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Abstract
We show that the gradient descent algorithm provides an implicit regularization effect in the learn-
ing of over-parameterized matrix factorization models and one-hidden-layer neural networks with
quadratic activations.

Concretely, we show that given Õ(dr2) random linear measurements of a rank r positive
semidefinite matrix X?, we can recover X? by parameterizing it by UU> with U ∈ Rd×d and
minimizing the squared loss, even if r � d. We prove that starting from a small initialization,
gradient descent recovers X? in Õ(

√
r) iterations approximately. The results solve the conjecture

of Gunasekar et al. Gunasekar et al. (2017) under the restricted isometry property.
The technique can be applied to analyzing neural networks with one-hidden-layer quadratic

activations with some technical modifications.
Keywords: Generalization theory; Implicit regularization; Matrix factorization; Neural networks.

1. Introduction

Over-parameterized models are crucial in deep learning, but their workings are far from understood.
Over-parameterization — the technique of using more parameters than statistically necessary — ap-
parently improves the training: theoretical and empirical results have suggested that it can enhance
the geometric properties of the optimization landscape in simplified settings Livni et al. (2014);
Hardt et al. (2016); Hardt and Ma (2017); Soudry and Carmon (2016) and thus make it easier to
train over-parameterized models.

On the other hand, over-parameterization often doesn’t hurt the test performance, even if the
number of parameters is much larger than the number of examples. Large neural networks used in
practice have enough expressiveness to fit any labels of the training datasets Zhang et al. (2016);
Hardt and Ma (2017). The training objective function may have multiple global minima with al-
most zero training error, some of which generalize better than the others Keskar et al. (2016); Dinh
et al. (2017). However, local improvement algorithms such as stochastic gradient descent, starting
with proper initialization, may prefer some generalizable local minima to the others and thus pro-
vide an implicit effect of regularization Srebro et al. (2011); Neyshabur et al. (2014); Hardt et al.
(2015); Neyshabur et al. (2017b); Wilson et al. (2017). Such regularization seems to depend on the
algorithmic choice, the initialization scheme, and certain intrinsic properties of the data.
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ALGORITHMIC REGULARIZATION IN OVER-PARAMETERIZED MODELS

The phenomenon and intuition above can be theoretically fleshed out in the context of linear
models Soudry et al. (2017), whereas less is known for non-linear models whose training objectives
are usually non-convex. The very important work of Gunasekar et al. Gunasekar et al. (2017) initi-
ates the study of low-rank matrix factorization models with over-parameterization and conjectures
that gradient descent prefers small trace norm solution in over-parameterized models with thorough
empirical evidences.

This paper resolves the conjecture for the matrix sensing problem — recovering a low-rank
matrix from linear measurements — under the restricted isometry property (RIP). We show that
with a full-rank factorized parameterization, gradient descent on the squared loss with finite step
size, starting with a small initialization, converges to the true low-rank matrix (which is also the
minimum trace norm solution.) One advantage of the over-parameterized approach is that without
knowing/guessing the correct rank, the algorithms can automatically pick up the minimum rank or
trace norm solution that fits the data.

The analysis can be extended to learning one-hidden-layer neural networks with quadratic acti-
vations. We hope such theoretical analysis of algorithmic regularization in the non-convex setting
may shed light on other more complicated models where over-parameterization is crucial (if not
necessary) for efficient training.

1.1. Setup and Main Results

Let X? be an unknown rank-r symmetric positive semidefinite (PSD) matrix in Rd×d that we aim
to recover. Let A1, · · · , Am ∈ Rd×d be m given symmetric measurement matrices.1 We assume
that the label vector y ∈ Rm is generated by linear measurements

yi = 〈Ai, X?〉.

Here 〈A,B〉 = tr(A>B) denotes the inner product of two matrices. Our goal is to recover the
matrix X?. 2

Without loss of generality, we assume thatX? has spectral norm 1. Let σr(X) denote the r− th
singular value of a matrix X , and let κ = 1/σr(X

?) be the condition number of X?. We focus on
the regime where r � d and m ≈ d · poly(r log d)� d2.

Let U ∈ Rd×d be a matrix variable. We consider the following mean squared loss objective
function with over-parameterization:

min
U∈Rd×d

f(U) =
1

2m

m∑
i=1

(
yi − 〈Ai, UU>〉

)2
(1)

Since the label is generated by yi = 〈Ai, X?〉, any matrix U satisfying UU> = X? is a local
minimum of f with zero training error. These are the ideal local minima that we are shooting for.
However, because the number of parameters d2 is much larger than the number of observation m,
there exist other choices of U satisfying f(U) = 0 but UU> 6= X?.

1. Given that the matrix X? is symmetric, we can assume that Ai’s are symmetric without loss of generality: Because
〈Ai, X?〉 = 〈 1

2
(Ai +A>i ), X?〉 for any symmetric matrix X?, we can always replace Ai by 1

2
(Ai +A>i ).

2. Our analysis can naturally handle a small amount of Gaussian noise in the label vector y, but for simplicity we only
work with the noiseless case.
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A priori, such over-parameterization will cause over-fitting. However, we will show that the
following gradient descent algorithm with small initialization converges to a desired local minimum,
instead of other non-generalizable local minima:

U0 = αB, where B ∈ Rd×d is any orthonormal matrix

Ut+1 = Ut − η∇f(Ut) (2)

The following theorem assumes the measurements matrices A1, . . . , Am satisfy restricted isometry
property (RIP), which is formally defined in Section 2. Casual readers may simply assume that the
entries of Ai’s are drawn i.i.d from standard normal distribution3 and the number of observations
m . dr2 log3 d: it’s known Recht et al. (2010) that in this caseA1, . . . , Am meet the requirement of
the following theorem, that is, they satisfy (4r, δ)-RIP with δ . 1/(

√
r log d) with high probability.

4

Theorem 1.1 Let c be a sufficiently small absolute constant. Assume that the set of measure-
ment matrices (A1, . . . , Am) satisfies (4r, δ)-restricted isometry property (defined in Section 2 for-
mally) with δ ≤ c/(κ3√r log2 d). Suppose the initialization and learning rate satisfy 0 < α ≤
cmin{δ

√
rκ, 1/d} and η ≤ cδ. Then for every (κ log( dα))/η . T . 1/(η

√
dκα), we have

‖UTU>T −X?‖2F . α
√
d/κ2.

Note that the recovery error ‖UTU>T −X?‖2F can be viewed as the test error (defined in Equa-
tion (8) formally) — it’s the expectation of the test error on a fresh measurement Aj drawn from
the standard normal distribution. The theorem above shows that gradient descent can provide an
algorithmic regularization so that the generalization error depends on the size of the initialization
α, instead of the number of parameters. Because the convergence is not very sensitive to the initial-
ization, we can choose small enough α (e.g., 1/d5) to get approximately zero generalization error.
Moreover, when α is small, gradient descent can run for a long period of time without overfitting
the data. We show in Section B that empirically indeed the generalization error depends on the size
of the initialization and gradient descent is indeed very stable.

The analysis also applies to stochastic gradient descent, as long as each batch of the measure-
ment matrices satisfies RIP.5 We also remark that our theory suggests that early stopping for this
problem is not necessary when the initialization is small enough — the generalization error bounds
apply until 1/(η

√
dκα) iterations. We corroborate this with empirical results in Section B.

We remark that we achieve a good iteration complexity bound 1/η ≈ 1/δ ≈
√
r for the gradient

descent algorithm, which was not known in previous work even for low-rank parameterization, nor
for the case with infinite samples (which is the PCA problem). Part of the technical challenges is
to allow finite step size η and inverse-poly initialization α (instead of exponentially small initializa-
tion). The dependency of δ on κ and r in the theorem is possibly not tight. We conjecture that δ
only needs to be smaller than an absolute constant, which is left for future work.

3. Or equivalently, as discussed in the previous footnote, causal readers may assume Ai = 1
2
(Qi + Q>i ) where Qi

is from standard normal distribution. Such symmetrization doesn’t change the model since 〈Qi, X?〉 = 〈 1
2
(Qi +

Q>i ), X?〉
4. Technically, to get such RIP parameters that depends on r, one would need to slightly modify the proof of (Recht

et al., 2010, Theorem 4.2) at the end to get the dependency of m on δ.
5. Smaller batch size should also work when the learning rate is sufficiently small, although its analysis seems to require

more involved techniques and is left for future work.
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Insights of the analysis: Interestingly, our analysis ideas seem to be different from other previous
work in a conceptual sense. The analysis of the logistic regression case Soudry et al. (2017) relies on
that the iterate eventually moves to infinity. The folklore analysis of the algorithmic regularization
of SGD for least squares and the analysis in Gunasekar et al. (2017) for the matrix regression with
commutable measurements both follow the two-step plan: a) the iterates always stays on a low-rank
manifold that only depends on the inputs (the measurement matrices) but not on the label vector y;
b) generalization follows from the low complexity of the low-rank manifold. Such input-dependent
but label-independent manifold doesn’t seem to exist in the setting when Ai’s are random.

Instead, we show that the iterates stay in the set of matrices with approximate rank smaller or
equal to the minimal possible rank that can fit the data, which is a set that depends on the labels
y but not on the inputs Ai’s. We implicitly exploit the fact that gradient descent on the population
risk with small initialization only searches through the space of solutions with a lower rank than
that of the true matrix X?. The population risk is close to the empirical risk on matrices with rank
smaller than or equal to the true rank. Hence, we can expect the learning dynamics of the empirical
risk to be similar to that of the population risk, and therefore the iterates of GD on the empirical
risk remain approximately low-rank as well. Generalization then follows straightforwardly from the
low-rankness of the iterates. See Section 3 for more high-level discussions.

We note that the factorized parameterization also plays an important role here. The intuition
above would still apply if we replace UU> with a single variable X and run gradient descent in the
space of X with small enough initialization. However, it will converge to a solution that doesn’t
generalize. The discrepancy comes from another crucial property of the factorized parameteriza-
tion: it provides certain denoising effect that encourages the empirical gradient to have a smaller
eigenvalue tail. This ensures the eigenvalues tails of the iterates to grow sufficiently slowly. This
point will be more precise in Section 3 once we apply the RIP property. In section B, we also em-
pirically demonstrate that GD in the original space of X? with projection to the PSD cone doesn’t
provide as good generalization performance as GD in the factorized space.

Finally, we remark that the cases with rank r > 1 are technically much more challenging than
the rank-1 case. For the rank-1 case, we show that the spectrum of Ut remains small in a fixed
rank-(d − 1) subspace, which is exactly the complement of the column span of X?. Hence the
iterates are approximately rank one. By contrast, for the rank-r case, a direct extension of this proof
strategy only gives a much weaker result compared to Theorem 1.1. Instead, we identify an adaptive
rank-(d− r) subspace in which Ut remains small. Clearly, the best choice of this adaptive subspace
is the subspace of the least (d− r) left singular vectors of Ut. However, we use a more convenient
surrogate. We refer the reader to Section 4 for detailed descriptions.

1.2. Extensions to Neural Networks with Quadratic Activations

Our results can be applied to learning one-hidden-layer neural networks with quadratic activations.
We setup the notations and state results below and defer the details to Section A.

Let x ∈ Rd be the input and U? ∈ Rd×r be the first layer weight matrix. We assume that the
weight on the second layer is simply the all one’s vector 1 ∈ Rr. Formally, the label y is assumed
to be generated by

y = 1>q(U?>x) (3)

where q(·) is the element-wise quadratic function. For simplicity, we assume that x comes from
standard normal distributionN (0, Idd×d). It’s not hard to see that the representational power of the
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hypothesis class with r = d is the same as those with r > d. Thus we only focus on the case when
r ≤ d. For the purpose of this paper, the most interesting regime is the scenario when r � d.

We use an over-parameterized model with a variable U ∈ Rd×d. The prediction ŷ is parameter-
ized by ŷ = 1>q(U>x), and we use the mean squared error (y − ŷ)2 as the loss function. We use a
variant of stochastic gradient descent (or gradient descent) on the mean squared loss.

The following theorem shows that the learned model will generalize with Õ(dr5κ6) examples,
despite that the number of parameters d2 can be much larger than the number of samples (when
d� r or r is considered as a constant).6 We will start with an initialization U0 in the same way as
in equation (2), and denote U1, . . . , UT as the iterates. Let κ be the condition number of U?U?>.

Theorem 1.2 Given Õ(dr5κ6) examples, a variant of gradient descent (Algorithm 1 in Section A)
with initialization α . min{1/d, 1/(r2κ4 log2 d)} and learning rate η . 1

κ3r1.5 log2 d
returns a

solution with generalization error at most O(dκα) at any iteration t such that (κ log(d/α))/η .
t . 1/(η

√
dκα).

The same analysis also applies to stochastic gradient descent as long as the batch size is at least
& dr5κ6. The analysis exploits the connection (pointed out by Soltanolkotabi et al. (2017)) between
neural networks with quadratic activations and matrix sensing with rank-1 measurements Kueng
et al. (2017); Zhong et al. (2015); Chen et al. (2015): one can view xx> as the measurement matrix
in matrix sensing. However, these measurements don’t satisfy the RIP property. We will modify the
learning algorithm slightly to cope with it. See Section A for details.
Organization: The rest of this paper is organized as follows: In Section 2, we define notations and
present a review of the restricted isometry property. In Section 3, we lay out the key theoretical
insights towards proving Theorem 1.1 and give the analysis for the rank-1 case as a warm-up. In
Section 4, we outline the main steps for proving Theorem 1.1 and Section D completes the proofs
of these steps. Section A and Section E give the proof of Theorem 1.2. Section B contains numeric
simulations. Finally, Section F provide the proofs of concentration properties we have used.

Notations: Let IdU denotes the projection to the column span of U , and let Id denotes the identity
matrix. Let U+ denote the Moore-Penrose pseudo-inverse of the matrix U . Let ‖·‖ denotes the
Euclidean norm of a vector and spectral norm of a matrix. Let ‖·‖F denote the Frobenius norm of a
matrix. Suppose A ∈ Rm×n, then σmax(A) denote its largest singular value and σmin(A) denotes
its min{m,n}-th largest singular value. Alternatively, we have σmin(A) = minx:‖x‖=1 ‖Ax‖. Let
〈A,B〉 = tr(A>B) denote the inner product of two matrices. We use sin(A,B) to denote the sine
of the principal angles between the columns spaces of A and B.

Unless explicitly stated otherwise, O(·)-notation hides absolute multiplicative constants. Con-
cretely, every occurrence of O(x) is a placeholder for some function f(x) that satisfies ∀x ∈
R, |f(x)| ≤ C|x| for some absolute constant C > 0. Similarly, a . b means that there exists
an absolute constant C > 0 such that a . Cb. We use the notation poly(n) as an abbreviation for
nO(1).

6. The dependency on r here is likely to be loose. Although we note that this is the first bound of this kind for this
problem that shows over-parameterized models can still generalize.

5
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2. Preliminaries and Related Work

Recall that we assume X? is rank-r and positive semidefinite. Let X? = U?Σ?U?> be the eigen-
decomposition of X?, where U? ∈ Rd×r is an orthonormal matrix and Σ? ∈ Rr×r is a diagonal
matrix. The assumptions that ‖X?‖ = 1 and σr(X?) = 1/κ translate to that ∀i ∈ [r], 1/κ ≤
Σ?
ii ≤ 1. Under the above notations, we see that the target solution for the variable U is equal to

U = U?Σ?1/2R where R can be arbitrary orthonormal matrix. For convenience, we define the
matrix Mt as

Mt =
1

m

m∑
i=1

〈Ai, UtU>t −X?〉Ai (4)

Then the update rule can be rewritten as

Ut+1 = (Id−ηMt)Ut (5)

where Id is the identity matrix. One of the key challenges is to understand how the matrix Id−ηMt

transforms Ut, so that U0 converges the target solution U?Σ?1/2R quickly.
Suppose that A1, . . . , Am are drawn from Gaussian distribution and optimistically suppose that

they are independent with Ut. Then, we have that Mt ≈ UtU
>
t −X?, since the expectation of Mt

with respect to the randomness of Ai’s is equal to UtU>t −X?. However, they are two fundamental
issues with this wishful thinking: a) obviously Ut depends on Ai’s heavily for t > 1, since in
every update step Ai’s are used; b) even if Ai’s are independently with Ut, there are not enough
Ai’s to guarantee Mt concentrates around its mean UtU>t −X? in Euclidean norm. To have such
concentration, we need m > d2, whereas we only have m = d× poly(r log d) samples.

Restricted isometry propety: The restricted isometry property (RIP) allows us to partially cir-
cumvent both the technical issues a) and b) above. It says that using the set of linear measurement
matrices A1, . . . , Am, we can preserve the Frobenius norm of any rank-r matrices approximately.

Definition 2.1 (Restricted isometry property Recht et al. (2010)) A set of linear measurement ma-
trices A1, . . . , Am in Rd×d satisfies (r, δ)-restricted isometry property (RIP) if for any d× d matrix
X with rank at most r, we have

(1− δ)‖X‖2F ≤
1

m

m∑
i=1

〈Ai, X〉2 ≤ (1 + δ)‖X‖2F . (6)

The crucial consequence of RIP that we exploit in this paper is the meta statement as follows:

M(Q) :=
1

m

m∑
i=1

〈Ai, Q〉Ai behaves like Q for approximately low-rank Q (7)

We will state several lemmas below that reflect the principle above. The following lemma says that
〈M(X), Y 〉 behaves like 〈X,Y 〉 for low-rank matrices X and Y .

Lemma 2.2 (Candes, 2008, Lemma 2.1) Let {Ai}mi=1 be a family of matrices in Rd×d that satisfy
(r, δ)-restricted isometry property. Then for any matrices X,Y ∈ Rd×d with rank at most r, we
have: ∣∣∣∣∣ 1

m

m∑
i=1

〈Ai, X〉〈Ai, Y 〉 − 〈X,Y 〉

∣∣∣∣∣ ≤ δ‖X‖F ‖Y ‖F
6
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The following lemma says thatM(X) behaves like X when multiplied by a matrix R with small
operator norm.

Lemma 2.3 Let {Ai}mi=1 be a family of matrices in Rd×d that satisfy (r, δ)-restricted isometry
property. Then for any matrix X ∈ Rd×d of rank at most r, and any matrix R ∈ Rd×d′ , where d′

can be any positive integer, we have:∥∥∥∥∥ 1

m

m∑
i=1

〈Ai, X〉AiR−XR

∥∥∥∥∥ ≤ δ‖X‖F · ‖R‖.
Lemma 2.3 is proved in Section F7. We can also extend Lemma 2.3 to the cases whenX has a higher
rank (see Lemma F.1 and Lemma F.2). The bounds are not as strong as above (which is inevitable
because we only have m measurements), but are useful when X itself is relatively small.

2.1. Related Work

Generalization theory beyond uniform convergence: This work builds upon the remarkable
work of Gunasekar et al. Gunasekar et al. (2017), which raises the conjecture of the implicit regu-
larization in matrix factorization models and provides theoretical evidence for the simplified setting
where the measurements matrices are commutable. Implicit regularization of gradient descent is
studied in the logistic regression setting by Soudry et al. Soudry et al. (2017).

Recently, the work of Hardt et al. Hardt et al. (2015) studies the implicit regularization provided
by stochastic gradient descent through uniform stability Bousquet and Elisseeff (2002); Mukherjee
et al. (2006); Shalev-Shwartz et al. (2010). Since the analysis therein is independent of the training
labels and therefore it may give pessimistic bounds Zhang et al. (2017). Brutzkus et al. Brutzkus
et al. (2017) use a compression bound to show network-size independent generalization bounds of
one-hidden-layer neural networks on linearly separable data.

Bartlett et al. Bartlett et al. (2017), Neyshabur et al. Neyshabur et al. (2017a), and Cisse et
al. Cisse et al. (2017) recently prove spectrally-normalized margin-based generalization bounds for
neural networks. Dziugaite and Roy Dziugaite and Roy (2017) provide non-vacuous generalization
bounds for neural networks from PCA-Bayes bounds. As pointed out by Bartlett et al. Bartlett et al.
(2017), it’s still unclear why SGD without explicit regularization can return a large margin solution.
This paper makes progress on explaining the regularization power of gradient descent, though on
much simpler non-linear models.

Matrix factorization problems: Early works on matrix sensing and matrix factorization prob-
lems use convex relaxation (nuclear norm minimization) approaches and obtain tight sample com-
plexity bounds Recht et al. (2010); Srebro and Shraibman (2005); Candès and Recht (2009); Recht
(2011); Candès et al. (2011). Tu et al. Tu et al. (2015) and Zheng and Lafferty Zheng and Lafferty
(2016) analyze the convergence of non-convex optimization algorithms from spectral initialization.
The recent work of Ge et al. Ge et al. (2016) and Bhojanapalli et al. Bhojanapalli et al. (2016)
shows that the non-convex objectives on matrix completion and matrix sensing with low-rank pa-
rameterization don’t have any spurious local minima, and stochastic gradient descent algorithm on
them converges to the global minimum. Such a phenomenon was already known for the PCA prob-
lem and recently shown for phase retrieval, robust PCA, and random tensor decomposition as well

7. We suspect that Lemma 2.3 is already known, however we haven’t been able to find a reference.
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(e.g., see Srebro and Jaakkola (2013); Ge et al. (2016); Bhojanapalli et al. (2016); Ge et al. (2017);
Ge and Ma (2017); Sun et al. (2016) and references therein). Soltanolkotabi et al. Soltanolkotabi
et al. (2017) analyzes the optimization landscape of over-parameterized one-hidden-layer neural
networks with quadratic activations. Empirically, Jose et al. Jose et al. (2017) show that factorized
parameterizations of recurrent neural networks provide additional regularization effect.

3. Proof Overview and Rank-1 Case

In this section, we demonstrate the key ideas of our proofs and give an analysis of the rank-1 case as
a warm-up. The main intuition is that the iterate Ut stays approximately low-rank in the sense that:

(a) The (r + 1)-th singular value σr+1(Ut) remains small for any t ≥ 0;

(b) The top r singular vectors and singular values ofUtU>t converge to those ofX? in logarithmic
number of iterations.

Propositions (a) and (b) can be clearly seen when the number of observations m approaches infinity
and A1, . . . , Am are Gaussian measurements. Let’s define the population risk f̄ as

f̄(Ut) = E
(Ai)k`∼N(0,1)

[f(Ut)] = ‖UtU>t −X?‖2F (8)

In this case, the matrix Mt (defined in (4)) corresponds to UtU>t − X?, and therefore the update
rule for Ut can be simply rewritten as

Ut+1 = Ut − η∇f̄(Ut) = Ut − η(UtU
>
t −X?)Ut

= Ut(Id−ηU>t Ut) + ηX?Ut

Observe that the term ηX?Ut encourages the column span of Ut+1 to move towards the col-
umn span of X?, which causes the phenomenon in Proposition (b). On the other hand, the term
Ut(Id−ηUtU>t ) is performing a contraction of all the singular values of Ut, and therefore encour-
ages them to remain small. As a result, Ut decreases in those directions that are orthogonal to the
span of X?, because there is no positive force to push up those directions.

So far, we have described intuitively that the iterates of GD on the population risk remains
approximately low-rank. Recall that the difficulty was that the empirical risk f doesn’t uniformly
concentrate well around the population risk f̄ .8 However, the uniform convergence can occur, at
least to some extent, in the restricted set of approximately low-rank matrices! In other words, since
the gradient descent algorithm only searches a limited part of the whole space, we only require
restricted uniform convergence theorem such as restricted isometry property. Motivated by the
observations above, a natural meta proof plan is that:

1. The trajectory of the iterates of GD on the population risk stays in the set of approximately
low-rank matrices.

2. The trajectory of the empirical risk behaves similarly to that of the population risk in the set
of approximately low-rank matrices.

8. Namely, we don’t have uniform convergence results in the sense that |f(U) − f̄(U)| is small for all matrices U .
(For examples, for many matrices we can have f(U) = 0 but f̄(U) � 0 because we have more variables than
observations.)

8
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It turns out that implementing the plan above quantitatively can be technically challenging: the
distance from the iterate to the set of low-rank matrices can accumulate linearly in the number of
steps. Therefore we have to augment the plan with a strong result about the rate of convergence:

3. The iterates converge to the true solution X? fast enough before its effective rank increases.

For the rest of this section, we demonstrate a short proof of the rank-1 case to implement the in-
tuitions described above. We note that the results of the rank-r case in Section 4 is significantly
tighter than the results presented in this section. The analysis involves more delicate techniques to
control the growth of the top r eigenvectors, and requires a much stronger convergence analysis.

3.1. Warm-up: Rank-1 Case

In this subsection, we assume that X? = u?u?> for u? ∈ Rd×1 and that ‖u?‖ = 1. We decompose
the iterates Ut into the subspace of u? and its complement:

Ut = Idu? Ut + (Id− Idu?)Ut

:= u?r>t + Et (9)

where we denote by rt := U>t u
? and Et := (Id− Idu?)Ut. 9

In light of the meta proof plan discussed above, we will show that the spectral norm and Frobe-
nius norm of the “error term” Et remains small throughout the iterations, whereas the “signal” term
u?r>t grows exponentially fast (in the sense that the norm of rt grows to 1.) Note that any solution
with ‖rt‖ = 1 and Et = 0 will give exact recovery, and for the purpose of this section we will show
that ‖rt‖ will converges approximately to 1 and Et stays small.

Under the representation (9), from the original update rule (5), we derive the update for Et:

Et+1 = (Id− Idu?) · (Id−ηMt)Ut

= Et − η · (Id− Idu?)MtUt (10)

Throughout this section, we assume that the set of measurement matrices (A1, . . . , Am) satisfies
(4, δ)-RIP with δ ≤ c where c is a sufficiently small absolute constant (e.g., c = 0.01 suffices).

Theorem 3.1 In the setting of this subsection, suppose α ≤ δ
√

1
d log 1

δ and η . cδ2 log−1( 1
δα).

Then after T = Θ(log 1
αδ/η) iterations, we have:

‖UTU>T −X?‖F ≤ O(δ log
1

δ
)

As we already mentioned, Theorem 3.1 is weaker than Theorem 1.1 even for the case with
r = 1. In Theorem 1.1 (or Theorem 4.1), the final error depends linearly on the initialization,
whereas the error here depends on the RIP parameter. Improving Theorem 3.1 would involve finer
inductions, and we refer the readers to Section 4 for the stronger results.

The following Proposition gives the growth rate of Et in spectral norm and Euclidean norm, in
a typical situation when Et and rt are bounded above in Euclidean norm. The proof is presented in
Section C.

9. Observe that we have restricted the column subspace of the signal term Rt = u?r>t , so that RtR>t is always a
multiple of X?. In section 4, we will introduce an adaptive subspace instead to decompose Ut into the signal and the
error terms.

9
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Proposition 3.2 (Error dynamics) In the setting of Theorem 3.1. Suppose that ‖Et‖F ≤ 1/2 and
‖rt‖2 ≤ 3/2. Then Et+1 can be bounded by

‖Et+1‖2F ≤ ‖Et‖
2
F

+ 2ηδ‖EtU>t ‖+ 9η2. (11)

‖Et+1‖ ≤ (1 + 2ηδ)‖Et‖+ 2ηδ‖rt‖.

A recurring technique in this section, as alluded before, is to establish the approximation

Ut+1 = Ut − ηMtUt ≈ Ut − η(UtUt −X?)Ut

As we discussed in Section 2, if UtUt − X? is low-rank, then the approximation above can be
established by Lemma 2.2 and Lemma 2.3. However, UtUt −X? is only approximately low-rank,
and we therefore we will decompose it into

UtU
>
t −X? = (UtU

>
t −X? − EtE>t )︸ ︷︷ ︸

rank≤4

+ EtE
>
t︸ ︷︷ ︸

second-order in Et

(12)

Note that UtU>t −X?−EtE>t = ‖rt‖2u?u?>+u?r>t E
>
t +Etrtu

?>−X? has rank at most 4, and
therefore we can apply Lemma 2.2 and Lemma 2.3. For the term EtE

>
t , we can afford to use other

looser bounds (Lemma F.1 and F.2) because Et itself is small.
The next Proposition shows that the signal term grows very fast, when the signal itself is not

close to norm 1 and the error term Et is small.

Proposition 3.3 (Signal dynamics) In the same setting of Proposition 3.2, we have,∥∥rt+1 − (1 + η(1− ‖rt‖2))rt
∥∥ ≤ η‖Et‖2‖rt‖+ 2ηδ(‖Et‖+ ‖rt‖). (13)

The following proposition shows that ‖rt‖ converges to 1 approximately and Et remains small
by inductively using the two propositions above.

Proposition 3.4 (Control rt and Et by induction) In the setting of Theorem 3.1, when the num-
ber of iterations is T = Θ(log( 1

αδ ))/η),

‖rT ‖ = 1±O(δ) (14)

‖ET ‖2F . δ2 log(1/δ) (15)

The proofs of the above Propositions are in Section C. Theorem 3.1 follows from Proposition 3.4
straightforwardly.
Proof [Proof of Theorem 3.1] Using the conclusions of Proposition 3.4, we have∥∥∥UTU>T −X?

∥∥∥2

F
= (1− ‖rT ‖2)2 + 2‖ET rT ‖2 + ‖ETE>T ‖2F
≤ (1− ‖rT ‖2)2 + 2‖ET ‖2‖rT ‖2 + ‖ET ‖4F
≤ O(δ2) +O(δ2 log2 1

δ
) +O(δ4 log2(

1

δ
)) = O(δ2 log2 1

δ
)

10
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4. Proof Outline of Rank-r Case

In this section we outline the proof of Theorem 1.1. The proof is significantly more sophisticated
than the rank-1 case (Theorem 3.1), because the top r eigenvalues of the iterates grow at different
speed. Hence we need to align the signal and error term in the right way so that the signal term
grows monotonically. Concretely, we will decompose the iterates into a signal and an error term
according to a dynamic subspace, as we outline below. Moreover, the generalization error analysis
here is also tighter than Theorem 3.1. We first state a slightly stronger version of Theorem 1.1:

Theorem 4.1 There exists a sufficiently small absolute constant c > 0 such that the following is
true. For every α ∈ (0, c/d), assume that the set of measurement matrices (A1, . . . , Am) satisfies
(r, δ)-restricted isometry property with δ ≤ c/(κ3√r log2 d

α), η ≤ cδ, and let T0 be equal to

max
{
κ log(d/α)

η , 1
η
√
dκα

}
. For every t . T0,∥∥∥UtU>t −X?

∥∥∥2

F
≤ (1− η/(8κ))t−T0 +O(α

√
d/κ2).

As a consequence, for T1 = Θ((κ log( dα))/η), we already have∥∥∥UT1U>T1 −X?
∥∥∥2

F
. α
√
d/κ2.

When the condition number κ and rank r are both constant, this theorem says that if we shoot
for a final error ε, then we should pick our initialization U0 = αB with α = O(ε/d). As long as
the RIP-parameter δ = O( 1

log d
ε

), after O(log d
ε ) iterations we will have that

∥∥UtU>t −X?
∥∥2

F
≤ ε.

Towards proving the theorem above, we suppose the eigen-decomposition of X? can be written
as X? = U?Σ?U?> where U? ∈ Rd×r is an orthonormal matrix Σ? ∈ Rr×r is a diagonal matrix.
We maintain the following decomposition of Ut throughout the iterations:

Ut = IdSt Ut︸ ︷︷ ︸
:=Zt

+ (Id− IdSt)Ut︸ ︷︷ ︸
:=Et

(16)

Here St is r dimensional subspace that is recursively defined by

S0 = span(U?) (17)

St = (Id−ηMt−1) · St−1, ∀ t ≥ 1. (18)

Here (Id−ηMt) · St−1 denotes the subspace {(Id−ηMt)v : v ∈ St−1}. Note that rank(S0) =
rank(U?) = r, and thus by induction we will have that for every t ≥ 0,

span(Zt) ⊂ span(St),

rank(Zt) ≤ rank(St) ≤ r.

Note that by comparison, in the analysis of rank-1 case, the subspace St is chosen to be span(U?)
for every t, but here it starts off as span(U?) but changes throughout the iterations. We will show
that St stays close to span(U?). Moreover, we will show that the error term Et — though growing
exponentially fast — always remains much smaller than the signal term Zt, which grows exponen-
tially with a faster rate. Recall that sin(A,B) denotes the principal angles between the column span
of matrices A,B. We summarize the intuitions above in the following theorem.

11
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Theorem 4.2 There exists a sufficiently small absolute constant c > 0 such that the following is
true: For every α ∈ (0, c/d), assume that the set of measurement matrices (A1, . . . , Am) satisfies
(r, δ)-RIP with δ ≤ c4/(κ3√r log2 d

α). ρ = O(
√
rδ

κ log( d
α

)
), η ≤ cδ. Then for t ≤ T1 = Θ(κη log( dα)),

we have that

sin(Zt, U
?) . ηρt (19)

‖Et‖ ≤ (1 +O(η2ρt))t‖E0‖ ≤ 4‖E0‖ ≤ 1/d (20)

σmin(U?>Zt) ≥ ‖Et‖ (21)

σmin(U?>Zt) ≥ min

{(
1 +

η

8κ

)t
σmin(U?>Z0),

1

2
√
κ

}
(22)

‖Zt‖ ≤ 5 (23)

It follows from equation (22) that after Θ(κη log( dα)) steps, we have σmin(Zt) ≥ 1
2
√
κ
.

Note that the theorem above only shows that the least singular value of Zt goes above 1/(2
√
κ). The

following proposition completes the story by showing that once the signal is large enough, UtU>t
converges with a linear rate to the desired solution X? (up to some small error.)

Proposition 4.3 In the setting of Theorem 4.2, suppose ‖Zt‖ ≤ 5, sin(Zt, U
?) ≤ 1/3, and

σmin(Zt) ≥ 1
2
√
κ

, then we have:∥∥∥Ut+1U
>
t+1 −X?

∥∥∥2

F
≤ (1− η

8κ
)
∥∥∥UtU>t −X?

∥∥∥2

F
+O

(
η
√
dr ‖Et‖

)
.

We defer the proof of Proposition 4.3 to Section D.5, which leverages the fact that function f
satisfies the Polyak-Lojasiewicz condition Polyak (1963) when UtU

>
t is well-conditioned. The

proofs of Theorem 4.1 and 4.2 are presented in Section D.

5. Conclusions

The generalization performance of over-parameterized non-linear models, especially neural net-
works, has been a very intriguing research topic. This paper theoretically explains the regularization
power of the optimization algorithms in learning matrix factorization models and one-hidden-layer
neural nets with quadratic activations. In these cases, the gradient descent algorithm prioritizes to
searching through the low complexity models.

It’s an very interesting open question to establish similar results for deeper neural networks with
other activations (e.g., ReLU) and loss functions (e.g., logistic loss). We remark that likely such a
result will require not only a better understanding of statistics, but also a deep grasp of the behavior
of the optimization algorithms for non-linear models, which in turns is another fascinating open
question.
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Appendix A. Neural networks with Quadratic Activations

In this section, we state the algorithms and generalization bounds for learning over-parameterized
neural nets with quadratic activations, and give the key lemma for the analysis.

Let (x1, y1), . . . , (xm, ym) be n examples where xi’s are from distribution N (0, Idd×d) and
yi’s are generated according to equation (3). Let ŷ = 1>q(U>x) be our prediction. We use mean
squared loss as the empirical loss. For technical reasons, we will optimize a truncated version of the
empirical risk as

f̃(U) =
1

m

n∑
i=1

(ŷi − yi)21‖U>x‖2≤R

for some parameter R that will be logarithmic in dimension later. We design a variant of gradient
descent as stated in Algorithm 1. We remark mostly driven by the analysis, our algorithm has an
explicit re-scaling step. It resembles the technique of weight decay Krogh and Hertz (1992), which
has similar effect to that of an `2 regularization. In the noiseless setting, the issue with vanilla weight
decay or `2 regularizer is that the recovery guarantees will depend on the strength of the regularizer
and thus cannot achieve zero. An alternative is to use a truncated `2 regularizer that only penalizes
when Ut has norm bigger than a threshold. Our scaling that we are using is dynamically decided,
and in contrast to this truncated regularizer, it scales down the iterate when the norm of Ut is small,
and it scales up the iterate when Ut has norm bigger than the norm of U?.10 Analyzing standard
gradient descent is left for future work.

We note that one caveat here is that for technical reason, we assume that we know the Frobe-
nius norm of the true parameter U?. It can be estimated by taking the average of the prediction
1
m

∑m
i=1 yi since E[y] = ‖U?‖2F , and the algorithm is likely to be robust to the estimation error of

‖U?‖2F . However, for simplicity, we leave such a robustness analysis for future work.

Algorithm 1 Algorithm for neural networks with quadratic activations
Inputs: n examples (x1, y1), . . . , (xm, ym) where xi’s are from distribution N (0, Idd×d) and yi’s
are generated according to equation (3). Let τ = ‖U?‖2F .
Initialize U0 as in equation (2)
For t = 1 to T :

Ũt = Ut − η∇f̃(Ut)

Ut+1 =
1

1− η(‖Ut‖2F − τ)
Ũt

As alluded before, one-hidden-layer neural nets with quadratic activation closely connects to
matrix sensing because we can treat write the neural network prediction by:

1>q(U?>x) = 〈xx>, U?U?>〉

Therefore, the i-th example xi corresponds to the i-th measurement matrix in the matrix sensing
via Ai = xixi

>. Assume {x1x1
>, . . . , xmx

>
m} satisfies RIP, then we can re-use all the proofs for

10. But note that such scaling up is unlikely to occur because the iterate stays low-rank
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matrix sensing. However, this set of rank-1 measurement matrices doesn’t satisfy RIP with high
probability. The key observation is that if we truncated the observations properly, then we can make
the truncated set of these rank-1 measurements satisfy RIP property again. Mathematically, we
prove the following Lemma.

Lemma A.1 Let (A1, . . . , Am) = {x1x1
>, . . . , xmx

>
m} where xi’s are i.i.d. from∼ N (0, Id). Let

R = log
(

1
δ

)
. Then, for every q, δ ∈ [0, 0.01] and m & d log4 d

qδ/δ
2, we have: with probability at

least 1− q, for every symmetric matrix X ,∥∥∥∥∥ 1

m

m∑
i=1

〈Ai, X〉Ai1|〈Ai,X〉|≤R − 2X − tr(X) Id

∥∥∥∥∥ ≤ δ‖X‖?
Suppose X has rank at most r matrices and spectral norm at most 1, we have,∥∥∥∥∥ 1

m

m∑
i=1

〈Ai, X〉Ai1|〈Ai,X〉|≤R − 2X − tr(X) Id

∥∥∥∥∥ ≤ rδ (24)

We can see that equation (24) implies Lemma 2.3 with a simple change of parameters (by setting
δ to be a factor of r smaller). The proof uses standard technique from supreme of random process,
and is deferred to Section E.

Theorem 1.2 follows straightforwardly from replacing the RIP property by the Lemma above.
We provide a proof sketch below.
Proof [Proof Sketch of Theorem 1.2] The basic ideas is to re-use the proof of Theorem 4.1 at every
iteration. First of all, we will replace all the RIP properties 11 in (38), (40), (46), (42), (59), (60), (72)
and (76) by Lemma A.1. The only difference is that we will let the δ when applying Lemma A.1 to
be 1/r smaller than the δ in Theorem 4.1.

We note that in Lemma A.1, there is an additional scaling of the identity term compared to
Lemma 2.3. This is the reason why we have to change our update rule. We note that the update
rule in Algorithm 1 undo the effect of this identity term and is identical to the update rule for matrix
sensing problem: Let ct = tr(UtU>t ) − tr(X?). Denote by M ′t = Mt − ct Id. The update in
Algorithm 1 can be re-written as:

Ũt+1 = (Id−ηM ′t − ηct Id)Ut (25)

= (1− ηct)
(

Id− η

1− ηct
M ′t

)
Ut

Hence we still have Ut+1 = 1
1−ηct Ũt+1 =

(
Id− η

1−ηctM
′
t

)
Ut. Thus the update rule here corre-

sponds to the update rule for the matrix sensing case, and the rest of the proof follows from the
proof of Theorem 4.1.

11. We only require RIP on symmetric matrices.
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Appendix B. Simulations

In this section, we present simulations to complement our theoretical results. In the first experiment,
we show that the generalization performance of gradient descent depends on the choice of initial-
ization. In particular, smaller initializations enjoy better generalization performance than larger
initializations. In the second experiment, we demonstrate that gradient descent can run for a large
number of iterations and the test error keeps decreasing, which suggests early stopping is not nec-
essary. In the third experiment, we show that a natural projected gradient descent procedure works
poorly compared to gradient descent on the factorized model, which suggests the power of using a
factorized model. In the last experiment, we report results for running stochastic gradient descent
on the quadratic neural network setting, starting from a large initialization.

We generate the true matrix by sampling each entry of U? independently from a standard Gaus-
sian distribution and let X? = U?U?>. Each column of U? is normalized to have unit norm, so
that the spectral norm of X? is close to one. For every sensing matrix Ai, for i = 1, . . . ,m, we
sample the entries of Ai independently from a standard Gaussian distribution. Then we observe
bi = 〈Ai, X?〉. When an algorithm returns a solution X̂ , we measure training error by:√∑m

i=1(〈Ai, X̂〉 − bi)2∑m
i=1 b

2
i

.

We measure test error by:
‖X̂ −X?‖F
‖X?‖F

.

For the same X?, we repeat the experiment three times, by resampling the set of sensing matrices
{Ai}mi=1. We report the mean and the error bar.

Choice of initialization. Let U0 = α Id. We use m = 5dr samples, where rank r = 5. We plot
the training and test error for different values of α. Figure 1 shows that the gap between the training
and test error narrows down as α decreases. We use step size 0.0025 and run gradient descent for
104 iterations.

10−0.0 10−0.5 10−1.0 10−1.5 10−2.0 10−2.5 10−3.0

α

10-4

10-3

10-2

10-1

100

101

E
rr

o
r

d=100 training error

d=100 test error

d=200 training error

d=200 test error

Figure 1: Generalization performance depends on the choice of initialization: the gap between
training and test error decreases as α decreases. Here the number of samples is 5dr,
where rank r = 5. We initialize with α Id, and run 104 iterations with step size 0.0025.
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In Figure 2, we run for longer iterations to further compare the generalization performance of
initialization U0 = α Id for α = 1.0, 10−3. We report the mean values at each iteration over three
runs. When α = 1.0, despite the training error decreases below 10−4, the test error remains to be
on the order of 10−1.

25 50 75 100 125 150 175 200
Number of iterations (×102)

10−4

10−3

10−2

10−1

Er
ro

r

test α= 1.0
test α= 10−3

train α= 1.0
train α= 10−3

Figure 2: Further comparison between the generalization performance of large versus small initial-
izations. We plot the data points from iteration 500 onwards to simplify the scale of the
y-axis. The step size is 0.0025.

Accuracy. In this experiment, we fix the initialization to be U0 = 0.01 Id, and apply the same set
of parameters as the first experiment. We keep gradient descent running for 105 iterations, to see if
test error keeps decreasing or diverges at some point. Figure 3 confirms that test error goes down
gradually.
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Figure 3: Test error keeps decreasing as the number of iterations goes to 105. Here the number of
samples is m = 5dr, where rank r = 5. Note that the initial test error is approximately 1.

Projected gradient descent. In this experiment, we consider the following natural projected gra-
dient descent (PDG) procedure. Let f(X) = 1

m

∑m
i=1 (〈Ai, X〉 − bi)2. At every iteration, we first

take a gradient step over f(X), then project back to the PSD cone. We consider the sample com-
plexity of PGD by varying the number of sensing matrices m from 5d to 35d. Here the rank of
X? is 1. We found that the performance of PGD is much worse compared to gradient descent on
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the factorized model. For both procedures, we use step size equal to 0.0025. We stop when the
training error is less than 0.001, or when the number of iterations reaches 104. Figure 4 shows that
gradient descent on the factorized model consistently recovers X? accurately. On the other hand,
the performance of projected gradient descent gets even worse as d increases from 100 to 150.
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Figure 4: Projected gradient descent (PGD) requires more samples to recover X? accurately, than
gradient descent on the factorized model. Moreover, the performance of PGD gets worse
as d increases.

Stochastic gradient descent. In this experiment, we complement our theoretical results by run-
ning stochastic gradient descent from large initializations. We generate m = 5dr random samples
and compute their true labels as the training dataset. For stochastic gradient descent, at every it-
eration we pick a training data point uniformly at random from the training dataset. We run one
gradient descent step using the training data point. We initialize with U0 = Id and use step size
8× 10−5. Figure 5(a) shows that despite the training error decreases to 10−7, the test error remains
large. We also report the results of running gradient descent on the same instance for comparison.
As we have already seen, Figure 5(b) shows that gradient descent also gets stuck at a point with
large test error, despite the training error being less than 10−7.
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(a) Stochastic gradient descent
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Figure 5: Stochastic gradient descent, when initialized with the identity matrix, does not generalize
to test data. Here d = 100 and r = 5.
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Appendix C. Proofs For Rank-1 Case

In this section, we present the missing proofs from Section 3.
Proof [Proof Sketch of Proposition 3.2] Using the update rule (10) for Et, we have that

‖Et+1‖2F = ‖Et‖2F − 2η · 〈Et, (Id− Idu?)MtUt〉+ η2‖(Id− Idu?)MtUt‖2F (26)

When η is sufficiently small and ‖Mt‖F , ‖Ut‖ are bounded from above, the third term on the RHS
is negligible compared to the second term. Therefore, we focus on the second term that is linear in
η.

〈Et, (Id− Idu?)MtUt〉

=
1

m

m∑
i=1

〈Ai, UtU>t −X?〉〈Ai, (Id− Idu?)EtU
>
t 〉 (27)

where in the last line we rearrange the terms and use the fact that (Id− Idu?) is symmetric. Now we
use Lemma 2.2 to show that equation (27) is close to 〈UtU>t −X?, (Id− Idu?)EtU

>
t 〉, which is its

expectation w.r.t the randomness of Ai’s if Ai’s were chosen from spherical Gaussian distribution.
If UtU>t − X? was a rank-1 matrix, then this would follow from Lemma 2.2 directly. However,
UtU

>
t is approximately low-rank. Thus, we decompose it into a low-rank part and an error part

with small trace norm as in equation (12). Since UtU>t −X? − EtE>t has rank at most 4, we can
apply Lemma 2.2 to control the effect of Ai’s,

1

m

m∑
i=1

〈Ai, (UtU>t −X? − EtE>t )〉〈Ai, EtU>t 〉

≥ 〈UtU>t −X? − EtE>t , EtU>t 〉 − δ‖UtU>t −X? − EtE>t ‖F ‖EtU>t ‖
≥ 〈UtU>t −X? − EtE>t , EtU>t 〉 − 1.5δ‖EtU>t ‖ (28)

where the last inequality uses that ‖UtU>t − X? − EtE>t ‖2F = (1 − ‖rt‖2)2 + 2‖Etrt‖2 ≤ 1 +
‖Et‖2‖rt‖2 ≤ 11/8.

For the EtE>t term in the decomposition (12), by Lemma F.1, we have that

1

m

m∑
i=1

〈Ai, EtE>t 〉〈Ai, EtU>t 〉 ≥ 〈EtE>t , EtU>t 〉 − δ‖EtE>t ‖?‖EtU>t ‖

≥ 〈EtE>t , EtU>t 〉 − 0.5δ‖EtU>t ‖ (29)

Combining equation (27), (28) and (29), we conclude that

〈Et, (Id− Idu?)MtUt〉 ≥ 〈UtU>t −X?, EtU
>
t 〉 − 2δ‖EtU>t ‖ (30)

Note that u?>Et = 0, which implies that X?Et = 0 and U>t Et = E>t Et. Therefore,

〈UtU>t −X?, EtU
>
t 〉 = 〈UtU>t , EtU>t 〉

= 〈U>t , U>T EtU>t 〉 = 〈U>t , E>T EtU>t 〉
= 〈EtU>t , EtU>t 〉 = ‖EtU>t ‖2F ≥ ‖EtU>t ‖2
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We can also control the third term in RHS of equation (26) by η2‖(Id− Idu?)MtUt‖2F ≤ 9η2.
Since the bound here is less important (because one can always choose small enough η to make this
term dominated by the first order term), we left the details to the reader. Combining the equation
above with (30) and (26), we conclude the proof of equation (11). Towards bounding the spectral
norm of Et+1, we use a similar technique to control the difference between (Id− Idu?)MtUt and
(Id− Idu?)(UtU

>
t −X?)Ut in spectral norm. By decomposing UtU>t −X? as in equation (12) and

applying Lemma 2.3 and Lemma F.2 respectively, we obtain that

‖(Id− Idu?)MtUt − (Id− Idu?)(UtU
>
t −X?)Ut‖

≤ 4δ
(
‖UtU>t −X? − EtE>t ‖F + ‖EtE>t ‖?

)
‖U>t ‖

≤ 8δ‖Ut‖ ≤ 8δ(‖rt‖+ ‖Et‖) (by the assumptions that ‖Et‖F ≤ 1/2, ‖rt‖ ≤ 3/2)

Observing that (Id− Idu?)(UtU
>
t − X?)Ut = EtU

>
t Ut. Plugging the equation above into equa-

tion (10), we conclude that

‖Et+1‖ ≤ ‖Et(Id−ηU>t Ut)‖+ 2ηδ(‖rt‖+ ‖Et‖)
≤ ‖Et‖+ 2ηδ(‖rt‖+ ‖Et‖)

Proof [Proof of Proposition 3.3] By the update rule (5), we have that

rt+1 = U>t+1u
? = U>t (Id−ηM>t )u?

= rt − ηU>t M>t u?.

By decomposing Mt = 1
m

∑m
i=1〈Ai, UtU>t −X?〉Ai as in equation (12), and then Lemma 2.3 and

F.2, we obtain that∥∥∥rt+1 − (rt − ηU>t (UtU
>
t −X?)u?)

∥∥∥ ≤ δ (∥∥∥UtU>t −X? − EtE>t
∥∥∥
F

+ ‖EtE>t ‖∗
)
‖Ut‖.

Observe thatU>t (UtU
>
t −X?)u? = U>t Utrt−rt = (rtr

>
t +E>t Et)rt−rt = (‖rt‖2−1)rt−E>t Etrt.

Also note that ‖UtU>t −X? − EtE>t ‖2F ≤ 11/8 and ‖Et‖2F ≤ 1/4, we have that

‖rt+1 − (1 + η(1− ‖rt‖2))rt‖ ≤ η‖E>t Etrt‖+ 2ηδ‖Ut‖

Since ‖Ut‖ ≤ ‖rt‖+ ‖Et‖, we obtain the conclusion.

Proof [Proof Sketch of Proposition 3.4] We will analyze the dynamics of rt and Et in two stages.
The first stage consists of all the steps such that ‖rt‖ ≤ 1/2, and the second stage consists of the
rest of steps. We will show that

a) Stage 1 has at most O(log( 1
α)/η) steps. Throughout Stage 1, we have

‖Et‖ ≤ 9δ (31)

‖rt+1‖ ≥ (1 + η/3)‖rt‖ (32)
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b) In Stage 2, we have that

‖Et‖2F . δ2 log
1

δ
‖rt‖ ≤ 1 +O(δ).

And after at most O(log(1
δ )/η) steps in Stage 2, we have ‖rt‖ ≥ 1−O(δ).

We use induction with Proposition 3.2 and 3.3. For t = 0, we have that ‖E0‖ = ‖r0‖ = α
because U0 = αB, where B is an orthonormal matrix. Suppose equation (31) is true for some t,
then we can prove equation (32) holds by Proposition 3.3:

‖rt+1‖ ≥ (1 + η(1− ‖rt‖2 − 2δ −O(δ2)))‖rt‖
≥ (1 + η/3)‖rt‖ (by δ ≤ 0.01 and ‖rt‖ ≤ 1/2)

Suppose equation (32) holds, we can prove equation (31) holds by Proposition 3.2. We first observe
that t ≤ O(log 1

α/η), since rt grows by a rate of 1 + η
3 . Denote by λ = 1 + 2ηδ. We have

‖Et+1‖ ≤ λ‖Et‖+ 2ηδ‖rt‖ ⇒
‖Et+1‖
λt+1

≤ ‖Et‖
λt

+ 2ηδ ×
(
‖rt‖
λt+1

)
⇒‖Et+1‖ ≤ λt+1 × α+ 2ηδ ×

t∑
i=0

λi‖rt‖
(1 + η

3 )i
≤ 9δ, (by ‖rt+1‖ ≥ ‖rt‖(1 + η

3 ).)

where the last inequality uses that

λt+1α ≤ α× exp(2ηδ ×O(log(
1

α
))/η) = α1−O(δ) ≤ o(δ), and

t∑
i=1

λi‖rt‖
(1 + η

3 )i
≤

1 + η
3

2(η3 − 2ηδ)

For claim b), we first apply the bound obtained in claim a) on ‖Et‖ and the fact that ‖Ut‖ ≤ 3/2
(this follows trivially from our induction, so we omit the details). We have already proved that
‖Et‖ ≤ 9δ in the first stage. For the second stage, as long as the number of iterations is less than
O(log(1

δ )/η), we can still obtain via Proposition 3.2 that:

‖Et‖ ≤ 9δ + 4ηδ ×O(log(
1

δ
/η)) = O(δ log(

1

δ
)) (since ‖Et‖ ≤ 1/2 and ‖rt‖ ≤ 3/2)

To summarize, we bound ‖Et‖F as follows:

‖Et‖2F ≤ ‖E0‖2F + 9η2t+O(ηtδ2 log(
1

δ
)) . δ2 log(

1

δ
),

because ‖E0‖2F = α2d ≤ δ2 log 1
δ , ηt ≤ O(1), and η2t ≤ O(η) ≤ O(δ2 log(1

δ )). For the bound on
‖rt‖, we note that since ‖Et‖ ≤ O(δ log(1

δ )), we can simplify Proposition 3.3 by∥∥rt+1 − (1 + η(1− ‖rt‖2))rt
∥∥ ≤ 2ηδ‖rt‖+O(ηδ2 log2(

1

δ
)).

The proof that ‖rt‖ = 1 ± O(δ) after at most O(log(1
δ )/η) steps follows similarly by induction.

The details are left to the readers.
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Appendix D. Proof of Theorem 4.1

We first lay out the proof outline proof outline of Theorem 4.2. We decompose it into the following
propositions, from which Theorem 4.2 follows by induction.

The following proposition gives the base case for the induction, which straightforwardly follows
from the definition U0 = αB where B is an orthonormal matrix.

Proposition D.1 (Base Case) In the setting of Theorem 4.2, we have

‖E0‖ = α = σmin(Z0) ≤ 1/d, U?>E0 = 0, and sin(Z0, U
?) = 0.

The following Proposition bounds the growth rate of the spectral norm of the error Et.

Proposition D.2 In the setting of Theorem 4.2, suppose ‖Et‖ ≤ 1/d. Then,

‖Et+1‖ ≤
(
1 + ηO

(
δ
√
r + sin(Zt, U

?)
))
× ‖Et‖ .

When ‖UtU>t −X?‖F is small, the growth of Et becomes slower:

‖Et+1‖ ≤
(

1 + ηO
(
‖UtU>t −X?‖F +

√
r ‖Et‖

))
× ‖Et‖ .

The following Proposition shows that effectively we can almost pretend that Zt+1 is obtained from
applying one gradient descent step to Zt, up to some some error terms.

Proposition D.3 In the setting of Theorem 4.2, suppose for some t we have ‖Et‖ ≤ 1/d and
‖Zt‖ ≤ 5. Then, ∥∥∥Zt+1 − (Zt − η∇f(Zt)− ηEtZ>t Zt − 2η IdStMtEt)

∥∥∥ ≤ ητt, (33)

where τt . δ
√
r ‖Et‖.

The following proposition shows that the angle between the span of Zt to the span of U? is growing
at mostly linearly in the number of steps.

Proposition D.4 In the setting of Theorem 4.2, assuming equation (33) holds for some t with
τt ≤ ρσr(Ut), ‖Zt‖ ≤ 5 and σmin(Zt) ≥ ‖Et‖ /2. Then, as long as sin(Zt, U

?) ≤ √ρ we have:

sin(Zt+1, U
?) ≤ sin(Zt, U

?) +O(ηρ+ η ‖Et‖) and ‖Zt+1‖ ≤ 5. (34)

Then we show that the projection of the signal term Zt to the subspace of U? increases at an expo-
nential rate (until it goes above 1/(2

√
k)). Note that U? is sufficiently close to the span of Zt and

therefore it implies that the least singular value of Zt also grows.

Proposition D.5 In the setting of Theorem 4.2, suppose equation (34) holds for some t, and ‖Zt‖ ≤
5 and σmin(Zt) ≥ ‖Et‖ /2, we have that:

σmin(U?>Zt+1) ≥ min{(1 +
η

8κ
)σmin(U?>Zt),

1

2
√
κ
}.
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The proofs of the above propositions are deferred to Section D. Now we are ready to prove Theo-
rem 4.2.
Proof [Proof of Theorem 4.2] When t = 0, the base case follows from Proposition D.1. Assume
that equations (19), (20), (21), (22), and (23) are true before or at step t, we prove the conclusion
for step t + 1. By Proposition D.3 we have that equation 33 are true with τt . δ

√
r. We have

that σr(Ut) ≥ σr(Zt), because the column subspace of Zt and Et are orthogonal. By induction
hypothesis, σr(Zt) ≥ ‖Et‖/2, and σr(Ut) ≥ ‖Et‖/2. Set the ρ in Proposition D.4 to O( δ

√
r

κ log( d
α

)
).

When t ≤ T1 = O(κρ log( dα)), we have that sin(Zt, U
?) ≤ ηρt ≤ √ρ. Hence the assumptions of

Proposition D.4 are verified. Therefore,

sin(Zt+1, U
?) . ηρt+O(ηρ) +O(η‖Et‖) . ηρ(t+ 1)

because ‖Et‖ ≤ 1/d� ρ, and ‖Zt‖ ≤ 5. Next,

‖Et+1‖ ≤
(
1 + ηO

(
δ
√
r + sin(Zt, U

?)
))
· ‖Et‖

≤ (1 +O(η2ρT1))T1‖E0‖ (by equations (19), (20), and δ
√
r ≤ O(ηρT1))

≤ 4‖E0‖ ≤ 1/d (since η2ρT 2
1 ≤ O(δ

√
rκ log( dα)) ≤ O(1))

Therefore we can apply Proposition D.5 to obtain that σmin(U?>Zt) grows by a rate of at least
1+ η

8κ . On the other hand by Proposition D.2, ‖Et‖ grows by a rate of at most 1+ηO(δ
√
r+
√
ρ) ≤

1 + η
8κ . Hence we obtain Equation 21.

Finally we prove Theorem 4.1.
Proof First of all, for t ≤ T1 = Θ(κ log d

α/η), using Theorem 4.2, we know that the requirements
in Proposition 4.3 is satisfied. Applying Proposition 4.3, we prove the theorem for t ≤ T1.

Then, we inductively show that the error is bounded by O(α
√
d/κ2) from the T1-th iteration

until the T0-th iteration. Suppose at iteration t, we have ‖UtU>t −X?‖2F . α
√
d/κ2. Thus, using

Proposition D.2, we know that ‖Et‖ grows by a rate of at most 1 + ηO(
√
αd1/4/κ) for this t. This

implies that for every t ∈ [T1, T0], we have

‖Et+1‖ ≤
(

1 + ηO(
√
αd1/4/κ)

)
‖Et‖

≤ ‖ET1‖
(

1 + ηO(
√
αd1/4/κ)

)T0
≤ 4 ‖ET1‖ ≤ 16 ‖E0‖ .

By inductive hypothesis we recall ‖UtU>t − X?‖2F . κ
√
d/κ2, which implies by elementary cal-

culation that σmin(Zt) ≥ 1
2
√
κ
, ‖Zt‖ ≤ 5 and sin(Zt, U

?) ≤ 1
3 (by using Ut = Zt + Et and

‖Et‖ ≤ 16 ‖E0‖). Thus, the requirements in Proposition 4.3 hold, and applying it we obtain that∥∥Ut+1U
>
t+1 −X?

∥∥2

F
. α
√
d/κ2. This completes the induction.

D.1. Proof of Proposition D.2

We start off with a straightforward triangle inequality for bounding Et+1 given Et.
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Lemma D.6 By update rule (equation (5)) and the definition of Et (equation (16)), we have that

Et+1 = (Id− IdSt+1)(Id−ηMt)Et .

It follows that

‖Et+1‖ ≤ ‖(Id−ηMt)Et‖ ≤ ‖Et‖+ η ‖MtEt‖ . (35)

Therefore, next we will bound the norm of MtEt. The key idea is to use the restricted isometry
property to control the effect ofMt (see the meta claim equation (7) in Section 2 for more intuitions.)

Lemma D.7 In the setting of Proposition D.2, we have that

‖MtEt‖ ≤ ‖Et‖
(
δ‖ZtZ>t −X?‖F + 2δ‖ZtE>t ‖F + δ‖EtE>t ‖? + ‖ZtE>t ‖+ ‖X?(Id− IdSt)‖

)
(36)

As a direct consequence, using the assumption ‖Et‖ ≤ 1/d,

‖Et+1‖ ≤ ‖Et‖
(
1 +O

(
ηδ
√
r + η ‖X?(Id− IdSt)‖

))
(37)

Proof We first note that Et = (Id− IdSt)Et by the update rule and definition 16. It follows that
MtEt = Mt(Id− IdSt)Et. Next, since UtU>t −X? − EtE>t has rank at most 4r, by Lemma 2.3
we have that∥∥∥∥∥ 1

m

m∑
i=1

〈Ai, UtU>t −X? − EtE>t 〉Ai(Id− IdSt)Et − (UtU
>
t −X? − EtE>t )(Id− IdSt)Et

∥∥∥∥∥
≤ δ × ‖UtU>t −X? − EtE>t ‖F ‖(Id− IdSt)Et‖ (38)

= δ ×
(
‖ZtZ>t −X?‖F + 2‖ZtE>t ‖F

)
‖Et‖

Note that (UtU
>
t −X? − EtE>t )(Id− IdSt)Et = ZtE

>
t Et −X?(Id− IdSt)Et. It follows that∥∥∥∥∥ 1

m

m∑
i=1

〈Ai, UtU>t −X? − EtE>t 〉Ai(Id− IdSt)Et

∥∥∥∥∥
≤ ‖X?(Id− IdSt)Et‖+

∥∥∥ZtE>t Et∥∥∥+ δ
(
‖ZtZ>t −X?‖F + 2‖ZtE>t ‖F

)
‖Et‖

≤ ‖Et‖
(
δ‖ZtZ>t −X?‖F + 2δ‖ZtE>t ‖F + ‖ZtE>t ‖+ ‖X?(Id− IdSt)‖

)
(39)

By Lemma F.2, we have that∥∥∥∥∥ 1

m

m∑
i=1

〈Ai, EtE>t 〉Ai(Id− IdSt)Et − EtE>t (Id− IdSt)Et

∥∥∥∥∥ ≤ δ‖EtE>t ‖? ‖Et‖ (40)

Combining equation (40) and (39) we complete the proof of equation (36). To prove equation (37),
we will use equation (35) and that ‖ZtZ>t − X?‖F .

√
r (Corollary D.16), ‖Zt‖2F ≤

√
r ×

‖ZtZ>t ‖F . r.

When
∥∥UtU>t −X?

∥∥ is small, the growth of ‖Et‖ becomes slower.
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Lemma D.8 In the setting of Proposition D.2, we have that

‖Mt‖ ≤ ‖UtU>t −X?‖+ δ‖UtU>t −X?‖F + 3
√
r‖Et‖.

As a direct consequence, ‖Mt‖ ≤ O(1). And

‖MtEt‖ . ‖Et‖
(
‖UtU>t −X?‖F +

√
r ‖Et‖

)
(41)

Proof By the definition of Mt, we have that

‖Mt‖ =

∥∥∥∥∥ 1

m

m∑
i=1

〈Ai, UtU>t −X?〉Ai

∥∥∥∥∥
=

∥∥∥∥∥ 1

m

m∑
i=1

〈Ai, UtU>t −X? − EtE>t 〉Ai +
1

m

m∑
i=1

〈Ai, EtE>t 〉Ai

∥∥∥∥∥
≤ ‖UtU>t −X?‖+ δ ×

(
‖UtU>t −X? − EtE>t ‖F + ‖EtE>t ‖∗

)
(42)

≤ (1 + δ)‖UtU>t −X?‖F + 3
√
r‖Et‖

where the second to last line is because of Lemma 2.3 and Lemma F.2. For the last line, we use

‖UtU>t −X? − EtE>t ‖F = ‖ZtZ>t −X?‖F + 2‖ZtE>t ‖F . ‖ZtZ>t −X?‖F +
√
r‖Et‖,

because of Corollary D.16. And
∥∥ZtZ>t −X?

∥∥
F
≤
∥∥UtU>t −X?

∥∥
F

+O(
√
r ‖Et‖), because∥∥∥UtU>t −X?

∥∥∥
F

=
∥∥∥(Zt + Et)(Zt + Et)

> −X?
∥∥∥
F

≥
∥∥∥ZtZ>t −X?

∥∥∥
F
− 2 ‖Zt‖F ‖Et‖ − ‖Et‖ ‖Et‖F

Finally we complete the proof of Proposition D.2.
Proof [Proof of Proposition D.2] Using the fact that X? has spectral norm less than 1, wee can
bound the term ‖X?(Id− IdSt)‖ in equation (37) by

‖X?(Id− IdSt)‖ ≤
∥∥∥U?>(Id− IdSt)

∥∥∥ = ‖(Id− IdSt)U
?‖ = sin(St, U

?) .

Since St is the column span of Zt, using the equation above and equation (37) we conclude the
proof.

D.2. Proof of Proposition D.3

We first present a simpler helper lemma that will be used in the proof. One can view X in the
following lemma as a perturbation. The lemma bounds the effect of the perturbation to the left hand
side of equation (43).
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Lemma D.9 Let S ∈ Rd×r be a column orthonormal matrix and S⊥ = Id−SS> be its orthogonal
complement. Let X ∈ Rd×d be any matrix where ‖X‖ < 1

3 . We have:

‖ Id(Id−X)S(Id−X)S⊥ + 2 IdS XS
⊥‖ . ‖X‖2. (43)

Proof By definition, we know that:

Id(Id−X)S = (Id−X)S
(
S>(Id−X)>(Id−X)S

)−1
S>(Id−X)>

= (Id−X)S
(

Id−S>(X> +X)S + S>X>XS
)−1

S>(Id−X)> (44)

Denote by Y = S>(X> + X)S − S>X>XS. We have that ‖Y ‖ ≤ 2‖X‖ + ‖X‖2 < 7‖X‖/3.
By expanding (Id−Y )−1, we obtain:∥∥(Id−Y )−1 − (Id +Y )

∥∥ ≤ ∞∑
i=2

‖Y ‖i

≤ ‖Y ‖2

1− ‖Y ‖
≤ 25‖X‖2.

Hence we get: ∥∥∥(Id−Y )−1 − (Id +S>(X> +X)S)
∥∥∥ ≤ 26‖X‖2.

Denote by

A = (Id−X)S
(

Id +S>(X> +X)S
)
S>(Id−X>)

= (Id−X)
(

IdS + IdS(X> +X) IdS

)
(Id−X>).

We separate the terms in A which has degree 1 in X:

A1 = IdS −X IdS − IdS X
> + IdS(X> +X) IdS

Consider the spectral norm of A(Id−X)S⊥. We have that A1S
⊥ = − IdS XS

⊥. For −A1XS
⊥,

the only term which has degree 1 in X is − IdS XS
⊥. To summarize, we obtain by triangle in-

equality that:

‖ Id(Id−X)S(Id−X)S> + 2 IdS XS
⊥‖ ≤ ‖A+ 2 IdS XS

⊥‖+ 26‖X‖2

. ‖A1 + 2 IdS XS
⊥‖+ ‖X‖2 . ‖X‖2

Now we are ready present the proof of Proposition D.3.
Proof [Proof of Proposition D.3] We first consider the term MtZt:

MtZt =
1

m

m∑
i=1

〈Ai, UtU>t −X?〉AiZt

=
1

m

m∑
i=1

〈
Ai, ZtZ

>
t −X?

〉
AiZt

+
1

m

m∑
i=1

〈
Ai, EtZ

>
t + ZtE

>
t

〉
AiZt +

1

m

m∑
i=1

〈
Ai, EtE

>
t

〉
AiZt (45)
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Note that∇f(Zt) = 1
m

∑m
i=1

〈
Ai, ZtZ

>
t −X?

〉
AiZt. Using Lemma 2.3 and F.2 on the two terms

in line (45) with the fact that Z>t Et = 0, we have that∥∥∥MtZt − EtZ>t Zt −∇f(Zt)
∥∥∥ ≤ 2

√
rδ‖Et‖‖Zt‖2 + δd‖Et‖2‖Zt‖ (46)

We decompose Zt+1 by:

Zt+1 = IdSt+1 Ut+1 = Ut+1 − (Id− IdSt+1)Ut+1

= (Id−ηMt)Zt + (Id−ηMt)Et − (Id− IdSt+1) (Id−ηMt)Et

= Zt − ηMtZt + IdSt+1(Id−ηMt)Et, (47)

where in the second equation we use the fact that (Id− IdSt+1)(Id−ηMt)Zt = 0, since the column
subspace of Zt is St. Setting S = IdSt and X = ηMt in Lemma D.9, we have that IdSt+1 =
Id(Id−X)S . Applying Lemma D.9, we conclude:

‖ IdSt+1(Id−ηMt)S
⊥ + 2 IdS(Id−ηMt)S

⊥‖ ≤ η2‖Mt‖2,

which implies that:

‖ IdSt+1(Id−ηMt)Et + 2 IdS(Id−ηMt)Et‖ ≤ η2‖Et‖‖Mt‖2.

Since ‖Mt‖ ≤ O(1) by Lemma D.8, the conclusion follows by combining Equation (46) and (47)
with the equation above.

D.3. Proof of Proposition D.4

Towards proving Proposition D.4, we further decompose Zt into

Zt = (U? + Ft)Rt (48)

where Rt ∈ Rr×d, Ft ∈ Rd×r are defined as

Rt = U?>Zt, and Ft = (Id− IdU?)ZtR
+
t (49)

Recall that X+ denotes the pseudo-inverse of X . We first relate the the spectral norm of Ft with
our target in Proposition D.4, the principal angle between Zt and U?. Up to third order term, we
show that ‖Ft‖ is effective equal to the principle angle, and this is pretty much the motivation to
decompose Zt in equation (48).

Lemma D.10 Let Ft be defined as in equation (49). Then, if ‖Ft‖ < 1/3, we have that

‖Ft‖ − ‖Ft‖3 ≤ sin(Zt, U
?) ≤ ‖Ft‖

Proof Let St = (U? + Ft)(Id +F>t Ft)
−1/2. By the fact that U?>Ft = 0, we have S>t St = Id and

St has the same column span as Zt. Therefore, the columns of St form an orthonormal basis of Zt,
and we have that

sin(Zt, U
?) = ‖(Id− IdU?)St‖ =

∥∥∥Ft(Id +F>t Ft)
−1/2

∥∥∥
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Suppose Ft has singular value σj , j = 1, . . . , r, then it’s straightforward to show that
Ft(Id +F>t Ft)

−1/2 has singular values σj√
1+σ2

j

, j = 1, . . . , r. The conclusion then follows basic

calculus and the fact that maxσj ≤ 1/3.

Therefore, it suffices to bound the spectral norm of Ft. However, the update rules of Ft or Zt are
difficult to reason about. Therefore, we introduce the following intermediate term Z̃t that bridges
Zt+1, Ft+1 with Zt and F + t. We define Z̃t as:

Z̃t = (Id−ηEtZ>t )Zt(Id−2ηZ+
t IdStMtEt) (50)

The motivation of defining such Zt is that Zt+1 depends on Zt via relatively simple formula as
the lemma below shows:

Proposition D.11 In the setting of Proposition D.4,∥∥∥Zt+1 −
(
Z̃t − η∇f(Zt)

)∥∥∥ = O(ητt)

The proof of Proposition D.11 is deferred to the later part of this section. We also decompose Z̃t
same as Zt to Z̃t = (U? + F̃t)R̃t, where

R̃t = U?>Z̃t, and F̃t = (Id− IdU?)Z̃tR̃
+
t (51)

We will prove that R̃t is close to Rt and F̃t is close to Ft in the following sense:

Proposition D.12 In the setting of Proposition D.4,

σmin(R̃t) ≥ σmin(Rt)
(

1− η

100κ

)
Proposition D.13 In the setting of Proposition D.4,

‖F̃t − Ft‖ . η ‖Et‖+ ηρ

We will prove these propositions in the following sections. After that, we will focus on the
update from Z̃t to Zt+1. In particular, we will bound Rt+1 and Ft+1 directly using R̃t and F̃t.

D.3.1. PROOFS OF PROPOSITION D.11, D.12, AND D.13

Proof [Proof of Proposition D.11] By definition of Z̃t,

Z̃t = (Id−ηEtZ>t )Zt(Id−2ηZ+
t IdStMtEt) (52)

= Zt − η
(
EtZ

>
t Zt + 2 IdStMtEt

)
+ 2η2EtZ

>
t IdStMtEt (53)

Recall that by Proposition D.3, the update rule of Zt+1 satisfies∥∥∥Zt+1 −
(
Zt − η∇f(Zt)− ηEtZ>t Zt − 2η IdStMtEt

)∥∥∥ ≤ ητt
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Putting the above two formulas together (using the bound of ‖MtEt‖ as in Lemma D.7) we
have that ∥∥∥Zt+1 −

(
Z̃t − η∇f(Zt)

)∥∥∥ = O(η2 ‖Et‖+ ητt) (54)

On the other hand, a direct calculation also shows that ‖Z̃t − Zt‖ = O(η‖Et‖). Moreover, Z̃t
is a rank r matrix and ‖Zt‖ , ‖Z̃t‖ = O(1). Therefore, let us denote by Z̃t = Zt + ∆t, we have:

∇f(Z̃t) =
1

m

m∑
i=1

〈Ai, Z̃tZ̃>t −X∗〉AiZ̃t

=
1

m

m∑
i=1

〈Ai, ZtZ>t −X∗〉AiZ̃t +
1

m

m∑
i=1

〈Ai, Zt∆>t + ∆tZ
>
t 〉AiZ̃t +

1

m

m∑
i=1

〈Ai,∆t∆
>
t 〉AiZ̃t

=
1

m

m∑
i=1

〈Ai, ZtZ>t −X∗〉AiZt +
1

m

m∑
i=1

〈Ai, ZtZ>t −X∗〉Ai∆t

+
1

m

m∑
i=1

〈Ai, Zt∆>t + ∆tZ
>
t 〉AiZ̃t +

1

m

m∑
i=1

〈Ai,∆t∆
>
t 〉AiZ̃t

Note that ∆t is at most rank 2r, therefore, we can apply the RIP property of {Ai}mi=1 (Lemma 2.3)
and ‖Z̃t‖, ‖Zt‖ = O(1) to conclude that

1

m

∥∥∥∥∥
m∑
i=1

〈Ai, ZtZ>t −X∗〉Ai∆t +

m∑
i=1

〈Ai, Zt∆>t + ∆tZ
>
t 〉AiZ̃t +

m∑
i=1

〈Ai,∆t∆
>
t 〉AiZ̃t

∥∥∥∥∥ = O(‖∆t‖)

Recall that ‖∆t‖ = O(η‖Et‖), the equation above and the formula for∇f(Z̃) implies that∥∥∥Zt+1 −
(
Z̃t − η∇f(Z̃t)

)∥∥∥ = O(η2 ‖Et‖+ ητt) = O(ητt)

The above proposition implies that Zt+1 is very close to doing one step of gradient descent from
Z̃t. Thus, we will mainly focus on Z̃t in the later section.
Proof [Proof of Proposition D.12] By definition of R̃t, we know that

R̃t = U?>Z̃t = U?>(Id−ηEtZ>t )Zt(Id−2ηZ+
t IdStMtEt)

= U?>Zt(Id−2ηZ+
t IdStMtEt)− ηU?>EtZ>t Zt(Id−2ηZ+

t IdStMtEt) (55)

By definition of Rt and the assumption that ‖Ft‖ ≤ 1/3, we have that σr(Zt) ≥ 1
2σmin(Rt),

which implies that
∥∥Z+

t

∥∥ ≤ 2
∥∥R+

t

∥∥. Thus, using the bound of ‖MtEt‖ as in Lemma D.7,

∥∥Z+
t IdStMtEt

∥∥ .
‖MtEt‖
σmin(Rt)

.
‖Et‖ (δ

√
r + sin(Zt, U

?))

σmin(Rt)

Similarly, we can get:

‖U?>Et‖ =
∥∥∥U?>(Id− IdSt)Et

∥∥∥ ≤ ‖Et‖∥∥∥U?>(Id− IdSt)
∥∥∥ = ‖Et‖ sin(Zt, U

?) (56)
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Therefore, bounding the terms in equation (55) using the bounds above, we have:

σmin(R̃t) ≥ σmin(U?>Zt)(1− η
∥∥Z+

t IdStMtEt
∥∥)− η

∥∥∥U?>EtZ>t Zt(Id−2ηZ+
t IdStMtEt)

∥∥∥
≥ σmin(Rt)(1− η

∥∥Z+
t IdStMtEt

∥∥)− 2η
∥∥∥U?>Et∥∥∥

≥ σmin(Rt)

(
1− ηO

(
‖Et‖ (δ

√
r + sin(Zt, U

?))

σmin(Rt)

))
(57)

Again, using σr(Zt) ≥ 1
2σmin(Rt) we know that

‖Et‖ (δ
√
r + sin(Zt, U

?))

σmin(Rt)
≤ 2
‖Et‖ (δ

√
r + sin(Zt, U

?))

σmin(Zt)

By assumption of Proposition D.4 and that σmin(Zt) ≥ 1
2 ‖Et‖, we obtain:

2
‖Et‖ (δ

√
r + sin(Zt, U

?))

σmin(Zt)
≤ 2(δ

√
r + sin(Zt, U

?))

.
√
ρ (by Assumption in proposition D.4)

Thus, by equation (57) above, and our choice of parameter such that
√
ρ . 1/κ, we conclude

that

σmin(R̃t) ≥ σmin(Rt)
(

1− η

100κ

)

Next we prove prove Proposition D.13, which focus on F̃t:
Proof [Proof of Proposition D.13]

We know that right multiply Zt by an invertible matrix does not change the column subspace as
Zt, thus won’t change the definition of Ft, so we can just focus on (Id−ηEtZ>t )Zt. We know that

F̃t = (Id− IdU?)
(

Id−ηEtZ>t )Zt(U
?>(Id−ηEtZ>t )Zt

)+

= (Id− IdU?)Zt

(
U?>Zt − ηU?>EtZ>t Zt

)+

− η(Id− IdU?)EtZ
>
t

(
U?>Zt − ηU?>EtZ>t Zt

)+

SinceZt is rank r, we can do the SVD ofZt asZt = V ΣZW
> for column orthonormal matrices

V,W ∈ Rd×r and diagonal matrix ΣZ ∈ Rr×r. Then, we can write
(
U?>Zt − ηU?>EtZ>t Zt

)+

as: (
U?>Zt − ηU?>EtZ>t Zt

)+
=
((
U?>V − ηU?>EtZ>t V

)
ΣZW

>
)+

= W>Σ−1
Z

(
U?>V − ηU?>EtZ>t V

)−1
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By our assumption that sin(Zt, U
?) ≤ 1

3 we know that σmin(U?>V ) = Ω(1). Thus, by ‖Zt‖ =
O(1) and Woodbury matrix inversion formula we have:∥∥∥∥(U?>V − ηU?>EtZ>t V )−1

− (U?>V )−1

∥∥∥∥ . η
∥∥∥U?>EtZ>t V ∥∥∥ . η

∥∥∥U?>Et∥∥∥
Recall thatFt = (Id− IdU?)ZtR

+
t = (Id− IdU?)ZtW

>Σ−1
Z (U?>V )−1. Thus, using σr(Zt) ≥

1
2σmin(Rt), an elementary calculation gives us:

∥∥∥F̃t − Ft∥∥∥ . η ‖Et‖+ η
‖Ft‖

∥∥∥U?>Et∥∥∥
σmin(Rt)

By assumption ‖Et‖ . σmin(Zt) in Proposition D.4, together with σr(Zt) ≥ 1
2σmin(Rt) and

inequality 56, we have

‖Ft‖
∥∥∥U?>Et∥∥∥

σmin(Rt)
.
‖Ft‖ ‖Et‖ sin(Zt, U

?)

σmin(Zt)
. ‖Ft‖2

By our choice of parameter, we know that ‖Ft‖2 ≤ ρ, therefore, we proved that
∥∥∥F̃t − Ft∥∥∥ ≤

η(‖Et‖2 + ρ) as desired.

Now, we can just focus on Z̃t. One of the crucial fact about the gradient ∇f(Z̃t) is that it can
be decomposed into

∇f(Z̃t) = NtR̃t

where Nt is a matrix defined as

Nt =
1

m

m∑
i=1

〈Ai, Z̃tZ̃>t −X?〉Ai(U? + F̃t) (58)

Therefore, Z̃t and ∇f(Z̃t) share the row space and we can factorize the difference between Z̃t and
η∇ft(Z̃t) as

Z̃tNt − η∇f(Z̃t) = (F̃t − ηNt)R̃t

Note that the definition ofNt depends on the random matricesA1, . . . , At. The following lemma
show that for our purpose, we can essentially viewNt as its population version — the counterpart of
Nt when we have infinitely number of examples. The proof uses the RIP properties of the matrices
A1, . . . , Am.

Lemma D.14 In the setting of Proposition D.4, let Nt be defined as in equation (58). Then,∥∥∥Nt − (Z̃tZ̃
>
t −X?)(U? + F̃t)

∥∥∥ ≤ 2δ
∥∥∥Z̃tZ̃>t −X?

∥∥∥
F
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Proof Recalling the definition of Nt, by Lemma 2.3, we have that∥∥∥Nt − (Z̃tZ̃
>
t −X?)(U? + F̃t)

∥∥∥ ≤ δ ∥∥∥Z̃tZ̃>t −X?
∥∥∥
F

∥∥∥U? + F̃t

∥∥∥ (59)

≤ 2δ
∥∥∥Z̃tZ̃>t −X?

∥∥∥
F

(by the assumption
∥∥∥F̃t∥∥∥ < 1/3)

Lemma D.15 For any t ≥ 0, suppose
∥∥∥Zt+1 − (Z̃t − ηG(Z̃t))

∥∥∥ ≤ ητ , we have

‖Zt+1‖ ≤ ‖Z̃t‖
(

1− 1

2
η‖Z̃t‖2

)
+ 2η‖Z̃t‖‖X?‖+ ητ .

Proof By Lemma 2.3, we have:∥∥∥G(Z̃t)− (Z̃tZ̃
>
t −X?)Z̃t

∥∥∥ ≤ δ ∥∥∥Z̃tZ̃>t −X?
∥∥∥
F

∥∥∥Z̃t∥∥∥ . (60)

Therefore,

‖Zt+1‖ ≤
∥∥∥Z̃t − ηG(Z̃t)

∥∥∥+ ητ

≤
∥∥∥Z̃t − η(Z̃tZ̃

>
t −X?)Z̃t

∥∥∥+ ηδ
∥∥∥Z̃tZ̃>t −X?

∥∥∥
F

∥∥∥Z̃t∥∥∥+ ητ

≤
∥∥∥(Id−ηZ̃tZ̃>t + ηX?

)
Z̃t

∥∥∥+ ηδ
√
r
∥∥∥Z̃t∥∥∥(∥∥∥Z̃t∥∥∥2

+ ‖X?‖
)

+ ητ

≤ (1− η
∥∥∥Z̃t∥∥∥)

∥∥∥Z̃t∥∥∥+
1

2
η
∥∥∥Z̃t∥∥∥(∥∥∥Z̃t∥∥∥2

+ 4 ‖X?‖
)

+ ητ (by δ
√
r ≤ 1/2)

As a direct corollary, we can inductive control the norm of Z̃t.

Corollary D.16 In the setting of Proposition D.4, we have that

‖Zt+1‖ ≤ 5,
∥∥∥R̃t∥∥∥ ≤ 6

Moreover,

‖Zt+1Z
>
t+1 −X?‖F .

√
r, and ‖Nt‖ .

√
r

Proof Using the assumption that ‖X?‖ = 1 and the assumption that equation (33) holds, then
we have that

∥∥∥Z̃t∥∥∥ ≤ ‖Zt‖ (1 + O(η ‖E‖t)) ≤ 5(1 + O(η ‖E‖t)). Applying Lemma D.15 with

τ = O(τt), we have that ‖Zt+1‖ ≤ 5. We also have that
∥∥∥R̃t∥∥∥ ≤ ∥∥∥Z̃t∥∥∥ ≤ 6. Moreover, we

have ‖Zt+1Z
>
t+1 − X?‖F ≤

∥∥∥Z̃t∥∥∥
?

+ ‖X?‖F .
√
r(
∥∥∥Z̃t∥∥∥ + ‖X?‖) .

√
r. As a consequence,

‖Nt‖ ≤ (1 + δ)
∥∥∥Z̃tZ̃>t −X?

∥∥∥
F

(
‖U?‖+

∥∥∥F̃t∥∥∥) .
√
r.

We start off with a lemma that controls the changes of R̃t relatively to Rt+1.
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Lemma D.17 In the setting of Proposition D.4, then we have that R̃tR−1
t+1 can be written as

R̃tR
+
t+1 = Id +ηR̃tR̃

>
t − ηΣ? + ξ

(R)
t

where ‖ξ(R)
t ‖ . ηδ

√
r+ηρ+η‖F̃t‖+η2. It follows that

∥∥∥R̃tR+
t+1

∥∥∥ ≤ 4/3 and τ ≤ 2ρσmin(Rt+1).

Proof By the definition of R̃t and equation (33), we have that

ητ ≥ ‖Rt+1 − R̃t − ηU?>∇f(Z̃t)‖

= ‖Rt+1 − (Id−ηU?>Nt)R̃t‖ (61)

Form this we can first obtain a very weak bound on σmin(Rt+1):

σmin(Rt+1) ≥ σmin((Id−ηU?>Nt)R̃t)− ητ

≥ 3

4
· σmin(R̃t)−O(ηρσmin(R̃t))

(by τ ≤ O(ρσmin(R̃t)) and ‖ηU?>Nt‖ ≤ ‖ηNt‖ . η
√
r ≤ 1/4)

≥ 1

2
· σmin(R̃t) (62)

Re-using equation (61), we have

‖ Id−(Id−ηU?>Nt)R̃tR
+
t+1‖ ≤ ητ ·

∥∥R+
t+1

∥∥ = ητ/σmin(Rt+1)

≤ 2ητ/σmin(R̃t) ≤ O(ηρ) (63)

where we used equation (62) and τ ≤ O(ρσmin(R̃t)). This also implies a weak bound for R̃tR+
t+1

that ‖R̃tR+
t+1‖ ≤ 2. By Lemma D.14, we have that

‖ηU?>Nt − ηU?>(Z̃tZ̃
>
t −X?)(U? + F̃t)‖ ≤ 2δη‖Z̃tZ̃>t −X?‖F . δη

√
r

where we use the fact that ‖Z̃tZ̃>t − X?‖F .
√
r. Note that X? = U?Σ?U?> and Z̃t = (U? +

F̃t)R̃t, we have ‖ηU?>Nt − η(R̃tR̃
>
t − Σ?)(U? + F̃t)

>(U? + F̃t)‖ . δη
√
r.

Bounding the higher-order term, we have that∥∥∥η(R̃tR̃
>
t − Σ?)(U? + F̃t)

>(U? + F̃t)− η(R̃tR̃
>
t − Σ?)

∥∥∥ . η
∥∥∥F̃t∥∥∥ (by

∥∥∥R̃t∥∥∥ ≤ 6)

which implies that

‖ηU?>Nt − η(R̃tR̃
>
t − Σ?)‖ . δη

√
r + η‖F̃t‖ (64)

Combining the equation above with equation (63) and ‖R̃tR+
t+1‖ ≤ 2, we have that

‖ Id−(Id−ηR̃tR̃>t + ηΣ?)R̃tR
+
t+1‖ . ηδ

√
r + ηρ+ η

∥∥∥F̃t∥∥∥ (65)

For η . 1, we know that∥∥∥(Id−ηR̃tR̃>t + ηΣ?)(Id +ηR̃tR̃
>
t − ηΣ?)− Id

∥∥∥ . η2
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This implies that

‖(Id +ηR̃tR̃
>
t − ηΣ?)− R̃tR+

t+1‖ . ηδ
√
r + ηρ+ η

∥∥∥F̃t∥∥∥+ η2

which completes the proof.

We express Ft+1 as a function of F̃t and other variables.

Lemma D.18 In the setting of Proposition D.4, let Nt be defined as in equation (58). Then,

Ft+1 = F̃t(Id−ηR̃tR̃>t )R̃tR
+
t+1 + ξ

(F )
t

where ‖ξ(F )
t ‖ . δη

√
r + ηρ+ η

∥∥∥F̃t∥∥∥2
.

Proof By equation (33), we have that∥∥∥(Id− IdU?) ·
(
Zt+1 − (Z̃t − η∇f(Z̃t))

)∥∥∥ ≤ ητt
which, together with the decomposition (49), implies

ητ ≥
∥∥∥Ft+1Rt+1 − F̃tR̃t + η(Id− IdU?)∇f(Z̃t)

∥∥∥
=
∥∥∥Ft+1Rt+1 − (F̃t − η(Id− IdU?)Nt)R̃t

∥∥∥
Recall that τt ≤ 2ρσmin(Rt+1) (by Lemma D.17), we conclude∥∥∥Ft+1 − (F̃t − η(Id− IdU?)Nt)R̃tR

+
t+1

∥∥∥ ≤ 2ηρ (66)

Note that (Id− IdU?)X
? = 0 and that (Id− IdU?)Z̃tZ̃

>
t = F̃tR̃tR̃

>
t (U? + F̃t)

>. We obtain that

∥∥∥(Id− IdU?)Nt − F̃tR̃tR̃>t (U? + F̃t)
>(U? + F̃t)

∥∥∥ ≤ 2δ
∥∥∥Z̃tZ̃>t −X?

∥∥∥
F
. δ
√
r (67)

where we used the fact that
∥∥∥Z̃tZ̃>t −X?

∥∥∥
F
.
√
r (by Lemma D.16).

Bounding the higher-order term, we have that∥∥∥F̃tR̃tR̃>t (U? + F̃t)
>(U? + F̃t)− F̃tR̃tR̃>t

∥∥∥ .
∥∥∥F̃t∥∥∥2

(by
∥∥∥R̃t∥∥∥ ≤ 6 from Corollary D.16)

Combining equation (66), (67) and the equation above, and using the fact that
∥∥∥R̃tR+

t+1

∥∥∥ ≤ 2, we
complete the proof.

Combining Lemma D.18 and Lemma D.17, we can relate the ‖Ft+1‖ with
∥∥∥F̃t∥∥∥:

Lemma D.19 In the setting of Proposition D.4, we have that F̃t can be written as

Ft+1 = F̃t(Id−ηΣ?) + ξt

where ‖ξt‖ ≤ O(ηδ
√
r + η

∥∥∥F̃t∥∥∥2
+ ηρ+ η2). As a consequence,

‖Ft+1‖ ≤
∥∥∥F̃t∥∥∥+O(η

∥∥∥F̃t∥∥∥2
+ ηρ)

36



ALGORITHMIC REGULARIZATION IN OVER-PARAMETERIZED MODELS

Proof Combine Lemma D.18 and Lemma D.17, we have that

Ft+1 = F̃t(Id−ηR̃tR̃>t )R̃tR
+
t+1 + ξ

(F )
t

= F̃t(Id−ηR̃tR̃>t )
(

Id +ηR̃tR̃
>
t − ηΣ? + ξ

(R)
t

)
+ ξ

(F )
t

Thus, with the bound on ‖ξ(R)
t ‖ and ‖ξ(F )

t ‖ from Lemma D.18 and Lemma D.17, we know that∥∥∥Ft+1 − (Id−ηΣ?)F̃t

∥∥∥ . η‖F̃t‖+ ‖F̃t‖‖ξ(R)
t ‖+ ‖ξ(F )

t ‖ . η‖F̃t‖2 + ηδ
√
r + ηρ+ η2

. η
∥∥∥F̃t∥∥∥2

+ ηρ .

The proof of Proposition D.4 follow straightforwardly from Lemma D.10 and Lemma D.19.
Proof [Proof of Proposition D.4] Using the assumption that ‖Ft‖ .

√
ρ (Thus ‖Ft‖2 . ρ). Since

we have showed that
∥∥∥F̃t − Ft∥∥∥ . η(ρ + ‖Et‖), the proof of this proposition followings immedi-

ately from Lemma D.19.

D.4. Proof of Proposition D.5

We first prove the following technical lemma that characterizes how much the least singular value
of a matrix changes when it got multiplied by matrices that are close to identity.

Lemma D.20 Suppose Y1 ∈ Rd×r and Σ is a PSD matrix in Rr×r. For some η > 0, let

Y2 = (Id +ηΣ)Y1(Id−ηY >1 Y1)

Then, we have:

σmin(Y2) ≥ (1 + ησmin(Σ))
(
1− ησmin(Y1)2

)
σmin(Y1)

Proof First let’s consider the matrix Y := Y1(Id−ηY >1 Y1). We have that that σmin (Y ) =(
1− ησmin(Y1)2

)
σmin(Y1). Next, we bound the least singular value of (Id +ηΣ)Y :

σmin((Id +ηΣ)Y ) ≥ σmin(Id +ηΣ)σmin(Y ) = (1 + σmin(Σ))σmin(Y )

where we used the facts that σmin(AB) ≥ σmin(A)σmin(B), and that for any symmetric PSD matrix
B, σmin(Id +B) = 1 + σmin(B).

Now we are ready to prove Proposition D.5. Note that the least singular value of Zt is closely
related to the least singular value of R̃t because Ft is close to 0. Using the machinery in the proof
of Lemma D.17, we can write Rt+1 as some transformation of R̃t, and then use the lemma above to
bound the least singular value of Rt+1 from below.
Proof [Proof of Proposition D.5] Recall that in equation (65) in the the proof of Lemma D.17, we
showed that

‖ Id−(Id−ηR̃tR̃>t + ηΣ?)R̃tR
+
t+1‖ . ηδ

√
r + ηρ+ η ‖Ft‖ .
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Together with
∥∥∥R̃t∥∥∥ ≤ 6 and

∥∥∥R̃tR+
t+1

∥∥∥ ≤ 2 by Corollary D.16 and Lemma D.17 respectively, we
have:

‖ Id−(Id +ηΣ?)R̃t(Id−ηR̃>t R̃t)R+
t+1‖ . ηδ

√
r + ηρ+ η ‖Ft‖+ η2 .

Denote by ξ = Id−(Id +ηΣ?)R̃t(Id−ηR̃>t R̃t)R+
t+1, we can rewrite

Rt+1 − (Id +ηΣ?)R̃t(Id−ηR̃>t R̃t) = ξRt+1 ,

Without loss of generality, let us assume that σmin(R̃t) ≤ 1
1.9
√
κ

. By Lemma D.20 that

σmin(Rt+1) ≥
(1 + ησmin(Σ?))

(
1− ησmin(R̃t)

2
)
σmin(R̃t)

1 +O (ηδ
√
r + ηρ+ η ‖Ft‖+ η2)

.

Since ‖Ft‖ . ηρt by Proposition D.4, we have:

σmin(Rt+1) ≥ (1 + η/κ)
(

1− ησmin(R̃t)
2
)
σmin(R̃t)

(
1−O

(
ηδ
√
r + ηρ+ η2ρt

))
≥
(

1 + η

(
1

3κ
−O

(
δ
√
r + ρ+ η(δρ)t

)))
σmin(R̃t) (by σmin(R̃t) ≤ 1

1.9
√
κ

)

≥
(

1 +
η

4κ

)
σmin(R̃t) ( by t ≤ c

ηκρ )

Since σmin(R̃t) ≥ σmin(Rt)
(
1− η

100κ

)
by Proposition D.12, the conclusion follows.

D.5. Proof of Proposition 4.3

Since Ut+1 = Ut − η∇f(Ut), we first write down the error for step t+ 1:∥∥∥Ut+1U
>
t+1 −X?

∥∥∥2

F
=
∥∥∥(Ut − η∇f(Ut))(U

>
t − η∇f(Ut)

>)−X?
∥∥∥2

F

= ‖UtU>t −X?‖2
F
− 2η〈∇f(Ut)U

>
t , UtU

>
t −X?〉 (68)

+ 〈2η2(UtU
>
t −X?),∇f(Ut)∇f(Ut)

>〉+ 4η2‖∇f(Ut)U
>
t ‖2F (69)

− 〈4η3∇f(Ut)U
>
t ,∇f(Ut)∇f(Ut)

>〉+ η4‖∇f(Ut)∇f(Ut)
>‖2

F
(70)

Denote by
∆ = UtU

>
t − EtE>t = EtZ

>
t + ZtE

>
t + EtE

>
t .

First we have that
‖∆‖ ≤ 2‖Et‖‖Zt‖+ ‖Et‖22 ≤ O(‖Et‖).

We first consider the degree one term of η in equation (68).

Claim D.21 In the setting of this subsection, we have that:

〈∇f(Ut)U
>
t , UtU

>
t −X?〉 ≥ (1−O(η))‖(ZtZ>t −X?)Zt‖2F−O(δ)‖ZtZ>t −X?‖2

F
−O(
√
dr‖Et‖).
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Proof First, we have that

〈∇f(Ut)U
>
t , UtU

>
t −X?〉 ≥ 〈∇f(Ut)U

>
t , ZtZ

>
t −X?〉 − ‖∇f(Ut)U

>
t ‖F ‖∆‖F (71)

Since ‖Ut‖ ≤ O(1), we focus on the gradient of Ut. We divide∇f(Ut) into the sum of three parts:

Y1 =
1

m

m∑
i=1

〈Ai, ZtZ>t −X?〉AiZt,

Y2 =
1

m

m∑
i=1

〈Ai, ZtZ>t −X?〉AiEt,

Y3 =
1

m

m∑
i=1

〈Ai,∆〉AiUt

By Lemma 2.3, we have that:

‖Y1‖ ≤
∥∥∥(ZtZ

>
t −X?)Zt

∥∥∥+ δ × ‖ZtZ>t −X?‖F ‖Zt‖ ≤ O(1), (72)

where ‖ZtZ>t − X?‖F ≤ O(
√
r) by Corollary D.16. Since Y1 has rank at most r, we get that

‖Y1‖F ≤ O(
√
r). For Y2, we apply Lemma 2.3 again:

‖Y2‖ ≤ ‖ZtZ>t −X?‖‖Et‖+ δ × ‖ZtZ>t −X?‖F ‖Et‖ ≤ O(‖Et‖).

By assumption ‖Et‖ ≤ 1/d, hence ‖Y2‖F ≤ O(1). Finally we apply Lemma F.2 for Y3:

‖Y3‖ ≤ ‖∆‖‖Ut‖+ δ × (2‖EtZ>t ‖F + ‖EtE>t ‖∗)‖Ut‖ ≤ O(‖Et‖)

To summarize, we have shown that ‖∇f(Ut)‖F ≤ O(
√
r). Back to equation (71), we have shown

that:

‖∇f(Ut)U
>
t ‖F ‖∆‖F ≤ O(

√
dr)‖Et‖.

For the other part in equation (71),

〈∇f(Ut)U
>
t , ZtZ

>
t −X?〉 ≥ 〈MtZtZ

>
t , ZtZ

>
t −X?〉 − ‖Mt∆‖F ‖ZtZ

>
t −X?‖F

≥ 〈MtZtZ
>
t , ZtZ

>
t −X?〉 −O(

√
dr)‖Et‖,

because ‖Mt‖ ≤ O(1) from Lemma D.8. Lastly, we separate out the ∆ term in Mt as follows:

〈MtZtZ
>
t , ZtZ

>
t −X?〉 =〈∇f(Zt)Zt, ZtZ

>
t −X?〉+ (73)

1

m

m∑
i=1

〈Ai, EtZ>t + ZtE
>
t 〉〈Ai, ZtZ>t (ZtZ

>
t −X?)〉+ (74)

1

m

m∑
i=1

〈Ai, EtE>t 〉〈Ai, ZtZ>t (ZtZ
>
t −X?)〉 (75)
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Since Zt is a rank-r matrix, by Lemma 2.2, Equation (73) is at least:〈
ZtZ

>
t −X?, ZtZ

>
t

(
ZtZ

>
t −X?

)〉
− δ‖Zt‖2‖ZtZ>t −X?‖2

F
. (76)

Equation (74) is similarly bounded by O(
√
dr‖Et‖) using Lemma 2.2, since EtZ>t also has rank at

most r. Finally for equation (75), while EtE>t may have rank d, we can still apply Lemma F.1 and
afford to lose a factor of d, because ‖EtE>t ‖ ≤ O(1/d2). To summarize, we have shown that:

〈∇f(Ut)U
>
t , UtU

>
t −X?〉 ≥ 〈∇f(Zt)Z

>
t , ZtZ

>
t −X?〉 −O(

√
dr)‖Et‖.

The conclusion follows by combining the above equation with (76).

Next we work out the degree two term in equation (70).

Claim D.22 In the setting of this subsection, we have that both

|〈(UtU>t −X?),∇f(Ut)∇f(Ut)
>〉| and ‖∇f(Ut)U

>
t ‖2F

. ‖(ZtZ>t −X?)Zt‖2F + δ‖ZtZ>t −X?‖2
F

+ r‖Et‖

Proof The idea of the proof is similar to that for equation (68) and (69). First of all, we have

〈UtU>t −X?,∇f(Ut)∇f(Ut)
>〉 ≥ 〈ZtZt −X?,∇f(Ut)∇f(Ut)

>〉 − ‖∆‖ × ‖∇f(Ut)∇f(Ut)
>‖∗

The second term is at most O(r)× ‖Et‖ from our proof. Next,

〈ZtZ>t −X?,∇f(Ut)∇f(Ut)
>〉 = 〈ZtZ>t −X?,MtZtZ

>
t M

>
t 〉+ 〈ZtZ>t −X?,Mt∆M

>
t 〉

The second term is at most:

‖∆‖ × ‖M>t (ZtZ
>
t −X?)Mt‖∗ . r‖Et‖

Lastly, we expand out Mt to obtain:

〈ZtZ>t −X?,MtZtZ
>
t M

>
t 〉 =

1

m

m∑
i=1

〈Ai, UtU>t −X?〉〈ZtZ>t −X?, AiZtZ
>
t M

>
t 〉

=
1

m

m∑
i=1

〈Ai, ZtZ>t −X?〉〈Ai,W 〉+
1

m

m∑
i=1

〈Ai,∆〉〈Ai,W 〉

where we denote by W = (ZtZ
>
t −X?)MtZtZ

>
t . Clearly, the rank of W is at most r and it is not

hard to see that the spectral norm of W is O(1). For the first part, we apply Lemma 2.2 to obtain:

|〈ZtZ>t −X?,W 〉|+ δ × ‖ZtZ>t −X?‖F ‖W‖F . ‖(ZtZ>t −X?)Zt‖2F + ‖ZtZ>t −X?‖2
F

(77)

where we used that ‖Mt‖ ≤ O(1) and δ . 1/
√
r. For the second part, we apply Lemma 2.2 and

Lemma F.1 together on ∆ to obtain:

|〈∆,W 〉|+ δ × (2‖EtZ>t ‖F + ‖EtE>t ‖∗)‖W‖F ≤ O(r)× ‖Et‖
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where we used the assumption that ‖Et‖ ≤ 1/d. The proof for ‖∇f(Ut)U
>
t ‖2F is similar. The

difference is that we will obtain W ′ = ZtZ
>
t MtZtZ

>
t instead. To bound 〈ZtZt−X?,W ′〉, we use

Lemma 2.2 and Lemma F.1 to control Mt. The details are left to the readers.

Finally we consider the degree three and four terms of η in equation (70):

〈4η3∇f(Ut)U
>
t ,∇f(Ut)∇f(Ut)

>〉 ≤ O(η3)× ‖∇f(Ut)‖2F ,

because ‖UtU>t − X?‖ ≤ O(1) and ‖∇f(Ut)‖ ≤ O(1). For the gradient of Ut, we have already
decomposed it to the sum of Y1, Y2 and Y3. And our proof already implies that:

‖Y1‖F ≤ O(
√
r)× ‖ZtZ>t −X?‖, and

‖Y2‖F , ‖Y3‖F ≤ O(
√
d)× ‖Et‖

Combining all results together, we get that:

‖∇f(Ut)‖2F ≤ O(r)‖ZtZ>t −X?‖2 +O(d‖Et‖2)

Hence equation (70) is at most:

O(rη3)‖ZtZ>t −X?‖2
F

+O(‖Et‖)

Combining the above equation with Claim D.21 and D.22, we have shown that:

‖Ut+1U
>
t+1 −X?‖2

F
≤‖UtU>t −X?‖2

F
− (η −O(η2))‖(ZtZ>t −X?)Zt‖2F +O(

√
dr)‖Et‖

+O(ηδ + η2δ + rη3)‖ZtZ>t −X?‖2
F

Lastly we show that:

‖(ZtZ>t −X?)Zt‖2F ≥
1

4κ
‖ZtZ>t −X?‖2

F
. (78)

The conclusion follows since it is not hard to show that

‖UtU>t −X?‖2
F

= ‖ZtZ>t −X?‖2
F
±O(

√
dr)‖Et‖.

The rest of the proof is dedicated to equation (78). Without loss of generality, let us assume that 12

X∗ =

(
Σ? 0
0 0

)
and ZtZ

>
t = UΣU>,

where U =

(
U1

U2

)
∈ Rd×r is column orthogonal, and U1 ∈ Rr×r. We have:

∥∥∥ZtZ>t −X?
∥∥∥2

F
=
∥∥∥U1ΣU>1 − Σ?

∥∥∥2

F
+ 2

∥∥∥U2ΣU>1

∥∥∥2

F
+
∥∥∥U2ΣU>2

∥∥∥2

F
,

12. To see this, we can extend U∗ to a d by d column orthogonal matrix. Let AΣA> be the SVD of ZtZ>t . Then
U = U∗>A is column orthogonal.
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and ∥∥∥(ZtZ>t −X?
)
Zt

∥∥∥2

F

=
∥∥∥(Σ?U1 − U1Σ) Σ1/2

∥∥∥2

F
+
∥∥∥(U2Σ) Σ1/2

∥∥∥2

F

≥ σmin(Σ)
(
‖Σ?U1 − U1Σ‖2F + ‖U2Σ‖2F

)
Moreover, using the fact that

(
U1

U2

)
is column orthonormal, we can get ‖U1‖ , ‖U2‖ ≤ 1, which

implies: ∥∥∥U1ΣU>1 − Σ?
∥∥∥2

F
+ 2

∥∥∥U2ΣU>1

∥∥∥2

F
+
∥∥∥U2ΣU>2

∥∥∥2

F

≤
∥∥∥U1ΣU>1 − Σ?

∥∥∥2

F
+ 2 ‖U2Σ‖2F

∥∥∥U>1 ∥∥∥2
+ ‖U2Σ‖2F ‖U

>
2 ‖2

.
∥∥∥U1ΣU>1 − Σ?

∥∥∥2

F
+ ‖U2Σ‖2F

By assumption we have sin(Zt, U
∗) ≤ 1

3 , which gives us σmin(U1) ≥ 1/4. Thus, considering∥∥U1ΣU>1 − Σ?
∥∥2

F
we have:∥∥∥U1ΣU>1 − Σ?

∥∥∥2

F
= tr

(
U1ΣU>1 U1ΣU>1

)
− 2tr

(
U1ΣU>1 Σ?

)
+ tr

(
Σ?2

)
Using U>1 U1 � I we have tr

(
U1ΣU>1 U1ΣU>1

)
≤ tr

(
U1Σ2U>1

)
. Using σmin(U1) ≥ 1/4 we also

have tr
(
Σ?2

)
. tr(Σ?U1U

>
1 Σ?). Therefore we obtain:∥∥∥U1ΣU>1 − Σ?
∥∥∥2

F
.
(

tr
(
U1Σ2U>1

)
− 2tr

(
U1ΣU>1 Σ?

)
+ tr

(
Σ?U1U

>
1 Σ?

))
= ‖U1Σ− Σ?U1‖2F

Putting everything together, we get:〈
ZtZ

>
t −X?, ZtZ

>
t

(
ZtZ

>
t −X?

)〉
=
∥∥∥(ZtZ>t −X?

)
Zt

∥∥∥2

F

≥ σmin(Σ)

(∥∥∥U1Σ− Σ?U>1

∥∥∥2

F
+ ‖U2Σ‖2F

)
= Ω(σmin(Σ))

(∥∥∥U1Σ− Σ?U>1

∥∥∥2

F
+ ‖U2Σ‖2F

)
= Ω(σmin(Zt))

∥∥∥ZtZ>t −X?
∥∥∥2

F

By the assumption that σmin(Zt)
2 ≥ 1/(4κ) = Ω(δ), we complete the proof of equation (78).

Appendix E. Missing proofs in Section A

Proof [Proof of Lemma A.1]
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Let us first consider the case when X is a rank-1 matrix. Suppose X = aa> with ‖a‖ = 1. We
then have:

1

m

m∑
i=1

〈Ai, X〉Ai1|〈Ai,X〉|≤R =
1

m

m∑
i=1

〈Ai, aa>〉Ai

=
1

m

m∑
i=1

〈xi, a〉2xix>i 1〈xi,a〉2≤R2

We define:

H(x1, · · · , xm) := sup
u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣ 1

m

m∑
i=1

〈xi, u〉2〈xi, v〉21〈xi,u〉2≤R2 − 2〈u, v〉2 − 1

∣∣∣∣∣
It suffices to bound H because by definition, for every X = aa> being a rank one matrix, with

‖a‖ = 1, we have that∥∥∥∥∥ 1

m

∑
i

〈xi, a〉2xix>i 1〈xi,a〉2≤R2 − 2X − I

∥∥∥∥∥ ≤ H(x1, · · · , xm)

Let us further decompose H into two terms:

H(x1, · · · , xm) ≤ sup
u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣ 1

m

m∑
i=1

〈xi, u〉2〈xi, v〉21〈xi,u〉2≤R21〈xi,v〉2≤R2 − 2〈u, v〉2 − 1

∣∣∣∣∣
+ sup
u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣ 1

m

m∑
i=1

〈xi, u〉2〈xi, v〉21〈xi,u〉2≤R21〈xi,v〉2>R2

∣∣∣∣∣ (79)

Let us bound the two term separately. For the first term, for every unit vectors u, v, we define
functions fu,v : Rd → R as fu,v(x) = 〈u, x〉〈v, x〉1〈xi,u〉2≤R21〈xi,v〉2≤R2 . We have that fu,v(x) ≤
R4. Thus by the symmetrization technique and the contraction principle(e.g., see Corollary 4.7
in Adamczak et al. (2010)), we have:

E

[
sup

u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣
m∑
i=1

(
fu,v(xi)

2 − E
[
fu,v(xi)

2
])∣∣∣∣∣
]
≤ 8R2E

[
sup

u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣
m∑
i=1

εifu,v(xi)

∣∣∣∣∣
]

where {εi}mi=1 is a set of i.i.d. Rademacher random variables. We can further bound the right hand
side of the inequality above by:

E

[
sup

u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣
m∑
i=1

εifu,v(xi)

∣∣∣∣∣
]
≤ E

[∥∥∥∥∥
m∑
i=1

εixix
>
i

∥∥∥∥∥
]

A standard bound on the norm of Gaussian random matrices gives us: E
[∥∥∑m

i=1 εixix
>
i

∥∥] . √md.
Therefore, we conclude that

E

[
sup

u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣
m∑
i=1

(
fu,v(xi)

2 − E
[
fu,v(xi)

2
])∣∣∣∣∣
]
. R2

√
md
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Now let us consider the expectation of fu,v(xi)2, a direct calculation shows that∣∣E[fu,v(xi)
2]− 2〈u, v〉2 − 1

∣∣ =
∣∣E [〈xi, u〉2〈xi, v〉21〈xi,u〉2≤R21〈xi,v〉2≤R2

]
− E

[
〈xi, u〉2〈xi, v〉2

]∣∣
≤ E

[
〈xi, u〉2〈xi, v〉21〈xi,u〉2≤R21〈xi,v〉2>R2

]
+ E

[
〈xi, u〉2〈xi, v〉21〈xi,u〉2>R2

]
≤ 2E[〈xi, u〉2〈xi, v〉21〈xi,u〉2>R2 ]

An elementary calculation of Gaussian variables gives us:

E[〈xi, u〉2〈xi, v〉21〈xi,u〉2>R2 ] . R4e−R
2/2 (80)

Putting everything together, for R ≥ 1 we are able to bound the first term of equation (79) by:

E

[
sup

u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣ 1

m

m∑
i=1

〈xi, u〉2〈xi, v〉21〈xi,u〉2≤R21〈xi,v〉2≤R2 − 2〈u, v〉2 − 1

∣∣∣∣∣
]
. R4

(√
d

m
+ e−R

2/2

)
(81)

Moreover, for every u, v ∈ Rd, ‖u‖ = ‖v‖ = 1 we know that fu,v(x) ≤ R2, we can apply (Adam-
czak et al., 2010, Lemma 4.8) to transform the bound above into a high probability bound. We have
that for every s ∈ [0, 1], with probability at least 1− e−Ω(s2m/(dR4)),

sup
u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣ 1

m

m∑
i=1

〈xi, u〉2〈xi, v〉21〈xi,u〉2≤R21〈xi,v〉2≤R2 − 2〈u, v〉2 − 1

∣∣∣∣∣ . R4

(√
d

m
+ e−R

2/2

)
+ s

Picking s =
(
R2
√
d√

m
log 1

q

)
with R = Θ

(
log
(

1
δ

))
we obtain that

sup
u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣ 1

m

m∑
i=1

〈xi, u〉2〈xi, v〉21〈xi,u〉2≤R21〈xi,v〉2≤R2 − 2〈u, v〉2 − 1

∣∣∣∣∣ ≤ δ
For the second term of equation (79) , we have that

sup
u,v∈Rd,‖u‖2=‖v‖2=1

∣∣∣∣∣ 1

m

m∑
i=1

〈xi, u〉2〈xi, v〉21〈xi,u〉2≤R21〈xi,v〉2>R2

∣∣∣∣∣
≤ sup

v∈Rd,‖v‖2=1

∣∣∣∣∣ 1

m

m∑
i=1

R2〈xi, v〉21〈xi,v〉2>R2

∣∣∣∣∣
By (Adamczak et al., 2010, Theorem 3.6 and Remark 3.10), we have that for every s > 0, with
probability at 1− e−Ω(s

√
d):

sup
v∈Rd,‖v‖2=1

∣∣∣∣∣ 1

m

m∑
i=1

R2〈xi, v〉21〈xi,v〉2>R2

∣∣∣∣∣ . R2s2

(
d2

m
+
d2

m
s2R−2 log2 m

n

)
(82)

Taking s = Ω

(
log 1

q√
d

)
, putting everything together we prove the Lemma for the case when

X = aa> is rank one.
For X of general rank, the proof follows by decomposing X to a sum of rank one singular

vectors and apply triangle inequality directly.
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Appendix F. Restricted Isometry Properties

In this section we list additional properties we need for the set of measurement matrices {Ai}mi=1.
Lemma 2.2 follows from the definition of RIP matrices. The rest three Lemmas are all direct
implications of Lemma 2.2.
Proof [Proof of Lemma 2.3] For every x ∈ Rd, y ∈ Rd′ of norm at most 1, we have:

1

m

m∑
i=1

〈Ai, X〉x>AiRy − x>XRy =
1

m

m∑
i=1

〈Ai, X〉〈Ai, xy>R>〉 − x>XRy

≤ 〈X,xy>R>〉+ δ‖X‖F ‖xy>R>‖ − x>XRy
≤ δ‖X‖F ‖R‖2

The first inequality uses Lemma 2.2.

The following Lemmas deal with matrices that may have rank bigger than r. The idea is to
decompose the matrix into a sum of rank one matrices via SVD, and then apply Lemma 2.2.

Lemma F.1 Let {Ai}mi=1 be a family of matrices in Rd×d that satisfy (r, δ)-restricted isometry
property. Then for any matrices X,Y ∈ Rd×d, where the rank of Y is at most r, we have:∣∣∣∣∣ 1

m

m∑
i=1

〈Ai, X〉〈Ai, Y 〉 − 〈X,Y 〉

∣∣∣∣∣ ≤ δ‖X‖∗‖Y ‖F
Proof Let X = UDV > be its SVD. We decompose D =

∑d
i=1Di where each Di contains only

the i-th diagonal entry of D, and let Xi = UDiV
> for each i = 1, . . . , d. Then we have:

1

m

m∑
i=1

〈Ai, X〉〈Ai, Y 〉 =
d∑
j=1

(
1

m

m∑
i=1

〈Ai, Xj〉〈Ai, Y 〉

)

≤
d∑
j=1

(〈Xj , Y 〉+ δ‖Xj‖F ‖Y ‖F ) = 〈X,Y 〉+ δ‖X‖∗‖Y ‖F

Lemma F.2 Let {Ai}mi=1 be a family of matrices in Rd×d that satisfy (1, δ)-restricted isometric
property. Then for any matrix X ∈ Rd×d and matrix R ∈ Rd×d′ , where d′ can be any positive
integer, we have: ∥∥∥∥∥ 1

m

m∑
i=1

〈Ai, X〉AiR−XR

∥∥∥∥∥ ≤ δ‖X‖∗ × ‖R‖.
The following variant is also true:∥∥∥∥∥ 1

m

m∑
i=1

〈Ai, X〉UAiR− UXR

∥∥∥∥∥ ≤ δ‖X‖∗ × ‖U‖ × ‖R‖,
where U is any matrix in Rd×d.
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Proof Let X = UDV > be its SVD. We define Xi and Di the same as in the proof of Lemma F.1,
for each i = 1, . . . , d.

For every x ∈ Rd, y ∈ Rd′ with norm at most one, we have:

1

m

m∑
i=1

〈Ai, X〉x>AiRy − x>XRy

=
d∑
j=1

(
1

m

m∑
i=1

〈Ai, Xj〉〈Ai, xy>R>〉

)
− x>XRy

≤
d∑
j=1

(
〈Xj , xy

>R>〉+ δ‖Xj‖F ‖R‖
)
− x>XRy = δ‖X‖∗‖R‖.

The variant can be proved by the same approach (details omitted).

Asymmetric sensing matrices. Recall that when each Ai is asymmetric, we simply use (Ai +
A>i )/2 instead of Ai as our sensing matrix. While {(Ai + Ai)/2}mi=1 may only ensure the re-
stricted isometry property for symmetric matrices, we have the same inequality when the matrix X
in Lemma 2.3 is symmetric, which is the case for all our applications of Lemma 2.3: 13∥∥∥∥∥ 1

m

m∑
i=1

〈Ai +A>i
2

, X〉(Ai +A>i )R/2−XR

∥∥∥∥∥ ≤ δ‖X‖F ‖R‖.
Since X is symmetric, 〈Ai, X〉 = 〈A>i , X〉. The above equation then follows by applying Lemma
2.3 twice, with {Ai}mi=1 and {A>i }mi=1 as sensing matrices respectively.

For the applications of Lemma 2.2 in Equations (28), (29), (74), (75) and (77), we note that
either X or Y is symmetric in all applications. Suppose that X is symmetric, then we have the
following when we use (Ai +A>i )/2 as the i-th sensing matrix:∣∣∣∣∣ 1

m

m∑
i=1

〈Ai +A>i
2

, X〉〈Ai +A>i
2

, Y 〉 − 〈X,Y 〉

∣∣∣∣∣ ≤ δ‖X‖F
∥∥∥∥Y + Y >

2

∥∥∥∥
F

It is straightforward to verify that our proof still holds using the above inequality instead. The details
for left for the readers.

13. More precisely, X corresponds to any one of UtU>t −X?, EtE>t , ZtZ>t , or their linear combinations.
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