖∞ + 1) .

Our methods extend in a straightforward manner not just to Ising models with external fields,
but indeed to general higher order Markov random fields, as long as we assume a bound r on the
order of the highest interaction (i.e. size of the largest hyper-edge).

Definition 3 Let J be an arbitrary function on the hypercube {±1}n and suppose that the degree
of J is r i.e. the Fourier decomposition of J is J(x) =

∑
α⊂[n] Jαx

α with r = maxJα 6=0 |α|. The
corresponding order r (binary) Markov random field is the probability distribution on {±1}n given
by

P (X = x) =
1

Z
exp(J(x))

where the normalizing constant Z is referred to as the partition function. For any polynomial J we
define J=d to be its d-homogeneous part and ‖J‖F to be the square root of the total Fourier energy
of J i.e. ‖J‖2F :=

∑
α |Jα|2.

Exactly as for Ising models, we can also define the free energy (which we continue to denote by
F = logZ) for order r Markov random fields. The analogous definition of FQ is the free energy
corresponding to the restriction of the polynomial J̃ :=

∑
α⊆[n]

n|α|−1

q|α|−1 Jαx
α to {±1}Q.

Theorem 4 Fix J an order r Markov random field. Let ε > 0 and suppose q ≥ 106ω, where
ω := r7 log(1/ε)/ε8. Then, with probability at least 39/40:∣∣∣∣F − n

q
FQ
∣∣∣∣ ≤ 105εr3

r∑
d=1

nd/2
(
‖J=d‖F + εnd/2‖J‖∞ + ω/q

)
.

4



THE VERTEX SAMPLE COMPLEXITY OF FREE ENERGY IS POLYNOMIAL

1.2. Examples

We discuss a few examples of natural families of Ising models and Markov random fields in order
to illustrate the consequences of our results.

Example 1 (Uniform edge weights on graphs of increasing degree) Fix β ∈ R and a sequence
of graphs (Gni)

∞
i=1 with the number of vertices ni going to infinity, and let mi be the corresponding

number of edges. Then, it is natural to look at the model with uniform edge weights equal to
βni/mi, since this makes the maximum value of xTJx on the order of Θ(ni), which is the same
scale as the entropy term in the variational definition of the free energy (Eq. (1)). We say the model
is ferromagnetic if β > 0 and anti-ferromagnetic if β < 0. Observe that ‖J‖F = |β|ni/

√
mi and

‖J‖∞ = |β|ni/mi, so that by Theorem 1, we have |F/ni − FQ/qi| = O(ε(ni/
√
mi + εn2

i /mi +

ω/q)). Suppose mi = Θ(n
2(1−δ)
i ), then this simplifies to |F/ni − FQ/qi| = O(ε(nδi + εn2δ

i +
ω/q)). Finally, taking ε = Θ(n−δi ), we see that with sample size q = Θ(n8δ

i log ni), we can get
|F/ni −FQ/qi| arbitrarily small.

This example illustrates that the exact size of the sample we want to take may depend on the
density of the graph: with the natural scalings from Example 1, we see that for very sparse graphs
this approach will not give good results since if we take small samples, we will just get the empty
graph. On the other hand if the graph has average degree Θ(n), we will be able to approximate
the free energy density F/n to ε additive error using samples which are of constant size poly(1/ε)
without any dependence on n. To do the same for graphs with average degree o(n), our sample size
will need to grow with n, but depending on the precise level of sparsity, we may still be able to take
samples which are much smaller than the original graph.

Example 2 (Uniform edge weights on r-uniform hypergraphs) Fix β ∈ R and let (Gni)
∞
i=1 be

a sequence of r-uniform hypergraphs with ni vertices and mi hyperedges. Analogous to the graph
case, we let J(x) = βni

mi

∑
S∈E(Gni )

xS , so that the maximum of J is on the same order as the
entropy term in the free energy. We still have ‖J‖F = βni/

√
mi, and see by Theorem 4 that

|F/ni − FQ/qi| = O(ε(n
r/2
i log ni/m

1/2
i + εnri /mi + ω/q)). Suppose mi = Θ(nr−2δ

i ), then
this simplifies to O(ε(nδi log ni + εn2δ

i + ω/q)). Thus, similar to the previous example, if we take
ε = Θ(n−δi ), we see that with sample size q = Θ(n8δ

i log ni) we can get |F/ni−FQ/qi| arbitrarily
small.

1.3. Application to Sublinear Time Algorithms

Given any algorithm for estimating the free energy of an Ising model, the sample complexity results
from the previous section suggest a natural way to compute the free energy more efficiently on
large graphs: sample a few small subsets of the graph randomly, run the original algorithm on each
of the small sample graphs, and finally return the median of the sample outputs. We analyze the
performance of the resulting algorithm in a few particularly interesting cases.

As noted in Example 1, if we want to estimate say F/n to high accuracy and our model is not
sufficiently dense, we may sometimes want to take ε shrinking as a function of n. However, we will
state the results for general ε and n without assuming anything about their relationship. Similarly,
when we say constant-time, we mean constant time for fixed ε; even when ε is shrinking like n−δ,
this may still correspond to a sublinear time algorithm for δ small (for example, in Theorem 5).
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First, we consider the case of ferromagnetic J . The result in (Jerrum and Sinclair, 1990) shows
we can estimate the free energy (indeed, even the partition function) in poly(n, 1/ε) time. On
the other hand, in constant time, it was shown in (Jain et al., 2018) that we can estimate the free
energy to εn‖J‖F error in time 2O(log(1/ε)/ε2), which is exponential in ε. We can give a much better
constant time algorithm by combining our sampling approach with the algorithm of Jerrum and
Sinclair; indeed applying Theorem 1 we get the following result as an immediate corollary.

Theorem 5 Fix δ > 0. Let ε > 0 and suppose q ≥ 128000ω, where ω := log(1/ε)/ε8. Suppose
also that J is ferromagnetic, i.e. Jij ≥ 0 for all i, j. Then, there is an algorithm, which runs in time
poly(1/ε) log(1/δ) and has a vertex sample complexity ofO(q log(1/δ)), which returns an estimate
F̂ such that ∣∣∣F − F̂∣∣∣ ≤ 4001εn (‖J‖F + εn‖J‖∞ + ω/q)

with probability at least 1− δ.

In (Jain et al., 2018) we gave a constant time regularity-based algorithm to compute the free
energy of a Markov random field. Unfortunately, to compute an approximation with additive error
εn‖J‖F it required time 2O(1/ε2r−2), whereas we showed that if we allowed for polynomial time
in n, the correct exponent for ε does not depend on r at all. Combining the latter result with our
sampling algorithm gives a constant-time algorithm for computing the free energy with similar
guarantees but requiring, for fixed r, only time 2O(1/ε2).

Theorem 6 Let J be an order r Markov random field. Let δ, ε > 0 and suppose q ≥ 106ω, where
ω := r7 log(1/ε)/ε8. Then, there is an algorithm, which runs in time 2O(log(1/ε)/ε2) log(1/δ) and
has a vertex sample complexity of O(q log(1/δ)), which returns an estimate F̂ such that:

∣∣∣F − F̂∣∣∣ ≤ 105r3ε

(
r∑

d=1

nd/2
(
‖J=d‖F + εnd/2‖J‖∞

)
+ ωn/q

)

with probability at least 1− δ.

As previously mentioned, these algorithms for estimating the free energy immediately imply similar
results for estimating the magnetization: see Appendix F.

1.4. The mean-field approximation and the variational free energy

The mean-field approximation to the free energy (also referred to as the variational free energy)
is obtained by restricting the distributions µ in the variational characterization of the free energy
(Eq. (1)) to be product distributions. Accordingly, we define the variational free energy by

F∗ := max
x∈[−1,1]n

∑
i,j

Jijxixj +
∑
i

H

(
xi + 1

2

) .
Indeed, if x̄ = (x̄1, . . . , x̄n) is the optimizer in the above definition, then the product distribution

ν on the boolean hypercube, with the ith coordinate having expected value x̄i, minimizes KL(µ||P )
among all product distributions µ. Moreover, it is immediately seen from Eq. (2) that the value of
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this minimum KL is exactly F −F∗. Thus, the quantity F −F∗, which measures the quality of the
mean-field approximation, may be interpreted information theoretically as the divergence between
the closest product distribution to the Boltzmann distribution and the Boltzmann distribution itself.

We will rely crucially on the following bound on the error of the mean-field approximation,
proved in (Jain et al., 2018):

Theorem 7 (Jain et al. (2018)) Fix an Ising model J on n vertices. Let ν := arg minν KL(ν||P ),
where P is the Boltzmann distribution and the minimum ranges over all product distributions. Then,

KL(ν||P ) = F − F∗ ≤ 200n2/3‖J‖2/3F log1/3(n‖J‖F + e).

This result provides a key bridge between the combinatorial definition of the free energy (as a sum
over states) and tools in optimization, such as convex duality, which will be essential to proving
our result. Crucially for our application, this bound is tight enough to show the free energy and
variational free energy are close even on relatively small graphs. For a discussion of previous results
in this area, see (Jain et al., 2018). We will deduce Theorem 1 from this bound and the following
theorem on the sample complexity of variational free energy.

Theorem 8 Let ε > 0 and suppose q ≥ 128000ω, where ω := log(1/ε)/ε8. Then, with probability
at least 39/40: ∣∣∣∣F∗ − n

q
F∗Q
∣∣∣∣ ≤ 2000εn (‖J‖F + εn‖J‖∞ + ω/q) .

Remark 9 The constant 128000 appearing in the statements of Theorems 1, 5 and 8 is the same
constant that appears in Theorem 9 of (Alon et al., 2002), where it has not been optimized. The
same holds for the constant 106 appearing in Theorem 4.

1.5. Connection to graph limits

A graphon is a symmetric measurable function W : [0, 1]2 → [0, 1] which serves as a natural
limiting object for dense graphs; for a proper introduction see the textbook (Lovász, 2012). To a
graphon W , we can associate a natural probability distribution over graphs of size n defined by the
following sampling process:

1. Sample u1, . . . , un ∼ Uniform([0, 1]).

2. Independently include edge (i, j) with probability W (ui, uj).

Conversely, there is a natural way to associate a (0-1 valued) graphon WG to a graph G of size
n: let A be the n × n adjacency matrix of G, and let the corresponding graphon WG be given by
splitting [0, 1]2 into n2 equally sized squares on a grid labeled by coordinates (i, j), and setting WG

to be equal to the constant Aij (either 0 or 1) in square (i, j). In this context, the natural statistical
question to study is that of parameter estimation: given a graphon parameter f(W ) and ε > 0, how
large of a graph do we need to sample from W in order to estimate f(W ) within ε-additive error
with high probability? In (Borgs et al., 2008), necessary and sufficient conditions for a parameter
f to be estimable by finite sample size were developed, and it was shown further shown that if f is
Lipschitz with respect to the graphon cut metric, then 2O(1/ε2) samples suffice.
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As an example, associate to every graph G on n vertices an Ising model by assigning each edge
the same weight β/n, where β > 0 is fixed. Then, for any graph G, we can ask what the free
energy of the corresponding Ising model is. Naively, we cannot apply the graphon theory because
the free energy F of a graph G cannot be defined solely in terms of its graphon WG. However, it
was shown in (Borgs et al., 2012) that the variational free energyF∗ can still be defined, and that the
free energy densities F/n and F∗/n agree in the limit as graph size goes to infinity (see Theorem
5.8 of (Borgs et al., 2012)); thus the free energy density of a graphon can be well-defined1. In the
context of our example, they show that for β fixed and for the corresponding Ising models on an
arbitrary sequence of graphs (Gn) of increasing size, |F(Gn)/n−F∗(Gn)/n| = O(1/

√
log n). In

(Jain et al., 2018) we improved this rate of convergence considerably to Õ(1/n1/3).
Because the (variational) free energy is also Lipschitz with respect to the graphon cut metric,

the result of (Borgs et al., 2012) shows that the free energy density of a graphon can be estimated to
error ε by sampling a graph of size 2O(1/ε2) from W and computing the free energy on this graph.
The main result of this paper (Theorem 1) improves this significantly: it shows that the free en-
ergy density of a graphon can be estimated to error ε by sampling a graph of size only poly(1/ε).
Furthermore, given a sampling oracle for the graphon, we also get constant time algorithms for esti-
mating the graphon free energy density: in ferromagnetic or high temperature settings we provide a
poly(1/ε) time algorithm, and in the general setting, we provide a 2Õ(1/ε2) time algorithm. Finally,
we remark that our techniques extend in a straightforward manner to deal with higher order Markov
random fields, whereas the theory of hypergraph limits is significantly more involved.

1.6. Overview of the techniques

As mentioned in the introduction, we will prove our main result (Theorem 1) by instead proving the
corresponding statement for variational free energy (Theorem 8). That this suffices is guaranteed
by Theorem 7; crucially this non-asymptotic bound will provide a good bound on the error even
on the small sampled graph. As we will see, working the variational free energy instead of the
(combinatorial) free energy seems to be essential for our argument to work.

The next step in our argument is to reduce to proving the statement about variational free energy
only for interaction matrices which can be written as a sum of a small number of rank one matrices
(we refer to such matrices as generalized cut matrices of low rank). This reduction is based on the
following two key ingredients. First, the weak regularity lemma of Frieze and Kannan shows that
any interaction matrix may be well approximated in a suitable sense by a generalized cut matrix
of low rank; the notion of this approximation is sufficient for the purpose of approximating the
free energy (Lemma 15). Second, a theorem of (Alon et al., 2003) on the cut norm of random
subarrays shows that if two matrices are sufficiently close (in the above sense), then with high
probability, random submatrices of a sufficiently large size will also be close. In particular this
shows the regularity decomposition of a matrix remains a good approximation in cut norm, even
after restriction to the random submatrix corresponding to our sample.

This reduction prepares us for the main technical content of this paper, Appendix B, where we
prove the desired sample complexity bound for generalized cut matrices of low rank. For such
matrices D, the non-entropy part of the variational free energy xTDx depends only on a small
number of statistics of x. Moreover, as Lemma 17 shows, it suffices to know these statistics up to

1. There are fundamental links between free energies in statistical physics and notions of graph limit convergence which
are beyond the scope of this brief summary. The interested reader should consult (Borgs et al., 2012) for details.

8



THE VERTEX SAMPLE COMPLEXITY OF FREE ENERGY IS POLYNOMIAL

some constant precision. With this, it is quite easy to see (Lemma 20) that the rescaled free energy
of the sample cannot be much smaller than the free energy of the original graph: this is seen just by
restricting the optimal product distribution on the original graph to the sample. The other direction
is harder: we need to rule out the existence of distributions on the sample with unexpectedly large
free energy.

In Proposition 18, we use the considerations of the previous paragraph to show that up to a
small error, the optimization problem defining the variational free energy can be replaced by a
small number of maximum-entropy programs with linear constraints. Note that our maximum-
entropy programs range only over the space of product distributions; this is significantly different
than attempting to optimize over all distributions, the setting in e.g. (Singh and Vishnoi, 2014). Our
strategy will be to show that with high probability, the optimum of each of these programs is not
much smaller than the rescaled optimum of the corresponding program for the sample. The fact
that there are only a small number of programs will allow us to use the union bound to complete
the proof. This part of our proof may be of independent interest. Note that this amounts to showing
that the absence of a good solution for the original program implies the absence of good solutions
for random induced programs.

As in (Alon et al., 2003), our solution will be to use duality: we will use the random restriction
of a dual certificate – which shows that the original program has no good solutions – to show that
with high probability, random induced programs also have no good solutions. However, in the case
of (Alon et al., 2003), a relatively simple application of linear programming duality, to show that
infeasible programs continued to stay infeasible, sufficed to show polynomial bounds2; in our case
the objective function is very important, so we have to use convex duality which leads to some rather
delicate issues.

First of all, it is not a priori clear that the dual certificate for the original program will actually
provide a useful lower bound on the random induced program — in general the objective of the
dual program may depend on its variables in a complex way, and there is no general reason that
the lower bound we get from reusing the certificate will actually be of the desired form, or that it
will concentrate sufficiently well. Here, we must use the fact that the dual of the maximum entropy
program of product distributions with linear constraints has a particularly nice form (Eq. (5)) which
behaves well with respect to random restrictions. Second of all, in order to get concentration of
the dual objective, we also need to ensure that none of the coordinates of the dual certificate can
influence the objective too much. For this, we use Sion’s generalization of Von Neumann’s minimax
theorem to show that a version of the dual with bounded entries is sufficiently good for our purpose
(Lemma 23). That this bound on the entries is useful relies on the parameters guaranteed by the
weak regularity lemma. Together these considerations allows the analysis to go through (Lemma 24,
Lemma 25). The proof of the statement for general Markov random fields is similar.
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2. For this simple argument see the conference version (Alon et al., 2002). In the journal version the LP objective is in
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Appendix A. Preliminaries

We will make essential use of the weak regularity lemma (Frieze and Kannan, 1999). Before stating
it, we introduce some terminology. Throughout this section, we will deal with m × n matrices
whose entries we will index by [m]× [n], where [k] = {1, . . . , k}.

Definition 10 Given S ⊆ [m], T ⊆ [n] and d ∈ R, we define the [m] × [n] Cut Matrix C =
CUT (S, T, d) by

C(i, j) =

{
d if (i, j) ∈ S × T
0 otherwise

Definition 11 A Cut Decomposition expresses a matrix J as

J = D(1) + · · ·+D(s) +W

where D(i) = CUT (Ri, Ci, di) for all t = 1, . . . , s. We say that such a cut decomposition has
width s, coefficient length (d2

1 + · · ·+ d2
s)

1/2 and error ‖W‖∞7→1.

We are now ready to state the weak regularity lemma of Frieze and Kannan. The particular
choice of constants can be found in (Alon et al., 2002).

Theorem 12 (Frieze and Kannan (1999)) Let J be an arbitrary real matrix, and let ε > 0. Then,
we can find a cut decomposition of width at most 16/ε2, coefficient length at most 4‖J‖F /

√
mn,

error at most 4ε
√
mn‖J‖F , and such that ‖W‖F ≤ ‖J‖F .

Remark 13 In particular, we have

‖W‖∞ ≤ ‖J‖∞+ |d1|+ · · ·+ |ds| ≤ ||J ||∞+
√
s(d2

1 + · · ·+d2
s)

1/2 ≤ ||J ||∞+
√

16s‖J‖F /
√
mn.

Definition 14 We say that D is a generalized cut matrix of rank s if it is possible to express D as a
sum of s cut matrices.
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Our reduction from general matrices to generalized cut matrices of low rank will be based on
two ingredients. The first is a simple lemma showing that the variational free energy is 1-Lipschitz
with respect to the cut norm of the matrix of interaction strengths (see, e.g., (Jain et al., 2018)).

Lemma 15 Let J and D be the matrices of interaction strengths of Ising models with variational
free energies F∗ and F∗D. Then, with W := J −D, we have |F∗ −F∗D| ≤ ‖W‖∞7→1.

Proof Note that for any x ∈ [−1, 1]n, we have∣∣∣∣∣∣
∑
i,j

Ji,jxixj −
∑
i,j

Di,jxixj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i

(
∑
j

Wi,jxj)xi

∣∣∣∣∣∣ ≤
∑
i

∣∣∣∣∣∣
∑
j

Wi,jxj

∣∣∣∣∣∣
≤ ‖W‖∞7→1,

from which we immediately get that |F∗ −F∗D| ≤ ‖W‖∞7→1.

The second ingredient is the following theorem (with r = 2) of Alon et al3.

Theorem 16 (Alon et al. (2002)) Suppose G is an r-dimensional array on V r = V × V × · · · ×
V with all entries of absolute value at most M . Let Q be a random subset of V of cardinality
q ≥ 1000r7/ε6. Let B be the r-dimensional array obtained by restricting G to Qr. Then, with
probability at least 39/40, we get

1

4
‖B‖∞7→1 ≤

qr

|V |r
‖G‖∞7→1 + 10ε2Mqr + 5εqr

‖G‖F
|V |r/2

.

Appendix B. Sample complexity for generalized cut matrices

Throughout this section, D = D(1) + · · ·+D(s) will denote a generalized n× n cut matrix where
D(i) = CUT (Ri, Ci, di) for all i ∈ [s] and (d2

1 + · · ·+ d2
s)

1/2 ≤ α/n for some α > 0. For us, the
advantage of working with generalized cut matrices is that for any x ∈ [−1, 1]n, the quantity xTDx
depends only on a few statistics of the vector x. Indeed, it is readily seen that:

n∑
i,j=1

Di,jxixj =
s∑
i=1

ri(x)ci(x)di, (3)

where ri(x) =
∑

a∈Ri xa and ci(x) =
∑

b∈Ci xb.
The next lemma shows that for approximating xTDx, it suffices to know the vectors r(x) :=

(r1(x), . . . , rs(x)) and c(x) := (c1(x), . . . , cs(x)) up to some constant precision.

Lemma 17 Let D = D(1) + · · · + D(s) be a generalized cut matrix as above. Then, given real
numbers ri, r′i, ci, c

′
i for each i ∈ [s] and some γ ∈ (0, 1) such that |ri|, |ci|, |r′i|, |c′i| ≤ n, |ri−r′i| ≤

γn and |ci − c′i| ≤ γn for all i ∈ [s], we get that
∑

i di|r′ic′i − rici| ≤ 2αγns1/2.

3. Here ‖G‖∞→1 denotes the supremum of G(·, . . . , ·) on the hypercube {±1}n, essentially the cut norm.
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Proof Since |r′ic′i − rici| ≤ |c′i||r′i − ri|+ |ri||c′i − ci| ≤ 2γn2, it follows by Cauchy-Schwarz that

s∑
i=1

di|r′ic′i − rici| ≤

(∑
i

d2
i

)1/2

2s1/2γn2 ≤ 2αγns1/2.

Since our goal is to approximate the maximum value of xTDx+
∑n

i=1H((1+xi)/2) as x ranges
over [−1, 1]n, the next definition is quite natural given the previous lemma. For r := (r1, . . . , rs) ∈
[−n, n]s, c := (c1, . . . , cs) ∈ [−n, n]s, and γ > 0, consider the following max-entropy program
Cr,c,γ :

max
n∑
i=1

H

(
1 + xi

2

)
s.t.

∀i ∈ [n] : − 1 ≤ xi ≤ 1

∀t ∈ [s] : rt − γn ≤
∑
i∈Rt

xi ≤ rt + γn

∀t ∈ [s] : ct − γn ≤
∑
i∈Ct

xi ≤ ct + γn

By taking H(z) = −∞ for z /∈ [0, 1], we may drop the −1 ≤ xi ≤ 1 constraints. We will denote
the optimum of this program by Or,c,γ . We also define

F∗r,c,γ :=
s∑
i=1

ricidi +Or,c,γ .

Let Iγ be an arbitrary minimal collection of points in [−n, n] such that every z ∈ [−n, n] is
within distance γn of some element of Iγ . Clearly, we have |Iγ | ≤ 1/γ + 1. For ` ≥ 1, let
Iγ,` ⊆ Isγ × Isγ denote the set of pairs (r, c) ∈ Isγ × Isγ for which Or,c,`γ ≥ 0.

The following proposition shows that maximizing F∗r,c,`γ over all (r, c) ∈ Iγ,` provides a good
approximation to F∗D.

Proposition 18 −2α`γns1/2 ≤ F∗D −max(r,c)∈Iγ,` F
∗
r,c,`γ ≤ 2α`γns1/2

Proof For the right inequality, let x∗ ∈ [−1, 1]n denote the vector attaining F∗D, and let r, c ∈ Isγ
be such that |ri(x∗) − ri| ≤ `γn and |ci(x∗) − ci| ≤ `γn for all i ∈ [s]. In particular, we have

13
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Or,c,`γ ≥
∑n

i=1H((1 + x∗i )/2) ≥ 0, so that (r, c) ∈ Iγ,`. Then, we have

F∗D =

s∑
i=1

ri(x
∗)ci(x

∗)di +

n∑
i=1

H

(
1 + x∗i

2

)

≤
s∑
i=1

ri(x
∗)ci(x

∗)di +Or,c,`γ

≤
s∑
i=1

ricidi + 2α`γns1/2 +Or,c,`γ

= F∗r,c,γ + 2αγns1/2

≤ max
(r,c)∈Iγ,`

F∗r,c,γ + 2αγns1/2,

where in the first line we have used Eq. (3), and in the third line we have used Lemma 17.
For the left inequality, we will show that F∗r,c,`γ ≤ F∗D + 2α`γns1/2 for all (r, c) ∈ Isγ × Isγ .

Accordingly, fix (r, c) ∈ Isγ × Isγ , and let xr,c ∈ [−1, 1]n denote a point attaining Or,c,`γ (if no
such point exists, then Or,c,`γ = −∞ and we are trivially done). Then, by the same computation as
above, we get

F∗r,c,γ =
s∑
i=1

ricidi +
n∑
i=1

H

(
1 + xr,c

2

)

≤
s∑
i=1

ri(xr,c)ci(xr,c)di + 2α`γns1/2 +
n∑
i=1

H

(
1 + xr,c

2

)

≤
s∑
i=1

ri(x
∗)ci(x

∗)di +
n∑
i=1

H

(
1 + x∗

2

)
+ 2α`γns1/2

≤ F∗D + 2α`γns1/2.

The remainder of this section will be devoted to proving Proposition 19, which is a version of
Theorem 8 for generalized cut matrices, and will be used crucially in the proofs of our main results.
Before stating it, we need to introduce some more notation.

LetQ denote a random subset of [n] of size |Q| = q. Let D̃ := n
qD and let D̃Q denote the matix

induced by D̃ on Q×Q. In particular, note that we can write

D̃Q = D̃
(1)
Q + · · ·+ D̃

(s)
Q ,

14
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where D̃(i)
Q = CUT (Ri ∩Q,Ci ∩Q, d̃i) for all i ∈ [s], with d̃i := n

q di. We will also make use of
the corresponding max-entropy program C(Q)r,c,γ (for r, c ∈ [−n, n]s):

max
∑
i∈Q

H

(
1 + xi

2

)
s.t.

∀i ∈ Q − 1 ≤ xi ≤ 1

∀t ∈ [s] : r′t − γq ≤
∑

j∈Rt∩Q
xj ≤ r′t + γq

∀t ∈ [s] : c′t − γq ≤
∑

j∈Ct∩Q
xj ≤ c′t + γq,

where r′ = q
nr and c′ = q

nc. We will denote the optimum of this program by O(Q)r,c,γ . As before,
let

F∗(Q)r,c,γ :=
s∑
i=1

r′ic
′
id̃i +O(Q)r,c,γ ,

let I(Q)γ,` ⊆ Isγ × Isγ denote the set of pairs (r, c) ∈ Isγ × Isγ for which O(Q)r,c,`γ ≥ 0, and note
that Proposition 18 shows that∣∣∣∣F∗D̃Q − max

(r,c)∈I(Q)γ,`
F∗(Q)r,c,γ

∣∣∣∣ ≤ 2α`γqs1/2. (4)

The goal of the next few sections will be to relate the free energy of the full graph and its sampled
version as follows:

Proposition 19 Suppose 2αγs1/2 < 1. Then,
∣∣∣F∗D − n

qF
∗
D̃Q

∣∣∣ ≤ 8αγns1/2, except with probability

at most exp(−2α2γ2sq)+4s exp(−2γ2q)+2 exp(−α2γ4q/32s) exp(2s log(2/γ)) over the choice
of Q.

We begin by proving the easier direction of the above inequality:

Lemma 20 n
qF
∗
D̃Q
≥ F∗D−3αγns1/2, except with probability at most exp(−2α2γ2sq)+4s exp(−2γ2q).

Proof Let x∗ ∈ [−1, 1]n attainF∗D, and let r(x∗) = (r1(x∗), . . . , rs(x
∗)), c(x∗) = (c1(x∗), . . . , cs(x

∗))
be as above. Let x∗Q denote x∗ restricted to the vertices in Q, and let ri(x∗Q) :=

∑
j∈Ri∩Q x

∗
Q,

ci(x
∗
Q) :=

∑
j∈Ci∩Q x

∗
Q for all i ∈ [s]. Then, for any i ∈ [s], Hoeffding’s inequality shows that

Pr
[∣∣∣ri(x∗Q)− q

nri(x
∗)
∣∣∣ ≥ γq] ≤ 2 exp(−2γ2q), and similarly for ci. Also by Hoeffding’s in-

equality, Pr
[∑

j∈QH(x∗j )−
q
n

∑n
i=1H(x∗i ) ≤ −αγqs1/2

]
≤ exp(−2α2γ2sq). Finally, the union

bound and Lemma 17 give the desired conclusion.

The upper bound on F∗
D̃Q

is more involved, and requires some notions from convex duality
which we will review in the next section.
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B.1. Convex duality and application to the maximum entropy problem

We consider the following general form of the maximum-entropy problem for product distributions
with linear constraints, henceforth referred to as the primal:

sup
n∑
i=1

H

(
1 + xi

2

)
s.t. aj · x− bj ≤ 0 ∀j ∈ [m],

where H(z) is the binary entropy function with H(z) := −∞ for z /∈ [0, 1]. We will denote the
optimum of this program by OPT .

Remark 21 Note that the value of the objective is −∞ if x /∈ [−1, 1]n. Since
∑n

i=1H((1 + xi)/2)
is strictly concave on the compact, convex set [−1, 1]n, it follows that either OPT = −∞ or
OPT > −∞ is attained by a unique point in [−1, 1]n.

We define the Lagrangian by

L(x, y) :=

n∑
i=1

H

(
1 + xi

2

)
−

m∑
j=1

yj(aj · x− bj),

and the Lagrange dual function by

g(y) := sup
x∈Rn

L(x, y) = max
x∈[−1,1]n


n∑
i=1

H

(
1 + xi

2

)
−

m∑
j=1

yj(aj · x− bj)

 .

Note that g(y) is a supremum of linear functions in y, hence convex. We will denote arg maxx∈[−1,1]n L(x, y)
by x(y), so

g(y) =

n∑
i=1

H

(
1 + xi(y)

2

)
−

m∑
j=1

yj(aj · x(y)− bj).

We have the following explicit formula:

xi(y) = tanh

− m∑
j=1

yjaj,i

 = 2σ

−2
m∑
j=1

yjaj,i

− 1, (5)

where σ(z) := 1/(1 + e−z) is the usual sigmoid function, since the point defined by the right hand
side is readily seen to be the maximizer of the strictly concave function x 7→ L(x, y) on the convex
set [−1, 1]n. In particular, note that xi(y) depends only on those aj,k for which k = i.

Observe that for any y ≥ 0, g(y) ≥ OPT . Indeed, for x∗ attaining the primal optimum, we
have

g(y) ≥
n∑
i=1

H

(
1 + x∗i

2

)
−

m∑
j=1

yj(aj · x∗ − bj) ≥
n∑
i=1

H

(
1 + x∗i

2

)
= OPT. (6)
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Based on this, it is natural to define the Lagrange dual problem:

inf
y
g(y) s.t. y ≥ 0.

We denote the optimum of the dual program byOPT ∗, and observe that Eq. (6) shows thatOPT ∗ ≥
OPT . Strong duality for convex programs shows the following proposition holds.

Proposition 22 Strong duality holds, i.e. OPT ∗ = OPT .

Proof Since all the constraints in the primal are affine, Slater’s condition for strong convex dual-
ity (as in Rockafellar (1970)) immediately shows that OPT ∗ = OPT . We provide an alternate
proof, which also illustrates some ideas that will be useful later. Observe that L(x, y) : [−1, 1]n ×
[0,∞)m → R is continuous and concave on [−1, 1]n for each y ∈ [0,∞)m, and is continuous and
convex on [0,∞)m for each x ∈ [−1, 1]n. Therefore, we have

OPT ∗ = inf
y≥0

max
x∈[−1,1]n

L(x, y) = max
x∈[−1,1]n

inf
y≥0

L(x, y)

= max
x feasible for primal

inf
y≥0

L(x, y) = max
x feasible for primal

L(x, 0) = OPT,

where in the second equality we have used Sion’s generalization of Von Neumann’s minimax the-
orem (Sion, 1958), in the third equality we have used that if x is infeasible for the primal, then
infy≥0 L(x, y) = −∞ (by blowing up the weight of a violated constraint), and in the last equality,
we have used that infy≥0 L(x, y) = L(x, 0) for any feasible x.

B.2. Upper bound on F∗
D̃Q

via convex duality

Returning to our max-entropy program Cr,c,γ , observe that the dual program C∗r,c,γ is given by

inf

n∑
i=1

H

(
1 + xi(y)

2

)
−

m∑
j=1

yj

(
n∑
k=1

aj,kxk(y)− bj

)
s.t. y ≥ 0,

where m = 4s; for all j ∈ [s], aj,i = 1i∈Rj , as+j,i = −1i∈Rj , a2s+j,i = 1i∈Cj , a3s+j,i = −1i∈Cj ;
for all j ∈ [s], bj = rj + γn, bs+j = −rj + γn, b2s+j = cj + γn, b3s+j = −cj + γn. We will find
it more convenient to work with a modified version of the dual program in which y is also bounded
from above. Accordingly, we define the program C∗r,c,γ,K (with m, aj,i and bj as above):

inf

n∑
i=1

H

(
1 + xi(y)

2

)
−

m∑
j=1

yj

(
n∑
k=1

aj,kxk(y)− bj

)
s.t.

∀j ∈ [m] : 0 ≤ yj ≤ K/γ.

The next lemma is the replacement for strong duality that we will use in this setup.

Lemma 23 Let O∗r,c,γ,K denote the optimum of the program C∗r,c,γ,K . Then,

Or,c,γ ≤ O∗r,c,γ,K ≤ max {Or,c,2γ ,−(K − 1)n} .
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Proof The first inequality is immediate from Eq. (6). For the second inequality, we begin by noting
that

max
x infeasible for Cr,c,2γ

min
y∈[0,K/γ]m

L(x, y) ≤ −(K − 1)n. (7)

Indeed, if x is infeasible for Cr,c,2γ , then (aj0 .x − bj0) ≥ γn for some j0 ∈ [m], and taking
y = (y1, . . . , ym) with yi = 1i=j0K/γ gives the desired inequality, since for any p we haveH(p) ≤
H(1/2) = log 2 < 1. Thus, we have

O∗r,c,γ,K = min
y∈[0,K/γ]m

max
x∈[−1,1]n

L(x, y)

= max
x∈[−1,1]n

min
y∈[0,K/γ]m

L(x, y)

≤ max

{
max

x feasible for Cr,c,2γ
L(x, 0), max

x infeasible for Cr,c,2γ
min

y∈[0,K/γ]m
L(x, y)

}
≤ max {Or,c,2γ ,−(K − 1)n} ,

where we have used the generalized minimax theorem in the second line and Eq. (7) in the last line.

Similarly, we can define the corresponding program C(Q)∗r,c,γ,K with optimum O(Q)∗r,c,γ,K , and
note that by Lemma 23,

O(Q)r,c,γ ≤ O(Q)∗r,c,γ,K ≤ max {O(Q)r,c,2γ ,−(K − 1)q} . (8)

The next lemma records the relation between O(Q)∗r,c,γ,K and O∗r,c,γ,K that we will need.

Lemma 24 n
qO(Q)∗r,c,γ,K ≤ O∗r,c,γ,K + 2nαγs1/2 with probability at least 1− 2 exp

(
−α2γ4q

8K2s

)
.

Proof Let y∗ denote the optimizer of C∗r,c,γ,K , so that

O∗r,c,γ,K =

n∑
i=1

H

σ
−2

m∑
j=1

y∗jaj,i

− m∑
j=1

y∗j

 n∑
k=1

aj,k tanh

− m∑
j=1

y∗jaj,k

− bj
 .

Moreover, by definition, we have

O(Q)∗r,c,γ,K ≤
∑
i∈Q

H

σ
−2

m∑
j=1

y∗jaj,i

− m∑
j=1

y∗j

∑
k∈Q

aj,k tanh

− m∑
j=1

y∗jaj,k

− q

n
bj

 .

Finally, we rewrite

m∑
j=1

y∗j
∑
k

aj,k tanh

− m∑
j=1

y∗jaj,k

 =
∑
k

m∑
j=1

y∗jaj,k tanh

− m∑
j=1

y∗jaj,k

 ,
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and observe that by Hoeffding’s inequality, the following holds:

∑
i∈Q

H

σ
−2

m∑
j=1

y∗jaj,i

 ≤ q

n

n∑
i=1

H

σ
−2

m∑
j=1

y∗jaj,i

+ qαγs1/2

∑
k∈Q

m∑
j=1

y∗jaj,k tanh

− m∑
j=1

y∗jaj,k

 ≥ q

n

n∑
k=1

m∑
j=1

y∗jaj,k tanh

− m∑
j=1

y∗jaj,k

− qαγs1/2,

except with probability at most 2 exp
(
−α2γ4q

8K2s

)
.

We need one final lemma before we can prove Proposition 19.

Lemma 25 Let 2αγs1/2 < K−1. Then, except with probability at most 2 exp(−α2γ4q/8K2s) exp(2s log(2/γ))
over the choice of Q, the following holds:

1. I(Q)γ,1 ⊆ Iγ,2,

2. for all (r, c) ∈ I(Q)γ,1, nqO(Q)r,c,γ ≤ Or,c,2γ + 2nαγs1/2, and

3. n
q max(r,c)∈I(Q)γ,1 F∗(Q)r,c,γ ≤ max(r,c)∈Iγ,2 F∗r,c,2γ + 2nαγs1/2.

Proof By Lemma 23, Eq. (8) and Lemma 24, it follows that for any particular (r, c) ∈ Isγ × Isγ ,

n

q
O(Q)r,c,γ ≤ max {Or,c,2γ ,−(K − 1)n}+ 2nαγs1/2 (9)

except with probability at most 2 exp(−α2γ4q/8K2s). Since |Iγ | ≤ γ−1 + 1, it follows by the
union bound that Eq. (9) holds simultaneously for all (r, c) ∈ Isγ × Isγ except with probability at
most 2 exp(−α2γ4q/8K2s) exp(2s log(2/γ)). We claim that whenever this happens, 1., 2. and 3.
hold.

For 1., note that if (r, c) /∈ Iγ,2, then Or,c,2γ = −∞. Therefore, Eq. (9), along with the
assumption that 2αγs1/2 < K − 1 implies that

n

q
O(Q)r,c,γ ≤ −(K − 1)n+ 2nαγs1/2 < 0,

which shows that (r, c) /∈ I(Q)γ,1. In particular, if (r, c) ∈ I(Q)γ,1, then Or,c,2γ ≥ 0 so that
max{Or,c,2γ ,−(K − 1)n} = Or,c,2γ . With this, 2. follows immediately from Eq. (9). Finally, 3.
follows from 2., along with the observation that nq

∑s
i=1 r

′
ic
′
id̃i =

∑s
i=1 ricidi.

Proof [Proof of Proposition 19] By conclusion 3. of Lemma 25 (with K = 2), along with Proposi-
tion 18 and Eq. (4), it follows that except with probability at most 2 exp(−α2γ4q/32s) exp(2s log(2/γ)),
we have:

n

q
F∗
D̃Q
≤ n

q
max

(r,c)∈I(Q)γ,1
F∗(Q)r,c,γ + 2nαγs1/2

≤ max
(r,c)∈Iγ,2

F∗r,c,2γ + 4nαγs1/2

≤ F∗D + 8nαγs1/2.
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By Lemma 20, except with probability at most exp(−2α2γ2sq)+4s exp(−2γ2q), we have that
n
qF
∗
D̃Q
≥ F∗D − 3αγns1/2. The union bound completes the proof.

Appendix C. Proof of Theorem 8

Throughout this section, J will denote the matrix of interaction strengths of an Ising model on the
vertex set [n], Q will denote a random subset of [n] of size q, and J̃Q will denote the restriction of
J̃ := n

q J to Q × Q. We will denote the variational free energy corresponding to J by F∗, and the
variational free energy corresponding to J̃Q byF∗Q. Moreover, we fix ε > 0 and a cut decomposition
J = D(1) + · · ·+D(s) +W with parameter ε, as guaranteed by Theorem 12. We will let D denote
D(1) + · · ·+D(s) and let D̃Q denote the restriction of the matrix D̃ := n

qD to Q×Q.

Lemma 26 If q ≥ 128000/ε6, then with probability at least 39/40, we have∣∣∣F∗Q −F∗D̃Q∣∣∣ ≤ q‖J‖F (16ε+ 640ε2ε−1 + 20ε
)

+ 40ε2nq‖J‖∞

Proof We use Theorem 16 with r = 2 and G = J̃ − D̃. By Theorem 12 and Remark 13, we can
take ‖G‖∞7→1 ≤ 4εn

2

q ‖J‖F , M ≤ n
q ‖J‖∞ + 16

εq ‖J‖F , and ‖G‖F ≤ n
q ‖J‖F . Therefore, letting

B := J̃Q − D̃Q, we get that with probability at least 39/40,

‖B‖∞7→1 ≤ 16εq‖J‖F + 640ε2qε−1‖J‖F + 20εq‖J‖F + 40ε2nq‖J‖∞.

Now, a direct application of Lemma 15 completes the proof.

Proof [Proof of Theorem 8] By applying Proposition 19 with q = C log(1/ε)/ε8, α = 4 max{‖J‖F , 100/C},
s = 16/ε2 and γ = ε, where C is some constant which is at least 128000, we see that except with
probability at most 1/40, ∣∣∣∣F∗D − n

q
F∗
D̃Q

∣∣∣∣ ≤ 128εmax{‖J‖F , 100/C}n.

Further, by applying Lemma 26 with q as above and ε = ε, we get that except with probability at
most 1/40, ∣∣∣∣nqF∗D̃Q − n

q
F∗Q
∣∣∣∣ ≤ 676ε‖J‖Fn+ 40ε2n2‖J‖∞.

Finally, since |F∗ −F∗D| ≤ 4ε‖J‖Fn, the triangle inequality and union bound complete the proof.

Appendix D. Proof of Theorem 1

We continue to use the notation from the previous section.
Proof From Theorem 8, we have∣∣∣∣F∗ − n

q
F∗Q
∣∣∣∣ ≤ 2000εn (‖J‖F + εn‖J‖∞ + ω/q) .
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Thus, it only remains to bound |F − F∗| and |FQ − F∗Q|. Recall from the definition of variational
free energy that F − F∗ is always nonnegative so we just need one-sided bounds. We use the
following Lemma from (Jain et al., 2018), which is equivalent to Theorem 7, but more convenient
in our situation:

Lemma 27 (Lemma 3.4 of (Jain et al., 2018)) For any ε > 0,

F − F∗ ≤ εn‖J‖F + 105 log(e+ 1/ε)/ε2.

To apply this to bound to FQ −F∗Q, we observe that

E[‖J̃Q‖2F ] = ‖J‖2F

so by Markov’s inequality,
‖J̃Q‖F ≤ 8‖J‖F

with probability at least 39/40. Recall that ω = log(1/ε)/ε8. Applying Lemma 27 with ε1 = 10ε2

to bound both FQ −F∗Q and F − F∗, and using the triangle inequality, we then see that

|F − n

q
FQ| ≤ 4000εn (‖J‖F + εn‖J‖∞ + ω/q)

Appendix E. Proof of Theorem 4

Proof The proof is essentially same as that of Theorem 1 except that we use a generalized version
of the weak regularity lemma for tensors, as well as a more general bound on the error of the mean-
field approximation:

Theorem 28 (Alon et al. (2003)) Let J be an arbitrary k-dimensional matrix on X1 × · · · × Xk,
where we assume that k ≥ 1 is fixed. Let N := |X1| × · · · × |Xk| and let ε > 0. Then, in
time 2O(1/ε2)O(N) and with probability at least 0.99, we can find a cut decomposition of width
at most 4/ε2, error at most ε

√
N‖J‖F , and the following modified bound on coefficient length:∑

i |di| ≤ 2‖J‖F /ε
√
N , where (di)

s
i=1 are the coefficients of the cut arrays.

Theorem 29 (Jain et al. (2018)) Fix an order r Markov random field J on n vertices. Let ν :=
arg minν KL(ν||P ), where P is the Boltzmann distribution and the minimum ranges over all prod-
uct distributions. Then,

KL(ν||P ) = F − F∗ ≤ 2000r max
1≤d≤r

d1/3nd/3‖J=d‖
2/3
F log1/3(d1/3nd/3‖J=d‖

2/3
F + e).

The reduction to generalized cut arrays still works: we use the generalized regularity lemma to
decompose each of J=1, . . . , J=r and then use Theorem 16, taking the union bound for d from 1 to r;
in order to boost the success probability of each application to 1−O(1/r), it is more than sufficient
to lose a multiplicative factor of r in the bound (refer to the proof in (Alon et al., 2002)). From
there, as before, we reduce the problem to the maxima of convex programs by fixing the values of
r(x), c(x) up to constant precision, and then the crucial analysis of convex duality works as before
because we still get a max-entropy problem for a product distribution with linear constraints.
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Appendix F. Estimating the Magnetization from Free Energies

Theorem 30 Consider an Ising model

Pr[X = x] :=
1

Z
exp{

∑
i,j

Ji,jxixj +
∑
i

hixi}

Consider also the perturbed models where

Pr
h

[X = x] :=
1

Z
exp{

∑
i,j

Ji,jxixj +
∑
i

(hi + h)xi}

and let mh denote the expected total magnetization for Prh. Then, for any ε, ν > 0, supposing we
have an oracle to compute free energies within error εν for all perturbed models with |h| ≤ ν, we
can find an ε additive approximation to mh, for some h with |h| < ν, while making only 3 queries
to the oracle.

Consider the dense case, where we can estimate the free enegy density using a constant size sample.
There is an easy lower bound showing that one cannot, with a constant number of queries, approxi-
mate the magnetization for the exact model for every model, so that the extra h is indeed needed in
the above statement. This is related to the fact that “symmetry breaking” is a global phenomenon.
Proof It is well known that one can express the moments of spin systems in terms of derivatives
of the log partition function. In particular, for the Ising model Pr[X = x] = 1

Z exp{
∑

i,j Ji,jxixj+∑
i hixi}, consider the family of perturbed Ising models defined by Prh[X = x] = 1

Zh
exp{

∑
i,j Ji,jxixj+∑

i(hi + h)xi}. Then, for any h0, we have

∂ logZh
∂h

(h0) =
1

Zh0

∂

∂h

 ∑
x∈{±1}n

exp{
∑
i,j

Ji,jxixj +
∑
i

(hi + h)xi}


=

∑
x∈{±1}n

1

Zh0

exp{
∑
i,j

Ji,jxixj +
∑
i

(hi + h0)xi}

(∑
i

xi

)

= Eh0 [
∑
i

xi]

where Eh0 denotes the expectation with respect to the Ising distribution perturbed by h0. In par-
ticular, ∂ logZh

∂h (0) equals the expected total magnetization of the Ising model we started out with.
Moreover, since by Jensen’s inequality,

∂2 logZh
∂h2

(h0) =
∂

∂h
|h=h0

∑
x∈{±1}n

1

Zh0

exp{
∑
i,j

Ji,jxixj +
∑
i

(hi + h0)xi}

(∑
i

xi

)

= Eh0 [(
∑
i

xi)
2]− (Eh0 [

∑
i

xi])
2

≥ 0
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we see that logZ is convex in h; in particular, for any h0 ∈ R and any δ > 0, we have

logZ(h0)− logZ(h0 − δ)
δ

≤ ∂ logZ

∂h
(h0) ≤ logZ(h0 + δ)− logZ(h0)

δ
Finally,

• By the mean value theorem, the LHS /RHS of the equation above are given by Eh′ [
∑

i xi]
and Eh′′ [

∑
i xi], where h0 − δ < h′ < h0 < h′′ < h0 + δ.

• By taking δ = ν and using the oracle to compute the free energies within additive error εν,
we can evaluate the LHS and RHS up to the desired error.

We remark that:

• Unfortunately, it is impossible to approximate in constant time the magnetization at the spec-
ified value of the external fields. For example, consider an Ising model on 4n vertices, where
Ji,j = C for some large C if i, j ≤ 2n and Ji,j = 0 otherwise. Let hi = 1 if i ∈ [2n+ 1, 3n]
and hi = −1 if i ∈ [3n + 1, 4n]. We set all the other hi to 0 except that we set hI = X ,
where I is uniformly chosen in [1, 2n] and X is uniformly chosen in {0,±1}. Note that this
is a dense Ising model as per our definition. Note also that on the nodes [1, 2n] we have the
Ising model on the complete graph with one (random) node having external field.

It is easy to see that if X = 0, the magnetization is 0. The fact that C is a large constant
implies that conditioning on one vertex taking the value ± results in a dramatic change in
magnetization on the vertices [1, 2n]. In particular, the magnetization is of order n ifX = +1
and is of order−n ifX = −1. It thus follows that we need Ω(n) queries in order to determine
the magnetization in this case. We note that this example corresponds to a phase transition –
in particular, for every ε > 0, if h′ > ε then Eh′ [

∑
i xi] = Ω(n) for all values of X and I .

See (Ellis, 2007) for general references for the Ising model on the complete graph.

• The results for computing the magnetization readily extend to other models. For example, for
Potts models, we can compute for each color the expected number of nodes of that color (up
to error ε‖J‖1 and for an ε close external field). Similarly, it is easy to check we can com-
pute other statistics at this accuracy. For instance, for the Ising model, we can approximate
E[
∑
aixi] if nη‖a‖∞ ≤ ‖a‖1 for some η > 0.

Appendix G. Sample complexity lower bound

In this section, we will provide a lower bound on the number of vertices which need to be sampled
in order to provide an approximation of the quality guaranteed by Theorem 1. We will find it
convenient to make the following definition.

Definition 31 An Ising model is ∆-dense if ∆‖J‖∞ ≤ ‖J‖1n2 .

For the rest of this section, we will focus on ∆-dense ferromagnetic Ising models for which
n2 ≤ ‖J‖1 ≤ n3. Note that for such Ising models,

2000εn
(
‖J‖F + εn‖J‖∞ + (ε3n)−1/3‖J‖2/3F log1/3(n‖J‖F + e) + 1

)
≤ 5000

ε√
∆
‖J‖1,
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provided that n−1/4 ≤ ε ≤
√

∆.

Theorem 32 Fix ε,∆ ∈ (0, 1/4). For any (possibly randomized) algorithm A which probes at
most k := 1

8ε∆ entries of J before returning an estimate to F , there exists a ∆-dense input instance
J such that A makes error at least ε‖J‖1/4 with probability at least 1/4.

Before proving this theorem, let us show how it gives the desired sample complexity lower
bound.
Proof [Proof of Theorem 2] Let ε > 0. Applying Theorem 32 with ∆ = 1/8 and Cε shows that
there exists a ∆-dense instance J such that any algorithmA which samples at most 1/Cε entries of
J before returning an estimate to F makes an error of at least Cε‖J‖1/4 with probability at least
1/4. Since any algorithm which samples q vertices from [n] can probe at most q2 entries of J , this
applies, in particular, to any algorithm which samples at most 1/

√
Cε vertices from [n]. Taking

C = 60000 gives the desired conclusion.

Proof [Proof of Theorem 32] We prove the claim by reduction to a hypothesis testing problem.
Specifically, we show that there exist two different dense Ising models JM and J ′M with free energies
that are at least ε‖J ′M‖1/2-far apart (where ‖JM‖ > ‖J ′M‖) such that no algorithm which makes
only k probes can distinguish between the two with probability greater than 3/4. This immediately
implies that for any algorithm A to estimate F and for at least one of the two inputs, A must
make error at least ε‖J ′M‖1/4 with probability at least 1/4 when given this input — otherwise, we
could use the output of A to distinguish the two models with probability better than 3/4, simply by
checking which F the output is closer to.

Let n be an instance size to be taken sufficiently large, and consider two ∆-dense ferromagnetic
Ising models defined as follows:

• JM , for which the underlying graph is the complete graph on n vertices, ε∆
(
n
2

)
many of the

edges are randomly selected to have weight M∆ , and the remaining (1 − ε∆)
(
n
2

)
many edges

are assigned weight M . Note that since ‖JM‖∞ = M
∆ and ‖JM‖1 = 2(ε∆

(
n
2

)
M
∆ + (1 −

ε∆)
(
n
2

)
M) = 2(1 + ε(1−∆))M

(
n
2

)
, this model is indeed ∆-dense for n sufficiently large.

• J ′M , for which the underlying graph is the complete graph on n vertices and all edges have
weight M .

We denote the free energies of these models by FM and F ′M respectively. It is easily seen that

limM→∞
FM
M = limM→∞

‖JM‖1
M = 2(1+ε(1−∆))

(
n
2

)
≥ 2(1+3ε/4)

(
n
2

)
, and that limM→∞

F ′M
M =

limM→∞
‖J ′

M‖1
M = 2

(
n
2

)
. Therefore, for M sufficiently large, it follows that |FM − F ′M | ≥

(ε/2)‖J ′
M‖1.

Now, we show that no algorithmA can distinguish between JM and J ′M with probability greater
than 3/4 with only k probes. We fix a 50/50 split between JM and J ′M on our input J to algorithmA.
Since the randomized algorithm A can be viewed as a mixture over deterministic algorithms, there
must exist a deterministic algorithm A′ with success probability in distinguishing JM from J ′M at
least as large asA. Let (u1, v1) be the first edge queried byA′, let (u2, v2) be the next edge queried
assuming Ju1v1 = M , and define (u3, v3), . . . , (uk, vk) similarly (without loss of generality, the
algorithm uses all k of its available queries). Let E be the event that Ju1,v1 , . . . , Juk,vk are all equal
to M . Event E always happens under JM , and we see that Pr(E|J = J ′M ) ≥ 1 − k ε∆n(n−1)/2

n(n−1)/2−k ≥
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1 − 2kε∆ for n > 4k. Thus, the total variation distance between the observed distribution under
JM and J ′M is at most 2kε∆, so by the Neyman-Pearson lemma, we know A′ fails with probability
at least (1/2)(1− 2kε∆). Therefore for k ≤ 1

4ε∆ we see that A′ fails with probability at least 1/4,
which proves the result.
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