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Abstract
In reinforcement learning (RL), problems with long planning horizons are perceived as very chal-
lenging. The recent advances in PAC RL, however, show that the sample complexity of RL does
not depend on planning horizon except at a superficial level. How can we explain such a differ-
ence? Noting that the technical assumptions in these upper bounds might have hidden away the
challenges of long horizons, we ask the question: can we prove a lower bound with a horizon de-
pendence when such assumptions are removed? We also provide a few observations on the desired
characteristics of the lower bound construction.
Keywords: reinforcement learning, sample complexity, planning horizon

1. Introduction

Reinforcement learning (RL) is a machine learning paradigm for sequential decision making, where
the agent takes actions to maximize cumulative rewards over multiple time steps (Sutton and Barto,
1998). Compared to its simpler form, known as contextual bandits, the full RL problem is more
challenging due to the notion of planning horizon: error propagates over time steps, and distri-
bution drifts as time elapses. In general, exploration and temporal credit assignment, which are
core challenges of RL, both become more difficult when the planning horizon is longer. Many
approaches, including hierarchical RL (Sutton et al., 1999) and reward shaping (Ng, 1999), are
proposed to effectively shrink planning horizons using side information.

While such intuitions are agreed upon widely, recent advances in RL theory seem to tell a very
different story. When the state and action spaces are finite and no function approximation is used
(“tabular RL”), recent works have closed the gap between some lower and upper bounds (e.g., Dann
and Brunskill, 2015; Azar et al., 2017). The achieved sample complexity / regret rates, however,
have effectively no dependence on planning horizon, apart from the superficial dependence due
to unnormalized total reward, non-stationary dynamics, counting steps instead of episodes, etc.
In addition, constructions in matching lower bounds clearly exhibit bandit structure, reflecting no
challenges from long planning horizons.

We believe explaining such a difference between theoretical results and practical intuitions is
very important. As we will argue, while the matching upper and lower bounds have no horizon de-
pendence, some technical assumptions in the upper bound might have hidden away the challenges
of long horizons. Once they are removed, a horizon-dependent lower bound is no longer excluded.
Therefore, the question we ask here is whether we can actually prove such a lower bound. Besides
resolving the aforementioned difference, the lower bound will also serve as a foundation for theo-
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retical analyses of e.g., hierarchical RL and reward shaping: We will only be able to theoretically
show the benefit of reducing planning horizon if vanilla RL has a nontrivial dependence on it.

2. Definitions, Problems, and Related Results

For concreteness we adopt the PAC framework for episodic RL for most of this document. The
question can also be meaningfully asked under regret minimization in episodic and average-reward
settings, which we will briefly touch on in Section 2.4. We welcome resolutions of our problem in
any reasonable formulations as long as they shed light on the conceptual question raised earlier.

Let M = (S,A, P,R,H, µ) be an episodic Markov Decision Process (MDP), where S is a
finite state space of size S, A is a finite action space of size A, P : S ×A → ∆(S) is the transition
function, R : S × A → ∆(R) is the reward function, H ∈ N is the horizon (episode length), and
µ ∈ ∆(S) is the initial state distribution. An episode s1, a1, r1, s2, . . . , sH , aH , rH is rolled out
as s1 ∼ µ, r1 ∼ R(s1, a1), s2 ∼ P (s1, a1), . . . , sH ∼ P (sH−1, aH−1), rH ∼ R(sH , aH), where
a1, . . . , aH are chosen by the agent. Given any non-stationary policy π : S × [H]→ A which takes
action ah based on the current state sh ∈ S and time step h ∈ [H], we measure its performance by
the expected total rewards vπ := Ea1:H∼π[

∑H
h=1 rh]. Let v? := maxπ:S×[H]→A v

π.
As a regularity assumption, let rh ≥ 0 and

∑H
h=1 rh ∈ [0, 1] hold almost surely. While this may

seem stronger than the usual assumption in literature (rh ∈ [0, 1] and hence
∑H

h=1 rh ∈ [0, H]), it
is actually substantially weaker, as we will explain later. We say an algorithm PAC-learns an MDP
if w.p. at least 1 − δ, the algorithm can identify a policy π̂ such that vπ̂ ≥ v? − ε after collecting
poly(S,A,H, 1/ε, 1/δ) episodes.1 This polynomial is the sample complexity of the algorithm.

Problem Statement Can we prove a lower bound that depends polynomially in H? We conjec-
ture that Ω(SAH

ε2
) is the right scaling, as opposed to the known Ω(SA

ε2
) lower bound. Showing an

Ω(SAH
α

ε2
) lower bound for any α ∈ (0, 1) would also be interesting and positive progress.

2.1. Issues with the known upper bounds

Dann and Brunskill (2015) proposed UCFH, which has a sample complexity of Õ(S
2A
ε2

log 1
δ ) with

no dependence on H .2,3 However, the following technical assumptions of the upper bound might
have hidden the challenges of long horizons:

Reward Uniformity The regularity assumption of Dann and Brunskill (2015) is the standard
rh ∈ [0, 1] (and hence

∑H
h=1 rh ∈ [0, H]). To remove the dependence on H due to reward scaling,

we should normalize their cumulative reward to [0, 1] by dividing reward by H . Now compare their
assumption (after normalization) to ours:
Standard assumption (e.g., Dann and Brunskill, 2015): rh ∈ [0, 1

H ], and hence
∑H

h=1 rh ∈ [0, 1].
Our assumption (e.g., Krishnamurthy et al., 2016): rh ≥ 0, and

∑H
h=1 rh ∈ [0, 1].

It is clear that our assumption is strictly weaker, despite that it might seem more restrictive at the
first glance. (A key subtlety here is on the interpretation of ε: only after normalization does ε

1. There is a slightly different notion of PAC for RL, which counts the number of episodes where the agent’s policy
is more than ε suboptimal (e.g., Dann and Brunskill, 2015). In fact, the lower bound given by Dann and Brunskill
(2015) also applies to our PAC model, and in general we believe such a difference is minor to our discussion here.

2. Õ suppresses poly-logarithmic dependence on S,A,H , 1/ε, log 1
δ

. Such dependence is also ignored in our discussion
(e.g., we want to show Ω(Hα) dependence as opposed to Ω(logH)).

3. The original bound has H2 dependence; see the next paragraph for an explanation of the difference.
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represent the relative suboptimality gap (Kakade, 2003, Chapter 2.2.3).) In fact, requiring rh ∈
[0, 1

H ] effectively imposes a uniformity requirement on rewards, and cannot model environments
with sparse rewards—for which we believe long horizons are most challenging—in a tight manner.

Asymptotics The other assumption they have is ε ∈ [0, 1
H ] (after normalization). For some of

our motivating scenarios, such an asymptotic situation is uninteresting: for example, the horizon of
a control task can be, say, H ∼ 106, when we control motors that respond in millisecond intervals
(“flat RL”), but the horizon may reduce significantly if pre-defined macro actions are available
(“hierarchical RL”). In this case, learning a policy 10−6 close to optimal is unnecessary, and to
show the advantage of hierarchical RL we are interested in the regime of ε� 1/H .

2.2. Existing lower bounds do not yield H dependence

The lower bound construction given by Dann and Brunskill (2015) is as follows: the agent chooses
an action in the first step, transitions to either a good state or a bad state with action-dependent
probabilities, and then loops in the good / bad state for the remaining time steps receiving either +1
or 0 reward per time step. Once we normalize total reward, the construction is exactly a multi-armed
bandit with Bernoulli distributed rewards, which obviously will not yield any H dependence.

Another type of lower bound constructions in literature utilize lazy Markov chains (Jaksch et al.,
2010): typically there are a good state and a bad state, and under all actions the agent will stay in
its current state and only transition to the other state with small probabilities (see also Osband and
Van Roy, 2016). Lattimore and Hutter (2012) considered batch-mode RL where the agent gets
data from all state-action pairs in a synchronous manner. They used lazy-chain style constructions
to show that the number of samples needed is Ω(H).4 In the episodic setting, however, such a
dependence is cancelled by the episode length. One fundamental reason that such a construction
does not lead to Ω(Hα) lower bound is the following: The small probabilities of switching states
are set asO( 1

H ); AsH increases, the MDP simply becomes lazier, and can be emulated by sampling
episodes from an MDP with smaller H and adding uninformative “elapsing” time steps.

When S is very large or even continuous, there exists lower bounds that are exponential in H
even with compact function approximation (Krishnamurthy et al., 2016). However, such results
assume unbounded states so the exponential can be explained away by S.

2.3. Beyond existing constructions

We make a few more observations on the necessary characteristics of the desired lower bound con-
struction. As a first step, to show an indisputable dependence, we would like to construct a family
of MDPs where S,A, 1/ε� H and show that the sample complexity is Ω(Hα) for α > 0.

Our first observation is that if S and A are constant and optimal policies are stationary, then
there exists an O( 1

ε2
) upper bound: Since there are O(1) stationary policies, we can simply evaluate

them one-by-one via Monte-Carlo and choose the best. This should not be surprising: It is known
that policy search ignores the temporal structure and hence does not incur as much dependence on
horizon as dynamic programming, and policy search is effective when the policy space is simple.
Unfortunately, all the known constructions (see Section 2.2) yield stationary optimal policies.

To break this argument, one could try to make the optimal policies non-stationary. In particular,
if an optimal policy switches from one stationary policy to another after h0 ∈ [H] steps, where h0

4. Their result is in the discounted setting with discount factor γ, and 1
1−γ corresponds to H in the episodic setting.
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varies in the family of MDPs of interest, the upper bound argument will be broken as there areHAS

“1-switch” non-stationary policies. In fact, we find that such a situation can be created by adding
a small amount of instantaneous reward to the lazy-chain style constructions. The difficulty is that
the algorithm may not need to know the switching timing precisely. In the cases we have inspected,
the algorithm can basically discretize [H] into intervals of length O(εH) and guarantee that one of
those O(1/ε) switching timings is ε-optimal. Thus, the construction is still subject to a variant of
the Monte-Carlo upper bound argument.

2.4. Alternative formulations

The results for regret minimization are in similar situations. The lower and upper bounds for the
episodic setting are closed under reward uniformity and asymptotic assumptions (Azar et al., 2017).
In the average-reward case, the notion of horizon is replaced by the MDP’s diameter, D; here the
lower and the upper bounds still have a gap of

√
D (Jaksch et al., 2010; Agrawal and Jia, 2017).

We also welcome resolution of our problem in more realistic and challenging settings beyond
tabular RL, such as rich observations and function approximation (Krishnamurthy et al., 2016; Jiang
et al., 2017). While a richer setting enables more powerful lower bounds, existing work have not
leveraged the power yet (e.g., Jiang et al., 2017, Thm 6 still uses a tabular construction).
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References
Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case regret bounds. In

Advances in Neural Information Processing Systems, 2017.
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