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Abstract
Nesterov’s accelerated gradient descent (AGD), an instance of the general family of “momentum
methods,” provably achieves faster convergence rate than gradient descent (GD) in the convex set-
ting. While these methods are widely used in modern nonconvex applications, including training of
deep neural networks, whether they are provably superior to GD in the nonconvex setting remains
open. This paper studies a simple variant of Nesterov’s AGD, and shows that it escapes saddle
points and finds a second-order stationary point in Õ(1/ε7/4) iterations, matching the best known
convergence rate, which is faster than the Õ(1/ε2) iterations required by GD. To the best of our
knowledge, this is the first direct acceleration (single-loop) algorithm that is provably faster than
GD in general nonconvex setting—all previous nonconvex accelerated algorithms rely on more
complex mechanisms such as nested loops and proximal terms. Our analysis is based on two
key ideas: (1) the use of a simple Hamiltonian function, inspired by a continuous-time perspec-
tive, which AGD monotonically decreases on each step even for nonconvex functions, and (2) a
novel framework called improve or localize, which is useful for tracking the long-term behavior of
gradient-based optimization algorithms. We believe that these techniques may deepen our under-
standing of both acceleration algorithms and nonconvex optimization.

1. Introduction

Nonconvex optimization problems are ubiquitous in modern machine learning. While it is NP-hard
to find global minima of a nonconvex function in the worst case, in the setting of machine learning
it has proved useful to consider a less stringent notion of success, namely that of convergence to a
first-order stationary point (where ∇f(x) = 0). Gradient descent (GD), a simple and fundamental
optimization algorithm that has proved its value in large-scale machine learning, is known to find
an ε-first-order stationary point (where ‖∇f(x)‖ ≤ ε) in O(1/ε2) iterations (Nesterov, 1998), and
this rate is sharp (Cartis et al., 2010). Such results, however, do not seem to address the practical
success of gradient descent; first-order stationarity includes local minima, saddle points or even
local maxima, and a mere guarantee of convergence to such points seems unsatisfying. Indeed,
architectures such as deep neural networks induce optimization surfaces that can be teeming with
such highly suboptimal saddle points (Dauphin et al., 2014). It is important to study to what ex-
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tent gradient descent avoids such points, particularly in the high-dimensional setting in which the
directions of escape from saddle points may be few.

This paper focuses on convergence to a second-order stationary point (where ∇f(x) = 0 and
∇2f(x) � 0). Second-order stationarity rules out many common types of saddle points (strict
saddle points where λmin(∇2f(x)) < 0), allowing only local minima and higher-order saddle
points. A significant body of recent work, some theoretical and some empirical, shows that for
a large class of well-studied machine learning problems, neither higher-order saddle points nor
spurious local minima exist. That is, all second-order stationary points are (approximate) global
minima for these problems. Choromanska et al. (2014) and Kawaguchi (2016) present such a result
for learning neural networks, Bandeira et al. (2016); Mei et al. (2017) for synchronization and
MaxCut, Boumal et al. (2016) for smooth semidefinite programs, Bhojanapalli et al. (2016) for
matrix sensing, Ge et al. (2016) for matrix completion, and Ge et al. (2017) for robust PCA. These
results strongly motivate the quest for efficient algorithms to find second-order stationary points.

Hessian-based algorithms can explicitly compute curvatures and thereby avoid saddle points (see,
e.g., Nesterov and Polyak, 2006; Curtis et al., 2014), but these algorithms are computationally in-
feasible in the high-dimensional regime. GD, by contrast, is known to get stuck at strict saddle
points (Nesterov, 1998, Section 1.2.3). Recent work has reconciled this conundrum in favor of
GD; Jin et al. (2017), building on earlier work of Ge et al. (2015), show that a perturbed version
of GD converges to an ε-relaxed version of a second-order stationary point (see Definition 6) in
Õ(1/ε2) iterations. That is, perturbed GD in fact finds second-order stationary points as fast as
standard GD finds first-order stationary points, up to logarithmic factors in dimension.

On the other hand, GD is known to be suboptimal in the convex case. In a celebrated paper, Nes-
terov (1983) showed that an accelerated version of gradient descent (AGD), which takes “momen-
tum steps” in addition to gradient steps, finds an ε-suboptimal point (see Section 2.2) in O(1/

√
ε)

steps, while gradient descent takes O(1/ε) steps. The basic idea of momentum acceleration has
been used to design faster algorithms for a range of other convex optimization problems (Beck and
Teboulle, 2009; Nesterov, 2012; Lee and Sidford, 2013). We will refer to this general family as
“momentum-based methods.” Such results have focused on the convex setting.

In the nonconvex setting, while there has been recent work on designing accelerated algorithms
that converge faster than GD (see, e.g., Agarwal et al., 2017; Carmon et al., 2016, 2017), these pro-
posals rely on more complex mechanisms, including nested loops and the incorporation of proximal
terms to achieve the faster rate. In contrast, empirically, Nesterov’s classical, single-loop AGD and
the related family of “momentum-based algorithms”—have been used successfully in modern large-
scale nonconvex applications, where they have been observed to perform better than GD (Sutskever
et al., 2013). Providing a theoretical understanding of the scope of this phenomenon, and its possi-
ble limitations, is an interesting and important open problem. We are thus led to ask the following
question:

Does Nesterov’s AGD (or a simple variant) yield faster convergence than GD in general
nonconvex setting?

This paper answers this question in the affirmative. We present a simple momentum-based
algorithm (PAGD for “perturbed AGD”) that finds an ε-second order stationary point in Õ(1/ε7/4)
iterations, faster than the Õ(1/ε2) iterations required by GD. The pseudocode of our algorithm is
presented in Algorithm 2.1 PAGD adds two algorithmic features to AGD (Algorithm 1):

1. See Section 3 for values of various parameters.
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Algorithm 1 Nesterov’s Accelerated Gradient Descent (x0, η, θ)
1: v0 ← 0
2: for t = 0, 1, . . . , do
3: yt ← xt + (1− θ)vt
4: xt+1 ← yt − η∇f(yt)
5: vt+1 ← xt+1 − xt

Algorithm 2 Perturbed Accelerated Gradient Descent (x0, η, θ, γ, s, r,T )
1: v0 ← 0
2: for t = 0, 1, . . . , do
3: if ‖∇f(xt)‖ ≤ ε and no perturbation in last T steps then
4: xt ← xt + ξt ξt ∼ Unif (B0(r))

}
Perturbation

5: yt ← xt + (1− θ)vt
6: xt+1 ← yt − η∇f(yt)

 AGD
7: vt+1 ← xt+1 − xt
8: if f(xt) ≤ f(yt) + 〈∇f(yt),xt − yt〉 − γ

2 ‖xt − yt‖2 then
9: (xt+1,vt+1)← Negative-Curvature-Exploitation(xt,vt, s)

}
Negative curvature
exploitation

• Perturbation (Lines 3-4): when the gradient is small, we add a small perturbation sampled
uniformly from a d-dimensional ball with radius r. The homogeneous nature of this pertur-
bation mitigates our lack of knowledge of the curvature tensor at or near saddle points.

• Negative Curvature Exploitation (NCE, Lines 8-9; pseudocode in Algorithm 3): when the
function is observed to have “a lot” of negative curvature along yt to xt direction, we simply
move x along this direction based on current momentum vt, and then reset v.

We note that both components are straightforward to implement and increase computation by a con-
stant factor. The perturbation idea follows from Ge et al. (2015) and Jin et al. (2017), while NCE is
inspired by Carmon et al. (2017). We note that the analysis of the NCE subroutine is rather straight-
forward (see Section 3 and Section 4.1 for more details); the main challenge of this paper is to
understand the behavior of perturbation and Nesterov’s AGD steps in the nonconvex setting. To the
best of our knowledge, PAGD is the first instance of a single-loop algorithm (meaning that it does
not require an inner loop of optimization of a surrogate function) that is provably faster than GD in
a general nonconvex setting.

1.1. Related Work

In this section, we review related work from the perspective of both nonconvex optimization and
momentum/acceleration. For clarity of presentation, when discussing rates, we focus on the de-
pendence on the accuracy ε and the dimension d while assuming all other problem parameters are
constant. Table 1 presents a comparison of the current work with previous work.

Convergence to first-order stationary points: Traditional analyses in this case assume only
Lipschitz gradients (see Definition 1). Nesterov (1998) shows that GD finds an ε-first-order sta-
tionary point in O(1/ε2) steps. Ghadimi and Lan (2016) guarantee that AGD also converges in
Õ
(
1/ε2

)
steps. Under the additional assumption of Lipschitz Hessians (see Definition 5), Carmon
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et al. (2017) propose NCE steps, and develop a new algorithm that converges in Õ
(
1/ε7/4

)
iter-

ations. We emphasize that while the analysis of the NCE step is rather straightforward, the main
challenge is to deal with the case when NCE is not triggered. Carmon et al. (2017) study a nested-
loop algorithm, repeatedly adding proximal terms to the objective in the inner loop and solving
the modified functions using AGD. When AGD is applied to these modified functions, they can
be analyzed similarly to the standard analysis in the convex case. In contrast, the current work
studies AGD in its original, single-loop form, in a general nonconvex setting, and develops a new
analysis based on a Hamiltonian perspective.

Convergence to second-order stationary points: All results in this setting assume Lipschitz
continuity of both gradient and Hessian. Classical approaches, such as cubic regularization (Nes-
terov and Polyak, 2006) and trust region algorithms (Curtis et al., 2014), require access to Hessians,
and are known to find ε-second-order stationary points in O(1/ε1.5) steps. However, the require-
ment of these algorithms to form the Hessian makes them infeasible for high-dimensional problems.
A second set of algorithms utilize only Hessian-vector products instead of the full Hessian. Such
products can be approximated by differentiating the gradients at two very close points, and in many
applications they can also be directly computed efficiently. Rates of Õ(1/ε7/4) have been estab-
lished for such algorithms with nested loops (Carmon et al., 2016; Agarwal et al., 2017; Royer and
Wright, 2017). Finally, in the realm of purely gradient-based algorithms, Ge et al. (2015) present
the first polynomial guarantees for a perturbed version of GD, and Jin et al. (2017) sharpen it to
Õ(1/ε2). For the special case of quadratic functions, O’Neill and Wright (2017) analyze the be-
havior of AGD around critical points and show that it escapes saddle points faster than GD, but it
does not address the setting of general nonconvex functions. Parallel to this work, Allen-Zhu and Li
(2017); Xu et al. (2017) also propose gradient-based algorithms achieving Õ(1/ε7/4) rate, but their
algorithms are also based on the framework of nested loops and repeatedly adding proximal terms,
similar to Carmon et al. (2016).

Acceleration: There is also a rich literature that aims to understand momentum methods; e.g.,
Allen-Zhu and Orecchia (2014) view AGD as a linear coupling of GD and mirror descent, Su et al.
(2016) and Wibisono et al. (2016) view AGD as the discretization of a second-order differential
equation, and Bubeck et al. (2015) view AGD from a geometric perspective. Most of this work
is tailored to the convex setting, and it is unclear and nontrivial to generalize the results to a non-
convex setting. There are also several papers that study AGD with relaxed versions of convexity—
see Necoara et al. (2015); Li and Lin (2017) and references therein for overviews of these results.

1.2. Main Techniques

Our results rely on the following three key ideas. To the best of our knowledge, the first two are
novel, while the third one was delineated in Jin et al. (2017).

Hamiltonian: A major challenge in analyzing momentum-based algorithms is that the objec-
tive function does not decrease monotonically as is the case for GD. To overcome this in the convex
setting, several Lyapunov functions have been proposed (Wilson et al., 2016). However these Lya-
punov functions involve the global minimum x?, which cannot be computed by the algorithm, and
is thus of limited value in the nonconvex setting. A key technical contribution of this paper is the
design of a function which is both computable and tracks the progress of AGD. The function takes
the form of a Hamiltonian:

Et := f(xt) +
1

2η
‖vt‖2 ; (1)
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Guarantees Simplicity Algorithm Iterations

First-order
Stationary Point

Nested-loop Carmon et al. (2017) Õ
(
1/ε7/4

)
Single-loop

GD (Nesterov, 1998) O(1/ε2)

AGD (Ghadimi and Lan, 2016) O(1/ε2)

Second-order
Stationary Point

Nested-loop
Carmon et al. (2016) Õ(1/ε7/4)

Agarwal et al. (2017) Õ(1/ε7/4)

Single-loop

Noisy GD (Ge et al., 2015) O(poly(d/ε))

Perturbed GD (Jin et al., 2017) Õ(1/ε2)

Perturbed AGD [This Work] Õ(1/ε7/4)

Table 1: Complexity of finding stationary points. Õ(·) ignores polylog factors in d and ε.

i.e., a sum of potential energy and kinetic energy terms. It is monotonically decreasing in the
continuous-time setting regardless of the convexity of f(·). This is not the case in general in the
discrete-time setting, a fact which requires us to incorporate the NCE step—see Section 4.1 for
more details. We note that monotonic decrease of the Hamiltonian, by itself, does not give any
convergence rate, which brings us to our second key technical contribution.

Improve or localize: This paper formalizes a simple but powerful framework for analyzing
long-term behavior of nonconvex optimization algorithms. This framework requires us to show that
for a given algorithm, either the algorithm makes significant progress or the iterates do not move
much. We call this the improve-or-localize phenomenon. For instance, when progress is measured
by function value, it is easy to show that for GD, with proper choice of learning rate, we have:

1

2η

t−1∑
τ=0

‖xτ+1 − xτ‖2 ≤ f(x0)− f(xt).

For AGD, a similar lemma can be shown by replacing the objective function with the Hamiltonian
(see Lemma 9). Once this phenomenon is established, we can conclude that if an algorithm does
not make much progress, it is localized to a small ball, and we can then approximate the objective
function by either a linear or a quadratic function (depending on smoothness assumptions) in this
small local region. Moreover, an upper bound on

∑t−1
τ=0 ‖xτ+1 − xτ‖2 lets us conclude that iter-

ates do not oscillate much in this local region (oscillation is a unique phenomenon of momentum
algorithms as can be seen even in the convex case). This gives us better control of approximation
error.

Coupling sequences for escaping saddle points: When an algorithm arrives in the neigh-
borhood of a strict saddle point, where λmin(∇2f(x)) < 0, all we know is that there exists a
direction of escape (the direction of the minimum eigenvector of ∇2f(x)); denote it by eesc. To
avoid such points, the algorithm randomly perturbs the current iterate uniformly in a small ball, and
runs AGD starting from this point x̃0. As in Jin et al. (2017), we can divide this ball into a “stuck
region,” Xstuck, starting from which AGD does not escape the saddle quickly, and its complement
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from which AGD escapes quickly. In order to show quick escape from a saddle point, we must show
that the volume of Xstuck is very small compared to that of the ball. Though Xstuck may be without
an analytical form, one can control the rate of escape by studying two AGD sequences that start
from two realizations of perturbation, x̃0 and x̃′0, which are separated along eesc by a small distance
r0. In this case, at least one of the sequences escapes the saddle point quickly, which proves that the
width of Xstuck along eesc can not be greater than r0, and hence Xstuck has small volume.

2. Preliminaries

In this section, we will review some well-known results on GD and AGD in the strongly convex
setting, and existing results on convergence of GD to second-order stationary points.

2.1. Notation

Bold upper-case letters (A,B) denote matrices and bold lower-case letters (x,y) denote vectors. For
vectors ‖·‖ denotes the `2-norm. For matrices, ‖·‖ denotes the spectral norm and λmin(·) denotes
the minimum eigenvalue. For f : Rd → R, ∇f(·) and ∇2f(·) denote its gradient and Hessian
respectively, and f? denotes its global minimum. We useO(·),Θ(·),Ω(·) to hide absolute constants,
and Õ(·), Θ̃(·), Ω̃(·) to hide absolute constants and polylog factors for all problem parameters.

2.2. Convex Setting

To minimize a function f(·), GD performs the following sequence of steps:

xt+1 = xt − η∇f(xt).

The suboptimality of GD and the improvement achieved by AGD can be clearly illustrated for the
case of smooth and strongly convex functions.

Definition 1 A differentiable function f(·) is `-smooth (or `-gradient Lipschitz) if:

‖∇f(x1)−∇f(x2)‖ ≤ ` ‖x1 − x2‖ ∀ x1,x2.

The gradient Lipschitz property asserts that the gradient can not change too rapidly in a small local
region.

Definition 2 A twice-differentiable function f(·) is α-strongly convex if λmin(∇2f(x)) ≥ α, ∀ x.

Let f∗ := miny f(y). A point x is said to be ε-suboptimal if f(x) ≤ f∗ + ε. The following
theorem gives the convergence rate of GD and AGD for smooth and strongly convex functions.

Theorem 3 (Nesterov (2004)) Assume that the function f(·) is `-smooth and α-strongly convex.
Then, for any ε > 0, the iteration complexities to find an ε-suboptimal point are as follows:

• GD with η = 1/`: O((`/α) · log((f(x0)− f∗)/ε))

• AGD (Algorithm 1) with η = 1/` and θ =
√
α/`: O(

√
`/α · log((f(x0)− f∗)/ε)).

The number of iterations of GD depends linearly on the ratio `/α, which is called the condition
number of f(·) since αI � ∇2f(x) � `I. Clearly ` ≥ α and hence condition number is always at
least one. Denoting the condition number by κ, we highlight two important aspects of AGD: (1) the
momentum parameter satisfies θ = 1/

√
κ and (2) AGD improves upon GD by a factor of

√
κ.
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Algorithm 3 Negative Curvature Exploitation(xt,vt, s)

1: if ‖vt‖ ≥ s then
2: xt+1 ← xt;
3: else
4: δ = s · vt/ ‖vt‖
5: xt+1 ← argminx∈{xt+δ,xt−δ} f(x)
6: return (xt+1, 0)

2.3. Nonconvex Setting

For nonconvex functions finding global minima is NP-hard in the worst case. The best one can hope
for in this setting is convergence to stationary points. There are various levels of stationarity.

Definition 4 x is an ε-first-order stationary point of function f(·) if ‖∇f(x)‖ ≤ ε.

As mentioned in Section 1, for most nonconvex problems encountered in practice, a majority of
first-order stationary points turn out to be saddle points. Second-order stationary points require not
only zero gradient, but also positive semidefinite Hessian, ruling out most saddle points. Second-
order stationary points are meaningful, however, only when the Hessian is continuous.

Definition 5 A twice-differentiable function f(·) is ρ-Hessian Lipschitz if:∥∥∇2f(x1)−∇2f(x2)
∥∥ ≤ ρ ‖x1 − x2‖ ∀ x1,x2.

Definition 6 (Nesterov and Polyak (2006)) For a ρ-Hessian Lipschitz function f(·), x is an ε-
second-order stationary point if:

‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −√ρε.

The following theorem gives convergence rate of perturbed GD to second-order stationary points.

Theorem 7 ((Jin et al., 2017)) Assume that the function f(·) is `-smooth and ρ-Hessian Lipschitz.
Then, for any ε > 0, perturbed GD outputs an ε-second-order stationary point w.h.p in iterations:

Õ

(
`(f(x0)− f∗)

ε2

)
.

Note that this rate is essentially the same as that of GD for convergence to first-order stationary
points. In particular, it only has polylogarithmic dependence on the dimension.

3. Main Result

In this section, we present our main result providing a convergence rate of PAGD(Algorithm 2).
As mentioned in Section 1, PAGD is essentially AGD with two key differences: perturbation
and NCE. Perturbation is added (to escape saddle points) when the gradient is small, and no more
frequently than once in T steps. The perturbation ξt is sampled uniformly from a d-dimensional
ball with radius r. The specific choices of gap and uniform distribution are for technical convenience
(they are sufficient for our theoretical result but not necessary).
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NCE (Algorithm 3) is explicitly designed to guarantee decrease of the Hamiltonian (1), when-
ever AGD steps are not guaranteed to do so. In particular, AGD steps might not decrease the
Hamiltonian when

f(xt) ≤ f(yt) + 〈∇f(yt),xt − yt〉 −
γ

2
‖xt − yt‖2 , (2)

i.e., the function has a large negative curvature between the current iterates xt and yt. In this
case, NCE is triggered. NCE does the following: if the momentum vt is small, then yt and xt
are close, so the large negative curvature also carries over to the Hessian at xt due to the Lipschitz
Hessian property. Since one of the directions±(yt−xt) is negatively aligned with∇f(xt), moving
from xt along this direction decreases function value and Hamiltonian. If the momentum vt is large,
negative curvature can no longer be exploited, but resetting the momentum to zero kills the second
term in (1), significantly decreasing the Hamiltonian.

Setting of hyperparameters: Let ε be the target accuracy for a second-order stationary point, let `
and ρ be gradient/Hessian-Lipschitz parameters, and let c, χ be absolute constant and log factor to
be specified later. Let κ := `/

√
ρε, and set

η =
1

4`
, θ =

1

4
√
κ
, γ =

θ2

η
, s =

γ

4ρ
, T =

√
κ · χc, r = ηε · χ−5c−8. (3)

The following theorem is the main result of this paper.

Theorem 8 Assume that the function f(·) is `-smooth and ρ-Hessian Lipschitz. There exists an
absolute constant cmax such that for any δ > 0, ε ≤ `2

ρ , ∆f ≥ f(x0)−f?, if χ = max{1, log
d`∆f

ρεδ },
c ≥ cmax, if we run PAGD (Algorithm 2) with choice of parameters according to (3), then with
probability at least 1 − δ, one of the iterates xt will be an ε-second order stationary point in the
following number of iterations:

O

(
`1/2ρ1/4(f(x0)− f∗)

ε7/4
log6

(
d`∆f

ρεδ

))
.

Theorem 8 says that when PAGD is run for the designated number of steps (a number which is
polylogarithmic in dimension2), at least one of the iterates is an ε-second-order stationary point.
We focus on the case of small ε (i.e., ε ≤ `2/ρ) so that the Hessian requirement for the ε-second-
order stationary point (λmin(∇2f(x)) ≥ −√ρε) is nontrivial. Note that

∥∥∇2f(x)
∥∥ ≤ ` implies

κ = `/
√
ρε, which can be viewed as a condition number, akin to that in convex setting. Comparing

Theorem 8 with Theorem 7, PAGD, with a momentum parameter θ = Θ(1/
√
κ), achieves Θ̃(

√
κ)

better iteration complexity compared to PGD.

Output ε-second order stationary point: Although Theorem 8 only guarantees that one of the
iterates is an ε-second order stationary point, it is straightforward to identify one of them by adding
a proper termination condition: once the gradient is small and satisfies the pre-condition to add
a perturbation, we can keep track of the point xt0 prior to adding perturbation, and compare the
Hamiltonian at t0 with the one T steps after. If the Hamiltonian decreases by E = Θ̃(

√
ε3/ρ), then

the algorithm has made progress, otherwise xt0 is an ε-second-order stationary point according to
Lemma 13. Doing so will add a hyperparameter (threshold E ) but does not increase complexity.

2. This logarithmic dimension dependency can be removed if the primary target is to only find ε-first order stationary
point, in which case the perturbation component (Lines 3-4) in Algorithm 2 need not be executed (since an ε-first
order stationary point has been found), resulting in a completely deterministic algorithm.

8



AGD ESCAPES SADDLE POINTS FASTER THAN GD

4. Overview of Analysis

In this section, we will present an overview of the proof of Theorem 8. Section 4.1 presents the
Hamiltonian for AGD and its key property of monotonic decrease. Section 4.2 presents improve-or-
localize lemma, as well as the main intuition behind acceleration. Section 4.3 demonstrates how to
apply these tools to prove Theorem 8. Complete details can be found in the appendix.

4.1. Hamiltonian

While GD guarantees decrease of function value in every step (even for nonconvex problems), the
biggest stumbling block to analyzing AGD is that it is less clear how to keep track of “progress.”
Known Lyapunov functions for AGD (Wilson et al., 2016) are restricted to the convex setting and
furthermore are not computable by the algorithm (as they depend on x?).

To deepen the understanding of AGD in a nonconvex setting, we inspect it from a dynamical
systems perspective, where we fix the ratio θ̃ = θ/

√
η to be a constant, while letting η → 0. This

leads to an ODE which is the continuous limit of AGD (Su et al., 2016):

ẍ + θ̃ẋ +∇f(x) = 0, (4)

where ẍ and ẋ are derivatives with respect to time t. This equation is a second-order dynamical
equation with dissipative forces −θ̃ẋ. Integrating both sides, we obtain:

f(x(t2)) +
1

2
ẋ(t2)2 = f(x(t1)) +

1

2
ẋ(t1)2 − θ̃

∫ t2

t1

ẋ(t)2dt. (5)

Using physical language, f(x) is a potential energy while ẋ2/2 is a kinetic energy, and the sum
is a Hamiltonian. The integral shows that the Hamiltonian decreases monotonically with time t,
and the decrease is given by the dissipation term, θ̃

∫ t2
t1

ẋ(t)2dt. Note that (5) holds regardless of
the convexity of f(·). This monotonic decrease of the Hamiltonian can in fact be extended to the
discretized version of AGD when the function is convex, or mildly nonconvex:

Lemma 9 (Hamiltonian decreases monotonically) Assume that the function f(·) is `-smooth, the
learning rate η ≤ 1

2` , and θ ∈ [2ηγ, 1
2 ] in AGD (Algorithm 1). Then, for every iteration t where (2)

does not hold, we have:

f(xt+1) +
1

2η
‖vt+1‖2 ≤ f(xt) +

1

2η
‖vt‖2 −

θ

2η
‖vt‖2 −

η

4
‖∇f(yt)‖2 . (6)

Denote the discrete Hamiltonian as Et := f(xt)+ 1
2η ‖vt‖

2, and note that in AGD, vt = xt−xt−1.
Lemma 9 tolerates nonconvexity with curvature at most γ = Θ(θ/η). Unfortunately, when the
function has large negative curvature between current iterates xt and yt (so that (2) holds), the
analogy between the continuous and discretized versions breaks and (6) no longer holds. In fact,
standard AGD can even increase the Hamiltonian in this regime (see Appendix A.1 for more details).
However, we also note condition (2) is indeed an easy case, since it is in general challenging to
efficiently find a negative curvature direction, but straightforward to exploit it when we observe
one. This motivates us to modify the algorithm by adding the NCE step, which addresses this issue.
We have the following simple result about NCE:

Lemma 10 Assume that f(·) is `-smooth and ρ-Hessian Lipschitz. For every iteration t of Algo-
rithm 2 where (2) holds (thus running NCE), we have:

Et+1 ≤ Et −min{ s
2

2η
,
1

2
(γ − 2ρs)s2}.

9



AGD ESCAPES SADDLE POINTS FASTER THAN GD

Lemmas 9 and 10 jointly assert that the Hamiltonian decreases monotonically in all situations,
and are the main tools in the proof of Theorem 8. They not only give us a way of tracking progress,
but also quantitatively measure the amount of progress.

4.2. Improve or Localize

One significant challenge in the analysis of gradient-based algorithms for nonconvex optimation
is that many phenomena—such as accumulation of momentum and the escape from saddle points
via perturbation—are multiple-step behaviors; they do not happen in a single step. We address this
issue by developing a general technique for analyzing long-term behavior of such algorithms.

In our case, to track the long-term behavior of AGD, one key observation from Lemma 9 is that
the amount of progress relates to movement of the iterates, which leads to the following improve-
or-localize corollary:

Corollary 11 (Improve or localize) Under the same setting as in Lemma 9, if (2) does not hold
for all steps in [t, t+ T ], we have:

t+T∑
τ=t+1

‖xτ − xτ−1‖2 ≤
2η

θ
(Et − Et+T ).

Corollary 11 says that the algorithm either makes progress in terms of the Hamiltonian, or the
iterates do not move much. In the second case, Corollary 11 allows us to approximate the dynamics
of {xτ}t+Tτ=t with a quadratic approximation of f(·).

The acceleration phenomenon is rooted in and can be seen clearly for a quadratic, where the
function can be decomposed into eigen-directions. Consider an eigen-direction with eigenvalue λ,
and linear term g (i.e., in this direction f(x) = λ

2x
2 + gx). The GD update becomes xτ+1 =

(1 − ηλ)xτ − ηg, with µGD(λ) := 1 − ηλ determining the rate of GD. The update of AGD is
(xτ+1, xτ ) = (xτ , xτ−1)A> − (ηg, 0) with matrix A defined as follows:

A :=

(
(2− θ)(1− ηλ) −(1− θ)(1− ηλ)

1 0

)
.

The rate of AGD is determined by the largest eigenvalue of A, denoted by µAGD(λ). Recall the
choice of parameter (3), and divide the eigen-directions into the following three categories.

• Strongly convex directions λ ∈ [
√
ρε, `]: the slowest case is λ =

√
ρε, where µGD(λ) =

1 − Θ(1/κ) while µAGD(λ) = 1 − Θ(1/
√
κ), which results in AGD converging faster than

GD.

• Flat directions λ ∈ [−√ρε,√ρε]: the representative case is λ = 0 where AGD update
becomes xτ+1 − xτ = (1− θ)(xτ − xτ−1)− ηg. For τ ≤ 1/θ, we have |xt+τ − xt| = Θ(τ)
for GD while |xt+τ − xt| = Θ(τ2) for AGD, which results in AGD moving along negative
gradient directions faster than GD.

• Strongly nonconvex directions λ ∈ [−`,−√ρε]: similar to the strongly convex case, the
slowest rate is for λ = −√ρε where µGD(λ) = 1 + Θ(1/κ) while µAGD(λ) = 1 + Θ(1/

√
κ),

which results in AGD escaping saddle point faster than GD.

10
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Finally, the approximation error (from a quadratic) is also under control in this framework.
With appropriate choice of T and threshold for Et − Et+T in Corollary 11, by the Cauchy-Swartz
inequality we can restrict iterates {xτ}t+Tτ=t to all lie within a local ball around xt with radius

√
ε/ρ,

where both the gradient and Hessian of f(·) and its quadratic approximation f̃t(x) = f(xt) +
〈∇f(xt),x− xt〉+ 1

2(x− xt)
>∇2f(xt)(x− xt) are close:

Fact Assume f(·) is ρ-Hessian Lipschitz, then for all x so that ‖x− xt‖ ≤
√
ε/ρ, we have

‖∇f(x)−∇f̃t(x)‖ ≤ ε and ‖∇2f(x)−∇2f̃t(x)‖ = ‖∇2f(x)−∇2f(xt)‖ ≤
√
ρε.

4.3. Main Framework

For simplicity of presentation, recall T :=
√
κ ·χc = Θ̃(

√
κ) and denote E :=

√
ε3/ρ ·χ−5c−7 =

Θ̃(
√
ε3/ρ), where c is sufficiently large constant as in Theorem 8. Our overall proof strategy will

be to show the following “average descent claim”: Algorithm 2 decreases the Hamiltonian by E in
every set of T iterations as long as it does not reach an ε-second-order stationary point. Since the
Hamiltonian cannot decrease more than E0 −E? = f(x0)− f?, this immediately shows that it has
to reach an ε-second-order stationary point in O((f(x0)− f?)T /E ) steps, proving Theorem 8.

It can be verified by the choice of parameters (3) and Lemma 9 that whenever (2) holds so that
NCE is triggered, the Hamiltonian decreases by at least E in one step. So, if NCE step is performed
even once in each round of T steps, we achieve enough average decrease. The troublesome case
is when in some time interval of T steps starting with xt, only AGD steps are performed without
NCE. If xt is not an ε-second order stationary point, either the gradient is large or the Hessian has a
large negative direction. We prove the average decrease claim by considering these two cases.

Lemma 12 (Large gradient) Consider the setting of Theorem 8. If ‖∇f(xτ )‖ ≥ ε for all τ ∈
[t, t+ T ], then by running Algorithm 2 we have Et+T − Et ≤ −E .

Lemma 13 (Negative curvature) Consider the setting of Theorem 8. If ‖∇f(xt)‖ ≤ ε, λmin(∇2f(xt)) <
−√ρε, and perturbation has not been added in iterations τ ∈ [t−T , t), then by running Algorithm
2, we have Et+T − Et ≤ −E with high probability.

We note that an important aspect of these two lemmas is that the Hamiltonian decreases by Ω(E )
in T = Θ̃(

√
κ) steps, which is faster compared to PGD which decreases the function value by Ω(E )

in T 2 = Θ̃(κ) steps (Jin et al., 2017). That is, the acceleration phenomenon in PAGD happens in
both cases. We also stress that under both of these settings, PAGD cannot achieve Ω(E /T ) decrease
in each step—it has to accumulate momentum over time to achieve Ω(E /T ) amortized decrease.

4.3.1. LARGE GRADIENT SCENARIO

For AGD, gradient and momentum interact, and both play important roles in the dynamics. Fortu-
nately, according to Lemma 9, the Hamiltonian decreases sufficiently whenever the momentum vt
is large, so it is sufficient to discuss the case where the momentum is small.

One difficulty in proving Lemma 12 lies in enforcing the precondition that gradients of all iter-
ates are large even with quadratic approximation. Intuitively we hope that the large initial gradient
‖∇f(xt)‖ ≥ ε suffices to give a sufficient decrease of the Hamiltonian. Unfortunately, this is not
true. Let S be the subspace of eigenvectors of ∇2f(xt) with eigenvalues in [

√
ρε, `], consisting of

11
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all the strongly convex directions, and let Sc be the orthogonal subspace. It turns out that the ini-
tial gradient component in S is not very helpful in decreasing the Hamiltonian since AGD rapidly
decreases the gradient in these directions. We instead prove Lemma 12 in two steps.

Lemma 14 (informal) If vt is small, ‖∇f(xt)‖ not too large and Et+T /2−Et ≥ −E , then for all
τ ∈ [t+ T /4, t+ T /2] we have ‖PS∇f(xτ )‖ ≤ ε/2.

Lemma 15 (informal) If vt is small and ‖PSc∇f(xt)‖ ≥ ε/2, then we have Et+T /4 −Et ≤ −E .

See the formal versions, Lemma 21 and Lemma 22, for more details. We see that if the Hamiltonian
does not decrease much (and so is localized in a small ball), the gradient in the strongly convex
subspace ‖PS∇f(xτ )‖ vanishes in T /4 steps by Lemma 14. Since the hypothesis of Lemma 12
guarantees a large gradient for all of the T steps, this means that ‖PSc∇f(xt)‖ is large after T /4
steps, thereby decreasing the Hamiltonian in the next T /4 steps (by Lemma 15).

4.3.2. NEGATIVE CURVATURE SCENARIO

In this section, we will show that the volume of the set around a strict saddle point from which
AGD does not escape quickly is very small (Lemma 13). We do this using the coupling mechanism
introduced in Jin et al. (2017), which gives a fine-grained understanding of the geometry around
saddle points. More concretely, letting the perturbation radius r = Θ̃(ε/`) as specified in (3), we
show the following lemma.

Lemma 16 (informal) Suppose ‖∇f(x̃)‖ ≤ ε and λmin(∇2f(x̃)) ≤ −√ρε. Let x0,x
′
0 be at

distance at most r from x̃, and x0−x′0 = r0e1 where e1 is the minimum eigen-direction of∇2f(x̃)
and r0 ≥ δr/

√
d. Then for AGD starting at (x0,v) and (x′0,v), we have:

min{ET − Ẽ, E′T − Ẽ} ≤ −E ,

where Ẽ, ET and E′T are the Hamiltonians at (x̃,v), (xT ,vT ) and (x′T ,v
′
T ) respectively.

See the formal version in Lemma 23. We note that δ in this lemma is a small number that charac-
terizes the failure probability of the algorithm (as defined in Theorem 8), and T has logarithmic
dependence on δ according to (3). Lemma 16 says that around any strict saddle, for any two points
that are separated along the smallest eigen-direction by at least δr/

√
d, PAGD, starting from at least

one of those points, decreases the Hamiltonian, and hence escapes the strict saddle. This implies
that the width of the region starting from where AGD is stuck has width at most δr/

√
d, and thus

has small volume.

5. Conclusions

In this paper, we show that a variant of AGD can escape saddle points faster than GD, demonstrat-
ing that momentum techniques can indeed accelerate convergence even for nonconvex optimiza-
tion. Our algorithm finds an ε-second order stationary point in Õ

(
1/ε7/4

)
iterations, faster than the

Õ
(
1/ε2

)
iterations taken by GD. This is the first single-loop algorithm that achieves this rate. Our

analysis relies on novel techniques that lead to a better understanding of momentum techniques as
well as nonconvex optimization.
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Appendix A. Proof of Hamiltonian Lemmas

In this section, we prove Lemma 9, Lemma 10 and Corollary 11, which are presented in Section
4.1 and Section 4.2. In section A.1 we also give an example where standard AGD with negative
curvature exploitation can increase the Hamiltonian.

Recall that we define the Hamiltonian as Et := f(xt) + 1
2η ‖vt‖

2, where, for AGD, we define
vt = xt − xt−1. The first lemma shows that this Hamiltonian decreases in every step of AGD for
mildly nonconvex functions.

Lemma 9 (Hamiltonian decreases monotonically) Assume that the function f(·) is `-smooth and
set the learning rate to be η ≤ 1

2` , θ ∈ [2ηγ, 1
2 ] in AGD (Algorithm 1). Then, for every iteration t

where (2) does not hold, we have:

Et+1 ≤ Et −
θ

2η
‖vt‖2 −

η

4
‖∇f(yt)‖2 .

Proof Recall that the update equation of accelerated gradient descent has following form:

xt+1 ← yt − η∇f(yt)

yt+1 ← xt+1 + (1− θ)(xt+1 − xt).

By smoothness, with η ≤ 1
2` :

f(xt+1) ≤ f(yt)− η ‖∇f(yt)‖2 +
`η2

2
‖∇f(yt)‖2 ≤ f(yt)−

3η

4
‖∇f(yt)‖2 , (7)

assuming that the precondition (2) does not hold:

f(xt) ≥ f(yt) + 〈∇f(yt),xt − yt〉 −
γ

2
‖yt − xt‖2 , (8)

and given the following update equation:

‖xt+1 − xt‖2 = ‖yt − xt − η∇f(yt)‖2

=
[
(1− θ)2 ‖xt − xt−1‖2 − 2η〈∇f(yt),yt − xt〉+ η2 ‖∇f(yt)‖2

]
, (9)

we have:

f(xt+1) +
1

2η
‖xt+1 − xt‖2 ≤f(xt) + 〈∇f(yt),yt − xt〉 −

3η

4
‖∇f(yt)‖2

+
1 + ηγ

2η
(1− θ)2 ‖xt − xt−1‖2 − 〈∇f(yt),yt − xt〉+

η

2
‖∇f(yt)‖2

≤f(xt) +
1

2η
‖xt − xt−1‖2 −

2θ − θ2 − ηγ(1− θ)2

2η
‖vt‖2 −

η

4
‖∇f(yt)‖2

≤f(xt) +
1

2η
‖xt − xt−1‖2 −

θ

2η
‖vt‖2 −

η

4
‖∇f(yt)‖2 .

The last inequality uses the fact that θ ∈ [2ηγ, 1
2 ] so that θ2 ≤ θ

2 and ηγ ≤ θ
2 . We substitute in the

definition of vt and Et to finish the proof.
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We see from this proof that (8) relies on approximate convexity of f(·), which explains why in
all existing proofs, the convexity between xt and yt is so important. A perhaps surprising fact to
note is that the above proof can in fact go through even with mild nonconvexity (captured in line 8
of Algorithm 2). Thus, high nonconvexity is the problematic situation. To overcome this, we need
to slightly modify AGD so that the Hamiltonian is decreasing. This is formalized in the following
lemma.

Lemma 10 Assume that f(·) is `-smooth and ρ-Hessian Lipschitz. For every iteration t of Algo-
rithm 2 where (2) holds (thus running NCE), we have:

Et+1 ≤ Et −min{ s
2

2η
,
1

2
(γ − 2ρs)s2}.

Proof When we perform an NCE step, we know that (2) holds. In the first case (‖vt‖ ≥ s), we set
xt+1 = xt and set the momentum vt+1 to zero, which gives:

Et+1 = f(xt+1) = f(xt) = Et −
1

2η
‖vt‖2 ≤ Et −

s2

2η
.

In the second case (‖vt‖ ≤ s), expanding in a Taylor series with Lagrange remainder, we have:

f(xt) = f(yt) + 〈∇f(yt),xt − yt〉+
1

2
(xt − yt)

>∇2f(ζt)(xt − yt),

where ζt = φxt + (1− φ)yt and φ ∈ [0, 1]. Due to the certificate (2) we have
1

2
(xt − yt)

>∇2f(ζt)(xt − yt) ≤ −
γ

2
‖xt − yt‖2 .

On the other hand, clearly min{〈∇f(xt), δ〉, 〈∇f(xt),−δ〉} ≤ 0. WLOG, suppose 〈∇f(xt), δ〉 ≤
0, then, by definition of xt+1, we have:

f(xt+1) ≤ f(xt + δ) = f(xt) + 〈∇f(xt), δ〉+
1

2
δ>∇2f(ζ ′t)δ ≤ f(xt) +

1

2
δ>∇2f(ζ ′t)δ,

where ζ ′t = xt + φ′δ and φ′ ∈ [0, 1]. Since ‖ζt − ζ ′t‖ ≤ 2s, δ also lines up with yt − xt:

δ>∇2f(ζ ′t)δ ≤ δ>∇2f(ζt)δ +
∥∥∇2f(ζ ′t)−∇2f(ζt)

∥∥ ‖δ‖2 ≤ −γ ‖δ‖2 + 2ρs ‖δ‖2 .

Therefore, this gives

Et+1 = f(xt+1) ≤ f(xt)−
1

2
(γ − ρs)s2 ≤ Et −

1

2
(γ − 2ρs)s2,

which finishes the proof.

The Hamiltonian decrease has an important consequence: if the Hamiltonian does not decrease
much, then all the iterates are localized in a small ball around the starting point. Moreover, the
iterates do not oscillate much in this ball. We called this the improve-or-localize phenomenon.

Corollary 11 (Improve or localize) Under the same setting as in Lemma 9, if (2) does not hold
for all steps in [t, t+ T ], we have:

t+T∑
τ=t+1

‖xτ − xτ−1‖2 ≤
2η

θ
(Et − Et+T ).

Proof The proof follows immediately from telescoping the argument of Lemma 9.
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A.1. AGD can increase the Hamiltonian under nonconvexity

In the previous section, we proved Lemma 9 which requires θ ≥ 2ηγ, that is, γ ≤ θ/(2η). In this
section, we show Lemma 9 is almost tight in the sense that when γ ≥ 4θ/η in (2), we have:

f(xt) ≤ f(yt) + 〈∇f(yt),xt − yt〉 −
γ

2
‖xt − yt‖2 .

Monotonic decrease of the Hamiltonian may no longer hold, indeed, AGD can increase the Hamil-
tonian for those steps.

Consider a simple one-dimensional example, f(x) = −1
2γx

2, where (2) always holds. Define
the initial condition x0 = −1, v0 = 1/(1− θ). By update equation in Algorithm 1, the next iterate
will be x1 = y0 = 0, and v1 = x1 − x0 = 1. By the definition of Hamiltonian, we have

E0 =f(x0) +
1

2η
|v0|2 = −γ

2
+

1

2η(1− θ)2

E1 =f(x1) +
1

2η
|v1|2 =

1

2η
,

since θ ≤ 1/4. It is not hard to verify that whenever γ ≥ 4θ/η, we will have E1 ≥ E0; that is, the
Hamiltonian increases in this step.

This fact implies that when we pick a large learning rate η and small momentum parameter θ
(both are essential for acceleration), standard AGD does not decrease the Hamiltonian in a very
nonconvex region. We need another mechanism such as NCE to fix the monotonically decreasing
property.

Appendix B. Proof of Main Result

In this section, we set up the machinery needed to prove our main result, Theorem 8. We first present
the generic setup, then, as in Section 4.3, we split the proof into two cases, one where gradient is
large and the other where the Hessian has negative curvature. In the end, we put everything together
and prove Theorem 8.

To simplify the proof, we introduce some notation for this section, and state a convention re-
garding absolute constants. Recall the choice of parameters in Eq.(3):

η =
1

4`
, θ =

1

4
√
κ
, γ =

θ2

η
=

√
ρε

4
, s =

γ

4ρ
=

1

16

√
ε

ρ
, r = ηε · χ−5c−8,

where κ = √̀
ρε , χ = max{1, log

d`∆f

ρεδ }, and c is a sufficiently large constant as stated in the
precondition of Theorem 8. Throughout this section, we also always denote

T :=
√
κ · χc, E :=

√
ε3

ρ
· χ−5c−7, S :=

√
2ηT E

θ
=

√
2ε

ρ
· χ−2c−3, M :=

ε
√
κ

`
c−1,

which represent the special units for time, the Hamiltonian, the parameter space and the momentum.
All the lemmas in this section hold when the constant c is picked to be sufficiently large. To avoid
ambiguity, throughout this sectionO(·),Ω(·),Θ(·) notation only hides an absolute constant which
is independent of the choice of sufficiently large constant c, which is defined in the precondition
of Theorem 8. That is, we will always make c dependence explicit in O(·),Ω(·),Θ(·) notation.
Therefore, for a quantity like O(c−1), we can always pick c large enough so that it cancels out the
absolute constant in the O(·) notation, and make O(c−1) smaller than any fixed required constant.
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B.1. Common setup

Our general strategy in the proof is to show that if none of the iterates xt is a SOSP, then in all T
steps, the Hamiltonian always decreases by at least E . This gives an average decrease of E /T . In
this section, we establish some facts which will be used throughout the entire proof, including the
decrease of the Hamiltonian in NCE step, the update of AGD in matrix form, and upper bounds on
approximation error for a local quadratic approximation.

The first lemma shows if negative curvature exploitation is used, then in a single step, the Hamil-
tonian will decrease by E .

Lemma 17 Under the same setting as Theorem 8, for every iteration t of Algorithm 2 where (2)
holds (thus running NCE), we have:

Et+1 − Et ≤ −2E .

Proof It is also easy to check that the precondition of Lemma 10 holds, and by the particular choice
of parameters in Theorem 8, we have:

min{ s
2

2η
,
1

2
(γ − 2ρs)s2} ≥ Ω(E c7) ≥ 2E ,

where the last inequality is by picking c in Theorem 8 large enough, which finishes the proof.

Therefore, whenever NCE is called, the decrease of the Hamiltonian is already sufficient. We
thus only need to focus on AGD steps. The next lemma derives a general expression for xt after
an AGD update, which is very useful in multiple-step analysis. The general form is expressed with
respect to a reference point 0, which can be any arbitrary point (in many cases we choose it to be
x0).

Lemma 18 Let 0 be an origin (which can be fixed at an arbitrary point). Let H = ∇2f(0). Then
an AGD (Algorithm 1) update can be written as:(

xt+1

xt

)
= At

(
x1

x0

)
− η

t∑
τ=1

At−τ
(
∇f(0) + δτ

0

)
, (10)

where δτ = ∇f(yτ )−∇f(0)−Hyτ , and

A =

(
(2− θ)(I− ηH) −(1− θ)(I− ηH)

I 0

)
.

Proof Substituting for (yt,vt) in Algorithm 1, we have a recursive equation for xt:

xt+1 = (2− θ)xt − (1− θ)xt−1 − η∇f((2− θ)xt − (1− θ)xt−1). (11)

By definition of δτ , we also have:

∇f(yτ ) = ∇f(0) +Hyτ + δτ .
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Therefore, in matrix form, we have:(
xt+1

xt

)
=

(
(2− θ)(I− ηH) −(1− θ)(I− ηH)

I 0

)(
xt
xt−1

)
− η

(
∇f(0) + δt

0

)
=At

(
x1

x0

)
− η

t∑
τ=1

At−τ
(
∇f(0) + δτ

0

)
,

which finishes the proof.

Clearly A in Lemma 18 is a 2d × 2d matrix, and if we expand A according to the eigenvector

directions of
(
H 0
0 H

)
, A can be reorganized as a block-diagonal matrix consisting of d 2 × 2

matrices. Let the jth eigenvalue of H be denoted λj , and denote Aj as the jth 2 × 2 matrix with
corresponding eigendirections:

Aj =

(
(2− θ)(1− ηλj) −(1− θ)(1− ηλj)

1 0

)
. (12)

We note that the choice of reference point 0 is mainly to simplify mathmatical expressions involving
xt − 0.

Lemma 18 can be viewed as update from a quadratic expansion around origin 0, and δτ is
the approximation error which marks the difference between true function and its quadratic ap-
proximation. The next lemma shows that when sequence x0, · · · ,xt are all close to 0, then the
approximation error is under control:

Proposition 19 Using the notation of Lemma 18, if for any τ ≤ t, we have ‖xτ‖ ≤ R, then for
any τ ≤ t, we also have

1. ‖δτ‖ ≤ O(ρR2);

2. ‖δτ − δτ−1‖ ≤ O(ρR)(‖xt − xτ−1‖+ ‖xτ−1 − xτ−2‖);

3.
∑t

τ=1 ‖δτ − δτ−1‖2 ≤ O(ρ2R2)
∑t

τ=1 ‖xτ − xτ−1‖2.

Proof Let ∆τ =
∫ 1

0 (∇2f(φyτ )−H)dφ. The first inequality is true because δτ = ∆τyτ , thus:

‖δτ‖ = ‖∆τyτ‖ ≤ ‖∆τ‖ ‖yτ‖ =

∥∥∥∥∫ 1

0
(∇2f(φyτ )−H)dφ

∥∥∥∥ ‖yτ‖
≤
∫ 1

0

∥∥(∇2f(φyτ )−H)
∥∥dφ · ‖yτ‖ ≤ ρ ‖yτ‖2 ≤ ρ ‖(2− θ)xτ − (1− θ)xτ−1‖2 ≤ O(ρR2).

For the second inequality, we have:

δτ − δτ−1 = ∇f(yτ )−∇f(yτ−1)−H(yτ − yτ−1) = ∆′τ (yτ − yτ−1),

where ∆′τ =
∫ 1

0 (∇2f(yτ−1 + φ(yτ − yτ−1)) − H)dφ. As in the proof of the first inequality, we
have:

‖δτ − δτ−1‖ ≤
∥∥∆′τ

∥∥ ‖yτ − yτ−1‖ =

∥∥∥∥∫ 1

0
(∇2f(yτ−1 + φ(yτ − yτ−1))−H)dφ

∥∥∥∥ ‖yτ − yτ−1‖

≤ρmax{‖yτ‖ , ‖yτ−1‖} ‖yτ − yτ−1‖ ≤ O(ρR)(‖xτ − xτ−1‖+ ‖xτ−1 − xτ−2‖).
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Finally, since (‖xτ − xτ−1‖+‖xτ−1 − xτ−2‖)2 ≤ 2(‖xτ − xτ−1‖2 +‖xτ−1 − xτ−2‖2), the third
inequality is immediately implied by the second inequality.

B.2. Proof for large-gradient scenario

We prove Lemma 12 in this subsection. Throughout this subsection, we let S be the subspace with
eigenvalues in (θ2/[η(2− θ)2], `], and let Sc be the complementary subspace. Also let PS and PSc
be the corresponding projections. We note θ2/[η(2−θ)2] = Θ(

√
ρε), and this particular choice lies

at the boundary between the real eigenvalues and complex eigenvalues of the matrix Aj , as shown
in Lemma 26.

The first lemma shows that if momentum or gradient is very large, then the Hamiltonian already
has sufficient decrease on average.

Lemma 20 Under the setting of Theorem 8, if ‖vt‖ ≥M or ‖∇f(xt)‖ ≥ 2`M , and at time step
t only AGD is used without NCE or perturbation, then:

Et+1 − Et ≤ −4E /T .

Proof When ‖vt‖ ≥ ε
√
κ

10` , by Lemma 9, we have:

Et+1 − Et ≤ −
θ

2η
‖vt‖2 ≤ −Ω

(
`√
κ

ε2κ

`2
c−2

)
= −Ω

(
ε2
√
κ

2`
c−2

)
≤ −Ω(

E

T
c6) ≤ −4E

T
.

The last step is by picking c to be a large enough constant. When ‖vt‖ ≤M but ‖∇f(xt)‖ ≥ 2`M ,
by the gradient Lipschitz assumption, we have:

‖∇f(yt)‖ ≥ ‖∇f(xt)‖ − (1− θ)` ‖vt‖ ≥ `M .

Similarly, by Lemma 9, we have:

Et+1 − Et ≤ −
η

4
‖∇f(yt)‖2 ≤ −Ω(

ε2κ

`
c−2) ≤ −Ω(

E

T
c6) ≤ −4E

T
.

Again the last step is by picking c to be a large enough constant, which finishes the proof.

Next, we show that if the initial momentum is small, but the initial gradient on the nonconvex
subspace Sc is large enough, then within O(T ) steps, the Hamiltonian will decrease by at least E .

Lemma 21 (Formal Version of Lemma 15) Under the setting of Theorem 8, if ‖PSc∇f(x0)‖ ≥
ε
2 , ‖v0‖ ≤M , v>0 [P>S ∇2f(x0)PS ]v0 ≤ 2

√
ρεM 2, and for t ∈ [0,T /4] only AGD steps are used

without NCE or perturbation, then:

ET /4 − E0 ≤ −E .

Proof The high-level plan is a proof by contradiction. We first assume that the energy doesn’t
decrease very much; that is, ET /4−E0 ≥ −E for a small enough constant µ. By Corollary 11 and
the Cauchy-Swartz inequality, this immediately implies that for all t ≤ T , we have ‖xt − x0‖ ≤√

2ηT E /(4θ) = S /2. In the rest of the proof we will show that this leads to a contradiction.
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Given initial x0 and v0, we define x−1 = x0 − v0. Without loss of generality, set x0 as the
origin 0. Using the notation and results of Lemma 18, we have the following update equation:(

xt
xt−1

)
=At

(
0
−v0

)
− η

t−1∑
τ=0

At−1−τ
(
∇f(0) + δτ

0

)
.

Consider the j-th eigen-direction of H = ∇2f(0), recall the definition of the 2 × 2 block matrix
Aj as in (12), and denote

(a
(j)
t , − b(j)t ) =

(
1 0

)
At
j .

Then we have for the j-th eigen-direction:

x
(j)
t =b

(j)
t v

(j)
0 − η

t−1∑
τ=0

a
(j)
t−1−τ (∇f(0)(j) + δ(j)

τ )

=− η

[
t−1∑
τ=0

a(j)
τ

](
∇f(0)(j) +

t−1∑
τ=0

p(j)
τ δ(j)

τ + q
(j)
t v

(j)
0

)
,

where

p(j)
τ =

a
(j)
t−1−τ∑t−1
τ=0 a

(j)
τ

and q
(j)
t = − b

(j)
t

η
∑t−1

τ=0 a
(j)
τ

.

Clearly
∑t−1

τ=0 p
(j)
τ = 1. For j ∈ Sc, by Lemma 30, we know

∑t−1
τ=0 a

(j)
τ ≥ Ω( 1

θ2
). We can thus

further write the above equation as:

x
(j)
t = −η

[
t−1∑
τ=0

a(j)
τ

](
∇f(0)(j) + δ̃(j) + ṽ(j)

)
,

where δ̃(j) =
∑t−1

τ=0 p
(j)
τ δ

(j)
τ and ṽ(j) = q

(j)
t v

(j)
0 , coming from the Hessian Lipschitz assumption

and the initial momentum respectively. For the remaining part, we would like to bound ‖PSc δ̃‖ and
‖PSc ṽ‖, and show that both of them are small compared to ‖PSc∇f(x0)‖.

First, for the ‖PSc δ̃‖ term, we know by definition of the subspace Sc, and given that both
eigenvalues of Aj are real and positive according to Lemma 26, such that p(j)

τ is positive by Lemma
24, we have for any j ∈ Sc:

|δ̃(j)| =|
t−1∑
τ=0

p(j)
τ δ(j)

τ | ≤
t−1∑
τ=0

p(j)
τ (|δ(j)

0 |+ |δ
(j)
τ − δ

(j)
0 |)

≤

[
t−1∑
τ=0

p(j)
τ

](
|δ(j)

0 |+
t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|

)
≤ |δ(j)

0 |+
t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|.
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By the Cauchy-Swartz inequality, this gives:

∥∥∥PSc δ̃∥∥∥2
=
∑
j∈Sc
|δ̃(j)|2 ≤

∑
j∈Sc

(|δ(j)
0 |+

t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|)

2 ≤ 2

∑
j∈Sc
|δ(j)

0 |
2 +

∑
j∈Sc

(
t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|)

2


≤2

∑
j∈Sc
|δ(j)

0 |
2 + t

∑
j∈Sc

t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|

2

 ≤ 2 ‖δ0‖2 + 2t
t−1∑
τ=1

‖δτ − δτ−1‖2 .

Recall that for t ≤ T , we have ‖xt‖ ≤ S /2. By Proposition 19, we know: ‖δ0‖ ≤ O(ρS 2), and
by Corollary 11 and Proposition 19:

t

t−1∑
τ=1

‖δτ − δτ−1‖2 ≤ O(ρ2S 2)t

t−1∑
τ=1

‖xτ − xτ−1‖2 ≤ O(ρ2S 4).

This gives ‖PSc δ̃‖ ≤ O(ρS 2) ≤ O(ε · c−6) ≤ ε/10.

Next we consider the ‖PSc ṽ‖ term. By Lemma 30, we have

−ηq(j)
t =

bt∑t−1
τ=0 aτ

≤ O(1) max{θ,
√
η|λj |}.

This gives:

‖PSc ṽ‖2 =
∑
j∈Sc

[q
(j)
t v

(j)
0 ]2 ≤ O(1)

∑
j∈Sc

max{η|λj |, θ2}
η2

[v
(j)
0 ]2. (13)

Recall that we have assumed by way of contradiction that ET /4 − E0 ≤ −E . By the precondition
that NCE is not used at t = 0, due to the certificate (2), we have:

1

2
v>0 ∇2f(ζ0)v0 ≥ −

γ

2
‖v0‖2 = −

√
ρε

8
‖v0‖2 ,

where ζ0 = φx0 + (1 − φ)y0 and φ ∈ [0, 1]. Noting that we fix x0 as the origin 0, by the Hessian
Lipschitz property, it is easy to show that

∥∥∇2f(ζ0)−H
∥∥ ≤ ρ ‖y0‖ ≤ ρ ‖v0‖ ≤ ρM ≤ √ρε.

This gives:
v0Hv0 ≥ −2

√
ρε ‖v0‖2 .

Again letting λj denote the eigenvalues ofH, rearranging the above sum give:∑
j:λj≤0

|λj |[v(j)
0 ]2 ≤O(

√
ρε) ‖v0‖2 +

∑
j:λj>0

λj [v
(j)
0 ]2

≤O(
√
ρε) ‖v0‖2 +

∑
j:λj>θ2/η(2−θ)2

λj [v
(j)
0 ]2 ≤ O(

√
ρε) ‖v0‖2 + v>0 [P>S HPS ]v0.

The second inequality uses the fact that θ2/η(2− θ)2 ≤ O(
√
ρε). Substituting into (13) gives:

‖PSc ṽ‖2 ≤ O(
1

η
)
[√

ρε ‖v0‖2 + v>0 [P>S HPS ]v0

]
≤ O(`

√
ρεM 2) = O(ε2c−2) ≤ ε2/100.
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Finally, putting all pieces together, we have:

‖xt‖ ≥‖PScxt‖ ≥ η

[
min
j∈Sc

t−1∑
τ=0

a(j)
τ

]∥∥∥PSc(∇f(0) + δ̃ + ṽ)
∥∥∥

≥Ω(
η

θ2
)
[
‖PSc∇f(0)‖ −

∥∥∥PSc δ̃∥∥∥− ‖PSc ṽ)‖
]
≥ Ω(

ηε

θ2
) ≥ Ω(S c3) ≥ S

which contradicts the fact ‖xt‖ that remains inside the ball around 0 with radius S /2.

The next lemma shows that if the initial momentum and gradient are reasonably small, and the
Hamitonian does not have sufficient decrease over the next T iterations, then both the gradient and
momentum of the strongly convex component S will vanish in T /4 iterations.

Lemma 22 (Formal Version of Lemma 14) Under the setting of Theorem 8, suppose ‖v0‖ ≤M
and ‖∇f(x0)‖ ≤ 2`M , ET /2−E0 ≥ −E , and for t ∈ [0,T /2] only AGD steps are used, without
NCE or perturbation. Then ∀ t ∈ [T /4,T /2]:

‖PS∇f(xt)‖ ≤
ε

2
and v>t [P>S ∇2f(x0)PS ]vt ≤

√
ρεM 2.

Proof Since ET − E0 ≥ −E , by Corollary 11 and the Cauchy-Swartz inequality, we see that for
all t ≤ T we have ‖xt − x0‖ ≤

√
2ηT E /θ = S .

Given initial x0 and v0, we define x−1 = x0 − v0. Without loss of generality, setting x0 as the
origin 0, by the notation and results of Lemma 18, we have the update equation:(

xt
xt−1

)
=At

(
0
−v0

)
− η

t−1∑
τ=0

At−1−τ
(
∇f(0) + δτ

0

)
. (14)

First we prove the upper bound on the gradient: ∀ t ∈ [T /4,T ], we have ‖PS∇f(xt)‖ ≤ ε
2 .

Let ∆t =
∫ 1

0 (∇2f(φxt)−H)dφ. According to (14), we have:

∇f(xt) =∇f(0) + (H+ ∆t)xt

=

(
I− ηH

(
I 0

) t−1∑
τ=0

At−1−τ
(
I
0

))
∇f(0)︸ ︷︷ ︸

g1

+H
(
I 0

)
At

(
0
−v0

)
︸ ︷︷ ︸

g2

− ηH
(
I 0

) t−1∑
τ=0

At−1−τ
(
δt
0

)
︸ ︷︷ ︸

g3

+ ∆txt︸ ︷︷ ︸
g4

.

We will upper bound four terms g1, g2, g3, g4 separately. Clearly, for the last term g4, we have:

‖g4‖ ≤ ρ ‖xt‖2 ≤ O(ρS 2) = O(εc−6) ≤ ε/8.

Next, we show that the first two terms g1, g2 become very small for t ∈ [T /4,T ]. Consider
coordinate j ∈ S and the 2× 2 block matrix Aj . By Lemma 25 we have:

1− ηλj
(
1 0

) t−1∑
τ=0

At−1−τ
j

(
1
0

)
=
(
1 0

)
At
j

(
1
1

)
.
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Denote:
(a

(j)
t , − b(j)t ) =

(
1 0

)
At
j .

By Lemma 32, we know:

max
j∈S

{
|a(j)
t |, |b

(j)
t |
}
≤ (t+ 1)(1− θ)

t
2 .

This immediately gives when t ≥ T /4 = Ω( cθ log 1
θ ) for c sufficiently large:

‖PSg1‖2 =
∑
j∈S
|(a(j)

t − b
(j)
t )∇f(0)(j)|2 ≤ (t+ 1)2(1− θ)t ‖∇f(0)‖2 ≤ ε2/64

‖PSg2‖2 =
∑
j∈S
|λjb(j)t v

(j)
0 |

2 ≤ `2(t+ 1)2(1− θ)t ‖v0‖2 ≤ ε2/64.

Finally, for g3, by Lemma 34, for all j ∈ S, we have

|g(j)
3 | =

∣∣∣∣∣ηλj
t−1∑
τ=0

a(j)
τ δt−1−τ

∣∣∣∣∣ ≤ |δ(j)
t−1|+

t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|.

By Proposition 19, this gives:

‖PSg3‖2 ≤ 2 ‖δt−1‖2 + 2t
t−1∑
τ=1

‖δτ − δτ−1‖2 ≤ O(ρ2S 4) ≤ O(ε2 · c−12) ≤ ε2/64.

In sum, this gives for any fixed t ∈ [T /4,T ]:

‖PS∇f(xt)‖ ≤ ‖PSg1‖+ ‖PSg2‖+ ‖PSg3‖+ ‖g4‖ ≤
ε

2
.

We now provide a similar argument to prove the upper bound for the momentum. That is,
∀ t ∈ [T /4,T ], we show v>t [P>S ∇2f(x0)PS ]vt ≤

√
ρεM 2. According to (14), we have:

vt =
(
1 −1

)( xt
xt−1

)
=
(
1 −1

)
At

(
0
−v0

)
︸ ︷︷ ︸

m1

− η
(
1 −1

) t−1∑
τ=0

At−1−τ
(
∇f(0)

0

)
︸ ︷︷ ︸

m2

− η
(
1 −1

) t−1∑
τ=0

At−1−τ
(
δτ
0

)
︸ ︷︷ ︸

m3

.

Consider the j-th eigendirection, so that j ∈ S, and recall the 2× 2 block matrix Aj . Denoting

(a
(j)
t , − b(j)t ) =

(
1 0

)
At
j ,

by Lemma 24 and 32, we have for t ≥ T /4 = Ω( cθ log 1
θ ) with c sufficiently large:∥∥∥[P>S ∇2f(x0)PS ]

1
2m1

∥∥∥2
=
∑
j∈S
|λ

1
2
j (b

(j)
t −b

(j)
t−1)v

(j)
0 |

2 ≤ `(t+1)2(1−θ)t ‖v0‖2 ≤ O(
ε2

`
c−3) ≤ 1

3

√
ρεM 2.
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On the other hand, by Lemma 25, we have:∣∣∣∣∣ηλj (1 −1
) t−1∑
τ=0

At−1−τ
j

(
1
0

)∣∣∣∣∣ =

∣∣∣∣∣ηλj (1 0
) t−1∑
τ=0

(At−1−τ
j −At−2−τ

j )

(
1
0

)∣∣∣∣∣ =

∣∣∣∣(1 0
)

(At
j −At−1

j )

(
1
1

)∣∣∣∣ .
This gives, for t ≥ T /4 = Ω( cθ log 1

θ ), and for c sufficiently large:∥∥∥[P>S ∇2f(x0)PS ]
1
2m2

∥∥∥2
=
∑
j∈S
|λ−

1
2

j (a
(j)
t − a

(j)
t−1 − b

(j)
t + b

(j)
t−1)∇f(0)(j)|2

≤O(
1
√
ρε

)(t+ 1)2(1− θ)t ‖∇f(0)‖2 ≤ O(
ε2

`
c−3) ≤ 1

3

√
ρεM 2.

Finally, for any j ∈ S, by Lemma 34, we have:

|(H
1
2m3)(j)| = |ηλ

1
2
j

t−1∑
τ=0

(aτ − aτ−1)δt−1−τ | ≤
√
η

[∑
|δ(j)
t−1|+

t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|

]
.

Again by Proposition 19:∥∥∥[P>S ∇2f(x0)PS ]
1
2m3

∥∥∥2
= η

[
2 ‖δt−1‖2 + 2t

t−1∑
τ=1

‖δτ − δτ−1‖2
]
≤ O(ηρ2S 4) ≤ O(

ε2

`
c−6) ≤ 1

3

√
ρεM 2.

Putting everything together, we have:

v>t [P>S ∇2f(x0)PS ]vt ≤
∥∥∥[P>S ∇2f(x0)PS ]

1
2m1

∥∥∥2
+
∥∥∥[P>S ∇2f(x0)PS ]

1
2m2

∥∥∥2

+
∥∥∥[P>S ∇2f(x0)PS ]

1
2m3

∥∥∥2
≤ √ρεM 2.

This finishes the proof.

Finally, we are ready to prove the main lemma of this subsection (Lemma 12), which claims that
if gradients in T iterations are always large, then the Hamiltonian will decrease sufficiently within
a small number of steps.

Lemma 12 (Large gradient) Consider the setting of Theorem 8. If ‖∇f(xτ )‖ ≥ ε for all τ ∈
[0,T ], then by running Algorithm 2 we have ET − E0 ≤ −E .

Proof Since ‖∇f(xτ )‖ ≥ ε for all τ ∈ [0,T ], according to Algorithm 2, the precondition to add
perturbation never holds, so Algorithm will not add any perturbation in these T iterations.

Next, suppose there is at least one iteration where NCE is used. Then by Lemma 17, we know
that that step alone gives E decrease in the Hamiltonian. According to Lemma 9 and Lemma 17 we
know that without perturbation, the Hamiltonian decreases monotonically in the remaining steps.
This means whenever at least one NCE step is performed, Lemma 12 immediately holds.

For the remainder of the proof, we can restrict the discussion to the case where NCE is never
performed in steps τ ∈ [0,T ]. Letting

τ1 = arg min
t∈[0,T ]

{t |‖vt‖ ≤M and ‖∇f(xt)‖ ≤ 2`M } ,
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we know in case τ1 ≥ T
4 , that Lemma 20 ensures ET − E0 ≤ ET

4
− E0 ≤ −E . Thus, we only

need to discuss the case τ1 ≤ T
4 . Again, if Eτ1+T /2 − Eτ1 ≤ −E , Lemma 12 immediately holds.

For the remaining case, Eτ1+T /2 − Eτ1 ≤ −E , we apply Lemma 22 starting at τ1, and obtain

‖PS∇f(xt)‖ ≤
ε

2
and v>t [P>S ∇2f(xτ1)PS ]vt ≤

√
ρεM 2. ∀t ∈ [τ1 +

T

4
, τ1 +

T

2
].

Letting:
τ2 = arg min

t∈[τ1+ T
4
,T ]
{t |‖vt‖ ≤M } ,

by Lemma 20 we again know we only need to discuss the case where τ2 ≤ τ1 + T
2 ; otherwise, we

already guarantee sufficient decrease in the Hamiltonian. Then, we clearly have ‖PS∇f(xτ2)‖ ≤ ε
2 ,

also by the precondition of Lemma 12, we know ‖∇f(xτ2)‖ ≥ ε, thus ‖PSc∇f(xτ2)‖ ≥ ε
2 . On the

other hand, since if the Hamiltonian does not decrease enough, Eτ2 −E0 ≥ −E , by Lemma 11, we
have ‖xτ1 − xτ2‖ ≤ 2S , by the Hessian Lipschitz property, which gives:

v>τ2 [P>S ∇2f(xτ2)PS ]vτ2 ≤ v>τ2 [P>S ∇2f(xτ1)PS ]vτ2+
∥∥∇2f(xτ1)−∇2f(xτ2)

∥∥ ‖vτ2‖2 ≤ 2
√
ρεM 2.

Now xτ2 satisfies all the preconditions of Lemma 21, and by applying Lemma 21 we finish the
proof.

B.3. Proof for negative-curvature scenario

We prove Lemma 13 in this section. We consider two trajectories, starting at x0 and x′0, with
v0 = v′0, where w0 = x0 − x′0 = r0e1, where e1 is the minimum eigenvector direction of H, and
where r0 is not too small. We show that at least one of the trajectories will escape saddle points
efficiently.

Lemma 23 (Formal Version of Lemma 16)
Under the same setting as Theorem 8, suppose ‖∇f(x̃)‖ ≤ ε and λmin(∇2f(x̃)) ≤ −√ρε. Let

x0 and x′0 be at distance at most r from x̃. Let x0 − x′0 = r0 · e1 and let v0 = v′0 = ṽ where
e1 is the minimum eigen-direction of ∇2f(x̃). Let r0 ≥ δE

2∆f
· r√

d
. Then, running AGD starting at

(x0,v0) and (x′0,v
′
0) respectively, we have:

min{ET − Ẽ, E′T − Ẽ} ≤ −E ,

where Ẽ, ET and E′T are the Hamiltonians at (x̃, ṽ), (xT ,vT ) and (x′T ,v
′
T ) respectively.

Proof Assume none of the two sequences decrease the Hamiltonian fast enough; that is,

min{ET − E0, E
′
T − E′0} ≥ −2E ,

where E0 and E′0 are the Hamiltonians at (x0,v0) and (x′0,v
′
0). Then, by Corollary 11 and the

Cauchy-Swartz inequality, we have for any t ≤ T :

max{‖xt − x̃‖ ,
∥∥x′t − x̃

∥∥} ≤ r + max{‖xt − x0‖ ,
∥∥x′t − x′0

∥∥} ≤ r +
√

4ηT E /θ ≤ 2S .

27



AGD ESCAPES SADDLE POINTS FASTER THAN GD

Fix the origin 0 at x̃ and let H be the Hessian at x̃. Recall that the update equation of AGD
(Algorithm 1) can be re-written as:

xt+1 =(2− θ)xt − (1− θ)xt−1 − η∇f((2− θ)xt − (1− θ)xt−1)

Taking the difference of two AGD sequences starting from x0,x
′
0, and let wt = xt − x′t, we have:

wt+1 =(2− θ)wt − (1− θ)wt−1 − η∇f(yt) + η∇f(y′t)

=(2− θ)(I − ηH− η∆t)wt − (1− θ)(I − ηH− η∆t)wt−1,

where ∆t =
∫ 1

0 (∇2f(φyt + (1− φ)y′t)−H)dφ. In the last step, we used

∇f(yt)−∇f(y′t) = (H+ ∆t)(yt − y′t) = (H+ ∆t)[(2− θ)wt − (1− θ)wt−1].

We thus obtain the update of the wt sequence in matrix form:(
wt+1

wt

)
=

(
(2− θ)(I− ηH) −(1− θ)(I− ηH)

I 0

)(
wt

wt−1

)
− η

(
(2− θ)∆twt − (1− θ)∆twt−1

0

)
=A

(
wt

wt−1

)
− η

(
δt
0

)
= At+1

(
w0

w−1

)
− η

t∑
τ=0

At−τ
(
δτ
0

)
, (15)

where δt = (2 − θ)∆twt − (1 − θ)∆twt−1. Since v0 = v′0, we have w−1 = w0, and ‖∆t‖ ≤
ρmax{‖xt − x̃‖ , ‖x′t − x̃‖} ≤ 2ρS , as well as ‖δτ‖ ≤ 6ρS (‖wτ‖ + ‖wτ−1‖). According to
(15):

wt =
(
I 0

)
At

(
w0

w0

)
− η

(
I 0

) t−1∑
τ=0

At−1−τ
(
δτ
0

)
.

Intuitively, we want to say that the first term dominates. Technically, we will set up an induction
based on the following fact:∥∥∥∥∥η (I, 0)

t−1∑
τ=0

At−1−τ
(
δτ
0

)∥∥∥∥∥ ≤ 1

2

∥∥∥∥(I, 0)At

(
w0

w0

)∥∥∥∥ .
It is easy to check the base case holds for t = 0. Then, assume that for all time steps less than

or equal to t, the induction assumption hold. We have:

‖wt‖ ≤
∥∥∥∥(I 0

)
At

(
w0

w0

)∥∥∥∥+

∥∥∥∥∥η (I 0
) t−1∑
τ=0

At−1−τ
(
δτ
0

)∥∥∥∥∥
≤2

∥∥∥∥(I 0
)
At

(
w0

w0

)∥∥∥∥ ,
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which gives:

‖δt‖ ≤O(ρS )(‖wt‖+ ‖wt−1‖) ≤ O(ρS )

[∥∥∥∥(I 0
)
At

(
w0

w0

)∥∥∥∥+

∥∥∥∥(I 0
)
At−1

(
w0

w0

)∥∥∥∥]
≤O(ρS )

∥∥∥∥(I 0
)
At

(
w0

w0

)∥∥∥∥ ,
where in the last inequality, we used Lemma 38 for monotonicity in t.

To prove that the induction assumption holds for t+ 1 we compute:∥∥∥∥∥η (I, 0)
t∑

τ=0

At−τ
(
δτ
0

)∥∥∥∥∥ ≤η
t∑

τ=0

∥∥∥∥(I, 0)At−τ
(
I
0

)∥∥∥∥ ‖δτ‖
≤O(ηρS )

t∑
τ=0

∥∥∥∥(I, 0)At−τ
(
I
0

)∥∥∥∥∥∥∥∥(I 0
)
Aτ

(
w0

w0

)∥∥∥∥ . (16)

By the precondition we have λmin(H) ≤ −√ρε. Without loss of generality, assume that the mini-
mum eigenvector direction ofH is along he first coordinate e1, and denote the corresponding 2× 2
matrix as A1 (as in the convention of (12). Let:

(a
(1)
t , − b(1)

t ) =
(
1 0

)
At

1.

We then see that (1) w0 is along the e1 direction, and (2) according to Lemma 37, the matrix(
I, 0
)
At−τ

(
I
0

)
is a diagonal matrix, where the spectral norm is achieved along the first coordinate

which corresponds to the eigenvalue λmin(H). Therefore, using Equation (16), we have:∥∥∥∥∥η (I, 0)
t∑

τ=0

At−τ
(
δτ
0

)∥∥∥∥∥ ≤O(ηρS )

t∑
τ=0

a
(1)
t−τ (a(1)

τ − b(1)
τ ) ‖w0‖

≤O(ηρS )

t∑
τ=0

[
2

θ
+ (t+ 1)]|a(1)

t+1 − b
(1)
t+1| ‖w0‖

≤O(ηρS T 2)

∥∥∥∥(I, 0)At+1

(
w0

w0

)∥∥∥∥ ,
where, in the second to last step, we used Lemma 36, and in the last step we used 1/θ ≤ T .
Finally, O(ηρS T 2) ≤ O(c−1) ≤ 1/2 by choosing a sufficiently large constant c. Therefore, we
have proved the induction, which gives us:

‖wt‖ =

∥∥∥∥(I 0
)
At

(
w0

w0

)∥∥∥∥−
∥∥∥∥∥η (I 0

) t−1∑
τ=0

At−1−τ
(
δτ
0

)∥∥∥∥∥ ≥ 1

2

∥∥∥∥(I 0
)
At

(
w0

w0

)∥∥∥∥ .
Noting that λmin(H) ≤ −√ρε, by applying Lemma 38 we have

1

2

∥∥∥∥(I 0
)
At

(
w0

w0

)∥∥∥∥ ≥ θ

4
(1 + Ω(θ))tr0,
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which grows exponentially. Therefore, for r0 ≥ δE
2∆f
· r√

d
, and T = Ω(1

θ · χc) where χ =

max{1, log
d`∆f

ρεδ }, where the constant c is sufficiently large, we have

∥∥xT − x′T
∥∥ = ‖wT ‖ ≥

θ

4
(1 + Ω(θ))T r0 ≥ 4S ,

which contradicts the fact that:

∀t ≤ T ,max{‖xt − x̃‖ ,
∥∥x′t − x̃

∥∥} ≤ O(S ).

This means our assumption is wrong, and we can therefore conclude:

min{ET − E0, E
′
T − E′0} ≤ −2E .

On the other hand, by the precondition on x̃ and the gradient Lipschitz property, we have:

max{E0 − Ẽ, E′0 − Ẽ} ≤ εr +
`r2

2
≤ E ,

where the last step is due to our choice of r = ηε · χ−5c−8 in (3). Combining these two facts:

min{ET − Ẽ, E′T − Ẽ} ≤ min{ET − E0, E
′
T − E′0}+ max{E0 − Ẽ, E′0 − Ẽ} ≤ −E ,

which finishes the proof.

We are now ready to prove the main lemma in this subsection, which states with that random
perturbation, PAGD will escape saddle points efficiently with high probability.

Lemma 13 (Negative curvature) Consider the setting of Theorem 8. If ‖∇f(x0)‖ ≤ ε, λmin(∇2f(x0)) <
−√ρε, and a perturbation has not been added in iterations τ ∈ [−T , 0), then, by running Algo-
rithm 2, we have ET − E0 ≤ −E with probability at least 1− δE

2∆f
.

Proof Since a perturbation has not been added in iterations τ ∈ [−T , 0), according to PAGD
(Algorithm 2), we add perturbation at t = 0, the Hamiltonian will increase by at most:

∆E ≤ εr +
`r2

2
≤ E ,

where the last step is due to our choice of r = ηε · χ−5c−8 in (3) with constant c sufficiently
large. Again by Algorithm 2, a perturbation will never be added in the remaining iterations, and
by Lemma 9 and Lemma 17 we know the Hamiltonian always decreases for the remaining steps.
Therefore, if at least one NCE step is performed in iteration τ ∈ [0,T ], by Lemma 17 we will
decrease 2E in that NCE step, and at most increase by E due to the perturbation. This immediately
gives ET − E0 ≤ −E .

Therefore, we only need to focus on the case where NCE is never used in iterations τ ∈ [0,T ].
Let Bx0(r) denote the ball with radius r around x0. According to algorithm 2, we know the iterate
after adding perturbation to x0 is uniformly sampled from the ball Bx0(r). Let Xstuck ⊂ Bx0(r) be
the region where AGD is stuck (does not decrease the Hamiltonian E in T steps). Formally, for any
point x ∈ Xstuck, let x1, · · · ,xT be the AGD sequence starting at (x,v0), thenET −E0 ≥ −E . By
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Lemma 23, Xstuck can have at most width r0 = δE
2∆f
· r√

d
along the minimum eigenvalue direction.

Therefore,

Vol(Xstuck)

Vol(B(d)
x0 (r))

≤ r0 × Vol(B(d−1)
0 (r))

Vol(B(d)
0 (r))

=
r0

r
√
π

Γ(d2 + 1)

Γ(d2 + 1
2)
≤ r0

r
√
π
·
√
d

2
+

1

2
≤ δE

2∆f
.

Thus, with probability at least 1 − δE
∆f

, the perturbation will end up outside of Xstuck, which give
ET − E0 ≤ −E . This finishes the proof.

B.4. Proof of Theorem 8

Our main result is now easily obtained from Lemma 12 and Lemma 13.
Proof [Proof of Theorem 8] Suppose we never encounter any ε-second-order stationary point. Con-
sider the set T = {τ |τ ∈ [0,T ] and ‖∇f(xτ )‖ ≤ ε}, and two cases: (1) T = ∅, in which case we
know all gradients are large and by Lemma 12 we have ET − E0 ≤ −E ; (2) T 6= ∅. In this case,
define τ ′ = minT; i.e., the earliest iteration where the gradient is small. Since by assumption, x′τ
is not an ε-second-order stationary point, this gives ∇2f(xτ ′) ≤ −

√
ρε, and by Lemma 13, we can

conclude Eτ ′+T − E0 ≤ Eτ ′+T − Eτ ′ ≤ −E . Clearly τ ′ + T ≤ 2T . That is, in either case, we
will decrease the Hamiltonian by E in at most 2T steps.

Then, for the the first case, we can repeat this argument starting at iteration T , and for the
second case, we can repeat the argument starting at iteration τ ′ + T . Therefore, we will continue
to obtain a decrease of the Hamiltonian by an average of E /(2T ) per step. Since the function f
is lower bounded, we know the Hamiltonian can not decrease beyond E0 − E? = f(x0) − f?,
which means that in 2(f(x0)−f?)T

E steps, we must encounter an ε-second-order stationary point at
least once.

Finally, in 2(f(x0)−f?)T
E steps, we will call Lemma 13 at most 2∆f

E times, and since Lemma 13
holds with probability 1 − δE

2∆f
, by a union bound, we know that the argument above is true with

probability at least:

1− δE

2∆f
·

2∆f

E
= 1− δ,

which finishes the proof.

Appendix C. Auxiliary Lemma

In this section, we present some auxiliary lemmas which are used in proving Lemma 21, Lemma
22 and Lemma 23. These deal with the large-gradient scenario (nonconvex component), the large-
gradient scenario (strongly convex component), and the negative curvature scenario, respectively.

The first two lemmas establish some facts about powers of the structured matrices arising
in AGD.

Lemma 24 Let the 2× 2 matrix A have following form, for arbitrary a, b ∈ R:

A =

(
a b
1 0

)
.
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Letting µ1, µ2 denote the two eigenvalues of A (can be repeated or complex eigenvalues), then, for
any t ∈ N:

(
1 0

)
At =

(
t∑
i=0

µi1µ
t−i
2 , −µ1µ2

t−1∑
i=0

µi1µ
t−1−i
2

)
(
0 1

)
At =

(
1 0

)
At−1.

Proof When the eigenvalues µ1 and µ2 are distinct, the matrix A can be rewritten as
(
µ1 + µ2 −µ1µ2

1 0

)
,

and it is easy to check that the two eigenvectors have the form
(
µ1

1

)
and

(
µ2

1

)
. Therefore, we can

write the eigen-decomposition as:

A =
1

µ1 − µ2

(
µ1 µ2

1 1

)(
µ1 0
0 µ2

)(
1 −µ2

−1 µ1

)
,

and the tth power has the general form:

At =
1

µ1 − µ2

(
µ1 µ2

1 1

)(
µt1 0
0 µt2

)(
1 −µ2

−1 µ1

)
When there are two repeated eigenvalue µ1, the matrix

(
a b
1 0

)
can be rewritten as

(
2µ1 −µ2

1

1 0

)
.

It is easy to check that A has the following Jordan normal form:

A = −
(
µ1 µ1 + 1
1 1

)(
µ1 1
0 µ1

)(
1 −(µ1 + 1)
−1 µ1

)
,

which yields:

At = −
(
µ1 µ1 + 1
1 1

)(
µt1 tµt−1

1

0 µt1

)(
1 −(µ1 + 1)
−1 µ1

)
.

The remainder of the proof follows from simple linear algebra calculations for both cases.

Lemma 25 Under the same setting as Lemma 24, for any t ∈ N:

(µ1 − 1)(µ2 − 1)
(
1 0

) t−1∑
τ=0

Aτ

(
1
0

)
= 1−

(
1 0

)
At

(
1
1

)
.

Proof When µ1 and µ2 are distinct, we have:(
1 0

)
At =

(
µt+1

1 − µt+1
2

µ1 − µ2
, −µ1µ2(µt1 − µt2)

µ1 − µ2

)
.

When µ1, µ2 are repeated, we have:(
1 0

)
At =

(
(t+ 1)µt1, −tµt+1

1

)
.

The remainder of the proof follows from Lemma 27 and linear algebra.

The next lemma tells us when the eigenvalues of the AGD matrix are real and when they are com-
plex.
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Lemma 26 Let θ ∈ (0, 1
4 ], x ∈ [−1

4 ,
1
4 ] and define the 2× 2 matrix A as follows:

A =

(
(2− θ)(1− x) −(1− θ)(1− x)

1 0

)
Then the two eigenvalues µ1 and µ2 of A are solutions of the following equation:

µ2 − (2− θ)(1− x)µ+ (1− θ)(1− x) = 0.

Moreover, when x ∈ [−1
4 ,

θ2

(2−θ)2 ], µ1 and µ2 are real numbers, and when x ∈ ( θ2

(2−θ)2 ,
1
4 ], µ1 and

µ2 are conjugate complex numbers.

Proof An eigenvalue µ of the matrix A must satisfy the following equation:

det(A− µI) = µ2 − (2− θ)(1− x)µ+ (1− θ)(1− x) = 0.

The discriminant is equal to

∆ =(2− θ)2(1− x)2 − 4(1− θ)(1− x)

=(1− x)(θ2 − (2− θ2)x).

Then µ1 and µ2 are real if and only if ∆ ≥ 0, which finishes the proof.

Finally, we need a simple lemma for geometric sums.

Lemma 27 For any λ > 0 and fixed t, we have:

t−1∑
τ=0

(τ + 1)λτ =
1− λt

(1− λ)2
− tλt

1− λ
.

Proof Consider the truncated geometric series:

t−1∑
τ=0

λτ =
1− λt

1− λ
.

Taking derivatives, we have:

t−1∑
τ=0

(τ + 1)λτ =
d

dλ

t−1∑
τ=0

λτ+1 =
d

dλ

[
λ · 1− λt

1− λ

]
=

1− λt

(1− λ)2
− tλt

1− λ
.
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C.1. Large-gradient scenario (nonconvex component)

All the lemmas in this section are concerned with the behavior of the AGD matrix for eigen-
directions of the Hessian with eigenvalues being negative or small and positive, as used in prov-
ing Lemma 21. The following lemma bounds the smallest eigenvalue of the AGD matrix for those
directions.

Lemma 28 Under the same setting as Lemma 26, and for x ∈ [−1
4 ,

θ2

(2−θ)2 ], where µ1 ≥ µ2, we
have:

µ2 ≤ 1− 1

2
max{θ,

√
|x|}.

Proof The eigenvalues satisfy:

det(A− µI) = µ2 − (2− θ)(1− x)µ+ (1− θ)(1− x) = 0.

Let µ = 1 + u. We have

(1 + u)2 − (2− θ)(1− x)(1 + u) + (1− θ)(1− x) = 0

⇒ u2 + ((1− x)θ + 2x)u+ x = 0.

Let f(u) = u2 + θu+ 2xu− xθu+ x. To prove µ2(A) ≤ 1−
√
|x|
2 when x ∈ [−1

4 ,−θ
2], we only

need to verify f(−
√
|x|
2 ) ≤ 0:

f(−
√
|x|
2

) =
|x|
4
−
θ
√
|x|

2
+ |x|

√
|x| −

|x|
√
|x|θ

2
− |x|

≤|x|
√
|x|(1− θ

2
)− 3|x|

4
≤ 0

The last inequality follows because |x| ≤ 1
4 by assumption.

For x ∈ [−θ2, 0], we have:

f(−θ
2

) =
θ2

4
− θ2

2
− xθ +

xθ2

2
+ x = −θ

2

4
+ x(1− θ) +

xθ2

2
≤ 0.

On the other hand, when x ∈ [0, θ2/(2 − θ)2], both eigenvalues are still real, and the midpoint of
the two roots is:

u1 + u2

2
= −(1− x)θ + 2x

2
= −θ + (2− θ)x

2
≤ −θ

2
.

Combining the two cases, we have shown that when x ∈ [−θ2, θ2/(2−θ)2] we have µ2(A) ≤ 1− θ
2 .

In summary, we have proved that

µ2(A) ≤

{
1−
√
|x|
2 , x ∈ [−1

4 ,−θ
2]

1− θ
2 . x ∈ [−θ2, θ2/(2− θ)2],

which finishes the proof.

In the same setting as above, the following lemma bounds the largest eigenvalue.
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Lemma 29 Under the same setting as Lemma 26, and with x ∈ [−1
4 ,

θ2

(2−θ)2 ], and letting µ1 ≥ µ2,
we have:

µ1 ≤ 1 + 2 min{|x|
θ
,
√
|x|}.

Proof By Lemma 26 and Vieta’s formula we have:

(µ1 − 1)(µ2 − 1) = µ1µ2 − (µ1 + µ2) + 1 = x.

An application of Lemma 28 finishes the proof.

The following lemma establishes some properties of the powers of the AGD matrix.

Lemma 30 Consider the same setting as Lemma 26, and let x ∈ [−1
4 ,

θ2

(2−θ)2 ]. Denote:

(at, − bt) =
(
1 0

)
At.

Then, for any t ≥ 2
θ + 1, we have:

t−1∑
τ=0

aτ ≥Ω(
1

θ2
)

1

bt

(
t−1∑
τ=0

aτ

)
≥Ω(1) min

{
1

θ
,

1√
|x|

}
.

Proof We prove the two inequalities seperately.
First Inequality: By Lemma 24:

t∑
τ=0

(
1 0

)
Aτ

(
1
0

)
=

t∑
τ=0

τ∑
i=0

µτ−i1 µi2 =

t∑
τ=0

(µ1µ2)
τ
2

τ∑
i=0

(
µ1

µ2
)
τ
2
−i

≥
t∑

τ=0

[(1− θ)(1− x)]
τ
2 · τ

2

The last inequality holds because in
∑τ

i=0(µ1µ2 )
τ
2
−i at least τ

2 terms are greater than one. Finally,
since x ≤ θ2/(2− θ)2 ≤ θ2 ≤ θ, we have 1− x ≥ 1− θ, thus:

t∑
τ=0

[(1− θ)(1− x)]
τ
2 · τ

2
≥

t∑
τ=0

(1− θ)τ · τ
2
≥

1/θ∑
τ=0

(1− θ)τ · τ
2

≥(1− θ)
1
θ

1/θ∑
τ=0

τ

2
≥ Ω(

1

θ2
),

which finishes the proof.
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Second Inequality: Without loss of generality, assume µ1 ≥ µ2. Again by Lemma 24:∑t−1
τ=0 aτ
bt

=

∑t−1
τ=0

∑τ
i=0 µ

i
1µ

τ−i
2

µ1µ2
∑t−1

i=0 µ
i
1µ

t−1−i
2

=
1

µ1µ2

t−1∑
τ=0

∑τ
i=0 µ

i
1µ

τ−i
2∑t−1

i=0 µ
i
1µ

t−1−i
2

≥ 1

µ1µ2

t−1∑
τ=(t−1)/2

∑τ
i=0 µ

i
1µ

τ−i
2∑t−1

i=0 µ
i
1µ

t−1−i
2

≥ 1

µ1µ2

t−1∑
τ=(t−1)/2

1

2µt−1−τ
1

=
1

2µ1µ2

[
1 +

1

µ1
+ · · ·+ 1

µ
(t−1)/2
1

]
≥ 1

2µ1µ2

[
1 +

1

µ1
+ · · ·+ 1

µ
1/θ
1

]
.

The second-to-last inequality holds because it is easy to check

2µt−1−τ
1

τ∑
i=0

µi1µ
τ−i
2 ≥

t−1∑
i=0

µi1µ
t−1−i
2 ,

for any τ ≥ (t− 1)/2. Finally, by Lemma 29, we have

µ1 ≤ 1 + 2 min{|x|
θ
,
√
|x|}.

Since µ1 = Θ(1), µ2 = Θ(1), we have that when |x| ≤ θ2,∑t−1
τ=0 aτ
bt

≥ Ω(1)

[
1 +

1

µ1
+ · · ·+ 1

µ
1/θ
1

]
≥ Ω(1) · 1

θ
· 1

(1 + θ)
1
θ

≥ Ω(
1

θ
).

When |x| > θ2, we have:

∑t−1
τ=0 aτ
bt

≥ Ω(1)

[
1 +

1

µ1
+ · · ·+ 1

µ
1/θ
1

]
= Ω(1)

1− 1

µ
1/θ+1
1

1− 1
µ1

= Ω(
1

µ1 − 1
) = Ω(

1√
|x|

).

Combining the two cases finishes the proof.

C.2. Large-gradient scenario (strongly convex component)

All the lemmas in this section are concerned with the behavior of the AGD matrix for eigen-
directions of the Hessian with eigenvalues being large and positive, as used in proving Lemma
22. The following lemma gives eigenvalues of the AGD matrix for those directions.

Lemma 31 Under the same setting as Lemma 26, and with x ∈ ( θ2

(2−θ)2 ,
1
4 ], we have µ1 = reiφ

and µ2 = re−iφ, where:

r =
√

(1− θ)(1− x), sinφ =
√

((2− θ)2x− θ2)(1− x)/2r.
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Proof By Lemma 26, we know that µ1 and µ2 are two solutions of

µ2 − (2− θ)(1− x)µ+ (1− θ)(1− x) = 0.

This gives r2 = µ1µ2 = (1− θ)(1− x). On the other hand, discriminant is equal to

∆ =(2− θ)2(1− x)2 − 4(1− θ)(1− x)

=(1− x)(θ2 − (2− θ2)x).

Since Im(µ1) = r sinφ =
√
−∆
2 , the proof is finished.

Under the same setting as above, the following lemma delineates some properties of powers of
the AGD matrix.

Lemma 32 Under the same setting as in Lemma 26, and with x ∈ ( θ2

(2−θ)2 ,
1
4 ], denote:

(at, − bt) =
(
1 0

)
At.

Then, for any t ≥ 0, we have:

max{|at|, |bt|} ≤ (t+ 1)(1− θ)
t
2 .

Proof By Lemma 24 and Lemma 31, using | · | to denote the magnitude of a complex number, we
have:

|at| =

∣∣∣∣∣
t∑
i=0

µi1µ
t−i
2

∣∣∣∣∣ ≤
t∑
i=0

|µi1µt−i2 | = (t+ 1)rt ≤ (t+ 1)(1− θ)
t
2

|bt| =

∣∣∣∣∣µ1µ2

t−1∑
i=0

µi1µ
t−1−i
2

∣∣∣∣∣ ≤
t−1∑
i=0

|µi+1
1 µt−i2 | ≤ tr

t+1 ≤ t(1− θ)
t+1
2 .

Reorganizing these two equations finishes the proof.

The following is a technical lemma which is useful in bounding the change in the Hessian by
the amount of oscillation in the iterates.

Lemma 33 Under the same setting as Lemma 31, for any T ≥ 0, any sequence {εt}, and any
ϕ0 ∈ [0, 2π]:

T∑
t=0

rt sin(φt+ ϕ0)εt ≤ O(
1

sinφ
)

(
|ε0|+

T∑
t=1

|εt − εt−1|

)
.

Proof Let τ = b2π/φc be the approximate period, and J = bT/τc be the number of periods that
exist within time T . Then, we can group the summation by each period:
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T∑
t=0

rt sin(φt)εt =

J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt sin(φt+ ϕ0)εt


=

J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt sin(φt+ ϕ0)[εjτ + (εt − εjτ )]


≤

J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt sin(φt+ ϕ0)

 εjτ︸ ︷︷ ︸
Term 1

+
J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt|εt − εjτ |


︸ ︷︷ ︸

Term 2

.

We prove the lemma by bounding the first term and the second term on the right-hand-side of this
equation separately.
Term 2: Since r ≤ 1, it is not hard to see:

Term 2 =

J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt|εt − εjτ |


≤

J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt

min{(j+1)τ−1,T}∑
t=jτ+1

|εt − εt−1|


≤τ

J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ+1

|εt − εt−1|

 ≤ τ T∑
t=1

|εt − εt−1|.

Term 1: We first study the inner-loop factor,
∑(j+1)τ−1

t=jτ rt sin(φt). Letting ψ = 2π − τφ be the
offset for each approximate period, we have that for any j < J :∣∣∣∣∣∣

(j+1)τ−1∑
t=jτ

rt sin(φt+ ϕ0)

∣∣∣∣∣∣ =

∣∣∣∣∣Im
[
τ−1∑
t=0

rjτ+tei·[φ(jτ+t)+ϕ0]

]∣∣∣∣∣
≤rjτ

∥∥∥∥∥
τ−1∑
t=0

rtei·φt

∥∥∥∥∥ ≤ rjτ
∥∥∥∥∥1− rτei·(2π−ψ)

1− rei·φ

∥∥∥∥∥
=rjτ

√
(1− rτ cosψ)2 + (rτ sinψ)2

(1− r cosφ)2 + (r sinφ)2
.

Combined with the fact that for all y ∈ [0, 1] we have e−3y ≤ 1−y ≤ e−y, we obtain the following:

1− rτ = 1− [(1− θ)(1− x)]
τ
2 = 1− e−Θ((θ+x)τ) = Θ((θ + x)τ) = Θ

(
(θ + x)

φ

)
(17)
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Also, for any a, b ∈ [0, 1], we have (1− ab)2 ≤ (1−min{a, b})2 ≤ (1− a2)2 + (1− b2)2, and by
definition of τ , we immediately have ψ ≤ φ. This yields:

(1− rτ cosψ)2 + (rτ sinψ)2

(1− r cosφ)2 + (r sinφ)2
≤2(1− r2τ )2 + 2(1− cos2 ψ)2 + (rτ sinψ)2

(r sinφ)2

≤O
(

1

sin2 φ

)[
(θ + x)2

φ2
+ sin4 φ+ sin2 φ

]
≤ O

(
(θ + x)2

sin4 φ

)
The second last inequality used the fact that r = Θ(1) (although note rτ is not Θ(1)). The last
inequality is true since by Lemma 31, we know (θ + x)/ sin2 φ ≥ Ω(1). This gives:∣∣∣∣∣∣

(j+1)τ−1∑
t=jτ

rt sin(φt+ ϕ0)

∣∣∣∣∣∣ ≤ rjτ · θ + x

sin2 φ
,

and therefore, we can now bound the first term:

Term 1 =
J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt sin(φt+ ϕ0)εjτ =
J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt sin(φt+ ϕ0)

 (ε0 + εjτ − ε0)

≤O(1)

J−1∑
j=0

[
rjτ

θ + x

sin2 φ

]
(|ε0|+ |εjτ − ε0|) +

T∑
t=Jτ

(|ε0|+ |εJτ − ε0|)

≤O(1)

[
1

1− rτ
θ + x

sin2 φ
+ τ

]
·

[
|ε0|+

T∑
t=1

|εt − εt−1|

]
≤
[
O(

1

sinφ
) + τ

]
·

[
|ε0|+

T∑
t=1

|εt − εt−1|

]
.

The second-to-last inequality used Eq.(17). In conclusion, since τ ≤ 2π
φ ≤

2π
sinφ , we have:

T∑
t=0

rt sin(φt+ ϕ0)εt ≤Term 1 + Term 2 ≤
[
O(

1

sinφ
) + 2τ

]
·

[
|ε0|+

T∑
t=1

|εt − εt−1|

]

≤O
(

1

sinφ

)[
|ε0|+

T∑
t=1

|εt − εt−1|

]
.

The following lemma combines the previous two lemmas to bound the approximation error in the
quadratic.

Lemma 34 Under the same setting as Lemma 26, and with x ∈ ( θ2

(2−θ)2 ,
1
4 ], denote:

(at, − bt) =
(
1 0

)
At.

Then, for any sequence {ετ}, any t ≥ Ω(1
θ ), we have:

t−1∑
τ=0

aτ ετ ≤O(
1

x
)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
t−1∑
τ=0

(aτ − aτ−1)ετ ≤O(
1√
x

)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
.
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Proof We prove the two inequalities separately.
First Inequality: Since x ∈ ( θ2

(2−θ)2 ,
1
4 ], we further split the analysis into two cases:

Case x ∈ ( θ2

(2−θ)2 ,
2θ2

(2−θ)2 ]: By Lemma 24, we can expand dthe left-hand-side as:

t−1∑
τ=0

aτ ετ ≤
t−1∑
τ=0

|aτ |(|ε0|+ |ετ − ε0|) ≤

[
t−1∑
τ=0

|aτ |

](
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
.

Noting that in this case x = Θ(θ2), by Lemma 32 and Lemma 27, we have for t ≥ O(1/θ):

t−1∑
τ=0

|aτ | ≤
t−1∑
τ=0

(τ + 1)(1− θ)
τ
2 ≤ O(

1

θ2
) = O(

1

x
).

Case x ∈ ( 2θ2

(2−θ)2 ,
1
4 ]: Again, we expand the left-hand-side as:

t−1∑
τ=0

aτ ετ =
t−1∑
τ=0

µτ+1
1 − µτ+1

2

µ1 − µ2
ετ =

t−1∑
τ=0

rτ+1 sin[(τ + 1)φ]

r sin[φ]
ετ .

Noting in this case that x = Θ(sin2 φ) by Lemma 31, then by Lemma 33 we have:

t−1∑
τ=0

aτ ετ ≤ O(
1

sin2 φ
)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
≤ O(

1

x
)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
.

Second Inequality: Using Lemma 24, we know:

aτ − aτ−1 =
(µτ+1

1 − µτ+1
2 )− (µτ1 − µτ2)

µ1 − µ2

=
rτ+1 sin[(τ + 1)φ]− rτ sin[τφ]

r sin[φ]

=
rτ sin[τφ](r cosφ− 1) + rτ+1 cos[τφ] sinφ

r sin[φ]

=
r cosφ− 1

r sinφ
· rτ sin[τφ] + rτ cos[τφ],

where we note r = Θ(1) and the coefficient of the first term is upper bounded by the following:∣∣∣∣r cosφ− 1

r sinφ

∣∣∣∣ ≤ (1− cos2 φ) + (1− r2)

r sinφ
≤ O

(
θ + x

sinφ

)
.

As in the proof of the first inequality, we split the analysis into two cases:
Case x ∈ ( θ2

(2−θ)2 ,
2θ2

(2−θ)2 ]: Again, we use

t−1∑
τ=0

(aτ−aτ−1)ετ ≤
t−1∑
τ=0

|aτ−aτ−1|(|ε0|+|ετ−ε0|) ≤

[
t−1∑
τ=0

|aτ − aτ−1|

](
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
.
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Noting x = Θ(θ2), again by Lemma 27 and | sin τφsinφ | ≤ τ , we have:[
t−1∑
τ=0

|aτ − aτ−1|

]
≤ O(θ + x)

t−1∑
τ=0

τ(1− θ)
τ
2 +

t−1∑
τ=0

(1− θ)
τ
2 ≤ O(

1

θ
) = O(

1√
x

).

Case x ∈ ( 2θ2

(2−θ)2 ,
1
4 ]: From the above derivation, we have:

t−1∑
τ=0

(aτ − aτ−1)ετ =
r cosφ− 1

r sinφ

t−1∑
τ=0

rτ sin[τφ]ετ +
t−1∑
τ=0

rτ cos[τφ]ετ .

According to Lemma 31, in this case x = Θ(sin2 φ), r = Θ(1) and since Ω(θ2) ≤ x ≤ O(1), we
have: ∣∣∣∣r cosφ− 1

r sinφ

∣∣∣∣ ≤ O(θ + x

sinφ

)
≤ O

(
θ + x√
x

)
≤ O(1).

Combined with Lemma 33, this gives:

t−1∑
τ=0

(aτ − aτ−1)ετ ≤ O(
1

sinφ
)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
≤ O(

1√
x

)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
.

Putting all the pieces together finishes the proof.

C.3. Negative-curvature scenario

In this section, we will prove the auxiliary lemmas required for proving Lemma 23.
The first lemma lower bounds the largest eigenvalue of the AGD matrix for eigen-directions

whose eigenvalues are negative.

Lemma 35 Under the same setting as Lemma 26, and with x ∈ [−1
4 , 0], and µ1 ≥ µ2, we have:

µ1 ≥ 1 +
1

2
min{|x|

θ
,
√
|x|}.

Proof The eigenvalues satisfy:

det(A− µI) = µ2 − (2− θ)(1− x)µ+ (1− θ)(1− x) = 0.

Let µ = 1 + u. We have

(1 + u)2 − (2− θ)(1− x)(1 + u) + (1− θ)(1− x) = 0

⇒ u2 + ((1− x)θ + 2x)u+ x = 0.

Let f(u) = u2 + θu+ 2xu− xθu+ x. To prove µ1(A) ≥ 1 +

√
|x|
2 when x ∈ [−1

4 ,−θ
2], we only

need to verify f(

√
|x|
2 ) ≤ 0:

f(

√
|x|
2

) =
|x|
4

+
θ
√
|x|

2
− |x|

√
|x|+

|x|
√
|x|θ

2
− |x|

≤
θ
√
|x|

2
− 3|x|

4
− |x|

√
|x|(1− θ

2
) ≤ 0
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The last inequality holds because θ ≤
√
|x| in this case.

For x ∈ [−θ2, 0], we have:

f(
|x|
2θ

) =
|x|2

4θ2
+
|x|
2
− |x|

2

θ
+
|x|2

2
− |x| = |x|

2

4θ2
− |x|

2
− |x|2(

1

θ
− 1

2
) ≤ 0,

where the last inequality is due to θ2 ≥ |x|.
In summary, we have proved

µ1(A) ≥

{
1 +

√
|x|
2 , x ∈ [−1

4 ,−θ
2]

1 + |x|
2θ . x ∈ [−θ2, 0],

which finishes the proof.

The next lemma is a technical lemma on large powers.

Lemma 36 Under the same setting as Lemma 26, and with x ∈ [−1
4 , 0], denote

(at, − bt) =
(
1 0

)
At.

Then, for any 0 ≤ τ ≤ t, we have

|a(1)
t−τ ||a(1)

τ − b(1)
τ | ≤ [

2

θ
+ (t+ 1)]|a(1)

t+1 − b
(1)
t+1|.

Proof Let µ1 and µ2 be the two eigenvalues of the matrix A, where µ1 ≥ µ2. Since x ∈ [−1
4 , 0],

according to Lemma 26 and Lemma 28, we have 0 ≤ µ2 ≤ 1 − θ
2 ≤ 1 ≤ µ1, and thus expanding

both sides using Lemma 24 yields:

LHS =

[
t−τ∑
i=0

µt−τ−i1 µi2

][
(1− µ2)

(
τ−1∑
i=0

µτ−i1 µi2

)
+ µτ2

]

=

[
t−τ∑
i=0

µt−τ−i1 µi2

]
(1− µ2)

(
τ−1∑
i=0

µτ−i1 µi2

)
+

[
t−τ∑
i=0

µt−τ−i1 µi2

]
µτ2

≤(t− τ + 1)µt−τ1 (1− µ2)

(
τ−1∑
i=0

µτ−i1 µi2

)
+

[
t−τ∑
i=0

µt−τ−i1 µi2

]

≤(t+ 1)(1− µ2)

(
τ−1∑
i=0

µt+1−i
1 µi2

)
+

2

θ
(1− µ2)

[
t−τ∑
i=0

µt+1−i
1 µi2

]

≤[
2

θ
+ (t+ 1)]

[
(1− µ2)

t∑
i=0

µt+1−i
1 µi2 + µt+1

2

]
= RHS,

which finishes the proof.

The following lemma gives properties of the (1, 1) element of large powers of the AGD matrix.
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Lemma 37 Let the 2× 2 matrix A(x) be defined as follows and let x ∈ [−1
4 , 0] and θ ∈ (0, 1

4 ].

A(x) =

(
(2− θ)(1− x) −(1− θ)(1− x)

1 0

)
.

For any fixed t > 0, letting g(x) =

∣∣∣∣(1 0
)

[A(x)]t
(

1
0

)∣∣∣∣, then we have:

1. g(x) is a monotonically decreasing function for x ∈ [−1, θ2/(2− θ)2].

2. For any x ∈ [θ2/(2− θ)2, 1], we have g(x) ≤ g(θ2/(2− θ)2).

Proof For x ∈ [−1, θ2/(2 − θ)2], we know that A(x) has two real eigenvalues µ1(x) and µ2(x),
Without loss of generality, we can assume µ1(x) ≥ µ2(x). By Lemma 24, we know:

g(x) =

∣∣∣∣(1 0
)

[A(x)]t
(

1
0

)∣∣∣∣ =
t∑
i=0

[µ1(x)]i[µ2(x)]t−i = [µ1(x)µ2(x)]
t
2

t∑
i=0

[
µ1(x)

µ2(x)

] t
2
−i
.

By Lemma 26 and Vieta’s formulas, we know that [µ1(x)µ2(x)]
t
2 = [(1− θ)(1− x)]

t
2 is monoton-

ically decreasing in x. On the other hand, we have that:

µ1(x)

µ2(x)
+
µ2(x)

µ1(x)
+ 2 =

[µ1(x) + µ2(x)]2

µ1(x)µ2(x)
=

(2− θ)2(1− x)

1− θ

is monotonically decreasing in x, implying that
∑t

i=0

[
µ1(x)
µ2(x)

] t
2
−i

is monotonically decreasing in x.
Since both terms are positive, this implies the product is also monotonically decreasing in x, which
finishes the proof of the first part.

For x ∈ [θ2/(2− θ)2, 1], the two eigenvalues µ1(x) and µ2(x) are conjugate, and we have:

[µ1(x)µ2(x)]
t
2 = [(1− θ)(1− x)]

t
2 ≤ [µ1(θ2/(2− θ)2)µ2(θ2/(2− θ)2)]

t
2

which yields:

t∑
i=0

[
µ1(x)

µ2(x)

] t
2
−i
≤

∥∥∥∥∥
t∑
i=0

[
µ1(x)

µ2(x)

] t
2
−i
∥∥∥∥∥ ≤

t∑
i=0

∥∥∥∥µ1(x)

µ2(x)

∥∥∥∥ t2−i = t+1 =

t∑
i=0

[
µ1(θ2/(2− θ)2)

µ2(θ2/(2− θ)2)

] t
2
−i
,

and this finishes the proof of the second part.

The following lemma gives properties of the sum of the first row of large powers of the AGD matrix.

Lemma 38 Under the same setting as Lemma 26, and with x ∈ [−1
4 , 0], denote

(at, − bt) =
(
1 0

)
At.

Then we have
|at+1 − bt+1| ≥ |at − bt|

and

|at − bt| ≥
θ

2

(
1 +

1

2
min{|x|

θ
,
√
|x|}

)t
.
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Proof Since x < 0, we know that A has two distinct real eigenvalues. Let µ1 and µ2 be the two
eigenvalues of A. For the first inequality, by Lemma 24, we only need to prove:

µt+1
1 − µt+1

2 − µ1µ2(µt1 − µt2) ≥ µt1 − µt2 − µ1µ2(µt−1
1 − µt−1

2 ).

Taking the difference of the LHS and RHS, we have:

µt+1
1 − µt+1

2 − µ1µ2(µt1 − µt2)− (µt1 − µt2) + µ1µ2(µt−1
1 − µt−1

2 )

=µt1(µ1 − µ1µ2 − 1 + µ2)− µt2(µ2 − µ1µ2 − 1 + µ1)

=(µt1 − µt2)(µ1 − 1)(1− µ2).

According to Lemma 26 and Lemma 28, µ1 ≥ 1 ≥ µ2 ≥ 0, which finishes the proof of the first
claim.

For the second inequality, again by Lemma 24, since both µ1 and µ2 are positive, we have:

at − bt =
t∑
i=0

µi1µ
t−i
2 − µ1µ2

t−1∑
i=0

µi1µ
t−1−i
2 ≥ (1− µ2)

t∑
i=0

µi1µ
t−i
2 ≥ (1− µ2)µt1.

By Lemma 28 we have 1−µ2 ≥ θ
2 , By Lemma 35 we know µ1 ≥ 1+ 1

2 min{ |x|θ ,
√
|x|}. Combining

these facts finishes the proof.
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