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Abstract
Mixtures of Linear Regressions (MLR) is an important mixture model with many applications.
In this model, each observation is generated from one of the several unknown linear regression
components, where the identity of the generated component is also unknown. Previous works
either assume strong assumptions on the data distribution or have high complexity. This paper
proposes a fixed parameter tractable algorithm for the problem under general conditions, which
achieves global convergence and the sample complexity scales nearly linearly in the dimension. In
particular, different from previous works that require the data to be from the standard Gaussian, the
algorithm allows the data from Gaussians with different covariances. When the conditional number
of the covariances and the number of components are fixed, the algorithm has nearly optimal sample
complexity N = Õ(d) as well as nearly optimal computational complexity Õ(Nd), where d is the
dimension of the data space. To the best of our knowledge, this approach provides the first such
recovery guarantee for this general setting.

1. Introduction

This paper studies the problem of learning Mixtures of Linear Regressions (MLR). In this model,
one is given i.i.d. observations from a mixture of k unknown linear regression components, and the
goal is to recover the hidden parameters in the k linear regressions. In particular, each component i
has a sampling probability pi, a data distribution Di, a hidden parameter wi, and each observation
(x, α) is generated by first sampling a component i according to pi’s, then sampling x from Di and
setting α = ⟨x,wi⟩.

The MLR model is a popular mixture model and has many applications due to its effectiveness
in capturing non-linearity and its model simplicity (De Veaux, 1989; Jordan and Jacobs, 1994; Faria
and Soromenho, 2010; Zhong et al., 2016). It has also been a recent theoretical topic for analyzing
benchmark algorithms for nonconvex optimization (e.g., (Chaganty and Liang, 2013; Klusowski
et al., 2017)) or designing new algorithms (e.g., (Chen et al., 2014)). However, most of the existing
works either restrict to very special settings (e.g., x of different components all from the standard
Gaussian, or only k = 2 components) (Chen et al., 2014; Yi et al., 2014; Zhong et al., 2016;
Balakrishnan et al., 2017; Klusowski et al., 2017), or have high sample or computational complexity
far from optimal (Chaganty and Liang, 2013; Sedghi et al., 2016).

Moreover, to the best of our knowledge, all the existing works require the Di being identical.
Most works requiring them to be the standard Gaussian, with the exception of those using tensor
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methods. However, since the ultimate goal of MLR is to use different linear classifiers to capture
different types of data points, it is important to allow different types to have different covariances,
and was mentioned as an important open problem in (Sedghi et al., 2016).

We propose a novel fixed parameter tractable algorithm for learning Mixtures of Linear Regres-
sions in a setting significantly more general than those in previous works. In particular, our setting
allows k ≥ 2 components of data from different distributions Di = N (0,Σ2

i ) with I ⪯ Σi ⪯ σI,
and only requires a necessary separation between the ground truth parameters that any two weight
parameters should be at least ∆ apart for some separation parameter ∆. The algorithm can re-
cover the ground truth to any additive error ε using N = d log

(
d
ε

)
poly

(
kσ

pmin∆

)
+ n examples

and Nd · polylog(k, d, σ, 1ε ,
1
∆ , 1

pmin
) computational time, where pmin = mini pi and n is a minor

term for fixed k. It is tractable in the number of components k, the bound on the differences be-
tween the different variances σ, the separation parameter ∆, and the minimum proportion pmin of
the components. When these parameters are fixed, it can recover the ground truth to any additive
error ε, with nearly optimal sample complexity which is nearly linear in d, and with nearly optimal
computational complexity which is nearly linear in Nd.

Novel algorithmic techniques are proposed since existing ones are not known to generalize to
this setting. One main technical contribution of our work is a new “method of moments descent”
technique, that allows us to break ties between different mixture components gradually: Unlike
most of the previous algorithms which use method of moments to obtain a warm start in one shot,
we use it to find a direction to perform one “gradient descent” step and gradually refine our solution.
We believe our techniques are potentially useful in even more general cases.

Organization. Section 2 reviews the related work, and Section 3 formalizes the problem and
presents our result. An overview of the intuition for designing and analyzing the algorithm is pro-
vided in Section 4 while the algorithm and the key lemmas are presented in Section 5. The formal
proofs are provided in the appendix.

2. Related Work

Mixtures of Linear Regressions is a popular mixture model (e.g., (De Veaux, 1989; Grün et al.,
2007) and (Faria and Soromenho, 2010)), also known as Hierarchical Mixture of Experts in (Jordan
and Jacobs, 1994) in the machine learning community. It has many applications, such as trajectory
clustering (Gaffney and Smyth, 1999) and phase retrieval (Balakrishnan et al., 2017), and has as
special cases some popular models, such as piecewise linear regression and locally linear regression.

Learning MLR in general is NP-hard (Yi et al., 2014). Recent interests have been in providing
various efficient algorithms for recovering the parameters in MLR under assumptions about the data
generation model (Chaganty and Liang, 2013; Chen et al., 2014; Yi et al., 2014; Zhong et al., 2016;
Klusowski et al., 2017). They are either under restricted assumptions about the data (mixtures of
two component or x all from the standard Gaussian) (Chen et al., 2014; Yi et al., 2014; Balakrishnan
et al., 2017; Klusowski et al., 2017), or have high sample or computational complexity (Chaganty
and Liang, 2013; Sedghi et al., 2016).

Some works study specific algorithms for the problem, such as the Expectation Maximization
(EM) algorithm (Khalili and Chen, 2007; Yi et al., 2014; Balakrishnan et al., 2017; Klusowski et al.,
2017). It is known that without careful initialization EM is only guaranteed to have local conver-
gence (Klusowski et al., 2017). A grid search method for initialization is proposed in (Yi et al.,
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2014) but is only for the two-component case. It is unclear how to generalize these guarantees to
our more general setting where the data x from different components are from different Gaussians.
Moreover, EM also often suffers from a high computational cost.

Another line of works used tensor methods for MLR (Chaganty and Liang, 2013; Sedghi et al.,
2016). The third-order moment is directly estimated in (Chaganty and Liang, 2013) using samples
from Gaussian distribution and is estimated from a linear regression problem in (Sedghi et al., 2016).
A significant drawback of tensor methods is high sample and computational complexity, due to the
high cost in estimating and operating over the tensors.

(Chen et al., 2014) provided a convex relaxation formulation and showed that their algorithm is
information-theoretically optimal. However, it is only for the two-component case and suffers from
high computational cost in nuclear norm minimization.

(Zhong et al., 2016) provided a non-convex objective function that is locally strongly convex
in the neighborhood of the ground truth, and proposed to first use a tensor method for initialization
and then optimize the provided objective, achieving a global convergence guarantee. The overall
algorithm is fixed parameter tractable in the number of components, and achieves nearly optimal
sample and time complexity when this parameter is constant. However, it requires all components
have the standard Gaussian distribution. It is unclear how to generalize the result to our more general
setting where the data x from different components are from different Gaussians. Furthermore, due
to the tensor initialization, the algorithm needs complicated assumptions on the moments, while our
only essential assumption is that the weight parameters can be separated, which is much simpler
and more general (in fact, it is essentially necessary for obtaining any recovery guarantees).

(Yi et al., 2016) gives an improved way of using the tensor method plus alternative minimization
so the sample complexity linearly depend on d. However, their algorithm requires that all the data
are from the standard Gaussian, and the sample complexity also depends on the minimal singular
value of certain moment matrix, which can be ∆Ω(k) small in our setting.

3. Problem Definition and Our Result

In the Mixtures of Linear Regressions (MLR) model, the data (x, α) ∈ Rd+1 is generated by

z ∼ multinomial(p), x ∼ Dz, α = ⟨wz, x⟩ (1)

where p ∈ Rk is the proportion of different components satisfying
∑k

i=1 pi = 1, Di is the distribu-
tion of the i-th component, and {wi ∈ Rd}ki=1 are the ground truth parameters. The goal is then to
recover {wi}i given a dataset {(xℓ, αℓ)}Nℓ=1, where each (xℓ, αℓ) is i.i.d. generated by (1).

Notations. [k] is used to denote the set {1, 2, . . . , k}. With high probability or w.h.p. means with
probability 1 − d−C for some sufficiently large constant C > 1. 1E is the indicator function of the
event E .

Assumptions. We make the following assumptions about the distributions Di’s and wi’s.

(A1) Each Di = N (0,Σ2
i ), where I ⪯ Σi ⪯ σI for some σ ≥ 1.

(A2) For every i ∈ [k], pi ≥ pmin for some pmin > 0.

(A3) Each ∥wi∥2 ≤ 1, and for some ∆ ∈ (0, 1), ∥wi − wj∥2 ≥ ∆ for any i ̸= j ∈ [k].
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Assumption (A1) allows the data x in different components to come from Gaussian distributions
with different unknown covariances.1 This is more general than all the previous works that assume
they all come from the standard Gaussian distribution. This also causes difficulties in applying
known techniques for MLR, and thus requires new algorithmic approaches. Moreover, our result
can also be easily generalized to the case that the mixtures come from different subspaces. That is,
there can be zero singular values for Σi’s and the non-zero singular values of each component is in
[1, σ].

Assumption (A2) controls the imbalance of the components. We should require that there are
enough data from each component so that it is possible to recover the corresponding parameter. On
the other hand, our technique can also be generalized to the case when there is enough difference
between the probabilities. In this case, we could also treat some components as noise and only
recover the leading ones.

Assumption (A3) assumes that the ground truth parameters are separated vectors, which is in-
deed required for exact recovery. Previous works also in general have some form of separation
assumptions, many of which are much more sophisticated than ours (e.g., (Zhong et al., 2016; Yi
et al., 2016)).

Our result. We are now ready to present our result formally.

Theorem 1 (Main) Assume the model (1) and assumptions (A1)-(A3). Then Algorithm 6 takes

N = d log
(
d
ε

)
·poly

(
kσ

∆pmin

)
+
(

σ
∆pmin

)O(k2)
data points and in time Nd·polylog(k, d, σ, 1

∆ , 1
pmin

, 1ε )

outputs a set of vectors {vi}ki=1 that with high probability satisfy

∥vi − wπ(i)∥2 ≤ ε, ∀i ∈ [k], for some permutation π.

The theorem shows that the proposed algorithm achieves global convergence. The run time
is polylog in 1/ε for recovery error ε, i.e., the algorithm can achieve exact recovery efficiently.
Furthermore, in the case where k, σ, pmin, and ∆ are fixed constants, the sample complexity is
nearly linear in the dimension d of the data space, which is nearly optimal in the key parameter d.
The algorithm still works for wider range of k, σ, pmin, and ∆, but with an exponential dependence
on k.

Table 1 shows the comparison with some recent works. Since for k = 2 our settings and results
subsumes the existing ones, we mainly compare to previous works handling multiple components
k ≥ 2. Algorithms using the tensor method have poly(1/ε) dependence (Chaganty and Liang, 2013;
Yi et al., 2014; Sedghi et al., 2016). This can be improved by using tensor method only for initial-
ization. (Zhong et al., 2016) provided such an algorithm fixed parameter tractable in the number
of components, achieving N = Õ(kkd) sample complexity and Õ(Nd) computational complexity.
However, the result is only for the case where the components have data x from the same distribu-
tion Di = N (0, I). (Yi et al., 2016) provided an algorithm with sample complexity nearly linear
in d and polynomial in k but again it is only for the case with Di = N (0, I), and furthermore, the
sample complexity depends on the minimal singular value of certain moment matrix, which can

1. In the standard linear regression model, the covariance of x can be assumed to be the identity by doing a linear
transformation. However, in the mixture of linear regression models, different components have different covariances
and thus can not be simultaneously transformed to the identity since which data point comes from which component
is unknown.
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main model assumptions sample complexity N computational complexity

(Yi et al., 2016) Di = N (0, I), k ≥ 2, separation ∆ > 0, poly(k) d
σ5
k
∆2 poly(k)d3singular value of some moment matrix σk

(Zhong et al., 2016) Di = N (0, I), k ≥ 2, separation ∆ > 0 O(d(k log(d))k) O(Nd log(d/ε))

(Sedghi et al., 2016) Di are the same, k ≥ 2,
O

(
k4d3

ε2s2

)
for Gaussian input much higher than Õ(d2)singular values of weight matrix ≥ s > 0

(Klusowski et al., 2017) Di = N (0, I), k = 2,
Õ(d) Õ(Nd)local convergence of EM algorithm

Ours Di = N (0,Σ2
i ), I ⪯ Σi ⪯ σI, k ≥ 2,

d log
(

d
ε

)
poly

(
kσ
∆

)
+ minor term Õ(Nd)separation ∥wi − wj∥ ≥ ∆ > 0(∀i ̸= j)

Table 1: Comparison with some recent related works. Please refer to the papers for details about
the model assumptions and dependence on some other less important parameters, which
are omitted here for clarity. In particular, the separation parameters in the related work
have different meaning from ours and more complicated.

also be
(
1
∆

)k small in our setting. (Sedghi et al., 2016) provided algorithms for the case where there
are k ≥ 2 components and Di are the same (but can be distributions other than Gaussians). It is
based on tensor methods and when applied to Gaussian inputs has high sample and computational
complexity.

We also note that it is interesting to compare to results for learning mixture of Gaussians. When
the covariance matrix is not axis-aligned, to the best of our knowledge, there is no algorithm for
learning mixture of Gaussians with sample complexity linear in the dimension. Thus, solving the
mixture of Gaussian first and then rescale the covariances to identity would clearly fail in our setting.
Our result shows how to make use of this small amount of side information (the label α) to lower
the sample and computational complexity significantly. We refer to for example (Ashtiani et al.,
2017) for some discussions.

4. Overview

For the major part of our paper we will focus on learning the weight for one of the components.
This can be iterated straightforwardly to learn all the weights, which will be presented at the end.

Our algorithm for learning one weight has two phases. In the first phase, we use method of
moments to obtain a warm start. In the second phase, we use gradient descent on a concave function
to get a more accurate solution.

Method of moments algorithm On a high level, our algorithm is based on the following simple
strategy: At each iteration t, we maintain a vector at, and the hope is that mini∈[k]{∥Σi(wi−at)∥2}
is getting smaller and smaller as t grows, so eventually at will be sufficiently close to one wi. Since
α − ⟨at, x⟩ = ⟨x,wz − at⟩ comes from a mixture of one dimension Gaussian distributions with
variances {∥Σi(wi − at)∥22}ki=1, existing algorithms such as (Moitra and Valiant, 2010) can be
used to estimate them. Suppose the next vector at+1 is simply chosen as at + ηr for a random
vector r ∼ N (0, I). With at least 1/4 probability, we know that r is positively correlated with
wj − at for j = argmini{∥Σi(wi − at)∥22}, and thus ∥Σj(wj − at − ηr)∥22 will be smaller than
∥Σj(wj − at)∥22 for sufficiently small η. If this happens, we can let at+1 = at + ηr as the next
vector. This process is fundamentally different from many of the existing tie breaking algorithms
such as (Li and Yuan, 2017), since we do not have any control over which component the algorithm
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is converging to: the algorithm may switch target components on the fly arbitrarily, but the minimal
of {∥Σi(wi − at)∥22}ki=1 is always decreasing.

However, this simple strategy is too expensive in terms of the sample and computational com-
plexity. In each iteration, since r is just a random vector, ∥Σj(wj − at − ηr)∥22 can only be smaller
than ∥Σj(wj − at)∥22 for a factor no more than 1

d . Thus, we need at least d iterations to finish the
whole process. Moreover, to guarantee decreasing, we need to estimate ∥Σi(wi−at)∥22 to accuracy
at least O

(
1
d

)
in each iteration, requiring a lot of samples.

The first key idea of our algorithm is to replace sampling from N (0, I) by sampling from
N (0,UU⊤) for some U ∈ Rd×k whose span is known to contain a vector with good correlation
with Σj(wj − at). To get this subspace, we rely on the method of moments. Note that

E[(α− ⟨at, x⟩)2 xx⊤] =
k∑

i=1

pi

(
2Σ2

i (wi − at)(wi − at)
⊤Σ2

i + ∥Σi(wi − at)∥22Σ2
i

)
. (2)

When all Σi = I, we have E[(α− ⟨at, x⟩)2 xx⊤] ∝ I+UU⊤ for some U ∈ Rd×k whose span is
the subspace spanned by Σ2

i (wi − at)’s. In this case, using a random vector from U will make the
per-iteration improvement as large as 1/k, much better than a random vector from the entire space.

However, such simple process does not carry on to the case when Σi’s are different, since they
are reweighed by ∥Σi(wi − at)∥22 in the summation (2). As mentioned, we have little control over
this reweighing so

∑k
i=1 pi∥Σi(wi − at)∥22Σ2

i can be arbitrarily away from I.
The second key idea of our algorithm is to combine higher moments with the polynomial method

to obtain a good subspace U. We will use a set of carefully designed coefficients c0, · · · , ck such
that in the summation

∑
i ciE[(α− ⟨at, x⟩)

2i xx⊤], the Σ2
i terms will get canceled and all the

Σ2
i (wi − at)(wi − at)

⊤Σ2
i terms get preserved. The {ci}ki=0 are the coefficients of a polynomial

constructed to have properties that can ensure the cancellation and preservation. More intuition
about the construction of this polynomial is given later in Section 5.1.

We note that many previous algorithms use tensor decomposition as the method of moments
gadget (e.g., (Sedghi et al., 2016; Zhong et al., 2016)) to learn the mixtures in one shot. Their algo-
rithms, while being novel and inspiring, either require the data distribution for different components
to be spherical Gaussian, or have high complexity to tolerate derivation from spherical Gaussian.

Gradient descent algorithm If we only use the method of moments, then we will need
(
σ
ε

)O(k)

sample to achieve error ε. The dependence on ε is not desired. To achieve the polylog dependence
on the final error ε, we only use the method of moments to get a warm start, and then apply gradient
descent beginning from the warm start.

This step is a “local” convergence step by using gradient descent to minimize the concave func-
tion

g(v) = E[log(|⟨w − v, x⟩|+ ζ)].

Without ζ, the approach is similar to the classical Gravitational allocation (Holden et al., 2017).
However, without it, when v is very close to one of the wi’s, log(|⟨w − v, x⟩|) will be close to zero
and becomes less smooth. Thus, we add ζ to ensure smoothness for the convergence of SGD. As
we will show, even with a fairly large ζ, SGD will converge with high probability. Similar local
convergence algorithms were also used in previous works (e.g., (Klusowski et al., 2017)). However,
with our objective function, the proof is significantly simpler.
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The proof is by lower bounding the correlation between the negative gradient and the difference
of the current solution from the ground truth, and then applying standard optimization analysis to
get the convergence. The correlation is (a variant) of inverse Gaussians and thus can be bounded;
see Section 5.2 for more intuition.

5. Algorithm

In this section, we describe our algorithm in three subsections, describing the three parts as men-
tioned in the overview respectively.

5.1. Warm Start for Learning One of the Weights

Here we present our algorithm for obtaining a warm start for the weight for one of the components
wi, whose algorithmic ideas and analysis are at the core of this paper. This algorithm outputs a point
aT such that min{∥aT − wi∥2}ki=1 ≤ O(σ2ε). The total sample complexity and running time of

this algorithm are proportional to
(
σ
ε

)O(k2). Eventually, we will take ε = poly
(
pmin∆

σ

)
to enter the

warm start for the gradient descent in the next subsection.
MOMENTDESCENT (Algorithm 1) describes the details. It begins with a0 = 0 and iterates to

improve it to aT . In each iteration, it first uses a set of samples to compute two quantities: σ2
t

which is an estimation of min{∥Σ2
i (wi − at)∥2}ki=1, and Ut which is an estimation of the span of

{Σ2
i (wi − at)}ki=1. Then it picks a random vector v from the span of Ut and tests if moving at

along v can decrease σ2
t ; this is repeated a few times to guarantee success with high probability.

MOMENTDESCENT uses two subroutines. ONEDMIXTURE (Algorithm 2) is adopted from
existing work (Moitra and Valiant, 2010) and is used to compute σ2

t , an estimation of min{∥Σ2
i (wi−

at)∥2}ki=1. So we focus on the other subroutine POWERW (Algorithm 3).
POWERW tries to identify the subspace spanned by {Σ2

iwi}ki=1, given labels αℓ from regres-
sion weights {wi}ki=1.2 As mentioned in the overview, the moments will contain both the signal
Σiwiw

⊤
i Σi and the noise Σ2

i . For example,

E[α2xx⊤] =
k∑

i=1

pi

(
2Σiwiw

⊤
i Σi + ∥Σiwi∥22Σ2

i

)
.

The crucial piece here is to mix the moments with carefully designed coefficients {cp}kp=0, so that
E[M] =

∑k
p=0

cp
(2p−1)!!E[α

2pxx⊤] will mostly contain only the signal. Later, we will show that if
we let cp to be the coefficients of z2p in some polynomial f(z) =

∏s
p=1(z

2 − zp) with carefully
chosen z1, · · · , zs that are closely related to {∥Σiwi∥22}ki=1, then

E[M] =

k∑
i=1

pi(Xi +Yi)

where Xi is proportional to Σ2
iwiw

⊤
i Σ

2
i f

′(∥Σiwi∥2) and Yi is proportional to Σ2
i f(∥Σiwi∥2).

Therefore, if j = argmini ∥Σiwi∥2, then we would like f to be small and f ′(∥Σjwj∥2) to be large.
Furthermore, we would like f ′ and f ′′ to be bounded to tolerate errors in estimating ∥Σiwi∥2’s.

2. When used in MOMENTDESCENT, it is given labels αℓ from regression weights (wi − at)’s, so it will estimate the
subspace spanned by {Σ2

i (wi − at)}ki=1.
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Algorithm 1 MOMENTDESCENT(k, δ, ε)
Input: Number of mixture components k, failure probability δ, and error ε.
Output: aT which is close to some wi up to error O(σ2ε) with probability 1− δ.

1: a0 ← 0. Set T ← Θ(kσ log σ
ε ) and q ← Θ

(
log kσ

εδ

)
.

2: for t = 0, 1, · · · , T − 1 do
3: Sample m = ( σ

pminε
)O(k2) many samples {(xi, αi)}mi=1.

4: For every i ∈ [m], αi ← αi − ⟨xi, at⟩.
5: Let {σ2

i }ki=1 ← ONEDMIXTURE({αi}mi=1, k, ε
2/(kσ)2).

6: Let σ2
t ← min{σ2

i }ki=1.
7: Ut ← POWERW({xi}mi=1, {αi}mi=1, k, ε)
8: for j ∈ [q] do
9: Pick a random γ ∈ Rk such that γ ∼ N (0, I) and let v = Utγ

∥Utγ∥2 .
10: Sample m many samples {(xi, αi)}mi=1.

11: For every i ∈ [m], let α′
i ← αi − ⟨xi, at + ηtv⟩, where ηt = Θ

(
σt

σ
√
k

)
.

12: Let {(σ′
i)
2}ki=1 ← ONEDMIXTURE({α′

i}mi=1, k, ε
2/(kσ)2),

13: Let (σ′)2 ← min{(σ′
i)
2}ki=1

14: if (σ′)2 ≤
(
1− 1

150kσ

)
σ2
t then

15: at+1 ← at + ηtv.
16: break;
17: end if
18: end for
19: end for

Algorithm 2 ONEDMIXTURE ({zi}mi=1, k, ε)
Input: {zi}mi=1 where each zi ∈ R comes from a mixture of one dimension (mean zero) Gaussian

distribution, number of mixture components k, and error ε.
Output: {σ2

i }ki=1, the variance of each component up to additive error ε.
1: See the algorithm in (Moitra and Valiant, 2010). Their theorem implies that the output is up

to additive error ε with O
(

σmax
pminε

)O(k)
samples, where σ2

max is the maximum variance of those
mixtures and pmin is the minimal probability that one mixture occurs.)

The following lemma shows that such a polynomial can be efficiently constructed. Using this
lemma, COEFF (Algorithm 4) constructs the coefficients cp’s which are used in POWERW.

Lemma 2 (Coefficients) For every k ≥ 2, every ρ > 1, every r1, · · · , rk ∈ [1ρ , ρ], and every ε > 0,
one can find in time O(k log k) an integer 0 < s ≤ k and centers 1/ρ ≤ z1 ≤ · · · ≤ zs ≤ ρ such
that for f(x) =

∏s
p=1(x

2 − zp) the following holds.

1. For r = min{ri}ki=1 and every i ∈ [k], |f(√ri)| ≤ ε|
√
rf ′(
√
r)|.

2. |
√
rf ′(
√
r)| ≥

(
ε
ρ

)k
.

3. For all x with x2 ∈ [1/ρ, ρ], |f ′(x)| ≤ 2kρk and |f ′′(x)| ≤ 4k2ρk.
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Algorithm 3 POWERW({xi}mi=1, {αi}mi=1, k, ε)

Input: {xi}mi=1 where each xi ∈ Rd comes from a mixture of Gaussian distributions, and αi the
label of xi, number of mixture components k, and error ε

Output: U ∈ Rd×k, ε close to the subspace spanned by Σ2
1w1, · · · ,Σ2

kwk

1: {σ2
i }ki=1 ← ONEDMIXTURE({αi}mi=1, k, ε

(g)) for ε(g) =
(
ε
σ

)4k.
2: {ci}ki=0 ← COEFF({σ2

i }ki=1, ε
(p)) for ε(p) = ε.

3:

M← 1

m

k∑
p=0

cp
(2p− 1)!!

m∑
i=1

α2p
i xix

⊤
i . (3)

4: U← the top-k singular vectors of M.

Algorithm 4 COEFF({ri}ki=1, ε)

Input: {ri}ki=1 where each ri ∈ R, and error ε.
Output: {ci}ki=0 where each ci ∈ R.

1: Let z1, · · · , zs be a center of r1, · · · , rk defined by Lemma 2.
2: Let ci be the coefficient of x2i in the polynomial:

f(x) =
s∏

p=1

(x2 − zp). (4)

Putting things together, we can prove the main lemma regarding the per-iteration improvement
of Algorithm 1.

Lemma 3 For every t ∈ {0, 1, · · · , T−1} and δ > 0, as long as σt = Ω(σε), then with probability
at least 1− δ,

σ2
t+1 ≤

(
1− 1

200kσ

)
σ2
t .

Using this Lemma and by the choice of our parameters we immediately have the following
guarantee for the output of Algorithm 1.

Lemma 4 With probability at least 1− δ, mini ∥wi − aT ∥2 ≤ O(σ2ε).

5.2. Learning One of the Weights from Warm Start

Here we describe how to use gradient descent on a concave function for faster convergence to
one of the wi’s, given the warm start computed by the algorithm in the last subsection.

Algorithm 5 describes the details. The gradient descent is to minimize the function

g(v) = E[log(|⟨w − v, x⟩|+ ζ)]

9
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Algorithm 5 GRADIENTDESCENT(k, v, ε)
Input: k the number of clusters, a warm start v, and the final error ε.
Output: v(T ), recovered weight parameter up to additive error ε.

1: Let v(0) ← v, T ← Θ
(

d
p2min

log ζ
ε

)
, where ζ = min

{
∆
2σ ,

∆pmin
64

}
.

2: for t = 0, 1, · · · , T − 1 do
3: Sample m = poly

(
1
∆ , 1

pmin
, σ, log T

)
many samples St+1 = {xi, αi}mi=1.

4: Update: For properly chosen learning rate ηt = Θ
(
ζpmin

d

)
×
(
1−Θ

(
p2min
d

))t

v(t+1) = v(t) + ηt
1

|St+1|
∑

(x,α)∈St+1

sign(α− ⟨v(t), x⟩)
|α− ⟨v(t), x⟩|+ ζ

x. (5)

5: end for

Algorithm 6 Learning Mixtures of Linear Regressions
Input: Dataset D = {(xℓ, αℓ)}Nℓ=1, number of components k, error ε. (Parameters σ,∆, pmin are

known to all the algorithms)
Output: {vi}ki=1, recovered weight parameters up to additive error ε.

1: for i = 1, . . . , k do
2: a← MOMENTDESCENT(k − i+ 1, δ, εw), where εw = poly

(
pmin∆

σ

)
and δ = poly

(
1
d

)
.

3: vi ← GRADIENTDESCENT(k − i+ 1, a, εg), where εg = min

{
ε,
(
pmin∆
σd

)Ω(k2)
}

.

4: Remove from D all the data (xℓ, αℓ) such that |⟨xℓ, vi⟩ − αℓ| ≤ εgσ · polylog(d).
5: end for

where ζ is added to make the log(·) smooth. The key property used is that we have a large correlation
between the negative gradient and the difference of the current solution from the ground truth. Sup-
pose we begin with a warm start close enough to w1, then the correlation is E

[
sign(α−⟨v(t),x⟩)⟨w1−v(t),x⟩

|α−⟨v(t),x⟩|+ζ

]
.

This is (a variant of) inverse Gaussians and can be bounded by a function of the norms ∥wi− v(t)∥2
for i ∈ [k]. Since ∥w1 − v(t)∥2 is much smaller than the other norms ∥wi − v(t)∥2 for i ̸= 1, the
correlation can be shown to be large. The convergence then follows from standard analysis.

Lemma 5 (Gradient descent) Suppose there exists i ∈ [k] such that ∥wi− v∥2 ≤ ζ/σ. Then with
high probability, Algorithm 5 outputs a vector v(T ) such that ∥wi − v(T )∥ ≤ ε.

5.3. Learning All the Weights

Here we describe our final algorithm for learning all the weights. It uses the algorithm in the
previous subsections to learn the weight of one of the components, removes the data points from
that component, and repeats. Note that we can learn the weight up to error εg in time log(1/εg),

so εg can be made as small as
(
pmin∆
σd

)Ω(k2)
so that the step of removing the data points introduces

essentially no error to later steps within our sample size. So we arrive at our final guarantee in
Theorem 1.

10
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6. Conclusion

In this paper, we present a fixed parameter algorithm that solves mixture of linear regression under
Gaussian inputs in time nearly linear in the sample size and the dimension. Moreover, our sample
complexity also scales nearly linear with the dimension d. In our setting, we allow each mixture to
have a different covariance matrix. Thus, unlike the case when the mixtures are spherical, even the
best known algorithm for mixture of general Gaussians would require at least d2 sample complexity
to recover the covariance. Our algorithm reduces the sample complexity significantly with the
additional one dimensional linear information: it can recover the linear classifier (and thus recover
the covariance as well) with Õ(d) samples. While the dependency on d is nearly optimal, we would
also like to point out that when the total number of mixtures are too large, the sample complexity
of our algorithm does suffer from an exponential term of k. We believe that with our current set of
assumptions, the exponential dependency could be necessary: A lower bound of ek has been proved
in (Moitra and Valiant, 2010) in the very similar setting of learning mixture of Gaussians.

One natural way to get around the exponential dependency is assuming that the covariance Σi

and the hidden vectors wi satisfies some smoothness assumption (e.g., (Ge et al., 2015)). However,
the level of smoothness is very subtle in our setting, since the naı̈ve application of smoothed analysis
often leads to complexity with a large polynomial factor in the dimension. In this paper, near
linearity in d is one of our main contributions. We believe that using smoothed analysis while
preserving the nearly linear dependency on d is one of the important future directions.
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Appendix A. Proof of Warm Start for Learning One of the Weights

We prove the following lemma related to the output of Algorithm 1.

Lemma 4 With probability at least 1− δ, mini ∥wi − aT ∥2 ≤ O(σ2ε).

Before proving this lemma, we first need the following lemma about the clustering, which is
crucial for constructing the coefficients. As we shall see, we will use this lemma on ri = ∥Σi(wi −
at)∥22. Roughly speaking, f(

√
ri) is the weight of Σ2

i and f ′(
√
ri) is the weight of Σ2

i (wi − at).
Therefore, we would like f(

√
ri) to be small compare to f ′(

√
ri) to identify the subspace spanned

by Σ2
i (wi − at).

Lemma 2 (Coefficients) For every k ≥ 2, every ρ > 1, every r1, · · · , rk ∈ [1ρ , ρ], and every ε > 0,
one can find in time O(k log k) an integer 0 < s ≤ k and centers 1/ρ ≤ z1 ≤ · · · ≤ zs ≤ ρ such
that for f(x) =

∏s
p=1(x

2 − zp) the following holds.

1. For r = min{ri}ki=1 and every i ∈ [k], |f(√ri)| ≤ ε|
√
rf ′(
√
r)|.

2. |
√
rf ′(
√
r)| ≥

(
ε
ρ

)k
.

3. For all x with x2 ∈ [1/ρ, ρ], |f ′(x)| ≤ 2kρk and |f ′′(x)| ≤ 4k2ρk.

Proof [Proof of Lemma 2] Let us without loss of generality assume that r = r1 ≤ r2 ≤ · · · ≤ rk.
Let us define z1 = r1, and let j ∈ [k] be the smallest index such that rj ≥ z1 +

ε
ρ . If no such index

exists, we let s = 1 and the statements in the lemma are true. If such j exists, let us define:

z2 = rj , z3 = rj+1, · · · , zs = rk. (6)

Now, we know that

|
√
rf ′(
√
r)| = 2r

s∏
p=2

|r − zp| ≥
(
ε

ρ

)k

. (7)

On the other hand, for every i ≥ j, f(
√
ri) = 0. For i < j we have:

|f(
√
ri)| = |ri − r|

s∏
p=2

|ri − zp| (8)

≤ ε

ρ

s∏
p=2

|ri − zp| ≤ εr
s∏

p=2

|r − zp| ≤ ε|
√
rf ′(
√
r)|. (9)

We now consider the derivative and second order derivative of f(x) for x2 ∈ [0, ρ]. By elemen-
tary calculation, we know that

|f ′(x)| =

∣∣∣∣∣∣
s∑

p=1

2x
∏
q ̸=p

(x2 − zq)

∣∣∣∣∣∣ (10)

≤ 2
s∑

p=1

|x|
∏
q ̸=p

∣∣x2 − zq
∣∣ (11)

≤ 2kρk. (12)

13
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Similarly we can get that |f ′′(x)| ≤ 4k2ρk.

We also need the following bound for the k-SVD of a matrix.

Lemma 6 Let X1, · · · ,Xk be k rank-one matrices in Rd×d such that each Xi = xix
⊤
i , for every

ε ≥ 0, every PSD matrix M ∈ Rd×d such that∥∥∥∥∥M−
k∑

i=1

Xi

∥∥∥∥∥
2

≤ ε∥X1∥2 (13)

Let U ∈ Rd×k be the matrix consists of the top-k singular vectors of M, then we have

∥x⊤1 U∥2 ≥
(
1− (εk)1/3

)
∥x1∥2 (14)

Proof [Proof of Lemma 6] Let us denote σ1 ≥ · · · ≥ σk ≥ σk+1 = 0 as the k + 1 singular values
of

∑k
i=1Xi with corresponding singular vectors v1, · · · , vk (and vk+1). For every vi, by definition

v⊤i

 k∑
j=1

Xj

 vi = σi (15)

So we have v⊤i X1vi ≤ σi. Let Vi ∈ Rd×i defined as Vi = (v1, · · · , vi). By Gap-free Wedin
theorem in (Allen-Zhu and Li, 2016) (see Lemma 11), we know that

∥(I−UU⊤)Vi∥2 ≤
ε∥x1∥22

σi
. (16)

Thus, ∥x⊤1 (ViV
⊤
i )(I−UU⊤)∥2 ≤

ε∥x1∥32
σi

.
On the other hand, since x1 ∈ span{v1, · · · , vk},

∥x⊤1 (I−ViV
⊤
i )∥2 = ∥x⊤1 (VkV

⊤
k −ViV

⊤
i )∥2 (17)

≤
k∑

j=i+1

|x⊤i vk| ≤ k
√
σi+1. (18)

Therefore, we know that

∥x⊤1 (I−UU⊤)∥2 ≤
ε∥x1∥32

σi
+ k
√
σi+1. (19)

If σ1 ≥
∥x1∥22ε2/3

k2/3
, by picking i to the largest index in [k] such that σi ≥

∥x1∥22ε2/3
k2/3

, we get that

∥x⊤1 (I−UU⊤)∥2 ≤ (εk)1/3∥x1∥2 (20)

If σ1 ≤
∥x1∥22ε2/3

k2/3
, then we can just use ∥x⊤1 ∥2 ≤ k

√
σ1 to complete the proof.

We are now ready to prove the following important lemma about the correlation between U and
Σ2

i (wi − at).
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Lemma 7 Let j = argmin1≤i≤k ∥Σi(wi−at)∥2, we have that in the t-th iteration of Algorithm 1,
the Ut satisfies

∥U⊤
t Σ

2
j (wj − at)∥2

∥Σ2
j (wj − at)∥2

≥ 1

2
. (21)

Proof [Proof of Lemma 7] Suppose z ∼ N (0,Σ2), we know that z = Σg where g ∼ N (0, I). For
every vector a,

E
[
⟨z, a⟩2pzz⊤

]
= ΣE

[
⟨g,Σa⟩2pgg⊤

]
Σ (22)

= (2p− 1)!!Σ
(
2pΣaa⊤Σ∥Σa∥2p−2

2 + ∥Σa∥2p2 I
)
Σ (23)

= (2p− 1)!!∥Σa∥2p2
(
2p

Σ2aa⊤Σ2

∥Σa∥22
+Σ2

)
. (24)

Thus, we have

1

(2p− 1)!!
E
[
α2p
i xix

⊤
i

]
=

k∑
i=1

pi∥Σi(wi − at)∥2p2
(
2p

Σ2
i (wi − at)(wi − at)

⊤Σ2
i

∥Σi(wi − at)∥22
+Σ2

i

)
.

(25)

Since in the t-th iteration, the labels αi we fit to Algorithm 3 comes from αℓ = ⟨xℓ, w(ℓ) − at⟩,
we know that

E[M] =
k∑

i=1

pi

k∑
p=0

(
cp∥Σi(wi − at)∥2p2

(
2p

Σ2
i (wi − at)(wi − at)

⊤Σ2
i

∥Σi(wi − at)∥22
+Σ2

i

))
. (26)

Let us define the signal matrix Xi as

Xi =
Σ2

i (wi − at)(wi − at)
⊤Σ2

i

∥Σi(wi − at)∥22

 k∑
p=0

2pcp∥Σi(wi − at)∥2p2

 (27)

=
Σ2

i (wi − at)(wi − at)
⊤Σ2

i

∥Σi(wi − at)∥22

(
f ′(∥Σi(wi − at)∥2)∥Σi(wi − at)∥2

)
(28)

and the noise matrix Yi as

Yi = Σ2
i

 k∑
p=0

cp∥Σi(wi − at)∥2p2

 (29)

= Σ2
i f(∥Σi(wi − at)∥2) (30)

such that

E[M] =

k∑
i=1

pi(Xi +Yi). (31)
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For j = argmin{∥Σi(wi − at)∥2)}ki=1, let us denote

β := f ′(∥Σj(wj − at)∥2)∥Σj(wj − at)∥2.

Let us recall that ε(g) is the error incurred when estimating {∥Σi(wi − at)∥2}ki=1. ε(p) is the
error when constructing the coefficients of the polynomial (for sufficiently large ρ such that ρ ≥
max{∥Σi(wi − at)∥22)}ki=1 as we will show later in this proof). Thus, by Lemma 2, we know that

∥Yi∥2 ≤ ∥Σ2
i ∥2|f(∥Σi(wi − at)∥2)| (32)

≤ ∥Σ2
i ∥2(|f(σi)|+ 2kρk |σi − ∥Σi(wi − at)∥2|) (33)

≤ ∥Σ2
i ∥2(ε(p)β + 4kρkε(g)). (34)

Similarly we have

∥Xj∥2 ≥ σmin(Σ
2
j )β. (35)

And we have β ≥
(
ε(p)

ρ

)k
− 8k2ρkε(g)σ2.

Notice that min{∥Σi(wi−at)∥2)}ki=1 ≤ min{∥Σi(wi)∥2)}ki=1, which implies that ∥a1∥2 ≤ σ4.
Therefore, we can take ρ = O

(
max

{
2σ10, 1ε

})
. Thus, by our choice of parameter, we know that

for ε(e) ≤ 1
100k , ∥∥∥∥∥E[M]−

k∑
i=1

piXi

∥∥∥∥∥
2

≤ ε(e)∥Xj∥2/2. (36)

Using the sample complexity bound Lemma 9, by our choice of m we know that

∥M− E[M]∥2 ≤ ε(e)∥Xj∥2/2. (37)

Thus, apply Lemma 6 on M we know that

∥U⊤
t XjUt∥2
∥Xj∥2

≥ 1−
(
ε(e)k

)1/3
≥ 3

4
. (38)

Indeed, this also implies that

∥U⊤
t Σ

2
j (wj − at)∥2

∥Σ2
j (wj − at)∥2

≥ 1

2
(39)

completing the proof.

Now we can prove the main lemma regarding the per-iteration improvement of Algorithm 1.

Lemma 3 (Coefficients) For every t ∈ {0, 1, · · · , T − 1} and δ > 0, as long as σt = Ω(σε), then
with probability at least 1− δ,

σ2
t+1 ≤

(
1− 1

200kσ

)
σ2
t .
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Proof [Proof of Lemma 3] At t-th iteration let j = argmin{∥Σi(wi − at)∥2}ki=1, we know that

∥U⊤
t Σ

2
j (wj − at)∥2

∥Σ2
j (wj − at)∥2

≥ 1

2
. (40)

By definition, v = Utγ
∥Utγ∥2 for γ ∈ N (0, I). Thus, using elementary calculation of Gaussian

random variables, we have: with probability at least 1/4,

v⊤Σ2
j (wj − at)

∥Σ2
j (wj − at)∥2

≥ 1

10
√
k

(41)

which implies that

∥Σj(wj − at − ηv)∥22 = ∥Σj(wj − at)∥22 − 2η⟨Σj(wj − at),Σjv⟩+ η2∥Σjv∥22 (42)

= ∥Σj(wj − at)∥22 − 2η⟨Σ2
j (wj − at), v⟩+ η2∥Σjv∥22 (43)

≤ ∥Σj(wj − at)∥22 −
η

5
√
k
∥Σ2

j (wj − at)∥2 + η2σ. (44)

Let η =
∥Σ2

j (wj−at)∥2
10σ

√
k

. Then we know that

∥Σj(wj − at − ηv)∥22 ≤
(
1− 1

100kσ

)
∥Σj(wj − at)∥22 .

Thus, since we can estimate ∥Σj(wj − at − ηv)∥2 up to accuracy ε/(kσ) using the algo-
rithm proposed in (Moitra and Valiant, 2010), as long as σt = Ω(σε), we will have that σ2

t+1 ≤(
1− 1

200kσ

)
σ2
t .

This immediately leads to the main lemma regarding the output of Algorithm 1.
Proof [Proof of Lemma 4] By Lemma 3, and by the choice of the parameters in the algorithm,
σT ≤ O(σε). Then for j = mini{∥Σi(wi − aT )∥2} we have ∥Σj(wj − aT )∥2 ≤ O(σε) and thus
∥wj − aT ∥2 ≤ O(σ2ε).

Appendix B. Proof for Learning One of the Weights from Warm Start

Without loss of generality, let us assume that we have an v such that ∥v−w1∥2 is reasonably small.
We will show that the update rule used in the algorithm can recover w1 up to error ε with this v.
It is equivalent to (the empirical version of) the gradient descent update to minimize the following
concave objective function:

g(v) = E [log(|α− ⟨v, x⟩|+ ζ)] .

Lemma 5 (Gradient descent) Suppose there exists i ∈ [k] such that ∥wi − v∥2 ≤ ζ/σ. Then with
high probability, Algorithm 5 outputs a vector v(T ) such that ∥wi − v(T )∥ ≤ ε.
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Proof [Proof of Lemma 5] First, suppose we have the gradient on the expectation, i.e., we have
∇g(v(t)). For this gradient descent update rule, by Lemma 10, we know that⟨
−∇g(v(t)), w1 − v(t)

⟩
= E

[
sign(α− ⟨v(t), x⟩)⟨w1 − v(t), x⟩

|α− ⟨v(t), x⟩|+ ζ

]

= p1Ey∼N (0,1)E

[
sign(⟨Σ1(w1 − v(t)), y⟩)⟨Σ1(w1 − v(t)), y⟩

|⟨Σ1(w1 − v(t)), y⟩|+ ζ

]

+
k∑

j=2

pjEy∼N (0,1)E

[
sign(⟨Σj(wj − v(t)), y⟩)⟨Σj(w1 − v(t)), y⟩

|⟨Σj(wj − v(t)), y⟩|+ ζ

]

≥ 1

4
p1
∥Σ1(w1 − v(t))∥2
∥Σ1(w1 − v(t))∥2 + ζ

−
k∑

j=2

pj
∥Σ1(w1 − v(t))∥2
∥Σj(wj − v(t))∥2

.

Note that our assumption on ζ satisfies that

∥Σ1(w1 − v(t))∥2 ≤ ζ, ∥Σj(wj − v(t))∥2 ≥ 32ζ/pmin, j ̸= 1, (45)

Therefore, a direct calculation shows that⟨
−∇g(v(t)), w1 − v(t)

⟩
≥ pmin

32

∥Σ1(w1 − v(t))∥2
ζ

≥ pmin∥w1 − v(t)∥2
32ζ

.

However, we only have the empirical version of the gradient given as

−∇̃g(v(t)) = E(xℓ,αℓ)∇gℓ(v), where −∇gℓ(v(t)) =
sign(αℓ − ⟨v(t), xℓ⟩)
|αℓ − ⟨v(t), xℓ⟩|+ ζ

xℓ.

To apply concentration bound on the empirical version, we know that for for every example
(x, α), ∥∥∥∥∥sign(α− ⟨v(t), x⟩)|α− ⟨v(t), x⟩|+ ζ

x

∥∥∥∥∥
2

≤ ∥x∥2
ζ

.

Moreover, we know that the true gradient satisfies⟨
−∇g(v(t)), w1 − v(t)

∥w1 − v(t)∥2

⟩
≥ pmin

32ζ

For every example (x, α), we have∣∣∣∣∣
⟨
sign(α− ⟨v(t), x⟩)x
|α− ⟨v(t), x⟩|+ ζ

,
w1 − v(t)

∥w1 − v(t)∥2

⟩∣∣∣∣∣ ≤
∣∣∣⟨ w1−v(t)

∥w1−v(t)∥2
, x

⟩∣∣∣
ζ

.

Using an elementary concentration bound of Gaussian random variables, we know that with
poly

(
1
ζ ,

1
pmin

, σ
)

examples, the estimated gradient ∇̃g(v(t)) satisfies with high probability that

∥∇̃g(v(t))∥2 ≤
4
√
d

ζ
,

⟨
−∇̃g(v(t)), w1 − v(t)

∥w1 − v(t)∥2

⟩
≥ pmin

64ζ
.
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Then when ηt = c ζpmin∥w1−v(t)∥2
d for a sufficiently small constant c > 0, and using the assump-

tions on v(0) and ∆ to satisfy the condition (45), by induction, we have

∥w1 − v(t+1)∥22 ≤
(
1− Ω

(
p2min

d

))
∥w1 − v(t)∥22

completing the proof.

Appendix C. Proof for Learning All the weights

Theorem 1 (Main) Assume the model (1) and assumptions (A1)-(A3). Then Algorithm 6 takes N =

d log
(
d
ε

)
·
(

σ
∆pmin

)O(k)
+
(

σ
∆pminε

)O(k2)
data points and in time Nd · polylog(k, d, σ, 1

∆ , 1
pmin

, 1ε )

outputs a set of vectors {vi}ki=1 that with high probability satisfy

∥vi − wπ(i)∥2 ≤ ε, ∀i ∈ [k], for some permutation π.

Proof [Proof of Theorem 1] The theorem follows from Lemma 5 and Lemma 3, the guarantees for

the two subroutines used. Note that we recovers each weight up to εg ≤
(
pmin∆
σd

)Ω(k2)
. There-

fore, only a
(
pmin∆
σd

)Ω(k2)
fraction of data points from this component are not removed, and only a(

pmin∆
σd

)Ω(k2)
fraction of data points from other components get removed. These only causes poly-

nomially small errors to the quantities computed in later steps and can be tolerated by our analysis.

Appendix D. Tools

We shall use the following bounds on the Gaussian moments and it’s concentration.

Lemma 8 Let g ∼ N (0, I), then for every unit vector w, we have that for every non-negative
integer p,

E
[
⟨w, g⟩2pgg⊤

]
= (2p+ 1)!!ww⊤ + (2p− 1)!!(I− ww⊤).

Using a standard Matrix Bernstein bound, we can get:

Lemma 9 (Gaussian sample bound) Let g ∼ N (0,Σ2), let g1, · · · , gm be m independent sam-
ples of g. Then for every vector w and every non-negative integer p and every δ > 0, we have
that

Pr

∥∥∥∥∥ 1

m

m∑
i=1

⟨w, gi⟩2pgig⊤i − E
[
⟨w, g⟩2pgg⊤

]∥∥∥∥∥
2

= Ω

√
∥Σw∥4p2 ∥Σ∥

4
2 d log

1
δ

m

 ≤ δ (46)

The following lemma gives an estimation of a (modified) inverse Gaussian, which is used for
analyzing the gradient descent step of our algorithm.
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Lemma 10 Suppose y ∼ N (0, I). For every ζ > 0, for every vectors a, b ∈ Rd, with ρ = ⟨a,b⟩
∥a∥2∥b∥2 ,

1

4

ρ∥a∥2
ζ + ∥b∥2

≤ E
[
sign(⟨b, y⟩)⟨a, y⟩
|⟨b, y⟩|+ ζ

]
≤ ρ∥a∥2
∥b∥2

≤ ∥a∥2
∥b∥2

.

Proof [Proof of Lemma 10] Without loss of generality assume b = ∥b∥2e1 and a = ∥a∥2(ρe1 +√
1− ρ2e2). Then

E
[
sign(⟨b, y⟩)⟨a, y⟩
|⟨b, y⟩|+ ζ

]
= E

[
∥a∥2(ρy1 +

√
1− ρ2y2) sign(y1)

∥b∥2|y1|+ ζ

]

= ρ∥a∥2E
[

|y1|
∥b∥2|y1|+ ζ

]
We know that

|y1|
∥b∥2|y1|+ ζ

≤ 1

∥b∥2
,

and when |y1| ≥ 1
|y1|

∥b∥2|y1|+ ζ
≥ 1

ζ + ∥b∥2
.

Therefore, we have
1

4

ρ∥a∥2
ζ + ∥b∥2

≤ E
[
sign(⟨b, y⟩)⟨a, y⟩
|⟨b, y⟩|+ ζ

]
≤ ρ∥a∥2
∥b∥2

.

where the first inequality follows from E[1|y1|≥1] ≥ 1/4.

We will also need the Gap-Free Wedin Theorem from (Allen-Zhu and Li, 2016).

Lemma 11 (Gap-Free Wedin Theorem, Lemma B.3 in (Allen-Zhu and Li, 2016)) For ε ≥ 0,
let A,B be two PSD matrices such that ∥A − B∥2 ≤ ε. For every µ ≥ 0, τ > 0, let U be the
column orthonormal matrix consisting of eigenvectors of A with eigenvalue ≤ µ, let V be column
orthonormal matrix consisting of eigenvectors of B with eigenvalue ≥ µ+ τ , then we have:

∥U⊤V ∥ ≤ ϵ

τ
.
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