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Abstract
We give the first polynomial-time algorithm for performing linear or polynomial regression
resilient to adversarial corruptions in both examples and labels.

Given a sufficiently large (polynomial-size) training set drawn i.i.d. from distribution
D and subsequently corrupted on some fraction of points, our algorithm outputs a linear
function whose squared error is close to the squared error of the best-fitting linear function
with respect to D, assuming that the marginal distribution of D over the input space
is certifiably hypercontractive. This natural property is satisfied by many well-studied
distributions such as Gaussian, strongly log-concave distributions and, uniform distribution
on the hypercube among others. We also give a simple statistical lower bound showing
that some distributional assumption is necessary to succeed in this setting.

These results are the first of their kind and were not known to be even information-
theoretically possible prior to our work.

Our approach is based on the sum-of-squares (SoS) method and is inspired by the recent
applications of the method for parameter recovery problems in unsupervised learning.
Our algorithm can be seen as a natural convex relaxation of the following conceptually
simple non-convex optimization problem: find a linear function and a large subset of the
input corrupted sample such that the least squares loss of the function over the subset is
minimized over all possible large subsets.
Keywords: sum-of-squares, regression, robust learning

1. Introduction

An influential recent line of work has focused on developing robust learning algorithms–
algorithms that succeed on a data set that has been contaminated with adversarially
corrupted outliers. It has led to important achievements such as efficient algorithms
for robust clustering and estimation of moments (Lai et al., 2016; Diakonikolas et al.,
2016; Charikar et al., 2017; Kothari and Steurer, 2017; Kothari and Steinhardt, 2017a) in
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Outlier-Robust Regression

unsupervised learning and efficient learning of halfspaces (Klivans et al., 2009; Diakonikolas
et al., 2017) with respect to malicious or “nasty noise” in classification. In this paper, we
continue this line of work and give the first efficient algorithms for performing outlier-
robust least-squares regression. That is, given a training set drawn from distributionD and
arbitrarily corrupting an η fraction of its points (by changing both labels and/or locations),
our goal is to efficiently find a linear function (or polynomial in the case of polynomial
regression) whose least squares loss is competitive with the best fitting linear function for
D.

We give simple examples showing that unlike classical regression, achieving any non-
trivial guarantee for robust regression is information-theoretically impossible without
making assumptions on the distribution D. In this paper, we study the case where
the marginal of D on examples in the well-studied class of hypercontractive distributions.
Many natural distributions such as Gaussians, strongly log-concave distributions, and
product distributions on the hypercube with bounded marginals fall into this category. To
complement our algorithmic results, we also show that for the class of hypercontractive
distributions, the bounds on the loss of the linear function output by our algorithm is
optimal in its dependence on the fraction of corruptions η up to multiplicative constants.

1.1. Outlier-Robust Regression

We formally define the problem next. In the following, we will use the following notations
for brevity: For a distribution D on �d

× � and for a vector ` ∈ �d , let errD(`) �

�(x ,y)∼D[(〈`, x〉 − y)2] and let opt(D) � min`∈�d errD(`) be the least error achievable.
In the classical least-squares linear regression problem, we are given access to i.i.d.

samples from a distributionD over�d
×�and our goal is to find a linear function ` : �d

→ �

whose squared-error—errD(`)—is close to the best possible, opt(D).
In outlier-robust regression, our goal is similar with the added twist that we only get

access to a sample from the distributionD where up to an η fraction of the samples have
been arbitrarily corrupted.

Definition 1 (η-Corrupted Samples) Let D be a distribution on �d
× �. We say that a set

U ⊆ �d
×� is an η-corrupted training set drawn from D if it is formed in the following fashion:

generate a set X of i.i.d samples fromD and arbitrarily modify any η fraction to produce U.

Observe that the corruptions can be adaptive, that is, they can depend on the original
uncorrupted sample X in an arbitrary way as long as |U ∩ X |/|X | > 1 − η.1

Our goal—which we term outlier-robust regression—now is as follows: Given access to
an η-corrupted training set U drawn fromD, find a linear function ` whose error errD(`)
under the true distributionD is small.
1. In unsupervised learning, this has been called the strong adversary model of corruptions and is the strongest

notion of robustness studied in the context.
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1.2. Statement of Results

Ourmain results give outlier-robust least-squares regression algorithms for hypercontractive
distributions.

Definition 2 (4-Hypercontractivity) A distribution D on �d is (C, 4)-hypercontractive if for all
` ∈ �d , �x∼D[〈x , `〉4] 6 C2

· �x∼D[〈x , `〉2]2.
In addition, we say that D is certifiably (C, 4)-hypercontractive if there is a degree 4 sum-of-

squares proof of the above inequality.

Observe that 4-hypercontractivity is invariant under arbitrary affine transformation, and in
particular, doesn’t depend on the condition number of the covariance of the distribution.

We will elaborate on the notion of certifiability later on (once we have the appropriate
preliminaries). For the time being, we note that many well-studied distributions including
(potentially non-spherical) Gaussians, affine transformations of isotropic strongly log-
concave distributions, the uniform distribution on the Boolean hypercube, and more
generally, product distributions on bounded domains are known to satisfy this condition
with C a fixed constant.

Theorem 3 [Informal] Let D be a distribution on �d
× [−M,M] and let DX be its marginal

distribution on �d which is certifiably (C, 4)-hypercontractive. Let `∗ � argmin` errD(`) have
polynomial bit-complexity. Then for all ε > 0 and η < c/C2 for a universal constant c > 0, there
exists an algorithmA with run-time poly(d , 1/η, 1/ε,M) that given a polynomial-size η-corrupted
training set U, outputs a linear function ` such that with probability at least 1 − ε,

errD(`) 6 (1 + O(√η)) · opt(D) + O(√η) �
(x ,y)∼D

[(y − 〈`∗ , x〉)4] + ε.

The above statement assumes that the marginal distribution is (certifiably) hypercontrac-
tive with respect to its fourth moments. Our results improve for higher-order certifiably
hypercontractive distributionsDX .In the realizable case where (x , y) ∼ D satisfies y � 〈`∗ , x〉
for some `∗, the guarantee of Theorem 3 becomes errD(`) 6 ε; in particular, the error
approaches zero at a polynomial rate.

We also get analogous results for outlier-robust polynomial regression.
We also give a simple argument to show that the above guarantee is optimal in its

dependence on η up to the O(1) factors: even for distributions supported on �d
× [−1, 1],

it is statistically impossible to achieve an error bound of (1 + o(√η))opt + o(√η) under the
same assumptions.

Our result is a outlier-robust analog of agnostic regression problem - that is, the non-
realizable setting. In addition, our guarantees makes no assumption about the condition
number of the covariance ofDX and thus, in particular, holds forDX with poorly conditioned
covariances. Alternately, we give a similar guarantee for `1 regression when the condition
number of covariance of DX is bounded without any need for hypercontractivity. We
show that in the absence of distributional assumptions (such as hypercontractivity) it is
statistically impossible to obtain any meaningful bounds on robust regression.
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Application toLearningBooleanFunctionsunderNastyNoise. Ourworkhas immediate
applications for learning Boolean functions in the nasty noisemodel, where the learner is
presented with an η-corrupted training set that is derived from an uncorrupted training
set of the form (x , f (x)) with x drawn from D on {0, 1}n and f is an unknown Boolean
function. The goal is to output a hypothesis h with �x[h(x) , f (x)] as small as possible.
The nasty noise model is considered the most challenging noise model for classification
problems in computational learning theory.

Applying a result due to Kalai et al. (2008) (c.f. Theorem 5) for learning with respect to
adversarial label noise only (standard agnostic learning) and a generalization of Theorem 3 to
higher degree polynomials we obtain the following:

Corollary 4 Let C be a class of Boolean functions on n variables such that for every c ∈ C there
exists a (multivariate) polynomial p of degree d(ε) with �x∼D[(p(x) − c(x))2] 6 ε. Assume that
d(ε) is a constant for any ε � O(1) and thatD is (C, 4) hypercontractive for polynomials of degree
d(ε2). Then C can be learned in the nasty noise model in time nO(d(ε2)) via an output hypothesis h
such that �x∼D[h(x) , c(x)] 6 O(√η)�x∼D[(p(x) − c(x))4] + ε.

One of the main conclusions of work due to Kalai et al. (2008) is that the existence of
low-degree polynomial approximators for a concept class C implies learnability for C in the
agnostic setting. Corollary 4 shows that existence of low-degree polynomial approximators
and hypercontractivity of D imply learnability in the harsher nasty noise model.

We note that Corollary 4 gives an incomparable set of results in comparison to recent
work of Diakonikolas et al. (2017) for learning polynomial threshold functions in the nasty
noise model.

Concurrent Works. Using a set of different techniques, Diakonikolas, Kamath, Kane, Li,
Steinhardt and Stewart Diakonikolas et al. (2018a) and Prasad, Suggala, Balakrishnan and
Ravikumar Prasad et al. (2018) also obtained robust algorithms for regression in the setting
where data (x , y) is generated via the process: y � 〈w , x〉 + e for an fixed unknown vector w
and zero mean noise e. For improved bounds for the case when x is distributed according
to a Gaussian, see recent (independent and concurrent) work due to Diakonikolas, Kong,
and Stewart Diakonikolas et al. (2018b).

1.3. Our Approach

In this section, we give an outline of Theorem 3. At a high level, our approach resembles
several recent works (Ma et al., 2016; Barak and Moitra, 2016; Potechin and Steurer, 2017;
Kothari and Steurer, 2017; Hopkins and Li, 2017) starting with the pioneering work of Barak
et al. (2015) that use the Sum-of-Squares method for designing efficient algorithms for
learning problems. An important conceptual difference, however, is that previous works
have focused on parameter recovery problems. For such problems, the paradigm involves
showing that there’s a simple (in the “SoS proof system”) proof that a small sample uniquely
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identifies the underlying hidden parameters (referred to as “identifiability”) up to a small
error.

In contrast, in our setting, samples do not uniquely determine a good hypothesis as there
can be multiple hypotheses (linear functions) that all have low-error on the true distribution.
Our approach thus involves establishing that there’s a “simple” proof that any low-error
hypotheses that is inferred from the observed (corrupted) sample has low-error on the true
distribution (we call this certifiability of a good hypothesis). To output a good solution in our
approach (unlike in cases where there are uniqueness results), we have to crucially rely on
the convexity (captured in the SoS proof system) of the empirical loss function.

Part One: Certifying that a linear function has low loss. Let X be an uncorrupted
sample from the underlying distribution D and suppose we are given an η-corruption
U � {(u1 , v1), (u2 , v2), . . . , (un , vn)} of X. Let D̂ 2 be the uniform distribution on X. Our
goal is to come up with a linear function ` that has low error on D̂ given access only to U.
By standard generalization bounds, this will also imply that ` has low error onD with high
probability.

It is important to observe that evenwithout computational constraints, that is, information
theoretically, it is unclear why this should at all be possible. To see why, let’s consider the
following natural strategy: brute-force search over all subsets T of U of size (1 − η)|U | and
perform least-squares regression to obtain linear function `T with empirical loss εT . Then,
output `T with minimal empirical loss εT over all subsets T.

Since some subset T∗ of size (1− η)|U |will be a proper subset of the uncorrupted sample,
the empirical loss of `T∗ will clearly be small. However, a priori, there’s nothing to rule
out the existence of another subset R of size (1 − η)|U | such that the optimal regression
hypothesis `R on R has loss smaller than that of `T∗ while `R has a large error on the D̂.

This leads to the following interesting question on certifying a good hypothesis: given
a linear function ` that has small empirical loss with respect to some subset T of (1 − η)
fraction of the corrupted training set U, can we certify that its true loss with respect to X is
small?

We can phrase this as a more abstract “robust certification” question: given two
distributionsD1 (=uniform distribution on X above) andD2 (=uniform distribution on T
above) on �d

×� that are η close in total variation distance, and a linear function ` that has
small error onD2, when can we certify a good upper bound on the error of ` onD1?

Without making any assumptions onD1, it is not hard to construct examples where we
can give no meaningful bound on the error of a good hypothesis ` onD1. More excitingly,
we show an elementary proof of a “robust certifiability lemma” that proves a statement as
above whenever D1 has hypercontractive one dimensional marginals. The loss with respect
toD1 increases as a function of the statistical distance and the degree of hypercontractivity.

2. We use superscript ˆ to denote empirical quantities and superscript ′ to denote quantities on corrupted
samples.
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Applying our certification lemma, it thus suffices to find a subsetT ofU of size> (1−η)|U |
and a linear function ` such that the least squares error of ` over T is small.

Part Two: Inefficient Algorithm via Polynomial Optimization. Coming back to the
question of efficient algorithms, the above approach can appear hopeless in general since
simultaneously finding ` and a subset T of size (1 − η)|U | that minimizes the error of ` w.r.t.
uniform distribution on T is a non-convex quadratic optimization problem. At a high-level,
we will be able to get around this intractability by observing that the proof of our robust
certifiability lemma is “simple” in a precise technical sense. This simplicity allows us to
convert such a certifiability proof into an efficient algorithm in a principled manner. To
describe this connection, we will first translate the naive idea for an algorithm above into a
polynomial optimization problem.

For concreteness in this high-level description, we suppose that for (x , y) ∼ D, the
distribution on x is (C, 4)-hypercontractive for a fixed constant C and �[y4] � O(1). Further,
it can also be shown that, with high probability, D̂ is also (O(1), 4)-hypercontractive as long
as the size of the original uncorrupted sample X is large enough.

Following the certification lemma, our goal is to use U to find a distributionD′ and a
linear function ` such that 1) the loss of ` with respect toD′ is small and 2)D′ is close to D̂.
It is easy to phrase this as a polynomial optimization problem.

To do so wewill look for X′ � {(x′1 , y′1), . . . , (x′n , y′n)} andweights w1 , w2 , . . . ,wn ∈ {0, 1}
with

∑
i wi > (1 − η)n and (x′i , y′i) � (ui , vi) if wi � 1. LetD′ be the uniform distribution on

X′. Clearly, the condition on weights w ensures that the statistical distance between D̂ ,D′

is at most η. Ideally, we intend wi’s to be the indicators of whether or not the i’th sample
is corrupted. We now try to find ` that minimizes the least squares error onD′. This can
be captured by the following optimization program: minw ,`,X′(1/n)∑i(y′i − 〈`, x′i〉)2 where
(w , `,X′) satisfy the polynomial system of constraints:

P �




∑n
i�1 wi � (1 − η) · n

w2
i � wi ∀i ∈ [n].

wi · (ui − x′i) � 0 ∀i ∈ [n].
wi · (vi − y′i) � 0 ∀i ∈ [n].




(1.1)

In this notation, our robust certifiability lemma implies that for any (w , `,X′) satisfying
P,

err
D̂
(`) 6 (1 + O(√η)) · errD′(`) + O(√η). (1.2)

It is easy to show that the minimum of the optimization program opt(D̂) / opt(D) (up
to standard generalization error) by setting X′ � X and wi � 1 if and only if i’th sample is
uncorrupted. By the above arguments, solutions to the above program satisfy the bound
stated in Theorem 3. Unfortunately, this is a quadratic optimization problem and is NP-hard
in general.

We are now ready to describe the key idea that allows us to essentially turn this hopelessly
inefficient algorithm into an efficient one. This exploits a close relationship between the
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simplicity of the proof of robust certifiability and the success of a canonical semi-definite
relaxation of (1.1).

Part Three: From Simple Proofs to Efficient Algorithms. Suppose that instead of finding
a single solution to the program in (1.1), we attempt to find a distribution µ supported on
(w , `,X′) that satisfy P and minimizes�µ[(1/n)∑i(y′i − 〈`, x′i〉)2]. Let optµ be the minimum
value. Then, as Equation 1.2 holds for all (w , `,X′) satisfying P, it also follows that

�
(w ,`,X′)∼µ

[err
D̂
(`)] 6 (1 + O(√η)) optµ +O(√η). (1.3)

A priori, we appear to have made our job harder. While computing a distribution on
solutions is no easier than computing a single solution, even describing a distribution on
solutions appears to require exponential resources in general. However, by utilizing the
convexity of the square loss, we can show that having access to just the first moments of µ is
enough to recover a good solution.

Formally, by the convexity of the square loss, the above inequality yields:

err
D̂

(
�
µ
[`]

)
6 �

(w ,`,X′)∼µ
[err

D̂
(`)] 6 (1 + O(√η)) optµ +O(√η). (1.4)

All of the above still doesn’t help us in solving program 1.1 as even finding first moments
of distributions supported on solutions to a polynomial optimization program is NP-Hard.

The key algorithmic insight is to observe that we can replace distributions µ by an
efficiently computable (via the SoS algorithm) proxy called as pseudo-distributionswithout
changing any of the conclusions above.

In what way is a pseudo-distribution a proxy for an actual distribution µ satisfying P?
It turns out that if a polynomial inequality (such as the one in (1.2)) can be derived from P
via a low-degree sum-of-squares proof, then (1.3) remains valid even if we replace µ in (1.3) by
a pseudo-distribution µ̃ of large enough degree. Roughly speaking, the SoS degree of a
proof measures the “simplicity” of the proof (in the “SoS proof system”). In other words,
facts with simple proofs holds not just for distributions but also for pseudo-distributions.

Thus, the important remaining steps are to show that 1) the inequality (1.2) (which is
essentially the conclusion of our robust certifiability lemma) and 2) the convexity argument
in (1.4) has a low-degree SoS proof. We establish both these claims by relying on standard
tools such as the SoS versions of the Cauchy-Schwarz and Hölder’s inequalities.

We give a brief primer to the SoS method in the full version that includes rigorous
definitions of concepts appearing in this high-level overview.

1.4. Related Work

The literature on grappling with outliers in the context of regression is vast, and we do not
attempt a survey here3. Many heuristics have been developed modifying the ordinary least

3. Even the term “robust” is very overloaded and can now refer to a variety of different concepts.
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squares objective with the intent of minimizing the effect of outliers (see Rousseeuw and
Leroy (1987)). Another active line research is concerned with parameter recovery, where each
label y in the training set is assumed to be from a generative model of the form θT x + e for
some (usually independent) noise parameter e and unknown weight vector θ ∈ �d . For
example, the recovery properties of LASSO and related algorithms in this context have
been intensely studied (see e.g., Xu et al. (2010), Loh and Wainwright (2011)). For more
challenging noise models, recent work due to Du, Balakrishnan, and Singh (Du et al., 2017)
studies sparse recovery in the Gaussian generative setting in Huber’s ε-contamination
model, which is similar but formally weaker than the noise model we consider here.

It is common for “robust regression” to refer to a scenario where only the labels are
allowed to be corrupted adversarially (for example, see Bhatia et al. (2017) and the references
therein), or where the noise obeys some special structure (e.g., Herman and Strohmer (2010))
(although there are some contexts where both the covariates (the x’s) and labels may be
subject to a small adversarial corruption (Chen et al., 2013)).

What distinguishes our setting is 1) we do not assume the labels come from a generative
model; each (x , y) element of the training set is drawn iid from D and 2) we make no
assumptions on the structure or type of noise that can affect a training set (other than that at
most an η fraction of points may be affected). In contrast to the parameter recovery setting,
our goal is similar to that of agnostic learning: we will output a linear function whose squared
error with respect toD is close to optimal.

From a technical standpoint, as discussed before our work follows the recent paradigm
of converting certifiability proofs to algorithms. Previous applications in machine learning
have focused on various parameter-recovery problems in unsupervised learnings. Our
work is most closely related to the recent works on robust unsupervised learning (moment
estimation and clustering) (Kothari and Steurer, 2017; Hopkins and Li, 2017; Kothari and
Steinhardt, 2017b).

2. Preliminaries and Notation

2.1. Notation

We will use the following notations and conventions throughout: For a distributionD on
�d
×� and function f : �d

→ �, we define errD( f ) � �(x ,y)∼D[( f (x) − y)2]. For a vector
` ∈ �d , we abuse notation and write errD(`) for �(x ,y)∼D[(〈`, x〉 − y)2]. For a real-valued
random variable X, and integer k > 0, we let ‖X‖k � �[Xk]1/k .

2.2. Distribution Families

Our algorithmic results for a wide class of distributions that include Gaussian distributions
and others such as log-concave and other product distributions. We next define the
properties we need for the marginal distribution on examples to satisfy.
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Definition 5 (Certifiable hypercontractivity) For a function C : [k] → �+, we say a distri-
bution D on �d is k-certifiably C-hypercontractive if for every r 6 k/2, there’s a degree k sum of
squares proof of the following inequality in variable v:

�
D
〈x , v〉2r 6

(
C(r)�

D
〈x , v〉2

) r
.

Many natural distribution families satisfy certifiable hypercontractivity with reasonably
growing functions C. For instance, Gaussian distributions, uniform distribution on Boolean
hypercube satisfy the definitions with C(r) � cr for a fixed constant c. More generally, all
distributions that are affine transformations of isotropic distributions satisfying the Poincaré
inequality (Kothari and Steinhardt, 2017a), are also certifiably hypercontractive. In particular,
this includes all strongly log-concave distributions. Certifiable hypercontractivity also
satisfies natural closure properties under simple operations such as affine transformations,
taking bounded weight mixtures and taking products. We refer the reader to Kothari and
Steurer (2017) for a more detailed overview where certifiable hypercontractivity is referred
to as certifiable subgaussianity.
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