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Abstract
We study the stochastic continuum-armed bandit problem from the angle of adaptivity to unknown
regularity of the reward function f . We prove that there exists no strategy for the cumulative regret
that adapts optimally to the smoothness of f . We show however that such minimax optimal adaptive
strategies exist if the learner is given extra-information about f . Finally, we complement our positive
results with matching lower bounds.
Keywords: bandits with infinitely many arms, minimax rates, adaptivity, smoothness

1. Introduction

In the classical multi-armed bandit problem, an online algorithm (the learner) attempts to maximize
its gains by sequentially allocating a portion of its budget of n pulls among a finite number of
available options (arms). As the learner starts with no information about the environment it is
facing, this naturally induces an exploration/exploitation trade-off. The learner needs to make sure
it explores sufficiently to perform well in the future, without neglecting immediate performance
entirely. In this setting, the performance of the learner can be measured by its cumulative regret,
which is the difference between the sum of rewards it would have obtained by playing optimally (i.e.
only choosing the arm with the highest expected reward), and the sum of rewards it has collected.
Continuum-armed bandit problems. In this work, we operate in a setting with infinitely many
arms, which are embedded in X a bounded subset of Rd, say [0, 1]d. Each arm x ∈ X is associated
to a mean reward f(x) through the reward function f . At each time t, the learner picks Xt ∈ [0, 1]d,
and receives a noisy sample Yt = f(Xt) + εt with E(Yt) = f(Xt). This continuous setting is very
relevant for practitioners: for example, if a company wishes to optimize the revenue associated
with the price of a new product, it should consider the continuum R+ of possible prices. While
it is known (see for example Bubeck et al. (2011b)) that in the absence of additional assumptions
that link X and the reward function, there exists no universal algorithm that achieves sub-linear
regret in this setting with infinitely many arms, under some additional structural assumptions on
the reward function (such as unimodality), it is possible to optimize this price online to achieve
non-trivial regret guarantees. When X is a metric space, a common assumption in the literature is
to consider smooth reward functions (Agrawal (1995); Kleinberg (2004)). This smoothness of the
reward function can either be local (Auer et al. (2007); Grill et al. (2015)) or global (Kleinberg et al.
(2008); Cope (2009); Bubeck et al. (2011c); Minsker (2013)). In most of these works, the smoothness
of the reward function is known to the learner: for example, if f such that for any x, y ∈ X , we
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have |f(x) − f(y)| ≤ L|x − y|α∞ 1, then the learner has access to L and α (see e.g. Auer et al.
(2007); Bubeck et al. (2011c)). Furthermore, in this work we will use a parametrization akin to
the popular Tsybakov noise condition (see e.g. Tsybakov (2004); Audibert and Tsybakov (2007)).
As in Auer et al. (2007); Minsker (2013), we will assume that the volume of ∆-optimal regions
decreases as O

(
∆β
)

for some unknown β ≥ 0. Under these assumptions, there exists strategies
as e.g. HOO in Bubeck et al. (2011c)2, that enjoy nearly optimal cumulative regret bounds of
order Õ

(
n(α+d−αβ)/(2α+d−αβ)

)
3, if they are tuned optimally with α. Importantly, these strategies

naturally adapt to β, which controls the difficulty of the problem (with the hardest case β = 0).
However, it is argued in Bubeck et al. (2011a) that this perspective is flawed, as one should instead
consider strategies that can adapt to multiple different environments - and not strategies that are
adapted to a specific environment.
Adaptivity in continuum-armed bandit. While the problem of adaptivity to unknown Lipschitz
constant L (with α = 1 known to the learner) for cumulative regret minimization has been studied
in Bubeck et al. (2011a), adaptivity to unknown smoothness exponent α remains a very important
open question, which, to the best of our knowledge, has only been studied in optimization. In
optimization, the learner’s goal is to recommend a point x(n) ∈ X such that its simple regret
rn = supx∈X f(x) − f(x(n)) is as small as possible. It has first been shown in Valko et al.
(2013) (which is an extension from Munos (2011) that operates in a deterministic setting) that
when αβ = d i.e. if the function is easy to optimize4, there exists adaptive strategies with optimal
simple regret of order Õ

(
n−1/2

)
. These results were later extended in Grill et al. (2015) to the

more general setting αβ ≤ d, in which case their adaptive algorithm POO has an expected simple
regret upper-bounded as Õ

(
n−α/(2α+d−αβ)

)
, without prior knowledge of the smoothness. This

leaves open two questions. First, is this bound minimax optimal for the simple regret? And,
more importantly, outside of very restrictive technical conditions on f such (e.g. self-similarity
as in Minsker (2013)), is there a smoothness adaptive strategy such its cumulative regret can be
upper-bounded as Õ

(
n(α+d−αβ)/(2α+d−αβ)

)
for all α and β?

Adaptivity in statistics. Even though the concept of smoothness adaptive procedures is still fairly
unexplored in the continuum-armed bandit setting, it has been studied extensively in the statistics
literature under the name of adaptive inference. The first question in this field is the one of con-
structing estimators that adapt to the unknown model at hand (e.g. to the smoothness), i.e. adaptive
estimators (see among many others Golubev (1987); Birgé and Massart (1997); Lepski and Spokoiny
(1997); Tsybakov (2004)). The main takeaway is that adaptivity to unknown regularity for estimation
is possible under most standard statistical models using model selection or aggregation techniques.
These adaptive strategies were later adapted to sequential settings such as active learning by Hanneke;
Koltchinskii (2010); Minsker (2012); Locatelli et al. (2017) or nonparametric optimization Grill et al.
(2015), where they use a cross-validation scheme. These approaches however are not suited for cu-
mulative regret minimization, as they typically trade-off exploitation in favor of exploration. Another
fundamental question in adaptive inference is the construction of adaptive and honest confidence
sets. Importantly, such confidence sets would naturally give rise to an upper-confidence bound type

1. In fact, as in Bubeck et al. (2011b), we will only assume f to be weakly-Lipschitz, allowing us to consider α > 1 - see
Definition 1

2. In Bubeck et al. (2011c) problems are parametrized with the near-optimality dimension D. Under our smoothness
assumptions, these two parametrizations are equivalent with D = d−αβ

α
.

3. We use the Õ notation to hide logarithmic factors n or δ−1

4. This assumption corresponds to the fact that the near-optimality dimension D from Bubeck et al. (2011c) is 0,
i.e. roughly functions that have a unique maximum x∗ and depart from it faster than |x− x∗|α∞.
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of strategy with optimal adaptive cumulative regret guarantees. However a fundamental negative
result is the non-existence of adaptive confidence sets in L∞ for Hölder smooth functions Juditsky
and Lambert-Lacroix (2003); Cai et al. (2006); Hoffmann and Nickl (2011). Interestingly, adaptive
confidence sets for regression do exist under additional assumptions on the model, such as shape
constraints (see e.g. Cai et al. (2013); Bellec (2016)).
Learning with Extra-information. In the classical multi-armed bandit problem, this shape con-
strained setting was introduced in Bubeck et al. (2013). They show that if the learner is supplied
with the mean reward µ∗ of the best arm, and ∆ the gap between µ∗ and the second best arm’s mean
reward, then there exists a strategy with bounded regret. Recently, it was shown in Garivier et al.
(2016) that only the knowledge of µ∗ is necessary to achieve bounded regret. Outside of the very
important and studied convexity constraint, such questions remain unexplored in our nonparametric
setting, with the exception of Kleinberg et al. (2013). In this work, they consider the case where
supx∈X f(x) ≈ 1 and the noisy rewards Yt are bounded in [0, 1] (i.e. the noise decays close to
the maxima). Under these assumptions, they obtain faster rates for the cumulative regret in the
case where f is Lipschitz. This leaves open the question whether shape constraints could facilitate
adaptivity to unknown smoothness when the cumulative regret is targeted. Finally, we remark that
the case αβ = d, which can be thought of as a shape constraint as well, has been partially treated
in Bull et al. (2015) for the special class of zooming continuous functions (first studied in Slivkins
(2011)). In this setting, Bull et al. (2015) introduced an adaptive strategy such that its expected
cumulative regret is bounded as Õ (

√
n). However, it was shown in Grill et al. (2015) (see Appendix

E therein) that the class of functions we consider here is more general than the one in Slivkins (2011);
Bull et al. (2015), making these two lines of work not directly comparable. In a one-dimensional
setting equivalent to ours for αβ = 1 but with the additional constraint that f is unimodal, Yu and
Mannor (2011) and Combes and Proutiere (2014) also get an adaptive rate for the cumulative regret
of order Õ (

√
n). Extending these results to our entire class of functions is a relevant question in this

canonical setting.

1.1. Contributions and Outline

We now state our main contributions.

• Our main result Theorem 3 proves that no strategy can be optimal simultaneously over all
smoothness classes for cumulative regret minimization.

• We show that under various shape constraints, adaptivity to unknown smoothness becomes
possible if the learner is given this extra-information about the environment. In particular, we
show that in the case αβ = d, there exists a smoothness adaptive strategy whose regret grows
as Õ (

√
n) i.e. independently of α and d, without access to α.

• Finally, we show lower bounds for the simple and cumulative regret that match the known
upper-bounds. Importantly, these bounds also hold in the shape-constrained settings.

In Section 2, we introduce our setting formally and show a high-probability result for a simple
non-adaptive Subroutine (SR). In Section 3, we prove a lower-bound for the simple regret that
matches the best known upper-bound for adaptive strategies (such as POO in Grill et al. (2015)) in the
optimization setting. We then prove our main result on the non-existence of adaptive strategies for
cumulative regret minimization. In Section 4, we study the shape constrained settings and introduce
an adaptive Meta-Strategy, which relies on SR and our high-probability result of Section 2.
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2. Preliminaries

2.1. Objective

We consider the d-dimensional continuum-armed bandit problem. At each time step t = 1, 2, . . . , n,
the learner chooses Xt ∈ [0, 1]d and receives a return (or reward) Yt = f(Xt) + εt. We will
further assume that εt is independent from

(
(X1, Y1), . . . (Xt−1, Yt−1)

)
conditionally on Xt, and it

is a zero-mean 1-sub-Gaussian5 random variable. Finally we assume that f takes values in a bounded
interval, say [0, 1] and we denote M(f)

.
= supx∈[0,1]d f(x). In optimization, the objective of the

learner is to recommend at the end of the game a point x(n) ∈ [0, 1]d, such that the following loss

rn = M(f)− f(x(n))

is as small as possible, under the constraint that it can only observe n couples (Xt, Yt) before making
its recommendation. In the rest of the paper, we will refer to rn as the simple regret. This objective is
different from the typical bandit setting, where the cumulative regret R̂n = nM(f)−

∑n
t=1 Yt is

instead targeted. As a proxy for the cumulative regret, we will study the cumulative pseudo-regret:

Rn = nM(f)−
n∑
t=1

f(Xt).

By the tower-rule, E(Yt) = E(E(Yt|Xt)) = E(f(Xt)), and thus we have E(R̂n) = E(Rn), where
the expectation is taken with respect to the samples collected by the strategy and its (possible) internal
randomization. Our primary goal will be to design sequential exploration strategies, such that the
next point to sample Xt may depend on all the previously collected samples (Xi, Yi)i<t, in order to
optimize one of these two objectives. We note here that one can easily show that a strategy with good
cumulative regret gives rise naturally to a strategy with good simple regret (for example, by choosing
x(n) uniformly at random over the points visited). However, the converse is obviously not true.

2.2. Assumptions

In this section, we state our assumptions on the mean reward function f : [0, 1]d → [0, 1]. Our first
assumption characterizes the continuity, or smoothness of f .

Definition 1 We say that g : [0, 1]d → [0, 1] belongs to the class Σ(λ, α) if there exists constants
λ ≥ 1, α > 0 such that for any x, y ∈ [0, 1]d:

g(x)− g(y) ≤ max{M(g)− g(x), λ|x− y|α∞},

where |z|∞ = maxi≤d z
(i) and z(i) denotes the value of the i-th coordinate of the vector z, with

M(g)
.
= supx∈[0,1]d g(x).

For completeness, we also define the Hölder smoothness classes for α ∈ (0, 1].

Definition 2 We say that g : [0, 1]d → [0, 1] belongs to the Hölder smoothness class Σ∗(λ, α) if
there exists constants λ ≥ 1, 0 < α ≤ 1 such that for any x, y ∈ [0, 1]d:

|g(x)− g(y)| ≤ λ|x− y|α∞.

5. We say that a random variable Z is σ-sub-Gaussian if for all t ∈ R, we have E[exp(tZ)] ≤ exp(σ
2t2

2
)
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Assumption 1 There exists constants λ ≥ 1, α > 0 such that f ∈ Σ(λ, α).

This assumption forbids the function f from jumping erratically close to its maximum, which
would render learning extremely difficult. Indeed, for any x∗ such that f(x∗) = M(f), the condition
simply rewrites for any x ∈ [0, 1]d:

M(f)− f(x) ≤ λ|x∗ − x|α∞.

For α ≤ 1, it is weaker than assuming that f belongs to the Hölder class Σ∗(λ, α), which is the case
for example in Kleinberg (2004); Minsker (2013) (it is important to note that in Minsker (2013) a
second assumption related to the notion of self-similarity is required to allow adaptivity to unknown
smoothness α). Moreover, it allows us to consider α > 1, without forcing the function to be constant.
Our second assumption is similar to the well known margin assumption (also called Tsybakov noise
condition) in the binary classification framework.

Assumption 2 Let X (∆)
.
= {x : M(f)−f(x) ≤ ∆}. There exists constants B > 0, β ∈ R+ such

that ∀∆ > 0:
µ(X (∆)) = µ ({x : M(f)− f(x) ≤ ∆}) ≤ B∆β,

where µ stands for the Lebesgue measure of a set S ⊂ [0, 1]d.

This assumption naturally captures the difficulty of finding the maxima of f : if β is close to 0, there
is no restriction on the Lebesgue measure of the ∆-optimal set - on the other hand, if β is large,
there are less potentially optimal regions in the space, and we hope that a good algorithm will take
advantage of this to focus on these regions more closely, by discarding the many sub-optimal regions
quicker.
Intuitively, the smoother f is around one of its maxima x∗, the harder it is for it to "take-off" from
x∗, and thus higher values for β are geometrically impossible. The following proposition (its proof
is in Appendix A.1) formalizes this intuition, and characterizes the interplay between the different
parameters of the problem, α, β and d.

Proposition 1 If f is such that Assumptions 1 and 2 are satisfied for α > 0, β ∈ R+, then αβ ≤ d.

In the rest of the paper, we will fix B > 0 as well and λ = 1. This can be relaxed to λ ≥ 1 or a
known upper bound on λ, such as log(n) for n large enough, being known to the learner. We make
this choice as our goal in the present work is to fundamentally understand adaptivity with respect to
the smoothness α.

Definition 3 We say that f ∈ P(α, β)
.
= P(λ, α, β,B, [0, 1]d) if f is such that Assumptions 1

and 2 are satisfied for α > 0, β ≥ 0.

2.3. A simple strategy for known smoothness

The main building block on which our adaptive results are built is a non-adaptive Subroutine (SR),
which takes α as input and operates on the dyadic partition of [0, 1]d. Importantly, our results depend
on bounds that hold with high-probability, whereas to the best of our knowledge, the analysis of
the HOO in Bubeck et al. (2011c) yields results in expectation. For completeness, we introduce
and analyze this simple Subroutine. The strategy, its description and analysis can be found in the
Appendix A.2. We now state our main result for this non-adaptive Subroutine.
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Proposition 2 Let n ∈ N∗. The Subroutine run on a problem characterized by f ∈ P(α, β) with
input parameters α, n and 0 < δ < e−1 is such that with probability at least 1− 4δ:

• X (0) ⊂ AL+1 ⊂ X
(
C
(

n
log(n

δ
)

)−α/(2α+d−αβ)
)

, where C > 0 does not depend on n, δ.

• For any recommendation, x(n) ∈ AL+1, we have: M(f)−f(x(n)) ≤ C
(

n
log(n

δ
)

)−α/(2α+d−αβ)

• For all T ≤ n, we have RT ≤ D log(nδ )α/(2α+d−αβ)T (α+d−αβ)(2α+d−αβ), where D > 0 is a
constant that does not depend on T, n, δ, α.

The proof of this result can be found in Appendix A.3. The second conclusion of Proposition 2 is a
direct implication of the first conclusion, and shows that with high-probability, as we recover an entire
level set of optimal size, recommending any point in the active set AL+1 leads to optimal simple
regret. This will prove handy for adaptivity to unknown smoothness for the simple regret objective.
The third conclusion will be used in Section 4, where we show that if the learner is provided with
extra-information, adaptivity to unknown smoothness is possible for cumulative regret.

3. Adaptivity to unknown smoothness in optimization and regret minimization

In this section, we explore the problem of adaptivity to unknown smoothness α for both the simple
regret and cumulative regret objectives. We show that for optimization, adaptivity is possible without
sacrificing minimax optimality: there exists an agnostic strategy that performs almost as well as the
optimal strategy that has access to the smoothness. For cumulative regret, we show that there exists
no adaptive minimax optimal strategy.

3.1. Adaptivity for optimization

We start by proving a lower bound on the simple regret over the class of functions P(α, β), which
holds even for strategies that have access to both α and β.

Theorem 1 (Lower bound on simple regret) Fix d ∈ N∗. Let α > 0 and β ≥ 0 such that αβ ≤ d.
For n large enough, for any strategy that samples at most n noisy function evaluations and returns a
(possibly randomized) recommendation x(n), there exists f ∈ P (α, β), where M(f) is fixed and
known to the learner, such that:

E[rn] ≥ Cn−α/(2α+d−αβ),

where C > 0 is a constant that does not depend on n, and the expectation is taken with respect to
both the noise in the sampling process and the possible randomization of the strategy.

The proof of this result can be found in Appendix B.1. It shows that even over a set of functions
that all belong to known class P(α, β), this is the best possible convergence rate for the simple regret
that one can hope for. An important takeaway from the proof of this result is that it also holds in
the easier setting where M(f) the maximum of f is known to the learner. A direct corollary of this
result is a lower bound on the cumulative regret for any strategy.
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Corollary 1 (Lower bound on cumulative regret) Fix d ∈ N∗. Let α > 0 and β ≥ 0 such that
αβ ≤ d. For n large enough, any strategy with access to at most n noisy function evaluations suffers
a cumulative regret such that:

sup
f∈P(α,β)

E[Rn] ≥ Cn(α+d−αβ)/(2α+d−αβ),

where C > 0 is a constant that does not depend on n, and the expectation is taken with respect to
both the noise in the sampling process and the possible randomization of the strategy.

This result follows directly from Theorem 1, by remarking that any strategy with a good cumulative
regret in expectation can output a recommendation x(n) such that E[rn] ≤ E[Rn]

n (see Section 3
in Bubeck et al. (2011b)). Therefore, any strategy with a cumulative regret that’s strictly smaller than
the rate in Corollary 1 would have an associated simple regret in contradiction with Theorem 1.

We now exhibit adaptive strategies that are minimax optimal (up to log factors) for the simple
regret. Importantly, these strategies perform almost as well as the best strategies that have access to
α and β.

Theorem 2 (Adaptive upper-bound for simple regret) Let n ∈ N∗. Assume thatα ∈ [1/ log(n), log(n)]
and β ≥ 0 such that αβ ≤ d, both unknown to the learner. There exists adaptive strategies such that
for any f ∈ P(α, β) with maximum M(f):

M(f)− E[f(x(n))] ≤ C
(

logp(n)

n

)α/(2α+d−αβ)

,

where C > 0 is a constant that does not depend on n and p is a universal constant.

In order to match the rate in Theorem 1 for the simple regret, a natural strategy is to aggregate differ-
ent recommendations output by a non-adaptive (i.e. that takes the smoothness α as input) strategy,
run with a diversity of smoothness parameters. We exhibit two such strategies that rely on this scheme.

Strategy 1 (Cross-validation): Grill et al. (2015) introduces a strategy (POO) that adapts to un-
known smoothness for the simple regret. It launches several HOO(i) (Bubeck et al. (2011c)) instances
in parallel according to a logarithmic schedule over the smoothness parameters αi (indexing the
instances). The final recommendation of the Meta-Strategy is made by first choosing the instance
HOO(i∗) with the best average empirical performance. The final recommendation is then drawn
uniformly at random over the points {Xi∗(t)}t visited by HOO(i∗). An important technical remark
is that the fastest attainable rate in this setting is O (1/

√
n), which is is of the same order as the

stochastic error induced by the final cross-validation scheme. For this strategy, we have p = 2 in
Theorem 2.

Strategy 2 (Nested Aggregation): The first conclusion of Proposition 2 shows that our Subrou-
tine recovers with high-probability an entire level-set of optimal size. As the smoothness classes
Σ(1, α) are nested for increasing values of α, this allows us to use directly the nested aggregation
scheme (Algorithm 1) in Locatelli et al. (2017) by splitting the budget among several SR instances
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indexed by smoothness parameters αi over a grid that covers the range [1/blog(n)c, blog(n)c]. Im-
portantly, the final recommendation x(n) output by this nested aggregation procedure comes with
high-probability guarantees which is an improvement over POO.

A common caveat of these adaptive strategies is that their exploration of the space crucially
depends on a covering of the possible smoothness parameters. This is necessary to ensure that there
is a Subroutine run with a smoothness parameter which is very close to the true smoothness of the
function. However, Subroutines (either our Subroutine 2 or HOO) run with smoothness parameters
αi � α incur a high-regret as they explore at a too small scale, while subroutines run with αi > α
come with no regret guarantee. As the budget is split equally among the Subroutines run in parallel,
the total cumulative regret of these adaptive exploration strategies cannot be bounded and is provably
sub-optimal. This naturally leads to the following question: is there an adaptive strategy that enjoys a
minimax optimal cumulative regret over classes P(α, β)?

3.2. Impossibility result for cumulative regret

In this section, we answer the previous question negatively, and show that designing an adaptive
strategy with minimax optimal cumulative regret is a hopeless quest. We first state this result in a
general theorem and then instantiate it in multiple settings to show its implications.

Theorem 3 Fix γ ≥ α > 0 and β ≥ 0 such that γβ ≤ d. Consider a strategy such that for any
f ∈ P(γ, β), we have E[Rn] ≤ Rγ,β(n) with Rγ,β(n)(2α+d−αβ)/(α+d−αβ) ≤ 0.008n. Then this
strategy is also such that:

sup
f∈P(α,β)

E[Rn] ≥ 0.008nRγ,β(n)−α/(α+d−αβ),

where the expectations are taken with respect to the strategy and the samples collected.

The proof of this result can be found in Appendix A.3 and uses the same techniques as in the
proof of Theorem 1, but with the following twists: the value of the maximum across the set of
problems we consider is not fixed, nor is the value of the smoothness, which can be either be α or γ,
depending on the presence of a rough peak of smoothness α. This construction forces any strategy
into an exploration exploitation dilemma parametrized by Rγ,β(n).

Theorem 3 can be understood in the following way: for any strategy, performing at a cer-
tain rate Rγ,β(n) uniformly over all problems in a subclass P(γ, β) ⊂ P(α, β) comes with a
price: on at least one problem that belongs to the class P(α, β), it has to suffer an expected
regret that depends inversely on Rγ,β(n). This directly leads to our claim that adaptivity to
the smoothness for the cumulative regret objective is impossible. Consider strategies such that
Rγ,β(n) ≤ O

(
n1−γ/(2γ+d−γβ)+ε

)
for any ε > 0 (we showed in Proposition 2 that such strategies

exist). Then its regret over the class P(α, β) is necessarily lower bounded asO
(
n1−α/(2α+d−αβ)+ν

)
,

where ν =
(
α+d−αβ
2α+d−αβ −

γ+d−γβ
2γ+d−γβ − ε

)
α

α+d−αβ . As soon as α < γ, we have ν > 0 for ε small
enough, which implies that the strategy considered is strictly sub-optimal over the class P(α, β). We
remark that by plugging α = γ in Theorem 3, we recover the lower-bound of Corollary 1. We now
illustrate our impossibility result in a very simple one-dimensional setting with β = 1.
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Example. Fix γ = 1 and α = 1/2, as well as d = 1 and β = 1. The minimax optimal rate for the
cumulative regret over P(1, 1) is of order O (

√
n). One can easily check that the minimax optimal

rate for the class P(1/2, 1) is of order O
(
n2/3

)
. The previous Theorem tells us that any strategy

that achieves a regret of order O
(
n1/2

)
over P(1, 1) incurs a regret of order at least O

(
n3/4

)
on a

problem in P(1/2, 1), which is strictly sub-optimal.

3.3. Discussion

This result shows that for the problem of adaptivity to unknown smoothness, there exists a fundamen-
tal difference between optimization and cumulative regret minimization. In optimization, adaptivity
to unknown smoothness is possible (at the price of a logarithmic factor), while Theorem 3 rules
out the existence of strategies that are minimax optimal simultaneously for two smoothness classes.
This fundamental difference is related to the adaptive inference paradox in statistics: while adaptive
estimation is usually possible, adaptive and honest confidence sets usually do not exist over standard
models Cai et al. (2006); Hoffmann and Nickl (2011). The problem of simple regret minimization
is akin to adaptive estimation, as it is a pure exploration problem. Model selection techniques (as
e.g. cross validation or Lepski’s methods) can be safely employed to aggregate the output of several
Subroutines run in parallel and corresponding to different values of α, enabling thus adaptivity to
α. In a sense, there is no price to pay if one over-explores, which is akin to over-smoothing in
adaptive estimation. On the other hand, the problem of cumulative regret minimization requires a
careful trade-off between exploration and exploitation. Since this trade-off should depend on the
unknown α exactly, this leaves no room for over-exploration. This bears strong similarities with
model testing and adaptive uncertainty quantification, i.e. the problem of constructing adaptive and
honest confidence sets, and as such it is not possible to adapt to the smoothness for the problem of
cumulative regret minimization. This is particularly interesting in light of Bubeck et al. (2011b),
where it is remarked that any strategy with good cumulative regret naturally gives rise to a strategy
with good simple regret. We show here that in this adaptive setting, the minimax optimal attainable
rates are not identical (up to a factor n). The proof of this result crucially depends on the fact that
the value of the maximum over the class of functions we consider is not fixed and depends on the
smoothness of f , which forces any strategy into an exploration and exploitation dilemma. We also
remark here that β is fixed in our construction: this shows that even for known β, minimax optimal
adaptive strategies over the classes ∪α>0P(α, β) do not exist, and the intrinsic difficulty in the
problem of adaptivity is tied to the unknown smoothness. Interestingly, despite β being fixed, the
minimax rate itself is not fixed as it depends on the smoothness which can take values α and γ.
Finally, we remark that this rate is tight in the sense that there exists a strategy that takes Rγ,β(n)
and α, γ, β as inputs and incurs the regret on P(α, β) and P(γ, β) prescribed by Theorem 3. This
strategy is simply to use Rγ,β(n)(2α+d−αβ)/(α+d−αβ) samples with SR(α), and afterwards to play
SR(γ) within the confidence set output by SR(α).

Even though adaptivity to the unknown smoothness for cumulative regret minimization is
impossible in general, an interesting open problem is to find natural conditions under which adaptivity
becomes possible, which we explore in the next section. This course of research was also taken in the
problem of constructing adaptive and honest confidence sets, and while they mostly do not exist in
all generality, it is well known that under some specific shape constraints, they exist Cai et al. (2013);
Bellec (2016). We refer to these settings as learning with extra-information. First, we will show that
adaptivity is possible over the subclass ∪α>0P(α, β,M(f)) where M(f) denotes the fixed value

9
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of f at its maxima. Next, we will show that adaptivity is possible over classes ∪α>0P(α, β(α)) for
β(α) = (2r − 1)/r + d/α for some fixed r ∈ [0, 1/2].

4. Learning in the presence of extra-information

In this section, we investigate two settings where the learner is given extra-information and show that
adaptivity to unknown smoothness is possible for the cumulative regret. We explore two conditions:
the case where M(f) the value at the maxima is known to the learner and the known rate setting,
which we describe later. To solve these problems, we introduce meta-strategies which act on a set
of subroutines (Subroutine 2, SR) initialized with different smoothness parameters. Specifically,
different runs of Subroutine 2 are kept active in parallel, and at each round the Meta-Strategy decides
online to further allocate a fraction

√
n of the total budget n to Subroutines that exhibit good early

performances, in a sense we shall make clear later. Each time a Subroutine is given a fraction of
the budget to perform new function evaluations, learning resumes for this Subroutine where it was
halted: we stress here that the information acquired by Subroutines is never thrown.

Known M(f) setting. At the beginning of the game, the learner is given M(f) the value of f
at its maxima, allowing for more efficient exploitation. In light of our the proof of Theorem 3 (which
does not cover this setting), we see intuitively that the exploitation exploration dilemma leading
to the impossibility result arose from the two different values that M(f) could take in our class of
functions. Here, as soon as the strategy has identified a region where f is close in value to M(f), it
can exploit aggressively and keep track on-the-fly of the regret it incurs. By being aware of its own
performance, the learner can adjust its exploration/exploitation trade-off optimally.

Known rate setting. The learner is provided with extra-information R∗(n, δ) that we call the
rate. R∗(n, δ) is a high-probability bound on the pseudo-regret of one of the Subroutines used by
the Meta-Strategy, had it been run in isolation with a budget n of function evaluations. Although it
is more general, this covers the canonical case αβ = d. A similar setup was explored in the recent
work Agarwal et al. (2017), where they come up with a meta-strategy to aggregate bandit algorithms
that also works under adversarial settings.

4.1. Description of the Meta-Strategy

We first describe the initialization phase of the Meta-Strategy and notations, and then explain how it
operates in each setting.

Initialization: The Meta-Strategy has three parameters: the maximum budget n, which we as-
sume for simplicity to be of the form m2 for some m ∈ N∗, and a confidence parameter δ, as
well as an extra-information parameter M(f) or R∗(n, δ). It uses multiple instances of Subrou-
tine 2, which are run in parallel with smoothness parameters αi over the grid {i/blog(n)c2} with
i ∈ {1, ..., blog(n)c3}. First, each Subroutine is initialized with a smoothness parameter αi, a confi-
dence parameter δ0 = δ/blog(n)c3, and we refer to this Subroutine as SR(i). Ti(T ) is the number of
function evaluations performed by SR(i) from time t = 1 to T . Each time SR(i) performs a function
evaluation in a point Xi(t) (where Xi(t) for t ≤ Ti(T ) corresponds to the t-th function evaluation
performed by SR(i)) it receives Yi(t), which is passed to the Meta-Strategy. In both settings, the
Meta-Strategy updates the quantity ŜT (i) =

∑Ti(t)
t=1 Yi(t) each time SR(i) performs new function

10
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Algorithm 1 Extra-information Meta-Strategy

Initialization
Input: n, δ, M(f) or R∗(n, δ) and SR
δ0 = δ

blog(n)c2 , T = 0

for i = 1, ..., blog(n)c3 do
αi = i

blog(n)c3

Initialize SR(i) with δ0, n, αi
Ti(T ) = 0, ŜT (i) = 0

end for
Case 1 (M(f) known):
while T < n do
k = arg mini

[
Ti(T )M(f)− ŜT (i)

]
Perform

√
n function evaluations with SR(k)

Tk(T ) = Tk(T ) +
√
n, T = T +

√
n

ŜT (k) =
∑Tk(T )
t=1 Yk(t)

end while

Case 2 (R∗ known):
A1 = {1, ..., blog(n)c3} (set of active SR(i))
T = |A1|

√
n, N = 1 (round)

while T < n do
for i ∈ AN do

Perform
√
n function evaluations with SR(i)

Ti(T ) = N
√
n

ŜT (i) =
∑Ti(T )
t=1 Yi(t)

end for
k = arg maxi∈AN

ŜT (i)
AN+1 = AN
for i ∈ AN do

if ŜT (k) − ŜT (i) > R∗(n, δ) +√
Ti(t) log(nblog(n)c3/δ) then
Eliminate SR(i), AN+1 = AN+1 \ {i}

end if
end for
N = N + 1, T = T + |AN |

√
n

end while
Spend rest of the budget with SR(i) for i ∈ AN

evaluations. We will also consider the empirical regret R̂T (i) = Ti(T )M(f)− ŜT (i).

Case 1 (M(f) known): The Meta-Strategy is called with parameter M(f) = maxx∈X f(x). After
the initialization, the Meta-Strategy operates in rounds of length

√
n. At the beginning of each

round at time T = u
√
n for some u ∈ {0, ...,

√
n}, the next batch of

√
n function evaluations are

allocated to the Subroutine which has accumulated the smallest empirical regret up to time T . More
precisely, the index k = arg mini R̂T (i) is chosen, and SR(k) resumes its learning where it was
halted, performing

√
n more function evaluations. The number of samples allocated to SR(k) and its

empirical regret R̂T (k) are then updated. As the heuristic is to allocate new samples to the Subroutine
that has currently incurred the smallest regret, this ensures that the regret incurred by each of the
Subroutines grows at the same rate and is of the same order at time n. Therefore, we expect the
Meta-Strategy to perform almost as well as the best Subroutine it has access to, up to a multiplicative
factor that depends on the total number of Subroutines.

Case 2 (R∗ known): Here, the Meta-Strategy is called with parameter R∗(n, δ). It proceeds in
rounds and performs a successive elimination of the Subroutines. At round N , we call AN the set
of active Subroutines, with A1 = {1, ..., blog(n)c3}. The rate R∗(n, δ) is such that there exists
i∗ ∈ A1 for which for all T ∈ {

√
n, ..., n} we have: TM(f) −

∑T
t=1 f(Xi∗(t)) ≤ R∗(n, δ) with

probability at least 1 − δ. For any i ∈ AN , the Meta-Strategy allocates
√
n function evaluations

to be performed by SR(i), and the Meta-Strategy updates: ŜT (i) =
∑Ti(T )

t=1 Yi(t). At the end of a
round, the Meta-Strategy keeps computes the index k = arg maxi∈AT ŜT (i) of the best performing
(active) Subroutine. Any active SR(i) that meets the following condition is eliminated:

ŜT (k)− ŜT (i) > R∗(n, δ) + 2
√
Ti(t) log(nblog(n)c3/δ).
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Heuristically, the Meta-Strategy uses SR(k) as a pivot to eliminate the remaining active Subroutines,
as the samples collected by SR(k) cannot be too far M(f), and this difference depends on R∗(n, δ).
This extra-information allows the Meta-Strategy to eliminate Subroutines that perform poorly at
the optimal rate. It is important to note that this cannot be done in the general setting, as this rate
depends on both α and β, which are unknown to the learner.

4.2. Main Results for the Meta-Strategy

We now state our main adaptive results for these shape-constrained settings.

Theorem 4 Fix α ∈ [0.5
√
d/ log(n), blog(n)c] and β ≥ 0 such that αβ ≤ d, with both parameters

unknown to the learner. For any f ∈ P(α, β) such that f takes value M(f) at its maxima, the
Meta-Strategy 1 run with budget n, confidence parameter δ = 1/

√
n and M(f) is such that its regret

is bounded as:
E(Rn) ≤ C logp(n)n1−α/(2α+d−αβ),

where the expectation is taken with respect to the samples, C > 0 and p do not depend on n.

This matches (up to log factors) the minimax optimal rate for the class of functions f ∈ P(α, β)
with M(f) fixed that we proved in Corollary 1.

Theorem 5 Fix α, β as in Theorem 4. For any f ∈ P(α, β), the Meta-Strategy 1 run with budget n,
confidence parameter δ and access to the parameter R∗(n, δ) is such that with probability at least
1− 2δ, its pseudo-regret is bounded as:

Rn ≤ blog(n)c3
(

2R∗(n, δ) + 8
√
n log

(
nblog(n)c3

δ

)
+
√
n

)
,

where the expectation is taken with respect to the samples.

By Lemma 3 in the Appendix, which bounds the best attainable rate attainable by the Subrou-
tines run smoothness parameters αi over a grid of step-size blog(n)c2, we know that there ex-
ists SR(i∗) such that with probability at least 1 − δ, its pseudo-regret is such that Rn(i∗) ≤
C logp

(
n
δ

)
n1−α/(2α+d−αβ) with p ≤ 1 and where C > 0 does not depend on n and δ. This

naturally leads to the following Corollary:

Corollary 2 Fix α, β as in Theorem 4. Let r = α+d−αβ
2α+d−αβ be known to the learner, without direct

access to α nor β. Then for any f ∈ P(α, β), the Meta-Strategy 1 run with budget n, confidence
parameter δ = n−1/2 and R∗(n) = log2(n)nr is such that for n large enough its expected pseudo-
regret is upper-bounded as:

E[Rn] ≤ blog(n)c3
(

2 log2(n)n1−α/(2α+d−αβ) + 8
√
n log

(
n3/2blog(n)c3

)
+
√
n
)
,

where the expectation is taken with respect to the samples.

This matches the minimax optimal rate (up to log factors) for the cumulative regret that we proved
in Corollary 1. In particular, if αβ = d, then our Meta-Strategy run with budget n, confidence
parameter δ = n−1/2 and R∗(n) = log2(n)

√
n, is such that its expected pseudo-regret is of order

Õ (
√
n). This extends the result of Bull et al. (2015) to our setting and interestingly, we also recover

a result of Yu and Mannor (2011) (Theorem 4.2 and Assumption 3.2) and Combes and Proutiere
(2014) (Proposition 1 and Assumption 2) in the one-dimensional unimodal continuum-armed bandit
setting, but without assuming unimodality.
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Appendix A. Proofs of Section 2

A.1. Proof of Proposition 1

Proof Consider x∗ such that f(x∗) = M(f) and the L∞-ball of radius r centered in x∗, r ∈ (0, 1].
By smoothness of f around x∗, for any x such that |x− x∗|∞ ≤ r, we have:

|f(x)−M(f)| ≤ λrα,

which brings µ(X (λrα)) ≥ rd. On the other hand, by Assumption 2, we have µ(X (λrα)) ≤
Bλβrαβ . Combining both conditions, we have for all r ∈ (0, 1]:

1

Bλβ
≤ rαβ−d.

As this has to hold true for all r ∈ (0, 1], considering rl = 2−l yields αβ ≤ d.

A.2. Non-adaptive Subroutine

We first define a dyadic hierarchical partitioning of [0, 1]d, on which our strategy bases its exploration
of the space.
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Algorithm 2 Non-adaptive Subroutine (SR)
Input: n, δ, α
Initialization: t = 2dt1,α, l = 1, A1

.
= G1 (active space), ∀l′ > 1,Al′

.
= ∅

while t ≤ n do
M̂l = 0
for each active cell C ∈ Al do

Perform tl,α function evaluations in xC the center of C
f̂(xC) = 1

tl,α

∑tl,α
i=1 YC,i

M̂l = max(M̂l, f̂(xC))
end for
for each active cell C ∈ Al do

if
{
M̂l − f̂(xC) ≤ Bl,α

}
then

Al+1 = Al+1 ∪ {C ′ ∈ Gl+1 ∩ C} // keep all children C ′ of C active
end if

end for
Increase depth to l = l + 1, and set t = t+ |Al| · tl,α

end while
L = l − 1 // the final completed depth
Sample any x ∈ AL+1 until budget expires
Output: AL+1 // return active set after final depth L

Definition 4 We write Gl for the regular dyadic grid on the unit cube of mesh size 2−l. It defines
naturally a partition of the unit cube in 2ld smaller cubes, or cells C ∈ Gl with volume 2−ld and
edge length 2−l. We have [0, 1]d =

⋃
C∈Gl C and C ∩ C ′ = ∅ if C 6= C ′, with C,C ′ ∈ G2

l . We
define xC as the center of C ∈ Gl, i.e. the barycenter of C.
We write rl

.
= maxx,y∈C |x− y|∞ = 2−l for the diameter of cells C ∈ Gl.

The Subroutine takes as input parameter α the smoothness parameters, n the maximum sampling
budget, and δ a confidence parameter. In order to find the maxima of f , it refines a dyadic partition of
the space, starting with 2d hypercubes to sample from, and zooming in on regions that are close (in
function value) to the optima. At depth l, the active cells in Al are sampled tl,α

.
= 0.5 log(1/δl)b

−2
l,α

times, where bl,α
.
= rαl and δl

.
= δ2−l(d+1). After collecting tl,α noisy evaluations (YC,i)i≤tl,α , it

computes a simple average to estimate f(xC):

f̂(xC) =
1

tl,α

tl,α∑
i=1

YC,i.

Once all the cells at depth l have been sampled, the Subroutine computes a current estimate of
the maximum M̂l = maxC∈Al f̂(xC). Then, for each cell C in the active set Al, it compares

M̂l− f̂(xC) with Bl,α = 2
(√ log(1/δl)

2tl,α
+ bl,α

)
, where we set tl,α such that the variance term is of the

same magnitude as the bias term bl,α. If M̂l− f̂(xC) ≥ Bl,α, this cell is eliminated, as the Subroutine
rules it unlikely that there exists x ∈ C such that f(x) = M(f). On the other hand, if M̂l − f̂(xC)
is smaller than Bl,α, then C is kept active, and all its children {C ′ : C ∩Gl+1} are added to Al+1.
This process is repeated until the budget is not sufficient to sample all the cells that are still active at
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depth L+ 1, and the Subroutine returns AL+1 the last active set, and the recommendation x(n) can
be any point chosen in AL+1.

A.3. Proof of Proposition 2

Let us write in this proof in order to simplify the notations

tl = tl,α, bl = bl,α, Bl = Bl,α and Nl = |Al|.

Step 1: A favorable event.
Consider a cell C of depth l. We define the event:

ξC,l =
{
|t−1
l

tl∑
i=1

YC,i − f(xC)| ≤

√
log(1/δl)

2tl

}
,

where the (YC,i)i≤tl are samples collected in C at point xC if C if the algorithm samples in cell C.
We remind that

f̂(xC) =
1

tl

tl∑
i=1

YC,i.

As YC,i = f(xC) + εi where {εi}i≤n are zero-mean 1-sub-Gaussian independent random variables,
we know from Hoeffding’s concentration inequality that P(ξC,l) ≥ 1− 2δl.

We now consider
ξ =

{ ⋂
l∈N∗,C∈Gl

ξC,l

}
,

the intersection of events such that for all depths l and any cell C ∈ Gl, the previous event holds true.
Note that at depth l there are 2ld such events. A simple union bound yields P(ξ) ≥ 1−

∑
l 2
ldδl ≥

1− 4δ as we have set δl = δ2−l(d+1).
On the event ξ, for any l ∈ N∗, as we have set tl = log(1/δl)

2b2l
, plugging this in the bound implies

that for each cell C ∈ Gl that has been sampled tl times we have:

|f̂(xC)− f(xC)| ≤ bl. (1)

Note that by Assumption 1, bl is such that for any x ∈ C, where C ∈ Gl, we have:

|f(x)− f(xC)| ≤ max{M(f)− f(xC), bl}. (2)

Step 2: No mistakes.
For l ∈ N∗, let us consider C ∈ Gl such that ∃x∗ ∈ C, x∗ ∈ X (0) i.e. f(x∗) = M(f). Let us
assume that C ∈ Al. Then on ξ:

M̂l ≥ f̂(xC) ≥ f(xC)− bl
≥ f(x∗)− 2bl

≥ M(f)− 2bl (3)

Moreover, we have:
M̂l ≤M(f) + bl (4)
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Equation (4) yields:

M̂l − f̂(xC) ≤ M(f) + bl − (M(f)− 2bl)

≤ 3bl < 4bl = Bl

This shows that on ξ any cell C ∈ Al that contains a global optimum x∗ is never eliminated by the
algorithm at depth l, and all its children are added to Al+1. As at depth l = 1, all cells are active, by
induction we have ∀l ≥ 1:

{X (0) ∩Gl} ⊂ Al (5)

Step 3: A maximum gap.
Now consider an active cell at depth l: C ∈ Al such that all its children are added to Al+1. If this
cell is kept active at depth l + 1, then it is such that:

M̂l − f̂(xC) ≤ Bl = 4bl.

By Equations (3) and (1), we know that on ξ:

M̂l − f̂(xC) ≥M(f)− 2bl − (f(xC) + bl),

which brings that all cells kept active are such that:

M(f)− f(xC) ≤ 7bl

By Equation (2), we know that ∀x ∈ C : f(xC) − f(x) ≤ max{M(f) − f(x), bl} ≤ 7bl, where
we upper bound using the previous equation. This rewrites:

M(f)− f(x) ≤ 7bl +M(f)− f(xC),

which implies that for any x in C kept active at depth l + 1:

M(f)− f(x) ≤ 14bl, (6)

which implies:
Al+1 ⊂ X (14bl) (7)

Step 4: A bounded number of active cells.
By Assumption 2, we know that µ(X (14bl)) ≤ B14βbβl . As each cell of depth l has an L∞-volume
of rdl , this allows us to bound the number of remaining active cells Nl+1 on ξ for l ≥ 1:

Nl+1 ≤ B14βbβl r
−d
l+1

≤ 2αβB(14)βrαβ−dl+1 (8)

Define B′ = max(1, B)(14)β , then Nl ≤ 2dB′rαβ−dl for all l ≥ 1.

Step 5: A minimum depth.
We first bound L the maximal depth by above naively. Notice that tL itself has to be smaller than n,
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otherwise the budget is insufficient to sample a single active times tL times, and the algorithm stops.
This yields L ≤ 1

2α log2(2n), which brings the following bound:

log(1/δL) = log(2L(d+1)/δ) ≤ d+ 1

2α
log(

2n

δ
) (9)

As we sample each active cell at depth l a number tl = log(1/δl)
2b2l

times, we can now upper bound the
total number of samples that the algorithm needs to reach depth L:

L∑
l=1

tlNl ≤ 2dB′
L∑
l=1

log(1/δl)

2r2α
l

rαβ−dl

≤ 1

2
2dB′ log(1/δL)

L∑
l=1

rαβ−d−2α
l

≤ 1

2
2dB′ log(1/δL)

L∑
l=1

2l(2α+d−αβ)

≤ 1

2
2dB′ log(1/δL)

2L(2α+d−αβ)

22α+d−αβ − 1

≤ 2dB′ log(1/δL)
2L(2α+d−αβ)

2α+ d− αβ
,

where we use 2c − 1 ≥ c/2 for any c ∈ R+in the last line. Combined with Equation (9), this yields:

L∑
l=1

tlNl ≤ 2dB′(d+ 1) log

(
2n

δ

)
2L(2α+d−αβ)

2α(2α+ d− αβ)
. (10)

This implies that for any T ≤ n, after T function evaluations, the following depth L(T ) is reached:

L(T ) ≥ 1

2α+ d− αβ
log2

(2α(2α+ d− αβ)T

D log(2n
δ )

)
, (11)

where D = 2dB′(d+ 1)
Step 6: Conclusion.
Using Equation (11) with T = n, we can now ready to bound the simple regret rn with high
probability, as we have on ξ by Equation (7)

AL+1 ⊂ X (8bL) (12)

with

bL ≤
(2α(2α+ d− αβ)n

D log(2n
δ )

)− α
2α+d−αβ

.

This shows that by recommending any x(n) ∈ AL+1, we have: M(f)− f(x(n)) ≤ 8bL.

Step 7: Bound on the cumulative regret.
We can now bound with high-probability the pseudo-regret up to time T ≤ n: RT = TM(f) −
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∑T
t=1 f(Xt). Define ∆l = 8bl−1, and recall that ∀x ∈ C such thatC ∈ Al, we haveM(f)−f(x) ≤

8bl−1. We can naively bound the regret by splitting the regret before the reaching depth L(T ) and
beyond this depth:

RT = TM(f)−
T∑
t=1

f(Xt)

≤ 2d(M(f)−m(f))t1 +

L(T )∑
l=2

tlNl∆l + T∆L(T )

≤ A+ 2dB′28 log(1/δL(T ))

L(T )∑
l=1

2l(α+d−αβ) + T∆L(T )

≤ A+ 2dB′28 log(1/δL(T ))
2L(T )(α+d−αβ)

α+ d− αβ
+ 8T

( D log(2n
δ )

2α(2α+ d− αβ)T

) α
2α+d−αβ

≤ A+ 2dB′28
(d+ 1)

2α(α+ d− αβ)
log(

2n

δ
)
(2α(2α+ d− αβ)T

D log(2n
δ )

) α+d−αβ
2α+d−αβ

+14
( D log(nδ )

2α(2α+ d− αβ)

) α
2α+d−αβ

T
α+d−αβ
2α+d−αβ

≤ A+ 2dB′14(d+ 1)D

(
log(2n

δ )

2α(α+ d− αβ)

) α
2α+d−αβ

T
α+d−αβ
2α+d−αβ ,

with A ≤ (M(f)−m(f))(d+ 1)22α+d log(2/δ) and m(f) = infx f(x). Importantly, this holds on
ξ for all T ≤ n.

Setting T = n, we can also get a bound in expectation:

E(Rn) ≤ A+ 2dB′14(d+ 1)D

(
log(2n

δ )

2α(α+ d− αβ)

) α
2α+d−αβ

n
α+d−αβ
2α+d−αβ + 4(M(f)−m(f))nδ,

and setting δ = 1/
√
n yields the result. As we assumed that f takes values in [0, 1], we can upper

bound M(f)−m(f) ≤ 1.

Appendix B. Proofs of Section 3

B.1. Proof of Theorem 1

Proof Let α > 0, β ≥ 0 such that αβ < d. The case αβ = d corresponds to the usual O
(
n−1/2

)
bound, which can easily be obtained using classical techniques with two hypothesis. Define K =

d∆
αβ−d
α e, and ∆ such that:

∆ =

√
K

n
,

with n large enough such thatK ≥ 16 exp(2)
3 . One can easily check that we have ∆ = O

(
n
− α

2α+d−αβ
)

and K = O
(
n

d−αβ
2α+d−αβ

)
which grows with n.
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Consider the grid G which partitions [0, 1]d into N = d∆−d/αe disjoint hypercubes, and let us
index the cells arbitrarily (for example using Cantor’s pairing argument in d dimensions). In what
follows, we will write

S =
⋃
k≤K

Hk.

Fix M ∈ [1/2, 1]. We define the function φs(x) for 0 ≤ s ≤ K and x ∈ [0, 1]d.

φs(x) =


max{M −∆,M − |x− xi|α∞}, if x ∈ Hi, i = s,

M −∆, if x ∈ Hi, i 6= s

max{0,M −∆− dist∞(x,S)α}, if x ∈ SC ,

where dist∞(x,S)
.
= inf{|x− z|∞, z ∈ S}. It is clear that for any s ∈ {0, ...,K}, φs ∈ Σ(1, α).

We will now show that Assumption 2 for some B > 0 is satisfied for φs, ∀s ∈ {0, ...,K}. For any
0 < ε < ∆ < 1 and any φs, we have:

µ(X (ε)) ≤ εd/α ≤ εβ,

as we have αβ ≤ d. Now considering ε = ∆:

µ(X (ε)) ≤ K∆d/α ≤ 2εβ,

as we have set K = d∆(αβ−d)/αe ≤ 2∆(αβ−d)/α. Finally, we consider ε ∈]∆, 1/2], and we have:

µ(X (ε)) ≤ µ(X (∆)) + µ({x : ∆ < M − φs(x) ≤ ε})
≤ 2∆β + εd/α

≤ 3εβ.

So we have by construction :

• For any s ≤ K, φs ∈ P(α, β) with λ = 1 as the constant in Assumption 1.

• for any s, t ≤ K, and any x ∈ SC , φs(x) = φt(x) (one cannot distinguish problem i from
problem j in SC)

• for any s ∈ {1, ...,K}, the maximum of φs is attained only in xs with value φs(xs) = M .
This shows that the value at the maximum for φs for s ∈ {1, ...,K} is fixed and known to the
learner.

• ∀x 6∈ Hs, φs(x) = φ0(x): one cannot distinguish problem s from problem 0 outside of a
small neighborhood around xs.

• For any 1 ≤ s ≤ K, ∀x 6∈ Hs,M − φs(x) ≥ ∆

We now defineHK the set of recommendation problems such that for any s ∈ {0, ..,K}, the prob-
lem s is characterized by the mean-pay off function φs, with zero-mean Gaussian noise of variance 1,
such that the observations are, conditionally on Xt = x, i.i.d. with distribution Yt ∼ N (φs(x), 1).
Let us fix a strategy (algorithm) with two components: a (possibly randomized) sampling mechanism,
which characterizes the next sampling point Xt based on the previous observations {(Xi, Yi)}i<t,
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and a (possibly randomized) recommendation x(n) based on all the collected samples {(Xi, Yi)}i≤n,
which the algorithm outputs at the end of the game incurring the simple regret M(φs)− φs(x(n)).
We write Ps, Es, for the probability and expectation under the problem s (uniquely characterized by
the function φs), when the previously mentioned strategy is used.

For a sample {(Xi, Yi)}i≤n collected under problem 0 by the previously introduced algorithm,
we consider the log-likelihood ratio Ln,s

.
= Ln,s({(Xi, Yi)}i≤n) for s ∈ {1, ...,K}:

Ln,s =
n∑
t=1

log

(
P0(Yt|Xt)

Ps(Yt|Xt)

)
=

n∑
t=1

1

2

(
(Yt − φs(Xt))

2 − (Yt − φ0(Xt))
2
)

=
n∑
t=1

1

2
(φ0(Xt)− φs(Xt))(2Yt − φ0(Xt)− φs(Xt))

=

n∑
t=1

1

2
(φs(Xt)− φ0(Xt))(φs(Xt) + φ0(Xt)− 2Yt)

≤
n∑
t=1

1

2
(φs(Xt)− φ0(Xt))(2φs(Xt)− 2Yt)

≤
n∑
t=1

(φs(Xt)− φ0(Xt))(φs(Xt)− Yt), (13)

where we use: 0 ≤ φs(x)− φ0(x) ≤ ∆ for all x ∈ Hs in the fourth line.
We now consider E0(Ln,s):

E0(Ln,s) ≤
n∑
t=1

E0 ((φs(Xt)− φ0(Xt))(φs(Xt)− Yt))

≤
n∑
t=1

E0

(
E0

(
(φs(Xt)− φ0(Xt))(φs(Xt)− Yt)

∣∣Xt

))
≤

n∑
t=1

E0

(
(φs(Xt)− φ0(Xt))(φs(Xt)− E0

(
Yt
∣∣Xt

))
≤

n∑
t=1

E0

(
(φs(Xt)− φ0(Xt))

2
)

≤
n∑
t=1

E0

(
(φs(Xt)− φ0(Xt))

2
∣∣Xt ∈ Hs

)
P0(Xt ∈ Hs)

≤ max
x∈Hs

(φs(x)− φ0(x))2
n∑
t=1

P0(Xt ∈ Hs)

≤ ∆2
n∑
t=1

P0(Xt ∈ Hs)

≤ ∆2E0(Ts(n))
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where we use the fact that the function evaluations Yt are independent and identically distributed as
N (φ0(Xt), 1) conditionally on Xt, and we denote E0(Ts(n)) =

∑n
t=1 P0(Xt ∈ Hs) the expected

number of samples collected in Hs by the strategy under problem 0.
We now state the two main technical lemmas we will use.

Lemma 1 For any event E ∈ Fn = σ(X1, Y1, ..., Xn, Yn) we have:

E0(Ln,s| E) ≥ log

(
P0(E)

Ps(E)

)
.

Proof Use the change of measure identity and conditional Jensen’s inequality (see Kaufmann et al.
(2016), proof of Lemma 19).

Lemma 2 Let ρ0, ρ1 be two probability distributions supported on some set X , with ρ1 absolutely
continuous with respect to ρ0. Then for any measurable function τ : X → {0, 1}, one has:

PX∼ρ0(τ(X) = 1) + PX∼ρ1(τ(X) = 0) ≥ 1

2
exp

(
− KL(ρ0, ρ1)

)
.

The proof can be found in Tsybakov (2009) (Chapter 2, Theorem 2.2, Conclusion (iii)).

We now consider a realization of both the samples {(Xi, Yi)}i≤n and the recommendation
x(n) output by the strategy. We write g(x(n)) = arg mink≤K |x(n) − xk|∞, which simply maps
the recommendation x(n) to the closest xk (which correspond to the K possible maxima for our
set of problems) in infinity norm. We define ρ0, ρs as the distribution of g(x(n))x (here X in
Lemma 2 corresponds to {1, ...,K}) under problems 0 and s respectively. By definition of the
fixed budget setting, we have

∑K
k=1 E0(Ts(n)) ≤ n, so for K ≥ 2, there exists at least K/2 indices

s ∈ {1, ...,K} such that E0(Ts(n)) ≤ 2n
K . Moreover, there also exists 0.75K indices s ∈ {1, ...,K}

such that P0(g(x(n)) = s) ≤ 4
3K . The intersection of these two sets of indices cannot be empty, and

we fix i as one element of this intersection. Finally, we define the test function τ : k → 1{k = i}.
Under this choice of ρ0, ρ1 and τ , the previous lemma rewrites to:

P0(g(x(n)) = i) + Pi(g(x(n)) 6= i) ≥ 1

2
exp

(
− KL(ρ0, ρi)

)
.

We now use the tower rule (its countable - finite - version) and Lemma 1:

E0(Ln,i) =

K∑
k=1

E0(Ln,i|g(x(n)) = k)P0(g(x(n) = k)

≥
K∑
k=1

log

(
P0(g(x(n) = k)

Pi(g(x(n) = k)

)
P0(g(x(n) = k),

and we remark that the quantity on right hand side of the last inequality is precisely KL(ρ0, ρi) for our
choice of ρ0, ρi. Combining this with our previous bound in Equation (13): E0(Ln,i) ≤ E(Ti(n))∆2 ≤ 2n

K ∆2,

with ∆ =
√

K
n , we get:

Pi(g(x(n)) 6= i) ≥ 1

2
exp(−2)− 4

3K
.
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with K ≥ 16 exp(2)
3 , this yields:

max
s∈{1,...,K}

Ps(g(x(n)) 6= i) ≥ 1

4
exp(−2).

Thus, with constant probability, it holds that g(x(n)) 6= i, and by definition of g(x(n)) we have
x(n) 6∈ Hi. The simple regret associated with recommending x(n) can then be bounded by using
the definition of φi:

M − φi(x(n)) ≥ ∆.

In the corresponding passive setting where the sampled locations Xt are independent, identically
distributed uniformly at random over [0, 1]d, we have instead for all s: E(Ts(n)) ≤ O

(
n∆d/α

)
and

setting instead ∆ = O
(
n−α/(2α+d)

)
we get the rate O

(
n−α/(2α+d)

)
. Here, β plays no role in the

rate, which shows that sampling actively is very beneficial as soon as β > 0.

B.2. Proof of Theorem 3

Proof Let γ > α > 0 the two smoothness parameters and β ≥ 0 such that γβ ≤ d. Define
K = d∆

αβ−d
α e ≥ 2, and ∆ such that:

∆ =
K

Rγ,β(n)
,

with Rγ,β(n) such that Rγ,β(n)(2α+d−αβ)/(α+d−αβ) ≤ n
16 exp(−2). Importantly, we will consider

strategies such that for any problem in P(γ, β), their expected regret is smaller than Rγ,β(n).
Consider the grid G which partitions [0, 1/2]d into N = d∆−d/αe disjoint hypercubes. We index
the cells of G as (Hk)k≤N as in the proof of Theorem 1. We also define H0 the hypercube
[1−∆1/γ , 1]× ...× [1−∆1/γ , 1].

In what follows, we will write
S =

⋃
0≤k≤K

Hk.

Fix M ∈ [1/2, 1]. We define the function φs(x) for 0 ≤ s ≤ K and x ∈ [0, 1]d.

φs(x) =


max{M −∆,M −∆/2− |x− xi|γ∞}, if x ∈ H0

max{M −∆,M − |x− xi|α∞}, if x ∈ Hi, i = s

M −∆, if x ∈ Hi, i 6= s

max{0,M −∆− dist∞(x,S)γ}, if x ∈ SC ,

where dist∞(x,S)
.
= inf{|x− z|∞, z ∈ S}. It is clear that for s = 0, we have φ0 ∈ Σ(1, γ). By the

nestedness of the smoothness classes for any 1 ≤ s ≤ K we have φs ∈ Σ(1, α) as α ≤ γ.
We will now show that Assumption 2 for some B > 0 is satisfied for φs, ∀s ≤ K. For any
0 < ε < ∆ < 1, we have:

µ(X (ε)) ≤ εd/γ ≤ εβ,
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as we have γβ ≤ d. Now considering ε = ∆:

µ(X (ε)) ≤ K∆d/α + ∆d/γ ≤ 2∆β,

as we have set K = d∆(αβ−d)/αe ≤ 2∆(αβ−d)/α. Finally, we consider ε ∈]∆, 1/2], and we have:

µ(Ω(ε)) ≤ µ(X (∆)) + µ({x : ∆ < M − φs(x) ≤ ε})
≤ 2∆β + εd/γ

≤ 3εβ.

So we have by construction :

• For s = 0, φ0 ∈ P(γ, β) and M(φ0) = M −∆/2

• For any 1 ≤ s ≤ K, φs ∈ P(α, β).

• for any s, t ≤ K, and any x ∈ AC , φs(x) = φt(x) (one cannot distinguish problem i from
problem j in SC)

• for any 1 ≤ s ≤ K, the maximum of φs is attained only in xs and we have φs(xs) = M . In
particular, for any s 6= 1, we have M(φs) = M .

• ∀x 6∈ Hs, φs(x) = φ0(x): one cannot distinguish problem s from problem 0 outside of a
small neighborhood around xs.

• For any s ≤ K, ∀x 6∈ Hs,Ms − φs(x) ≥ ∆/2

We now define HK the set of recommendation problems such that for any 0 ≤ s ≤ K,
the problem s is characterized by the mean-pay off function φs, with zero-mean Gaussian noise
of variance 1, such that the observations are, conditionally on Xt = x, i.i.d. with distribution
Yt ∼ N (φs(x), 1). Let us fix a strategy (algorithm): it defines a (possibly randomized) sampling
mechanism, which characterizes the next sampling point Xt based on the previous observations
{(Xi, Yi)}i<t, for all t ≤ n. We write Ps, Es, for the probability and expectation under the problem
s (uniquely characterized by the function φs), when the previously mentioned strategy is used. This
strategy is such that for any problem in P(γ, β), we have E[Rn] ≤ Rγ,β(n). This assumption will
be used to encode the fact the strategy is nearly minimax optimal over the class P(γ, β), and that
any such strategy is strictly suboptimal over the larger class P(α, β).

As in the proof of Theorem 1, for a sample {(Xi, Yi)}i≤n collected by the previously introduced
algorithm under problem 1, we consider the log-likelihood ratio Ln,s

.
= Ln,s({(Xi, Yi)}i≤n) for

1 < s ≤ K:

Ln,s =

n∑
t=1

log

(
P0(Yt|Xt)

Ps(Yt|Xt)

)
=

n∑
t=1

1

2

(
(Yt − φs(Xt))

2 − (Yt − φ0(Xt))
2
)

=
n∑
t=1

(φs(Xt)− φ0(Xt))(φs(Xt)− Yt);

which yields as in the proof of Theorem 1:
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E0(Ln,s) ≤ E0(Ts(n))∆2, (14)

where E0(Ts(n)) is the expected number of samples in cell Hs collected by the sampling strategy
under problem 0 at the end of the game.
By definition of Rγ,β(n) which bounds the expected regret of the strategy, there exists a cell Hm and
an index m such that:

E0(Tm(n)) ≤
2Rγ,β(n)

∆K
,

otherwise the strategy has an expected regret strictly greater than Rγ,β(n). Combined with Equa-
tion (14), this yields:

E0(Ln,m) ≤
2Rγ,β(n)∆

K
= 2,

by definition of ∆ = K
Rγ,β(n) .

Consider a realization of the samples {(Xi, Yi)}i≤n. We define ρ0, ρm as the distribution of
Tm(n) (here X in Lemma 2 corresponds to {0, ..., n}) under problems 0 and m respectively. Finally,
we define the test function τ : T → 1{T ≥ n/2}. Under this choice of ρ0, ρm and τ , Lemma 2
yields:

P0(Tm(n) ≥ n/2) + Pm(Tm(n) < n/2) ≥ 1

2
exp

(
− KL(ρ0, ρm)

)
.

By the tower rule and Lemma 1:

E0(Ln,s) =

n∑
k=0

E0(Ln,s|Tm(n) = k)P0(Tm(n) = k)

≥
n∑
k=0

log

(
P0(Tm(n) = k)

Ps(Tm(n) = k)

)
P0(Tm(n) = k),

which is precisely KL(ρ0, ρm) for our choice of ρ0, ρm. As E0(Ln,s) ≤ 2, we get:

P0(Tm(n) ≥ n/2) + Pm(Tm(n) < n/2) ≥ 1

2
exp(−2). (15)

We now remark that P0(Tm(n) ≥ n/2) ≤ P0(Rn ≥ n∆
4 ), which can be bounded by Markov’s

inequality:

P0(Rn ≥
n∆

4
) ≤

4Rγ,β(n)

n∆
(16)

≤
4Rγ,β(n)(2α+d−αβ)/(α+d−αβ)

n

≤ 1

4
exp(−2),

as we have set R(2α+d−αβ)/(α+d−αβ)
γ,β ≤ exp(−2)n

16 . Intuitively, Equation (15) tells us that the strategy
suffers a regret of order O (n∆) with constant probability either under problem 0 or problem m.
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In order to satisfy the bound Rγ,β(n) on the regret of the strategy when it is facing problem 0, the
probability of suffering regret of order O (n∆) under problem 0 cannot be too big (and in fact, for
γ > α, it vanishes), and thus, the strategy errs with constant probability under problem m. In other
words, combining Equation Equation (15) and (16), we just showed that:

Pm(Rn >
n∆

4
) ≥ Pm(Tm(n) < n/2) ≥ 1

4
exp(−2),

which implies directly, as Rn is a non-negative random variable:

sup
f∈P(α,β)

E[Rn] ≥ Em[Rn] ≥ n∆

16
exp(−2) =

n

16
exp(−2)Rγ,β(n)−α/(α+d−αβ)

Appendix C. Proofs of Section 4

C.1. Proof of Theorem 4

Proof Let αi = i/blog(n)c2 for i ∈ {1, ..., blog(n)c3}. We write SR(i) for the Subroutine i run
with parameter αi. We define Ti(T ) the number of samples allocated to the SR(i) up to time T , and
R̂T (i) = Ti(T )M(f)−

∑Ti(T )
t=1 Yi(t) the regret incurred by SR(i) after it has performed Ti(T ) func-

tion evaluations. We write the corresponding pseudo-regretRT (i) = Ti(T )M(f)−
∑Ti(T )

t=1 f(Xi(t)),
where Xi(t) is the t-th sampling location chosen by SR(i).

We have E(Yi(t)) = f(Xi(t)), and claim that R̂T (i)−RT (i) =
∑Ti(T )

t=1 (f(Xi(t))− Yi(t)) is
a martingale with respect to the filtration FT = σ(X1, Y1, ..., XT−1, YT−1, XT ).
By standard concentration arguments and a union bound, we have for all i and all T ≤ n with
probability at least 1− δ:

|R̂T (i)−RT (i)| ≤ 2
√
Ti(t) log(nblog(n)c3/δ).

Fix k arbitrarily and consider the regret R̂n(k) that SR(k) has incurred up to time n. Now consider
j 6= k. The last time T that SR(j) was chosen by the Meta-Strategy, we know that:

R̂T (j) ≤ R̂T (k)

≤ RT (k) + 2
√
Tk(T ) log(nblog(n)c3/δ)

≤ Rn(k) + 2
√
n log(nblog(n)c3/δ),

where we used the fact that the pseudo-regret is non-decreasing with T . Furthermore, we know
that once SR(j) is chosen for the last time, it performs

√
n function evaluations. This brings

R̂j(n) = R̂T+
√
n(j) ≤ R̂T (j) +

√
n, as f(X) is in [0, 1] for all X , so the regret incurred between

time T and T +
√
n is at most

√
n. If j is never chosen by the Meta-Strategy after the initial

exploration phase that allocates
√
n samples, the same bound trivially holds.

This allows us to bound for all j 6= k:

R̂n(j) ≤ Rn(k) + 3
√
n log(nblog(n)c3/δ)
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By definition of the regret, the regret of the Meta-Strategy can be decomposed as the regret incurred
by each SR(i) up to time n:

R̂n =
∑
i

R̂n(i)

≤ blog(n)c3
(
Rn(k) + 3

√
n log(nblog(n)c3/δ)

)
.

We now consider i∗ such that: α− 1
blog2(n)c ≤ α

∗
i ≤ α. With probability at least 1− δ, we have by

Proposition 2:
Rn(i∗) ≤ D log(n/δ)n1−αi∗/(2αi∗+d−αi∗β),

where we use the fact that Ti∗(n) ≤ n in the fixed budget setting. We conclude by using Lemma 3,
which shows that our discretization over the smoothness parameters does not worsen the rate.

Lemma 3 Let α > 0.5
√
d/ log(n) and consider f ∈ P(α, β) and αi such that: α−blog(n)c−2 ≤

αi ≤ α. Then Subroutine 2 run with parameters αi, n, δ is such that with probability at least 1− δ,
we have:

Rn ≤ C log
(n
δ

)p
n1−α/(2α+d−αβ),

where p < 1 and C > 0 is a constant that does not depend on n, δ.

Proof By Proposition 2 we have with probability at least 1− δ:

Rn ≤ D log
(n
δ

)p
n1−αi/(2αi+d−αiβ).

By considering the exponent αi
2αi+d−αiβ , we have:

− αi
2αi + d− αiβ

≤ − α− blog(n)c−2

2α+ d− αβ + βblog(n)c−2

≤ − α

2α+ d− αβ
+

2α+ d

blog(n)c2(2α+ d− αβ)2
,

for α ≥ 1
blog(n)c

√
d
2 and we conclude by remarking that:

n
2α+d

blog(n)c2(2α+d−αβ)2 ≤ exp

(
log(n)(2α+ d)

blog(n)c2(2α+ d− αβ)2

)
,

and thus for α ≥ 1
2

√
d

log(n) , this extra factor only worsens the rate by a constant.
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C.2. Proof of Theorem 5

Proof The proof relies on the same notations and technical tools as in the proof of Theorem 4. We
assume that on the event ξ, we have for all i, T ≤ n:

|R̂T (i)−RT (i)| ≤ 2
√
Ti(t) log(nblog(n)c3/δ).

with P(ξ) ≥ 1− δ.
We denote i∗ the index of the Subroutine such that with probability at least 1− δ, we have for all
T ≤ n:

TM(f)−
T∑
t=1

f(Xi∗(t)) ≤ R∗(n, δ).

R∗(n, δ) is the maximum pseudo-regret for SR(i∗) if it had been allocated the entire budget of n of
function evaluations. We denote the event where this holds ξ′. We first show that with probability
1− 2δ, SR(i∗) is never eliminated by the Meta-Strategy. Let AN be the set of active Subroutines
at the beginning of round N . Assume that i∗ ∈ AN at the beginning of round N . We consider
k = arg maxi∈AN ŜT (i) where ŜT (i) =

∑Ti(T )
t=1 Yi(t) and ST (i) =

∑Ti(T )
t=1 f(Xi(t)). We know

that on ξ, we have:

Tk(T )∑
t=1

Yk(t) ≤
Tk(T )∑
t=1

f(Xk(t)) + 2
√
Tk(t) log(nblog(n)c3/δ)

≤ Tk(T )M(f) + 2
√
Tk(t) log(nblog(n)c3/δ),

where we use f(Xk(t)) ≤M(f) for any Xk(t).
We also have on ξ ∩ ξ′:

Ti∗ (T )∑
t=1

Yi∗(t) ≥
T∑
t=1

f(Xi∗(t))− 2
√
Ti∗(t) log(nblog(n)c3/δ)

≥ Ti∗(T )M(f)−R∗(n, δ)− 2
√
Ti∗(t) log(nblog(n)c3/δ).

For any i ∈ AN , SR(i) has performed the same number of function evaluations TN
.
= N
√
n up to

time T at the end of round N . Therefore on ξ ∩ ξ′ the following holds:

ŜT (k)− Ŝi∗(k) ≤ R∗(n, δ) + 4
√
TN log

(
nblog(n)c3

δ

)
,

and i∗ ∈ AN+1. As i∗ ∈ A1, by induction i∗ is never eliminated on ξ ∩ ξ′.
We now consider i such that SR(i) is eliminated at round N + 1, that is:

ŜT (k)− Ŝi(k) ≥ R∗(n, δ) + 4
√
TN+1 log

(
nblog(n)c3

δ

)
.

On ξ ∩ ξ′, we know that at round N we had for k = arg maxi∈AN ŜT (i):

ŜT (k) ≥ ŜT (i∗)

≥ TNM(f)−R∗(n, δ)− 2
√
TN log

(
nblog(n)c3

δ

)
,
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where we used the fact that i∗ is never eliminated on ξ ∩ ξ. Since SR(i) was eliminated at round
N + 1, it implies that at round N we had:

Ŝi(k) ≥ ŜT (k)−R∗(n, δ)− 4
√
TN log

(
nblog(n)c3

δ

)
≥ TNM(f)− 2R∗(n, δ)− 6

√
TN log

(
nblog(n)c3

δ

)
,

and on ξ this yields immediately:

TNM(f)−
TN∑
t=1

f(Xi(t)) ≤ 2R∗(n, δ) + 8
√
TN log

(
nblog(n)c3

δ

)
.

As SR(i) is allocated another
√
n samples before being eliminated at round N + 1, we can

therefore bound its regret on ξ ∩ ξ′ before being eliminated:

TN+1M(f)−
TN+1∑
t=1

f(Xi(t)) = TNM(f)−
TN∑
t=1

f(Xi(t)) +
√
nM(f)−

TN+
√
n∑

TN

f(Xi(t))

≤ 2R∗(n, δ) + 8
√
TN log

(
nblog(n)c3

δ

)
+
√
n

≤ 2R∗(n, δ) + 8
√
n log

(
nblog(n)c3

δ

)
+
√
n.

Similarly, for i such that SR(i) is never eliminated, we have:

Ti(n)M(f)−
Ti(n)∑
t=1

f(Xi(t)) ≤ 2R∗(n, δ) + 8
√
Ti(n) log

(
nblog(n)c3

δ

)
≤ 2R∗(n, δ) + 8

√
n log

(
nblog(n)c3

δ

)
.

Finally, we can decompose the pseudo-regret of the Meta-Strategy as the sum of the pseudo-regret of
each SR(i), which yields on ξ ∩ ξ′:

Rn =
∑
i

Ri(n)

≤ |A1|
(

2R∗(n, δ) + 8
√
n log

(
nblog(n)c3

δ

)
+
√
n

)
.

By a union bound we have P(ξ ∩ ξ′) ≥ 1− 2δ, which concludes the proof.
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